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Abstract

This research investigates the problem of robust static resource allocation for distributed computing systems operating under imposed Quality
of Service (QoS) constraints. Often, such systems are expected to function in a physical environment replete with uncertainty, which causes the
amount of processing required to fluctuate substantially over time. Determining a resource allocation that accounts for this uncertainty in a way
that can provide a probabilistic guarantee that a given level of QoS is achieved is an important research problem. The stochastic robustness metric
proposed in this research is based on a mathematical model where the relationship between uncertainty in system parameters and its impact on
system performance are described stochastically.

The utility of the established metric is then exploited in the design of optimization techniques based on greedy and iterative approaches that
address the problem of resource allocation in a large class of distributed systems operating on periodically updated data sets. The performance
results are presented for a simulated environment that replicates a heterogeneous cluster-based radar data processing center. A mathematical
performance lower bound is presented for comparison analysis of the heuristic results. The lower bound is derived based on a relaxation of the
Integer Linear Programming formulation for a given resource allocation problem.
c© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Often, parallel and distributed computing systems must
operate in an environment replete with uncertainty while
providing a required level of quality of service (QoS). This
reality has inspired an increasing interest in robust design.
The following are some examples. The Robust Network
Infrastructures Group at the Computer Science and Artificial
Intelligence Laboratory at MIT takes the position that “... a key
challenge is to ensure that the network can be robust in the face
of failures, time-varying load, and various errors”. The research
at the User-Centered Robust Mobile Computing Project at
Stanford “concerns the hardening of the network and software
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infrastructure to make it highly robust”. The Workshop on
Large-Scale Engineering Networks: Robustness, Verifiability,
and Convergence (2002) concluded that the “Issues are...
being able to quantify and design for robustness...”. There are
many other projects of similar nature at other universities and
organizations.

To provide insight into the target systems operating under
uncertainty that must maintain a certain level of QoS, consider
the following two examples. Fig. 1 schematically depicts part
of a total ship computing environment in the Adaptive and
Reflective Middleware Systems (ARMS) program supported by
DARPA’s Information Exploitation Office [4]. This part of the
ARMS example represents a large class of systems that operate
on periodically updated data sets, e.g., defense surveillance
for homeland security, and monitoring vital signs of medical
patients. Typically, in such systems, sensors (e.g., radar, sonar,
and video camera) produce data sets with a constant period of3
time units. Periodic data updates imply that the total processing
time for any given data set must not exceed 3, i.e., 3 is an
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Fig. 1. The ARMS example: major functional units and data flow for a class
of systems that operate on periodically updated data sets. The ai j ’s denote
applications executing on machine j . Processing of each data set must be
completed within 3 time units.

imposed timing QoS constraint for the system. Suppose that
each input data set must be processed by a collection of N
independent applications that can be executed in parallel on
the available set of M heterogeneous compute nodes. Due to
the changing physical world, the periodic data sets produced
by the system sensors typically vary in such parameters as the
number of observed objects present in the radar scan and signal-
to-noise ratio. Variability in the data sets results in variability
in the execution times of processing applications. Due to an
inability to precisely predict application execution times, they
can be considered uncertainty parameters in the system.

Another example of a distributed computing system that
must accommodate uncertainty under tight timing QoS
constraints is a web search engine. In the Google search
engine [5], the user query response time is required to be at most
0.5 s—including network round trip communication latency.
Query execution in this system consists of two major phases.
The first phase produces an ordered list of document identifiers.
This list is a result of merging the responses from multiple index
servers, each searching over a particular subset of the entire
index database. The second phase uses the list of document
identifiers and computes the actual title and uniform resource
locators of these documents, along with any query-specific
document summary information. Document servers perform
this job, each processing a certain part of the list.

Consider the first phase of the system where a fork-join job
[25] must be performed, as shown in Fig. 2 (similar analysis can
be derived for the second phase). To reduce overall execution
time, each query is duplicated and processed in parallel by a
subset of the available index servers—chosen by the cluster
manager such that they cover the entire index database. Each
copy queues to a different index server, and each index server
has its own input buffer where the requests are serviced in the
order of their arrival (for simplicity of analysis, sequential query
processing at each index server is considered in this study).
The cluster manager must be able to accommodate uncertainty
in query processing times because the exact time required to
process a query is not known a priori. However, it is possible
for the cluster manager to use the attributes of an incoming
query to identify a subset of the past queries that have similar
attributes and share a common distribution of execution times.
These past execution times taken from the identified subset of
queries can be used to create a probability density function (pdf)
Fig. 2. The Google example: Fork (F) and Join (J) query processing executed
by index servers in the first phase of the search engine.

that describes the possible execution times for the incoming
query.

According to [2], any claim of robustness for a given system
must answer three questions: (a) what behavior of the system
makes it robust? (b) what uncertainties is the system robust
against? (c) quantitatively, exactly how robust is the system? As
an example, consider the ARMS environment shown in Fig. 1,
where the system is robust if it is capable of processing each
data set within 3 time units. A resource allocation deployed
in this system must be robust against uncertainties in execution
times of the applications processing data sets. In our approach,
the degree of robustness is measured as the probability that all
of the processing required for a given data set is completed
within 3 time units. Very similar definitions could be derived
for the Google example.

In both examples, an important task for a resource
management system is to distribute applications (or queries)
across compute nodes (or index servers) such that the produced
resource allocation is robust, i.e., it can guarantee (or has a
high probability) that the imposed QoS constraint is satisfied
despite uncertainties in processing times. Simple load balancing
algorithms may be sufficient when a distributed system is
not over-subscribed, i.e., the number of queued tasks at each
compute node is small, so tasks can be completed well
before their deadlines. However, more sophisticated stochastic
analysis is required for resource allocations as the system
experiences workload surges or a loss of resources. Robust
design for such systems involves determining a resource
allocation that can account for uncertainty in a way that enables
the system to provide a probabilistic guarantee that a given QoS
is achieved. Our study defines a stochastic methodology for
quantifiably determining the ability of a resource allocation to
satisfy QoS constraints in the midst of uncertainty in system
parameters.

The problem of resource allocation in the field of
heterogeneous parallel and distributed computing is NP-
complete (e.g., [11,20]), therefore, the development of heuristic
techniques to find near-optimal solutions represents a large
body of research (e.g., [1,9,13,15,16,20,26,29,40]). There are
two major classes of resource allocation approaches widely
used in practice: greedy heuristics and iterative algorithms.
Usually, greedy heuristics are relatively fast (as opposed to
time-consuming global search heuristics), as they generate
a solution by making locally optimal decisions; this feature
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often makes greedy heuristics an appropriate choice to use in
dynamic (i.e., on-line mapping) systems. However, the quality
of solutions produced by greedy heuristics is generally lower
than that produced by global search heuristics that progressively
improve a solution through multiple iterations.

In the first part of this work, a new stochastic robustness
metric is presented where the uncertainty in system parameters
and its impact on system performance are modeled stochasti-
cally. This stochastic model is then used to derive a quantitative
evaluation of the robustness of a given resource allocation as
the probability that the resource allocation will satisfy the ex-
pressed QoS constraints. Two alternative means for computing
the metric are presented that render the required computation
practical in a number of common environments. The utility of
the proposed stochastic metric is analyzed in a simulated envi-
ronment by comparing it against existing deterministic metrics,
i.e., metrics where outcomes are not associated with probabili-
ties.

In the second part of this work, the proposed method of
stochastic robustness evaluation was integrated into greedy and
global search heuristics developed to address the problem of
resource allocation for a class of distributed systems operating
on periodic data sets schematically depicted in Fig. 1. In
many systems of the considered class, it is highly desirable
to minimize the period 3 between subsequent data arrivals
while providing a probabilistic guarantee that each data set is
processed within3 time units. As a practical example, consider
air traffic control and military applications where frequent radar
scans are needed to identify an approaching target with a
guaranteed high probability of successful processing of each
scan.

