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Abstract

Providing efficient workload management is an important issue for a large-scale heterogeneous distributed computing environment where a
set of periodic applications is executed. The considered shipboard distributed system is expected to operate in an environment where the input
workload is likely to change unpredictably, possibly invalidating a resource allocation that was based on the initial workload estimate. The
tasks consist of multiple strings, each made up of an ordered sequence of applications. There is a quality of service (QoS) minimum throughput
constraint that must be satisfied for each application in a string, and a maximum utilization constraint that must be satisfied on each of the
hardware resources in the system. The challenge, therefore, is to efficiently and robustly manage both computation and communication resources
in this unpredictable environment to achieve high performance while satisfying the imposed constraints. This work addresses the problem of
finding a robust initial allocation of resources to strings of applications that is able to absorb some level of unknown input workload increase
without rescheduling. The proposed hybrid two-stage method of finding a near-optimal allocation of resources incorporates two specially
designed mapping techniques: (1) the Permutation Space Genitor-Based heuristic, and (2) the follow-up Branch-and-Bound heuristic based on
an Integer Linear Programming (ILP) problem formulation. The performance of the proposed resource allocation method is evaluated under
different simulation scenarios and compared to an iteratively computed upper bound.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction and problem statement

Often, parallel and distributed computing systems must
operate in an environment replete with uncertainty while pro-
viding a required level of quality of service (QoS). This reality
has inspired an increasing interest in robust design. The follow-
ing are some examples, as cited in [2]. The Robust Network
Infrastructures Group at the Computer Science and Artificial
Intelligence Laboratory at MIT takes the position that “. . . a
key challenge is to ensure that the network can be robust in the
face of failures, time-varying load, and various errors”. The re-
search at the User-Centered Robust Mobile Computing Project
at Stanford “concerns the hardening of the network and soft-
ware infrastructure to make it highly robust”. The Workshop
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Fig. 1. The considered part of the Adaptive and Reflective Middleware Systems shipboard environment. Each sensor generates data periodically and forwards
it to the distributed heterogeneous processing system. Multiple applications organized in strings must process data to satisfy the imposed QoS constraints.
Thus, a resource allocation becomes a very important issue in the system.

on Large-Scale Engineering Networks: Robustness, Verifiabil-
ity, and Convergence (2002) concluded that the “Issues are . . ..
being able to quantify and design for robustness . . . .” There are
many other projects of similar nature at other organizations.

This research investigates the problem of robust static re-
source allocation for shipboard computing resources in the
Adaptive and Reflective Middleware Systems program sup-
ported by the DARPA Information Exploitation Office [1]. In
this paper, a resource allocation problem is addressed for a part
of the proposed shipboard environment, depicted schematically
in Fig. 1, where a limited subset of the Adaptive and Reflec-
tive Middleware Systems application model is considered. As
Fig. 1 shows, the target system consists of a number of sensors
generating raw data forwarded to the heterogeneous distributed
computing system for processing. The computing system itself
is composed of a set of machines of various types, a commu-
nication network, and continuously running applications pro-
cessing data coming from the sensors. Data processing in the
system must be done by a sequence of applications in a pipeline
fashion; this requirement imposes a QoS constraint on each
application’s processing time and each internal data transfer’s
time between applications.

The system is configured with an initial mapping (i.e., an
allocation of computing and networking resources to applica-
tions) that is used when the system is first put into operation.
The system is expected to function in an uncertain physical
environment where the workload, i.e., the load presented by
a set of sensors, is likely to change unpredictably over time,
possibly causing a QoS violation. When this occurs, resources
in the system need to be reallocated reactively, which results
in a temporal performance degradation and, thus, is highly un-
desirable. Therefore, the general focus of this work is on de-

veloping a resource allocation technique to determine a robust
mapping capable of absorbing the maximum increase in work-
load without a run-time reallocation of resources. Reallocation
techniques and dynamic mapping are outside the scope of this
paper, but a variety of them can be found in the literature (e.g.,
[21,36,41,42]).