In summary, the two major contributions of this work
include: (1) the development of a mathematical model for a
stochastic robustness metric that utilizes available information
to quantifiably determine the ability of a resource allocation
to satisfy expressed QoS constraints; and (2) the design and
performance analysis of optimization techniques that solve the
problem of robust resource allocation in distributed systems
operating on periodically updated data sets. We demonstrate
that when the distributions of random variables associated with
uncertain parameters in the stochastic model are available, an
evaluation of a resource allocation leads to more useful results
than that achievable with deterministic metrics utilizing mean
values. Major contributions of this work are a discussion on the
applicability of FFT and the bootstrap method for computing
the proposed stochastic robustness metric and the derivation of
a lower bound on a minimum3 achievable based on our Integer
Linear Programming relaxation. We also examine the literature
pertinent to the area of robust resource allocation in distributed
systems.

In Section 2, a formal definition of stochastic robustness
is given, while Section 3 discusses methods of computing
the stochastic robustness metric given the independence of
input parameters. A comparison study demonstrating the
effectiveness of the proposed robustness measure versus
deterministic metrics is included in Section 4. The descriptions
of the heuristics or generating a robust resource allocation that
utilize the new metric are presented in Sections 5 and 6 for
greedy and iterative approaches respectively. This is followed
by a proof of an effective lower bound in Section 7, which
is used for comparison in the performance analysis. Section 8
contains the details of the simulation setup. The performance
results of the developed heuristics are presented in Section 9.
A discussion of the relation of this study to the published work
from the literature is given in Section 10. A glossary of notation
and acronyms used in the paper are tabulated in the Appendix.

2. Mathematical model for stochastic robustness

A stochastic robustness metric for a given distributed com-
puting environment should reasonably predict the performance
of the system. Given the existing content in the ARMS exam-
ple, let S j be the sequence of n j applications assigned to com-
pute node j in the order they are to be executed, i.e., S j =

[a1 j , a2 j , ...., an j j ]. In the Google example, the sequence S j
represents n j queries assigned to index server j . Let random
variable Ti j denote the execution time of each individual appli-
cation (or query) ai j on compute node (or index server) j . The
random variables Ti j characterize the uncertainty in execution
time for each of the applications in the system and serve as the
inputs to the mathematical model. These random variables are
the uncertainty parameters in the mathematical model.

In the ARMS example, the evaluation of system perfor-
mance is based on the makespan value (total time required for
all applications to process a given data set) [9] achieved by
a given resource allocation, i.e., a smaller makespan equates
to better performance. The functional dependence between the
uncertainty parameters and the performance characteristic, de-
noted as ψ , in the model is

ψ = max
j=1,...,M

{ n j∑
i=1

Ti j

}
. (1)

In the Google example, the performance in the first phase
is measured for each individual query. Unlike the ARMS
example, where the evaluation of makespan values occurs at
each3, query performance evaluation in the Google example is
performed while the system is busy processing queries. Assume
that M copies of a query arrive at index servers at wall-clock
time t , and n j is the number of queries pending execution or
being executed by index server j at that time. Let t0 j denote the
wall-clock start time of execution for the query being processed
by index server j at time t . The functional dependence between
the uncertainty parameters and the performance characteristic
at time t , denoted as ψ(t), is

ψ(t) = max
j=1,...,M

{
T1 j − (t − t0 j )+

n j∑
i=2

Ti j

}
. (2)

Due to its functional dependence on the uncertainty parameters
Ti j , the performance characteristic in Eqs. (1) and (2) is itself a
random variable.

Let the QoS constraints be quantitatively described by the
values βmin and βmax limiting the acceptable range of possible
variation in system performance [2], i.e., βmin ≤ ψ ≤
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βmax. The stochastic robustness metric, denoted as θ , is the
probability that the performance characteristic of the system
is confined to the interval [βmin, βmax], i.e., θ = P[βmin ≤

ψ ≤ βmax]. For a given resource allocation, the stochastic
robustness quantitatively measures the probability that the
generated system performance will satisfy the stipulated QoS
constraints. Clearly, unity is the most desirable stochastic
robustness metric value, i.e., there is zero probability that the
system will violate the established QoS constraints.

3. Computational issues

3.1. Assumptions of independence

In the model of compute node j , the functional dependence
between the set of local uncertainty parameters {Ti j |1 ≤ i ≤

n j } and the local performance characteristic ψ j can be stated in
the ARMS example as ψ j =

∑n j
i=1 Ti j ; in the Google example

as ψ j = T1 j − (t − t0 j )+
∑n j

i=2 Ti j .
Independence of the local performance characteristics

implies that the random variables ψ1, ψ2, . . . , ψM are mutually
independent. If such independence is established, the stochastic
robustness in a distributed system can be expressed as the
product of the probabilities of each compute node meeting the
imposed QoS constraints. Mathematically, this is given as

θ =

M∏
j=1

P[βmin ≤ ψ j ≤ βmax]. (3)

Specifically in Eq. (3), βmax = 3 in the ARMS example and
βmax � 0.5 s in the Google example. In both examples, βmin
is set to 0 because there is no minimum time constraint on
execution.

If the execution times Ti j of applications mapped on a
compute node j are mutually independent, then P[βmin ≤ ψ ≤

βmax] can be computed by taking the integral between βmin
and βmax over the completion time pdf for machine j . The
completion time distribution for machine j is determined by
taking an n j -fold convolution of probability density functions
(pdfs) fTi j (ti ) [27]. The probability can then be computed as

P[βmin ≤ ψ j ≤ βmax]

=

∫ βmax

βmin

[ fT1 j (t1) ∗ · · · ∗ fTn j j (tn j )]dt. (4)

This assumption of independence is valid for non-multitasking
execution mode which is commonly considered in the
literature [9,13,25,29,40], and applied in practice in a variety
of systems, e.g., an iterative UDP server model [17].

3.2. Fast Fourier transform method

An n j -fold convolution in Eq. (4) requires n j − 1
computations of the convolution integral [27]; thus, a direct
numerical integration may become a formidable task when
n j is a relatively large number. However, a high quality
approximation to the n j -fold convolution can be obtained, at
a low computational expense, by applying Fourier transforms.
Thus, if ΦTi j (ω) denotes the characteristic function of Ti j ,

i.e., the forward Fourier transform [33], and Φ−1
ψ j

denotes the
inverse Fourier transform, then Eq. (4) can be computed as
follows

P[βmin ≤ ψ j ≤ βmax]

=

∫ βmax

βmin

Φ−1
ψ j

{ΦT1 j (ω)× · · · × ΦTn j j (ω)}dt. (5)

From this point onwards, assume that each pdf fTi j (ti ) is
expressed as a discrete probability mass function (pmf) utilizing
Ω points—this is common in practical implementations. As
such, the calculation can be performed using a Fast Fourier
Transform method (FFT) that reduces the computational cost
of finding the corresponding characteristic functions ΦTi j .
The FFT method is a discrete Fourier transform algorithm
that reduces the number of computations needed for Ω
points from 2Ω2 to 2Ω log Ω [33]. Thus, the computational
complexity of determining the local performance characteristic
can be drastically reduced, making the approach reasonable to
compute.

In dynamic systems (i.e., on-line mapping), processing a
continuous stream of tasks (e.g., in the Google example), the
number of convolutions required at each mapping event is
relatively low. For example, evaluating a potential allocation of
a given task on a particular compute node requires only one
convolution of the execution time distribution for the task with
the completion time distribution of the task assigned last to the
considered compute node. Once the assignment of a given task
is finalized, its computed completion time distribution will be
used for future assignment assessments.

3.3. Bootstrap approximation

This subsection presents an alternative method of evaluating
P[βmin ≤ ψ j ≤ βmax] known in the literature as the bootstrap
method [41]. In contrast to convolution that is applicable
only when ψ j =

∑n j
i=1 Ti j , the bootstrap procedure

can be applied to various forms of functional dependence
between local uncertainty parameters Ti j and the local
performance characteristic ψ j , making it very useful in
practical implementations. For example, the processing of
queries by a Web server is typically done in a parallel
multitasking environment, and there exists a complex
functional dependence [3] between the time required to process
a query and a number of currently executing threads, amount of
data cached, types of requests, etc.

Suppose that for each Ti j , its execution time distribution
is known and fully described with a pmf fTi j (ti ). The pmf
can be derived analytically and presented as a closed-form
expression, or obtained as a result of past executions of
application i on compute node j . The latter is called a sample
pmf. As the number of past executions k grows, new results
of executions are added, and the sample pmf, f̂(k)Ti j (ti ),
constructed from these observations, converges in probability

to fTi j (ti ), i.e., f̂(k)Ti j (ti )
P
→ fTi j (ti ).
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Fig. 3. Pseudocode for the bootstrap procedure.

Let T̂ ∗

i j denote one draw from the distribution fTi j (ti ) (or

from f̂(k)Ti j (ti )). Let ψ̂∗

j be a bootstrap replication whose
computation is based on a known functional dependence g()
between Ti j and ψ j , i.e., ψ̂∗

j = g(T̂ ∗

1 j , . . . , T̂ ∗

n j j ). In the

bootstrap simulation step [41], B bootstrap replications of ψ̂∗

j

can be computed, ψ̂∗

j,1, . . . , ψ̂
∗

j,B , and used to approximate a

pmf of ψ j , denoted as f̂(B)ψ j (t). Thus, the probability for the
local performance characteristic ψ j can be approximated as:

P[βmin ≤ ψ j ≤ βmax] ≈

∫ βmax

βmin

f̂(B)ψ j (t)dt. (6)

Eq. (6) assumes the existence of a monotone normalizing
transformation for the ψ j distribution, and it is based on a
proof of bootstrap percentile confidence interval [41]. An exact
normalizing transformation will rarely exist, but approximate
normalizing transformations may exist—which causes the
probability that ψ j is in the interval [βmin, βmax] to be not
exactly equal to the integral on the right-hand side of Eq.
(6). The pseudocode for the bootstrap analysis is shown in
Fig. 3.

Table 1 presents the empirical data for an experiment
conducted to illustrate the accuracy of the bootstrap
approximation for the case where the functional dependence
between Ti j and ψ j is a summation. Table 1 captures the
percent error resulted from the approximations based on Eq.
(6) with respect to the exact convolution results. In the
experiment, βmin was set to 0, βmax was set to the mean
value of t in f̂(B)ψ j (t)(t)—this ensures that βmax is specified
in the reasonable range. All Ti j distributions were modeled
by randomly assigning a probability to each of Ω data points
and normalizing the resultant pmfs. Each value in Table 1
represents the average across 100 different trials. Two trends
can be identified from Table 1: (1) relative accuracy does
not increase with the number of applications assigned to
compute node j , (2) tighter approximations were obtained by
increasing the number of bootstrap replications. If distributions
of uncertainty parameters were closer to Gaussian distribution
— which occurs often in practice — the resultant bootstrap
approximations would be more precise as described in the
proof of Eq. (6) [41]. There are other bootstrap approximations
Table 1
Percent error resulted from bootstrap approximations

n j Number of bootstrap replications
100 1000 10,000

10 5.63 5.61 2.16
100 8.35 3.23 2.13

1000 6.52 2.84 1.04

that may be more accurate, especially when the nature of the
expected pmf of the performance metric is known. The above
experiment demonstrates that the bootstrap method is capable
of producing reasonable approximations. The real strength of
the bootstrap is its ability to handle mutually dependent random
variables. Note however that some bootstrap methods require a
significant amount of computation and might be prohibitively
expensive in certain distributed systems.

4. Comparison with deterministic metrics

The experiments in this section seek to establish the utility
of the stochastic robustness metric in distinguishing between
resource allocations that perform similarly with respect to a
commonly used deterministic metric, such as makespan, and
the deterministic robustness metric from [2]. The simulation of
the system outlined in the ARMS example of Section 1 included
1000 randomly generated resource allocations, where 128
independent applications (N = 128) were allocated to eight
machines (M = 8). Each of the application execution time
distributions, specific to each application–machine pair, was
modeled with a pmf randomly constructed in the range [0, 40] s,
inclusive. To construct each pmf, ten execution time values
were uniformly spread across the range of the distribution.
Each of these execution time values was assigned a probability
sampled uniformly on the range (0, 1). All the application
execution time distributions were subsequently normalized so
that the sum of the probabilities across all the execution
time values becomes equal to 1. Let meanav be the average
value computed across the means of all constructed application
execution time distributions. In the simulation, the QoS
constraint 3 was set to 3 = 1.5 × N × meanav/M . Recall, for
the ARMS example3 is a QoS constraint on system processing
time that is used in the definition of the stochastic robustness
metric given in Eq. (3). In Fig. 4, the “stochastic robustness”
vertical axes correspond to the probability that the makespan
will be ≤ 3. In this simulation, the deterministic robustness
metric and makespan were calculated using the mean of the
execution time distribution for each application–machine pair
in the given allocation.

In Fig. 4(a), a comparison between the stochastic robustness
metric and makespan is presented for 1000 randomly generated
resource allocations. As can be expected, in general, resource
allocations that produce a very large makespan tend to have a
very small stochastic robustness metric value. However, there
can be a large discrepancy between the predicted performance
found using the predicted makespan, based on execution time
mean values, and the predicted performance found using
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the stochastic robustness metric. For example, in the figure,
compare the two resource allocations labeled A and B. If
the comparison of these two resource allocations is made
using the predicted makespan, allocation A appears to be
slightly superior to allocation B. However, resource allocation
B presents a 99.8% probability of meeting the imposed QoS
constraints, whereas allocation A has only a 75% probability of
meeting it. In this case, using only the expected makespan to
compare the two resource allocations leads to a sizable increase
in risk for a modest (≈5%) improvement in the expected
makespan. Any of the approximately 100 resource allocations
above and to the right of allocation A, delineated by the dashed
lines in the figure, will have a higher robustness value yet higher
(worse) makespan value than A.

In Fig. 4(b), a comparison of the stochastic robustness metric
and the deterministic robustness metric is presented for 1000
randomly generated resource allocations. The deterministic
robustness metric, first introduced in [2], is based on a
calculation of the minimum total increase across all task
execution times in the Euclidean sense that can possibly violate
3. The results also show a number of resource allocations
that have a negative deterministic robustness value. For the
data used in this simulation study, a negative value for
the deterministic robustness correlates with a low stochastic
robustness value.

Compare the two resource allocations C and D. Based on
using deterministic robustness measure, allocation D (with a
deterministic measure of 6.13 s) is preferred over C (with
a deterministic measure of 3.25 s). However, under the new
stochastic model, allocation C (with a stochastic measure of
99.9%) is preferred over D (with a stochastic measure of 75%).
Thus in this case, using only the deterministic robustness metric
to select a resource allocation, D appears to be more robust
than C . In contrast, the stochastic robustness metric, which
accounts for the distribution of makespan outcomes, shows
that allocation C has a 99.9% probability of meeting the QoS
constraint while allocation D has only a 75% probability of
meeting the QoS constraint.

Consider the sub-region identified in Fig. 4(b) with dotted
lines originating from the point D, containing all of the points
above and to the left of D. Each of these points in the sub-
region has a higher stochastic robustness metric value than D
but a lower deterministic robustness metric value than D.