Specifically, two resource allocation scenarios are addressed
in this paper that differ in their performance goals. A par-
tial resource allocation scenario occurs in an oversubscribed
system where one or more sequences of applications consid-
ered for mapping cannot be allocated due to the limited sys-
tem resources or predicted QoS constraint violations. Given
such a scenario, the primary performance goal for a mapper
is to find a static (i.e., one found during an off-line plan-
ning phase) initial mapping maximizing a “total worth” of the
workload processed. In contrast, a complete resource alloca-
tion scenario is relevant for a system that has enough resources
to accommodate all applications considered without violating
any of the imposed QoS constraints. In this case, a “system
slackness” metric reflecting the system’s capacity to absorb
workload surges is a major optimization criterion for a static
mapping.

Given that the problem of resource allocation in distributed
systems is NP-complete (e.g., [9,24]), the development of
heuristic techniques to find near-optimal solutions became an
active area of research (e.g., [3,5,6,17,30,35,44]). In general,
there are two major classes of resource allocation approaches
widely used in practice: greedy heuristics and global opti-
mization algorithms. Unlike rather time-consuming global
optimization algorithms, greedy heuristics are relatively fast in
generating a single solution; this feature often makes them an
appropriate choice to use in dynamic (i.e., on-line mapping)
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systems. However, the quality of solutions based on greedy
heuristics is usually lower than that produced by global opti-
mization algorithms that progressively iterate through multiple
solutions.

One type of global optimization algorithms is a class of
evolutionary techniques. In principle, such techniques rely on
an “intelligent” randomized search where a solution is picked
in the solution space, and its fitness is then evaluated. The
efficiency of this method often suffers when applied to con-
strained optimization problems because of the time wasted
generating infeasible solutions. To resolve this issue, the pa-
per proposes an approach in the first stage of finding a re-
source allocation where the search space of the evolutionary
algorithm differs from the actual solution space, and a specif-
ically constructed greedy heuristic is used to link these two
spaces.

Another drawback of evolutionary algorithms is a lack of
structural organization of the underlying search process. For
problems of realistic size, it is highly unlikely that randomized
search will find a global optimal solution in a reasonable amount
of time. Furthermore, even if an algorithm converges to the
global optimal solution it has no means of proving it. To over-
come this problem, a hybrid two-stage approach in this work
proposes that the final solution of the evolutionary algorithm
is passed to a Branch-and-Bound technique based on an Inte-
ger Linear Programming formulation of the resource allocation
problem. The key point is that the well-structured tree search in
the Branch-and-Bound algorithms becomes significantly more
efficient when a high-quality solution is received that can be
used for pruning the search tree. Furthermore, a backtracking
mechanism in our second-stage Branch-and-Bound algorithm
allows the upper bound on performance metrics to be tightened
as the algorithm progresses.

In addition to the proposed hybrid two-stage approach to
resource allocation utilizing a combination of the evolution-
ary and greedy heuristics in the first stage and a Branch-and-
Bound algorithm in the second stage, the contributions of this
work include developing the application and hardware models
of the considered part of the shipboard environment, quanti-
fying the performance goals for different scenarios, evaluating
the relative performance of the heuristics developed, and de-
riving mathematical bounds on performance based on a Linear
Programming relaxation method.

The remainder of this paper is organized in the following
manner. Section 2 develops models for the workload and hard-
ware platform. Section 3 presents a quantitative basis for the
performance measure for a given resource allocation. In Sec-
tion 4, the Genitor-based evolutionary algorithm is described
along with a special-purpose greedy mapping routine devel-
oped to generate solutions for both allocation scenarios in the
first stage. A mathematical model for finding performance up-
per bounds in different scenarios based on a Linear Program-
ming relaxation is provided in Section 5. Section 6 presents a
set of Branch-and-Bound algorithms developed to improve on
the first stage resource allocations and tighten the upper bounds.
The simulation setup, results, and performance evaluation of
the heuristics are discussed in Section 7. A sampling of some

related work is presented in Section 8. Section 9 concludes the
paper. A glossary of notation used in the paper is tabulated in
Appendix A.