It is shown in [2] that the deterministic robustness metric,
using an expected time for each task execution, provides
better information for resolving a resource allocation than
just a makespan. However, when execution time distributions
are available, the stochastic robustness metric provides even
better decision than the deterministic robustness metric.
Differences between the stochastic robustness metric and the
deterministic robustness metric can be explained by the fact
that the stochastic robustness metric uses information about
the distribution of outcomes for the resource allocation to
determine robustness. In contrast, the deterministic robustness
metric uses a scalar estimate of each application’s execution
time on each machine to determine a resource allocation’s
robustness. Thus, if the information needed for using the
Fig. 4. A plot of stochastic robustness metric versus (a) makespan and
(b) deterministic robustness for 1000 randomly generated resource allocations.
The stochastic robustness metric values for allocations A and B exemplify the
difference between the stochastic robustness metric and makespan. Similarly,
the stochastic robustness metric values for allocations C and D exemplify the
difference with the deterministic robustness metric.

stochastic model is available, or can be obtained, then a better
selection among resource allocations is possible.

5. Greedy heuristics

5.1. Overview

The stochastic robustness metric established in Section 2
can be used to solve different optimization problems. For the
system illustrated in the ARMS example, the performance goal
for the mapper can be formulated as follows: find resource
allocations for a given set of N applications on M machines
that allows for the minimum period 3 between sequential data
sets while maintaining a fixed user specified level of stochastic
robustness P[ψ ≤ 3]. Another possible formulation is to
maximize the stochastic robustness in the system for a fixed
user specified 3. The research described next was focused on
the first formulation.

Four greedy heuristics were designed for the problem of
finding a resource allocation with respect to this objective.
Greedy techniques have been adapted in many systems, e.g.,
[9,20,30,32], as they perform well and are capable of generating
solutions relatively fast as compared to time-consuming global
search heuristics, e.g., [40,42,43]. The four heuristics can be
categorized based on the amount of stochastic information that
each of them uses. The first two of the proposed heuristics
utilize the entire spectrum of stochastic information at each
stage of the decision process, as opposed to the third heuristic
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Fig. 5. Pseudocode for the Period Minimization Routine (PMR).

that uses mean values in the sorting stage, and the fourth
heuristic that operates using mean values only. All of the
heuristics employ the Period Minimization Routine, described
next, to determine the minimum 3 supported by each resource
allocation.

Period Minimization Routine: The PMR procedure deter-
mines the minimum possible value of 3 for a given resource
allocation and a given level of stochastic robustness. As a first
step, the results of the n j -fold convolutions are obtained with
the FFT or bootstrap method for each compute node corre-
sponding to the completion time (i.e.,

∑n j
i=1 Ti j ) distributions

expressed in a pmf form. The completion time pmf on com-
pute node j is comprised of K j impulses, where every impulse
is specified by the time tk j | k ∈ [1, K j ], and the probability
pk j | k ∈ [1, K j ] for tk j to occur.

As a second step, the minimum 3 is determined recursively
as the smallest value among tk j | {1 ≤ k ≤ K j , 1 ≤ j ≤ M},
such that the specified level of stochastic robustness is less than

or equal to
∏M

j=1[
∑K j

k=1 pk j × 1(tk j ≤ 3)], where 1(condition)
is 1 if condition is true; 0 otherwise. The PMR procedure is
summarized in Fig. 5.

After Q steps, the PMR procedure reduces the uncertainty
range by a factor ≈ (0.5)Q , which is the fastest possible
uncertainty reduction rate. This optimality is possible because
P[ψ ≤ 3] is strictly increasing as the number of impulses
considered for its computation grows. The notation 3(ai ,m j )

will be used to denote a PMR call that returns the minimum
value of 3 for the specified level of stochastic robustness when
application ai is added to machine m j .

5.2. Two-Phase heuristic

The Two-Phase heuristic is based on the principles of
the Min–Min algorithm (first presented in [20], and shown
to perform well in many environments, e.g., [9,29,30]). The
heuristic traverses through N iterations resolving an allocation
of one application at each iteration. In the first phase of
each iteration, the heuristic determines the best assignment
(according to the performance goal) for each of the applications
Fig. 6. Pseudocode for the Two-Phase greedy heuristic. Argmin stands for the
argument of the minimum, i.e., the value of the given argument for which the
value of the given expression attains its minimum value.

Fig. 7. Pseudocode for the Contention Resolution greedy heuristic.

left unmapped. In the second phase, it selects which application
to map based on the best result found in the first phase. The
Two-Phase procedure is summarized in Fig. 6.

5.3. Contention Resolution heuristic

The CR heuristic uses the sufferage concept introduced in
[29], and used in [24]. Like the Two-Phase heuristic, in every
iteration this heuristic first determines the best assignment for
each of the applications left unmapped. Mapping decisions
are finalized for those applications whose best choice compute
nodes are unique, i.e., there are no other applications competing
for these nodes. In the second phase, the most critical among
the competing applications gets allocated, determined as the
application with the largest difference between the two smallest
3 values corresponding to this application’s assignment to its
best choice and its second best choice compute nodes, i.e., its
sufferage. The Contention Resolution procedure is summarized
in Fig. 7.

5.4. Sorting heuristic

This heuristic uses the concepts developed for the MCT
algorithm that were observed to perform well in multiple
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Fig. 8. Pseudocode for the sorting greedy heuristic.
resource allocation schemes designed for distributed systems,
e.g., [9,29]. Initially, all N applications considered for mapping
are sorted based on the average computed for each application
across the mean values µ(Ti j ) derived from execution time
distributions of Ti j | 1 ≤ j ≤ M . Three different orderings
were considered in the experiments. The hi → lo ordering
where applications are ranked in descending order of their
averages; lo → hi ordering where applications are ranked
in ascending order of their averages; and arbitrary ordering
where N applications are ordered randomly. Once sorting is
completed, applications are fetched sequentially, each mapped
on the compute node selected to provide the minimum value of
the period 3 under the imposed level of stochastic robustness.
The heuristic’s procedure is summarized in Fig. 8.

5.5. Mean load balancing heuristic

This heuristic was developed based on the concepts of the
OLB algorithm discussed in [29,23]. First, the N applications
are sorted based on average value, as in the sorting heuristic.
Then, the applications are mapped in the {hi → lo, lo → hi,
arbitrary} order where the compute node with the minimum
mean of its execution time distribution is selected for each
allocation. The heuristic’s procedure is summarized in Fig. 9.

6. Global search heuristics

6.1. Overview

Three global search heuristics were designed to find
a resource allocation that optimizes the performance goal
stated in Section 5.1. These heuristics are probabilistic
search techniques that have been widely used in optimization
research [34,43,30], artificial intelligence [19], and many
other areas. The first two of the heuristics operate with
a set of complete resource allocations; whereas the third
heuristic iteratively changes a single complete resource
allocation. As opposed to the previous greedy algorithms,
where a single complete resource allocation was “constructed,”
iterative heuristics progress toward a final solution through
modified versions of complete resource allocations. During
each iteration, the existing complete resource allocation (or
set of allocations) is modified and evaluated. Such an iterative
search process continues until an appropriate stopping criterion
is reached.

To establish a basis for the comparison of the global search
heuristics and to demonstrate the performance over time for
each of them, a common stopping criterion (CSC) of 150,000
calls to the PMR routine was used in this study (each PMR
call corresponds to at most 1024 1-fold convolutions). It is
important to note that the PMR stochastic evaluation is the most
computationally intensive part of any of the algorithms as it
calls for M executions of (n j − 1)-fold convolutions, followed
by a recursive search for a minimum 3 level.