2. System model

The considered distributed system is composed of a number
of heterogeneous computational resources distributed across
a shipboard environment and connected by a communication
network.

The functionality of the communication network is mod-
eled by all possible independent virtual point-to-point commu-
nication routes, each characterized by a maximum available
bandwidth. Existing networking technologies can enforce this
communication model through resource reservations at system
initialization time. Each machine in the system is capable of
multitasking. Similarly, a given communication route is shared
among multiple active data transmissions traversing that com-
munication route.

In the given shipboard environment, a string is defined as a
continuously executing sequence of applications connected in
precedence order by specified data transfers. Data are received
by an application from the preceding application, or from a
sensor that generates data sets with a fixed period. The output
produced by the string serves as an input to other applications
or to actuators.

Let Sk be the kth string, specified by a sequence of nk ap-
plications: Sk = ak

1ak
2 · · · ak

nk
. To model the importance of each

string in the system, for each k, the kth string is preassigned one
of three possible worth factors, W [k] ∈ {1, 2, 3}. Worth factors
associated with application strings in this work were needed to
prioritize different missions carried out on a ship. Because the
functionality of each mission is supported by a specific applica-
tion string (or a set of application strings), priorities allow the
resource allocation algorithm to select the most valuable mis-
sions, especially when the system has limited resources. Our
assignment of worth factors in this work is based on expected
characteristics of applications in the Adaptive and Reflective
Middleware Systems project. For any practical implementation,
these factors must be readjusted in a system-dependent way.
Typically in a military environment worth factors may be set
by the command hierarchy.

Let P [k] be the period associated with string Sk , where each
ak
i must execute once each period. The minimum throughput

QoS constraint requires that the computation time of any appli-
cation or the time of any inter-application data transfer in Sk be
no larger than P [k]. Such an enforcement allows each string to
process data in a pipeline fashion resulting in high processing
efficiency for the entire system. Assuming that a resource allo-
cation for string Sk is made, let m[i, k] denote the machine to
which application ak

i is assigned. Let tkcomp[i] be the estimated

computation time for application ak
i for each data set (execut-

ing on m[i, k]). Let tktran[i] be the estimated transfer time re-
quired to send the output of size Ok[i] from application ak

i (on
m[i, k]) to application ak

i+1 (on m[i + 1, k]) within string Sk .
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Fig. 2. The string model for string 1. Shaded rectangles denote applications in the string while white rectangles represent the machines where these applications
are executed. The arrows represent output data transfers within the string.

A typical allocation of string Sk in the system is illustrated in
Fig. 2 below.

Mathematically, for a given resource allocation for a string,
the aforementioned minimum throughput QoS constraint is sat-
isfied if {

tkcomp[i]�P [k], 1� i�nk,

tktran[i]�P [k], 1� i�nk − 1.
(1)

If all conditions in (1) hold for a given allocation, the al-
location is said to be feasible with respect to the minimum
throughput QoS constraint. Because both machines and com-
munication routes are assumed to be shared, tkcomp[i] and tktran[i]
will depend on the level of sharing—i.e., the number of ap-
plications assigned to a computational resource and currently
active, or the number of current data transfers assigned to a
communication route. Furthermore, these values will depend
on how an application or a data transfer is prioritized by a ma-
chine’s or network’s local scheduler with respect to all other
applications or data transfers that share this computation or
communication resource. In addition to the minimum through-
put QoS constraint imposed on strings, the overall utilization of
each computation or communication resource must not exceed
its full capacity when the system is loaded. Evaluating that the
utilization and minimum throughput QoS constraints are satis-
fied is integrated into the mapping techniques presented in the
following sections.

Two parameters are used in the given shipboard environ-
ment to specify the workload imposed by each application on
a particular machine: the nominal execution time and the nom-
inal CPU utilization. The nominal execution time t

k[i, j ] is the
time required by application ak

i in string Sk to process a nom-
inal data set on machine j running in non-multitasking mode.
A nominal data set is a data set of mean complexity which is
determined based on past executions. Due to the multitasking
environment, tkcomp[i]� t

k[i, m[i, k]]. The nominal CPU utiliza-

tion uk[i, j ] is the average CPU utilization of machine j when
ak
i executes its nominal data set. The product t

k[i, j ]×uk[i, j ]
can be interpreted as the fixed amount of CPU work required
for application ak

i to process a nominal data set on machine j .
This fixed amount of CPU work can be performed in many dif-
ferent ways. For example, if only half of uk[i, j ] is allocated,
then the execution time required to accomplish the same fixed
amount of CPU work is twice t

k[i, j ].

Let the conditional 1 function be defined by:

1(condition) ≡
{

1 if condition is true,

0 otherwise.

If A strings are allocated in the system then the overall machine
utilization Umachine[j ] is computed as

Umachine[j ] =
A∑

k=1

nk∑
i=1

(
t
k[i, j ]
P [k] ×uk[i, j ]×1(m[i, k] = j)

)
.

(2)

The term t
k[i, j ] × uk[i, j ]/P [k] represents the average CPU

utilization allocated for application ak
i over P [k]. It is important

to note that this is the minimum required average CPU utiliza-
tion that allows ak

i to complete processing without a throughput
QoS constraint violation. Recall from (1) that a data set pro-
cessing time of each application in string Sk must be less than
or equal to P [k].

The sum of such minimum CPU utilizations across all the
applications executing on j determines the overall machine
utilization.

If b[j1, j2] denotes the time required to transmit one bit
of data over the communication route from machine j1 to
machine j2 then the overall communication route utilization
U route[j1, j2] is

U route[j1, j2] = b[j1, j2] ×
A∑

k=1

nk−1∑
i=1(

Ok[i]
P [k] × 1(m[i, k] = j1 and m[i + 1, k] = j2)

)
.

(3)

The term Ok[i]/P [k] can be interpreted as the minimum aver-
age bandwidth allocated to application ak

i for output transfer
over P [k] that allows it to be completed without a minimum
throughput QoS constraint violation.

For a given allocation, if the utilization values computed
with (2) and (3) are not greater than one for each machine
and communication route then the system is considered to be
operating in a feasible (not overloaded) mode.
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3. Performance goal

In the context of the intended system, the performance met-
ric for evaluating an application-to-machine mapping generated
by the heuristics has two components. The primary component
is total worth, defined as the sum of the worth factors asso-
ciated with strings in the mapping. The secondary component
is system slackness. Assuming M machines in the system, let
system slackness � be a measure of the minimum utilization
capacity remaining across all computation and communication
resources:⎧⎪⎪⎨

⎪⎪⎩
A = max{Umachine[j ] : 1�j �M},
B = max{U route[j1, j2] : 1�j1, j2 �M},
� = 1 − max{A, B}.

(4)

Component A in Eq. (4) identifies the machine with the
maximum utilization. Similarly, component B indentifies the
communication route with the maximum utilization. Thus,
[1 − maximum over A and B], i.e., system slackness �, shows
that all resources in the system have at least � unutilized
capacity. The system slackness is based on a rather intuitive
concept—it quantifies unutilized capacity of the resource with
the highest utilization because this resource is a potential
bottleneck in a distributed system. A similar approach was
explored earlier in the field, e.g., [3,12]. For example, the
study in [12] uses slack-based techniques for producing robust
resource allocations in a job-shop environment. Specifically,
an attempt in that work was made to provide each task with
extra time (defined as slack) to execute so that some level of
uncertainty can be tolerated without having to reallocate.