6.2. Steady State genetic algorithm

The adapted genetic algorithm (GA) implementation was
motivated by the Genitor evolutionary heuristic [43]. Each
chromosome in the GA models a complete resource allocation
as a vector of numbers of length N where the i th element of the
vector identifies the compute node assignment for application
ai . The order in which applications are placed in a chromosome
does not play any role and can be considered arbitrary. The
population size for the GA was fixed at 200 members for each
iteration. The population size was chosen experimentally by
varying the population size between 100 and 250 in increments
of 50. For the samples tried, a value of 200 performed the
best and was chosen for all trials. The initial members of
the population were generated by applying the greedy Sorting
heuristic presented before, in which the arbitrary ordering
among applications was perturbed to have as a result different
resource allocations to serve as the initial members of the
population. In addition, the solution produced by the greedy
Two-Phase heuristic was also added to the initial population.

The GA was implemented as a steady state GA, i.e., for
each iteration of the GA only a single pair of chromosomes was
selected for crossover. Selection for crossover was implemented
as rank-based selection using a linear bias function [43] where
the population of chromosomes is sorted by 3 values. The
most fit chromosome corresponds to a resource allocation
with the smallest 3 value supportable at the specified level
of stochastic robustness θ . Each chromosome generated by
crossover or mutation is inserted into the population according
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Fig. 9. Pseudocode for the Mean Load Balancing greedy heuristic.
its 3 value such that after insertion the population remains
sorted. Furthermore, the population is truncated after insertion
to maintain a constant population size.

To reduce the number of duplicate chromosome evaluations,
each chromosome that is trimmed from the active population
is recorded in a list of known bad chromosomes referred to
as the graveyard. Selecting the size of the graveyard reflected
a trade-off between the time required to identify that a new
chromosome was not present in the population or the graveyard
and the time required to evaluate the new chromosome. Given
the computer system used, the graveyard size was selected to
be 20,000 chromosomes.

To maintain the selective pressure of rank-based selection,
an additional constraint was placed on the population requiring
each chromosome to be unique, i.e., clones are explicitly
disallowed. If a chromosome produced in any iteration were
to generate a clone of an individual already present in the
population or the graveyard, then that clone would be discarded
prior to its evaluation for insertion into the population.

The crossover operator was implemented using a two-
point reduced surrogate procedure [43]. In this procedure, the
selected parent chromosomes are compared to identify the
chromosome entries that differ between them. Crossover points
are randomly selected such that at least one element of the
parent chromosomes differs between the selected crossover
points as this guarantees offspring that are not clones of their
parents. In addition, each generated offspring is subsequently
checked for uniqueness in the population and the graveyard
prior to making a call to the PMR routine that calculates the
minimum 3 value.

The final step in a single iteration of the GA is mutation.
For each iteration of the GA, the mutation operator is applied
to the newly generated offspring of the crossover operator.
Each application assignment of the offspring is individually
mutated with a probability referred to as the mutation rate.
For the simulated environment, the best results were achieved
using a mutation rate of 0.01. Once the application is selected,
the mutation operator randomly selects a different compute
node assignment from a subset of compute nodes that provide
smallest means of execution times. The best results in the
simulation study were achieved when the size of this subset was
set to three. Following mutation a final local search procedure,
conceptually analogous to the steepest descent technique, was
applied to the result prior to inserting the mutated chromosome
into the population.

The general idea of using a local search operator as a
post-processing step to a mutation operator in a GA was
used in [44] to address a flowshop problem. The following is
a short synopsis of the local search procedure implemented
here, conceptually similar to the coarse refinement presented
as part of the GIM heuristic in [39]. The local search relies
on a simple four-step procedure to minimize 3 relative to
a fixed θ level. First for a given mapping, the machine is
identified with the lowest individual probability to meet 3.
On this machine, the application is identified that, if moved
to a different machine, would decrease the overall 3 the
most. This requires re-evaluating the overall 3 every time an
application is tried on each machine to determine the largest
improvement that can be gained by moving this application.
Once an application–machine pair has been identified, the task
is moved to its chosen machine. Finally, the procedure repeats
from the first step until there are no application moves on the
lowest probability machine that would improve 3. For this
procedure, it is assumed that θ < 1; otherwise, the first step
should be modified to identify the machine that finishes last, as
the robustness of all machine completion times would be equal
to one.

The GA procedure is summarized in Fig. 10.

6.3. Ant colony optimization

The Ant Colony Optimization (ACO) heuristic belongs
to a class of swarm optimization algorithms, where low-
level interactions between artificial (i.e., simulated) ants result
in large-scale optimizations by the larger ant colony. The
technique was inspired by colonies of real ants that deposit
a chemical substance (pheromone) when searching for food.
This substance influences the behavior of individual ants. The
greater the amount of pheromone on a particular path, the larger
the probability that an ant will select that path. Artificial ants in
ACO behave in a similar manner by recording their chosen path
in a global pheromone table.
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Fig. 10. Pseudocode for the Steady State genetic algorithm.

The ACO algorithm implemented here is a variation of
the ACO algorithm design described in [14]. During ACO
execution, the N × M pheromone table is maintained and
updated allowing the ants to share global information about
good compute nodes for each application. Let each element
of the pheromone table, denoted as τ(ai , j), represent the
“goodness” of compute node j for application ai . At a high
level, the ACO heuristic works in the following way. A certain
number of ants are released to find different complete mapping
solutions. Based on the mapping produced by the individual
ants, the pheromone table is updated. This procedure is repeated
as long as the common stopping criterion is not reached.
The final mapping solution is determined by mapping each
application to its highest pheromone value compute node.

The update of each pheromone table entry τ(ai , j) involves
the fitness of ant s, denoted as f (s) ∈ (0, 1), determined as a
relative performance of ant s with respect to the performance of
other ants. Let3(s) be the level of3, obtained with a PMR call
invoked at the end of the ant’s mapping procedure (described
below). Assuming Q ants are released in an iteration, f (s) is
calculated as follows

f (s) = 1 −
3(s)

Q∑
k=1

3(k)

. (7)
If ρ denotes a coefficient that represents pheromone
evaporation, Bs denotes the set of application-compute node
assignments comprising the path of ant s, each τ(ai , j) is
updated as follows

τ(ai , j) = ρ × τ(ai , j)

+

Q∑
s=1

f (s)× 1(ai assigned to j in Bs). (8)

As stated above, the pheromone table is updated at the end
of each high-level iteration, i.e., when all ants complete their
paths. Initially, all values in the pheromone table are set to 1.

At a low level, each ant heuristically “constructs” a complete
mapping, and its mapping decision process balances between:
(a) the performance metric and (b) the pheromone table
information. The ant’s mapping procedure involves two steps.
In Step 1, for each unmapped application, the compute node,
denoted as jbest(ai ), is determined such that it would provide
the minimum mean completion time, µmin(ai ), across M
compute nodes if ai was assigned to this node. The worth of
application ai , denoted as η(ai ), is then determined as a result
of the following normalization

η(ai ) = 1 −
µmin(ai )∑

unmapped ak

µmin(ak)
. (9)

In Step 2, an unmapped application is stochastically selected
and assigned to its jbest(ai ) compute node. Let α be the scalar
that controls the balance between the pheromone value and
worth. The probability that ant s selects application ai to be
mapped next is

P[ai selected next]

=
α × τ(ai , jbest(ai ))+ (1 − α)× η(ai )∑

unmapped ak

α × τ(ak, jbest(ak))+ (1 − α)× η(ak)
. (10)

The ant’s mapping procedure is repeated until all applications
have been mapped.

The scalar α was determined experimentally by increment-
ing from 0 to 1 in 0.1 steps. In the simulation trials tested,
the performance peak was detected with α equal to 0.5. The
pheromone evaporation factor ρ of 0.01 was determined in a
similar manner. The total number of ants for each iteration was
set to 50; any further increase of this number in the experiments
resulted in performance degradation. Note that numerical val-
ues for all of the aforementioned parameters were empirically
optimized for the simulation setup described in Section 8. The
ACO procedure is summarized in Fig. 11.