According to [4], a resource allocation is defined to be robust
with respect to specified system performance features against
uncertainties in specified system parameters if degradation in
these features is limited. In this work, the system is considered
robust if it is able to absorb limited unpredictable changes in
input workload which increase resource utilizations without
revising a given resource allocation. System slackness is used as
a quantitative measure of robustness. The goal of the mapping
heuristics developed in this research is to achieve the highest
level for the primary component, and then maximizing system
slackness � at that level.

With the given “worth” scheme, a high-worth string has the
same value as three low-worth strings. A different, alternate
scheme is possible, where a high-worth string has a value of
more than the total value of any number of strings of medium
or low worth. In such a scheme, high-worth strings can be put
in a special class. The content of this class is allocated first in
the system. Such a scheme, described in [27], is outside the
current requirements of this work.

4. Basic evolutionary mapping algorithm

4.1. Overview

This section presents an evolutionary mapping algorithm
used as a basis for the problem of finding an initial static map-

ping in the complete and partial allocation scenarios. To ex-
plain the main idea used in the algorithm’s development, the
following notation needs to be introduced. Let the permutation
space be all possible orderings of the strings considered for
mapping, and let the solution space be all possible application-
to-machine assignments. Recall that an allocation is considered
feasible for deployment if none of the computation or com-
munication hardware resources is loaded beyond its maximum
utilization capacity.

It was observed experimentally that the straightforward im-
plementations of evolutionary algorithms, e.g., a genetic algo-
rithm [44], operating in the solution space, failed to find any
feasible allocation even for a relatively small set of strings in
a reasonable amount of time (5 h in our experiments). This
phenomenon can easily be explained by the random-search-
based principle utilized in evolutionary algorithms. Random
application-to-machine assignments generated in the solution
space resulted in too many applications mapped on a single
machine or communication route eventually violating the QoS
constraint.

Therefore, the Genitor-based evolutionary algorithm pre-
sented in this section was modified to search over the permu-
tation space instead of directly over the solution space. An
ordering of strings in the permutation space is translated into a
mapping in the solution space by repetitively applying the In-
cremental Mapping Routine described below. The Incremental
Mapping Routine is designed to map a single string; different
allocations are achieved when different orderings of strings are
sequentially processed by the routine.

Our choice of the Genitor-based evolutionary algorithm was
based on high performance results that this algorithm evidenced
in many problem domains related to resource allocation in
distributed systems (e.g., [15,43]). Furthermore, based on our
previous experiments, the convergence rate of Genitor-based
algorithms is usually higher than that of other modern evolu-
tionary heuristics, e.g., Simulated Annealing [31], Ant Colony
Optimization [16].

4.2. Incremental mapping routine

The allocation algorithm used in the Incremental Mapping
Routine is based on a greedy mapping technique. This routine
handles one string at a time, retrieving applications in the string
for mapping in a certain order, and having its resource-candidate
search guided by impact on the resource utilization. Starting
from the most computationally intensive application (on aver-
age), determined in step 1 of the pseudo code shown below, the
heuristic maps all the intermediate applications along the string
up to the next most computationally intensive application (on
average). In selecting a mapping, a parameter of interest is the
maximum value of the resource utilizations (given by Eqs. (2)
and (3)) in the machine-route pair affected by an application
assignment. The selection process determines a machine for
mapping by finding the minimum value of this parameter,
with ties broken arbitrarily. Then, the next unassigned most
computationally intensive application is found, and the same
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mapping procedure is repeated until the allocation for a given
string is completed. The Incremental Mapping Routine ap-
proach attempts to map computationally intensive applica-
tions early, but also maps their neighboring applications, so
that network utilization is taken into account as the heuristic
progresses.

To describe the Incremental Mapping Routine in detail some
additional notation must be introduced. Let Umachine[j, i, k] be
the utilization of machine j if application ak

i were assigned to
machine j (in addition to the applications assigned previously
to this machine). Similarly, let U route[j1, j2, i, k] be the utiliza-
tion of the communication route if application ak

i were assigned
to machine j1 and passed its output to its successor mapped on
machine j2. Let the average nominal execution time t

k
av[i] for

application ak
i be given as t

k
av[i] = 1

M
×∑M

j=1 t
k[i, j ], and let

the average nominal machine CPU utilization uk
av[i] for appli-

cation ak
i be given as uk

av[i] = 1
M

×∑M
j=1 uk[i, j ]. A detailed

description of the Incremental Mapping Routine follows.

(1) As a starting point, identify application ak
imax

in the given

string Sk as follows:

imax = arg max
i=1,...,nk

{
t
k
av[i] × uk

av[i]
P [k]

}
.

(2) If 1 < minj=1,...,M

{
Umachine [j, imax, k]

}
return mapping failed.

(3) Assign application ak
imax

to the machine mimax,k found as

m [imax, k] = arg min
j=1,...,M

{
Umachine [j, imax, k]

}
.

(4) Initialize set D =
{
ak
imax

}
.

(5) While set D does not contain all applications in the given
string Sk do
(a) iright=max application index in D; ileft=min application

index in D;
(b) identify a new unassigned application ak

imax
in the given

string Sk as follows:

imax = arg max
i=1,...,nk and ak

i �∈D

{
t
k
av[i] × uk

av[i]
P [k]

}
;

(c) while imax > iright do
• iright = iright + 1;
• if 1 < minj=1,...,M

[
max

{
Umachine

[
j, iright, k

]
,

U route
[
m
[
iright − 1, k

]
, j, iright, k

]}]
return mapping failed;

• assign to the machine found as follows:

m
[
iright, k

]= arg min
j=1,...,M

[
max

{
Umachine [j, iright, k

]
,

U route [m [iright−1, k
]
, j,iright, k

]}] ;

• insert application ak
iright

in set D;

(d) while imax < ileft do
• ileft = ileft − 1;
• if 1 < minj=1,...,M

[
max

{
Umachine [j, ileft, k] ,

U route [j, m[ileft + 1, k], ileft, k]
}]

return mapping failed;
• assign ak

ileft
to the machine m [ileft, k] found as fol-

lows:

m[ileft, k] = arg min
j=1,...,M

[
max

{
Umachine [j, ileft, k] ,

U route [j, m [ileft + 1, k] , ileft, k]
}]

;

insert application ak
ileft

in set D.

4.3. Permutation Space Genitor-Based heuristic

The Permutation Space Genitor-Based heuristic was devel-
oped by combining the Incremental Mapping Routine with
concepts from the Genitor approach. Genitor is an evolution-
ary steady-state genetic search algorithm that has been shown
to work well for several problem domains (e.g., [6,26,38,46]).
Designed for a given resource allocation problem, each chro-
mosome in the heuristic represents an ordered list of strings
in the permutation space. Genitor-specific operators, such as
selection, crossover, and mutation, are applied in that space.
Chromosomes differ in their list orders, which results in differ-
ent mappings in the solution space obtained via “projecting” a
chromosome to the solution space by applying the Incremental
Mapping Routine.

If the mapping produced by the Incremental Mapping Rou-
tine fails for a string due to a utilization violation, then the
string is skipped, and the routine proceeds with the next string.
The two-component performance metric is used to measure the
fitness of each chromosome. Recall from Section 3 that the
primary component of the performance metric indicates total
worth of the strings allocated in the system while the secondary
component indicates system slackness.

The Permutation Space Genitor-Based heuristic was imple-
mented as follows. First, an initial population is generated ran-
domly by reordering the initial set of strings. A population
size of 250 chromosomes was determined experimentally for
a given setup; any further increase in the size of the popula-
tion does not improve the performance of the heuristic. After a
mapping involving the Incremental Mapping Routine, the en-
tire set of chromosomes is sorted (ranked) by their fitness (sys-
tem slackness for the complete allocation scenario; total worth
for the partial allocation scenario with ties broken by system
slackness). Next, a special function (described later) is used to
select two chromosomes to act as parents. These two parents
perform a crossover operation, and two offspring are generated.
Each offspring is then inserted in the ordered population, and
the worst two chromosomes are dropped.