6.4. Simulated annealing

The Simulated Annealing (SA) algorithm — also known
in the literature as Monte Carlo annealing or probabilistic
hill-climbing [30] — is based on an analogy taken from
thermodynamics. In SA, a randomly generated solution,
structured as the chromosome for GA, is iteratively modified
and refined. Thus, SA in general, can be considered as an
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Fig. 11. Pseudocode for the Ant Colony Optimization heuristic.
iterative technique that operates with one possible solution
(i.e., resource allocation) at a time.

To deviate from the current solution in an attempt to find
a better one, SA repetitively applies the mutation operation in
the same fashion as GA, including the local search. Once a
new unique solution, denoted as Snew, is produced (SA uses the
same graveyard technique as GA to determine uniqueness), a
decision regarding the replacement of a previous solution with
a new one has to be made. If the quality of the new solution,
3(Snew), found after evaluation, is higher than the old solution,
the new solution replaces the old one. Otherwise, SA uses a
procedure that probabilistically allows poorer solutions to be
accepted during the search process, which makes this algorithm
different from other strict hill-climbing algorithms [30]. This
probability is based on a system temperature, denoted T, that
decreases with each iteration. As the system temperature “cools
down” it becomes more difficult for poorer solutions to be
accepted. Specifically, the SA algorithm selects a sample from
the range [0, 1) according to a uniform distribution. If

random[0, 1) >
1

1 + exp(
3(Sold)−3(Snew)

T )
(11)

the new poorer resource allocation is accepted; otherwise, the
old one is kept. As it follows from Eq. (11), the probability for
a new solution of similar quality to be accepted is close to 50%.
In contrast, the probability of poor solutions to be rejected is
rather high, especially when the system temperature becomes
relatively small.

After each mutation (described in the GA procedure) that
successfully produces a new unique solution, the system
temperature T is reduced to 99% of its current value.
This percentage, defined as a cooling rate, was determined
experimentally by varying the rate in the range of (0.9, 1] in
0.01 steps. The initial system temperature in Eq. (11) was set to
3 of the chosen initial resource allocation.

The SA procedure is summarized in Fig. 12.
Fig. 12. Pseudocode for the Simulated Annealing heuristic.

7. Lower bound calculation

To evaluate the absolute performance attainable by the
developed resource allocation techniques, a lower bound (LB)
on the minimum period3 was derived based on the assumption
that the specified level of the stochastic robustness metric is
greater than or equal to 0.5, i.e., θ ≥ 0.5, which is typical
for practical implementations. The process of calculating the
LB involves two major steps. In the first step, a “local” lower
bound on 3 is established for a given mapping. In the second
step, a unique LB is computed for all possible local lower
bounds by solving a relaxed form of the Integer Linear Program
formulated for the resource allocation problem.

Step 1: Consider a given complete resource allocation of N
applications on M compute nodes. Let 3 denote the maximum
of the means across all M completion time distributions,
µ(

∑n j
i=1 Ti j ), i.e., 3 = max{µ(

∑n j
i=1 Ti j ) | 1 ≤ j ≤ M}.

Given that the assumed level of the stochastic robustness metric
is greater than or equal to 0.5,3 represents the smallest possible
time period for a given mapping. To observe this, recall that

1. mean µ(a) is a “center of mass” of the distribution of
random variable a, so that if z is the compute node given
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by z = argmax{µ(
∑n j

i=1 Ti j ) | 1 ≤ j ≤ M}, then P[ψz ≤

3] = 0.5;
2. P[ψz ≤ 3] ≥ P[ψ ≤ 3] because according to Eq. (3),

P[ψ ≤ 3] is computed as an M-product of P[ψ j ≤ 3],
where each of M terms is less than or equal to one.

Step 2: An objective here is to determine LB, denoted as
3∗, such that 3∗

≤ min{3 | all possible mappings}. Relying
on the property that the sum of means is equal to the mean of
the sums, i.e.,

∑n j
i=1 µ(Ti j ) = µ(

∑n j
i=1 Ti j ), the problem of

finding 3∗ can be formulated in the following Integer Linear
Programming (ILP) form.1

Let a binary decision variable x[i, j] | {1 ≤ i ≤ N ; 1 ≤

j ≤ M} be equal to one if application ai is assigned to compute
node j , and equal to zero if ai is not assigned to compute node
j . The ILP objective function can be stated as

minimize 3∗
= max

{
N∑

i=1

µ(Ti j )× x[i, j] | 1 ≤ j ≤ M

}
.

The objective function is subject to conditions (a) and (b):

x[i, j] ∈ {0, 1} for 1 ≤ i ≤ N , 1 ≤ j ≤ M; (a)
N∑

i=1

x[i, j] = 1 for 1 ≤ j ≤ M; (b)

In addition to condition (a) explained above, condition (b)
forces each application to be mapped to the system. For small-
scale problems, a global optimal solution can be found for the
derived ILP form in a reasonable time (e.g., by applying the
Branch-and-Bound technique). However, condition (b) makes
the ILP form NP-complete [31], so that for large-scale problems
a Linear Programming (LP) relaxation is required to the ILP
form that implies that condition (a) is relaxed to real numbers,
i.e., x[i, j] ∈ [0, 1] | {1 ≤ i ≤ N , 1 ≤ j ≤ M}. Due to this
relaxation, in general, an LP solution does not correspond to a
valid mapping, but allows a global optimal solution to be found
in polynomial time [18], that will be a lower bound for the ILP
global optimal solution 3∗. Note that the derived LB is tighter
for stochastic robustness levels approaching 0.5; this is a result
of using mean values in the LB computation.

8. Simulation setup

To evaluate the performance of the heuristics described
above for the considered class of distributed HC systems
operating on periodic data, the following approach was used to
simulate a cluster-based radar system schematically illustrated
in Fig. 1. The execution time distributions for twenty-eight
different types of possible radar ray processing algorithms on
eight (M = 8) heterogeneous compute nodes were generated
by combining experimental data with benchmark results. The
experimental data were obtained by conducting experiments on
the Colorado MA1 radar [22]. These sample pmfs contain times
taken to process 500 radar rays of different complexity by the
1 The ILP formulation presented below can easily be converted to a canonical
ILP form [10].
“Pulse-Pair & Attenuation Correction” algorithm [7] and by the
“Random Phase & Attenuation Correction” algorithm [7], both
executed in non-multitasking mode on the Sun Microsystems
Sun Fire V20z workstation. These execution time samples for
the two algorithms were used to generate execution time pmfs
for a hypothetical heterogeneous computing system. First, the
execution time pmfs of 28 applications were generated for a
single Sun Microsystems Sun Fire V20z workstation by scaling
each of the two sample pmfs based on the relative performance
results of 14 floating point benchmark applications taken
from the CFP2000 suite [38]. Second, to generate data for
eight heterogeneous machines, each of the 28 resultant pmfs
was consequently scaled by the performance ratio of a Sun
Microsystems Sun Fire V20z to each of the seven additional
compute nodes.2 The scaling was performed again based
on the CFP2000 results. This method provided a means for
generating a 28 × 8 matrix where the i j th element corresponds
to the synthesized execution time distribution of a possible ray
processing algorithm of type i on compute node j .

A set of 128 applications (N = 128) was formed for each
of 50 simulation trials, where for each trial the type of each
application was determined by randomly sampling integers
in the range [1, 28]. Based on 50 simulation trials, a 95%
confidence interval was computed for every heuristic providing
a good estimate of the average performance.

9. Experimental results

9.1. Greedy heuristics

The results of our experiments with the Greedy heuristics
are presented in Fig. 13. Both the Two-Phase and Contention
Resolution heuristics perform comparably and significantly
outperform the Sorting and Mean Load Balancing heuristics
because they utilize the entire spectrum of stochastic
information at each stage of the decision process.

All of the variants of the Sorting heuristic (the results
for arbitrary ordering represent the average obtained over
50 random application orderings for each trial) performed
consistently better than the Mean Load Balancing heuristic
variants but worse than the first two heuristics. Recall that
the Sorting heuristic utilizes all of the available stochastic
information to select individual task-machine pairings but relies
on deterministic information to order tasks for their selection.
By utilizing a task ordering process that relies on deterministic
information only, the number of required convolutions to
produce a mapping is drastically reduced but the quality of the
mapping is also affected. For example, the Two-Phase heuristic
required approximately 66,000 1-fold convolutions to produce
a mapping, whereas the Sorting heuristic required only 1024
1-fold convolutions to construct a mapping. This difference in
the number of convolutions directly translated into a roughly 30
times reduction in the calculations required during a simulation
2 The seven compute nodes selected to be modeled were: Altos R510,
Dell PowerEdge 7150, Dell PowerEdge 2800, Fujitsu PRIMEPOWER650, HP
Workstation i2000, HP ProLiant ML370 G4, and Sun Fire X4100.
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Fig. 13. A comparison of the results obtained for the described heuristics, where the minimum acceptable robustness value was set to be 0.90. The y-axis shows 3
values obtained by executing the heuristics. The 3 value for each heuristic corresponds to the average over 50 trials.
trial using the latter heuristic. Since actual timing results for our
simulations is extremely system dependent, we have chosen to
report the computational complexity results for our heuristics
in terms of 1-fold convolutions as opposed to wall-clock
time.

Finally, the Mean Load Balancing heuristic consistently
performed the worst because it ignores the available stochastic
information about task execution times. This results in ignoring
the impact of machine heterogeneity on the completion time
distributions, which is reflected in a high 3 value. Since the
Mean Load Balancing heuristic only operates with the means
of execution time distributions during the mapping process,
this heuristic avoided time-consuming FFT calls. This enabled
this heuristic to finish in a small fraction of the time required
for either Two-Phase or Contention Resolution heuristic to
generate a mapping.

Once the simulation results had been collected for the
heuristics, it was noticed that there was a large discrepancy
in the amount of computation required to produce each of the
various mappings, i.e., the first two heuristics required tens of
thousands of FFT calls to produce a mapping as opposed to one-
phase techniques required 1024 or less. Consequently, two new
variants of the one-phase greedy algorithms that use multiple
iterations, denoted in Fig. 13 as iterative, were created to
increase the number of evaluated solutions to the level of Two-
Phase and Contention Resolution, i.e., enable these variants to
utilize roughly the same amount of computation to produce a
mapping.

In both iterative greedy variants, a random restart step was
introduced so that after a mapping is produced a new random
ordering is generated and the heuristic is executed again. Upon
completion of each iteration the resultant mapping is compared
against the best mapping found so far by previous iterations. If
the new mapping is an improvement on the best mapping, then
it is retained as the new best mapping, otherwise it is discarded.

The results of the iterative variants are plotted in Fig. 13.
As can be expected, the results of both iterative greedy
approaches demonstrated some improvement over their non-
iterative versions. However, the iterative version of the Sorting
Fig. 14. A comparison of the results obtained for the global search heuristics,
where the minimum acceptable robustness value was set to 0.90. The y-axis
corresponds to a 3 value obtained by executing the corresponding heuristics.
The 3 value for each heuristic corresponds to the average over 50 trials, while
the error bars correspond to 95% confidence intervals.

greedy heuristic performed worse than the Two-Phase heuristic
(the confidence intervals of the two do not overlap) but is
a marked improvement over the corresponding non-iterative
greedy version. The average 3 over 50 trials of the Two-
Phase heuristic was 542.5 ms; whereas the average 3 over 50
trials of the iterative version of the Sorting greedy heuristic
was 569.7 ms—each had a confidence interval of 7 ms. The
performance demonstrated by the iterative version of the Mean
Load Balancing heuristic was still significantly worse than the
performance of the other heuristics.

9.2. Global search heuristics

The results of the global search heuristic simulations are
presented in Fig. 14. Both the GA and SA heuristics were
able to improve upon the results of the Two-Phase heuristic by
more than 7% with respect to the absolute performance and
by 50% with respect to the derived LB. However, the ACO
procedure was unable to improve upon the results of the Two-
Phase heuristic but was able to produce results such that the
confidence intervals of the ACO and Two-Phase results are
overlapping.
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Both the GA and SA heuristics performed comparably in
this simulation environment. The success of the SA procedure
and the near overlap of the SA and GA results may suggest
that the local search procedure used in the mutation operator by
both GA and SA is responsible for their marked improvement
over Two-Phase. Additional experiments were conducted using
the GA without utilizing local search, and although the simple
GA was able to improve the average result of the Two-Phase
heuristic by almost 2%, the improvement was not statistically
significant.

The ACO heuristic was unable to improve upon the results
of the Two-Phase heuristic. The effectiveness of ACO in
this environment relies on the repetitive application of a
constructive heuristic within a high-level iteration to update
the pheromone table. This might suggest that using only the
mean values of the execution time distributions to construct
ant solutions is insufficient. Instead of operating with mean
values, intermediate minimum levels of 3 could be computed
through PMR calls. However, this would dramatically increase
the number of evaluations required by ACO to produce ants in
each iteration. In so doing, the number of high-level iterations
that the ACO would be able to complete within the common
stopping criterion would be significantly reduced.

The success of combining a simple local search with GA and
SA suggest that a more exhaustive local search may be worth
investigating in future work. The more exhaustive local search
might consider swapping applications between compute nodes
in addition to moving applications between compute nodes.
Although the introduction of swapping will increase the number
of evaluations required to complete the local search procedure,
it may lead to an improved result over the current approach to
local search.

10. Related literature

A universal framework for defining robust resource
allocations in heterogeneous computing systems was addressed
in [2]—prior work performed by our research team. This work
referred to a resource allocation’s tolerance to uncertainty
as the robustness of that resource allocation. In [2], a four-
step procedure is established for deriving a deterministic
robustness metric. The first step in defining a robustness metric
requires quantitatively describing what makes the system
robust. This description establishes the required QoS level that
must be delivered to refer to the system as robust—essentially
bounding the acceptable variation in system performance. A
pair of values, βmin and βmax that bound each performance
feature must be identified, quantitatively defining the tolerable
variation in each of the performance features.

In the second step, all modeled system and environmental
parameters that may impact the system’s ability to deliver
acceptable QoS are identified. These parameters are referred
to as the perturbation parameters of the system. In our
new stochastic approach, each perturbation parameter, or
uncertainty parameter, is modeled as a random variable fully
described by a pmf. In this way, all possible values of
the considered perturbation parameters, and their associated
probabilities, are included in the calculation of the stochastic
robustness metric. Our new approach differs from that in [2],
where a single deterministic estimated value for each of the
identified perturbation parameters is used.

In the third step, the impact of the identified perturbation
parameters on the system’s performance features is defined.
This requires identifying a function that maps a given vector of
perturbation parameters to a value for the performance feature
of the system. Similarly in our new stochastic environment, this
involves defining the functional dependence between the input
random variables and the given performance feature. However,
in our new model this involves more complex computations to
combine random variables.

Finally, in the fourth step, the previously identified relation
is evaluated to quantify the robustness. As a measure of
robustness, the authors in [2] use the “minimum robustness
radius” that relies on a deterministic performance characteristic.
Furthermore, it assumes there is no a priori information
available about the relative likelihood or magnitude of change
for each perturbation parameter. Thus, the minimum robustness
radius is used in a deterministic worst-case analysis. In our new
stochastic model, more information regarding the variation in
the perturbation parameters is assumed known. Representing
the uncertainty parameters of the system as stochastic variables
enables the robustness metric in the stochastic model to account
for all possible outcomes for the performance of the system.
This added knowledge comes at a computational cost. The
stochastic robustness metric requires more information and is
far more complex to calculate than its deterministic counterpart.
To handle the computational complexity, we considered the
FFT and bootstrap approximation methods that greatly simplify
the required calculations.

In [8], the problem of robust resource allocation was
addressed for Directed Acyclic Graphs (DAGs). Robustness
in this work was defined in terms of a schedule’s ability to
tolerate an increase in execution time in components of a
DAG, i.e., applications and data transfers, without increasing
the total execution time of the DAG. Quantitatively, robustness
was measured by a “critical”, i.e., the smallest, slack among
all components that comprise a given DAG. Once the metric
was established, the authors provided design methods for
generating resource allocations with maximized critical slack.
Our stochastic robustness metric framework is more generally
applicable, allowing for any definition of QoS and able to
incorporate any identified uncertainty parameters.

Our methodology relies heavily on an ability to model
the uncertainty parameters as stochastic variables. Several
previous efforts have established a variety of techniques for
determining the stochastic behavior of application execution
times [6,12,28]. In [6], the authors also present a means for
combining stochastic task representations to determine task
completion time distributions. Our work leverages this method
of combining independent task execution time distributions and
extends it by defining a means for measuring the robustness
of a resource allocation against an expressed set of QoS
constraints.
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In [21], a procedure for predicting task execution times
is presented. The authors introduce a methodology for
defining data driven estimates in a heterogeneous computing
environment based on nonparametric inference. The proposed
method is applied to the problem of generating an application
execution time prediction given a set of observations of that
application’s past execution times on different compute nodes.
The model defines an application execution time random
variable as the combination of two elements. The first element
corresponds to a vector of known factors that have an impact
on the execution time of the application and is considered to
be a mean of the execution time random variable. A second
element accounts for all unmodeled factors that may impact
the execution time of an application and is used to compute
a sample variance. Potentially, this method can be extended
to determine probability density functions describing the input
random variables in our framework.

The deterministic robustness metric established for dis-
tributed systems in [2] was used in multiple heuristics ap-
proaches presented in [39]. Two variations of robust mapping
of independent tasks to machines were studied in that research.
In the fixed machine suite variation, six static heuristics were
presented that maximize the robustness of a mapping against
aggregate errors in the execution time estimates. A variety of
evolutionary algorithms, e.g., Genitor and Memetic Algorithm,
demonstrate higher performance as compared to the greedy
heuristics. However, greedy heuristics required significantly
less time to complete a mapping. A similar trade-off was ob-
served for another variation where a set of machines must be
selected under a given dollar cost constraint that will maximize
the robustness of a mapping. In our study, greedy heuristics ap-
plied in a stochastic domain did not demonstrate four orders of
magnitude speedup over evolutionary search algorithms due to
a substantial number of calls for a convolution routine required
at each step of a mapping “construction” process.

In [13], the authors present a derivation of the makespan
problem that relies on a stochastic representation of task
execution times. This work is the only other effort that we
know of that explicitly uses a stochastic approach to scheduling
task execution in a distributed computing system. The authors
demonstrate that their stochastic approach to scheduling can
significantly reduce the actual simulated system makespan
as compared to some well known scheduling heuristics that
are founded in a deterministic approach to modeling task
execution times. The heuristics presented in that study were
adapted to the stochastic domain and used to minimize the
expected system makespan given a stochastic model of task
execution times, i.e., the fitness metric there was based on
the first moment of random variables. The success of the
authors’ Genetic Algorithm applied to this problem domain
was another motivating factor for our selection of a Genetic
Algorithm in this study. As shown in [13], this approach works
well for unconstrained optimization problems; however, in our
study, the imposed QoS constraint (e.g., 3 in the ARMS
example of Section 1) in the distributed system makes the
optimization problem constrained calling for other methods.
Therefore, our emphasis is on quantitatively comparing one
resource allocation to another by deriving a metric for the
resource allocation’s robustness, i.e., the probability to deliver
on expressed QoS constraints.

11. Conclusion

This paper proposes a stochastic framework that allows
for evaluation and generation of robust resource allocations
in distributed heterogeneous computer systems operating in
uncertain environments. As a basis for this framework, a new
stochastic robustness metric was established mathematically.
Given the raw volume of computation required to compute this
metric, the bootstrap approximation and FFT computational
methods were explored to aid the practitioner to apply
this approach in different real-world scenarios. An example
of the utility of the new metric was evaluated in the
simulated environment based on distinguishing among resource
allocations that perform similarly with respect to a commonly
used deterministic metric, such as makespan, and the
deterministic robustness metric presented in [2].

In the second part of this work, the new stochastic robustness
metric was integrated into a set of greedy and global search
heuristics designed for heterogeneous clusters operating on
periodic data sets. The goal was to generate a resource
allocation that allows for the minimum time period between
sequential sensor outputs in a simulated radar system, and to
guarantee a specified level of probability that data processing is
completed in time.

The Two-Phase and CR greedy heuristics developed in this
study utilized the entire spectrum of the available stochastic in-
formation. These heuristics significantly outperformed Sorting
and Mean Load Balancing heuristics, as the stochastic infor-
mation in the last two was replaced with mean values com-
pletely or in the first phase. Furthermore, greedy heuristics were
rather time-consuming when applied in the stochastic domain
due to multiple calculations of the resultant probability mass
functions. Thus, it was reasonable to compare the performance
of the greedy heuristics against global search algorithms. Three
global search algorithms adapted in this work, i.e., GA, SA,
and ACO, were tested under the same stopping criterion. Mul-
tiple parameters pertaining to each algorithm were set up for
the highest efficiency in the given environment. A comparison
analysis against the best greedy results and the lower bound,
obtained by solving the relaxed ILP form, revealed the great
potential for the GA and SA algorithms to manage efficiently
resource allocations in distributed heterogeneous systems oper-
ating under uncertainty.
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Table 2
Glossary of notation

Sk kth string specified by a sequence of nk applications
{ak

1ak
2 ...a

k
nk

}

W [k] Worth factor of kth string
P[k] Period of time between sequential raw data sets processed

by kth string
m[i, k] Machine to which application ak

i is assigned
tk
comp[i] Estimated computation time for application ak

i on
machine m[i, k]

tk
tran [i] Estimated time to transfer output Ok

[i] from ak
i to ak

i+1
in string Sk

tk
[i, j] Nominal data set processing time of ak

i executing on
machine j

uk
[i, j] Average CPU utilization of machine j when ak

i processes
a nominal data set

Umachine
[ j] Utilization of machine j

b[ j1, j2] Time to transmit one bit of data from machine j1 to
machine j2

Uroute
[ j1, j2] Utilization of the communication route from machine j1

to machine j2
M Number of heterogeneous machines in the system
3 System slackness, i.e., the minimum utilization capacity

remaining across all computation and communication
resources

tk
av[i] Average nominal execution time of ak

i computed across
M machines

uk
av[i] Average nominal CPU utilization of ak

i computed across
M machines

Q Total number of strings considered for mapping

Table 3
Acronyms

ARMS Adaptive and Reflective Middleware Systems
IMR Incremental Mapping Routine
PSG Permutation Space Genitor-based heuristic
ILP Integer Linear Programming
LP Linear Programming (can be achieved by relaxing an integer

restriction in the corresponding ILP form)
UB Upper Bound
B&B Branch-and-Bound algorithm
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(ICPP 2006) [36]. The authors thank David Janovy for his
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Appendix

See Tables 2 and 3.
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