In the crossover step, for the selected pair of parent chro-
mosomes a random cut-off point is generated that divides the
chromosomes into top and bottom parts. Next, the strings in
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each of the top parts are reordered. The new ordering of the
strings in one top part corresponds to the relative positions
of its strings in the other parent chromosome in the pair. It
is important to note the choice of the top parts of the par-
ent chromosomes for reordering. This allows the offspring
to differ from their parents in the case of a partial resource
allocation.

After each crossover, the same special function (described
below) is applied to select a chromosome for mutation. The
mutation operator generates a single offspring by perturbing the
original chromosome order via swapping two randomly chosen
application strings. The resultant offspring is considered for
inclusion in the population in the same fashion as an offspring
generated by crossover.

The special function for selecting parent chromosome(s) is a
bias function, used to provide a specific selective pressure [46].
For example a bias of 1.5 implies that the top-ranked chromo-
some in the population is 1.5 times more likely to be selected
for a crossover or mutation than the median chromosome. Ex-
perimentally, by varying the bias values across the range [1,2]
in steps of 0.1, the best bias for this system was found to
be 1.6.

As the Permutation Space Genitor-Based heuristic runs, the
crossover operator will be iteratively repeated followed by
the mutation operator until one of the stopping conditions is
reached: (1) 120 min to execute, (2) 2000 iterations without
a change in the best chromosome, or (3) either the mutation
or the crossover operator failed to produce a never before
examined chromosome within 10 min.

The developed Permutation Space Genitor-Based heuris-
tic was used in the conducted experiments in the following
ways:

• In each run of the complete resource allocation scenario,
the Permutation Space Genitor-Based heuristic was applied
to compute the complete initial allocation while maximiz-
ing the secondary component of the objective metric, i.e.,
system slackness. This baseline solution was then used in
the follow-up Branch-and-Bound algorithm (described in
Section 6) to reduce the search space.

• In the partial resource allocation scenario, Permutation
Space Genitor-Based heuristic was used to find a subset of
mapped strings that results in the maximized total worth,
using system slackness to break ties. The determined sub-
set was then passed to the Branch-and-Bound heuristic,
which aimed to improve an allocation for the subset with
respect to system slackness.

5. Integer Linear Programming formulation

5.1. Overview

An Integer Linear Programming form and a corresponding
Linear Programming form [11,33] are derived in this section
for each allocation scenario. The Integer Linear Programming
form fully describes the optimization problem considered in
each scenario while its relaxation into the Linear Program-

ming form: (1) provides the initial upper bound on the perfor-
mance metric, and (2) establishes a basis for a node selection
in the Branch-and-Bound algorithm presented in the following
section.

Let c ∈ R� and b ∈ R� be real vectors, and � ∈ R�×� be a
real matrix. If h is a vector composed of � decision variables
[8] then the canonical Integer Linear Programming formulation
is written as

maximize ZILP = cT × h; subject to (I) (� × h�b, (II) h

consists of integers. (5)

Constraint (II) makes the Integer Linear Programming problem
NP-complete [32]. If this constraint is ignored, i.e., h ∈ R�

then the Integer Linear Programming form is relaxed into
an Linear Programming form. The global optimal solution
for the Linear Programming form, which is the upper bound
for the Integer Linear Programming form, can be found in
polynomial time, e.g., by applying one of the interior-points
methods [20].

Let the binary decision variable x[i, k, j ] be equal to 1 if
application ak

i is assigned to machine j and equal to 0 if ak
i

is not assigned to machine j . Similarly, let y[i, k, j1, j2] be
equal to 1 if the output generated by ak

i is transferred over
the communication route from machine j1 to machine j2
and 0 if it is not transferred over that communication route.
Due to the new variables, Eq. (2) for machine utilization
and Eq. (3) for communication route utilization need to be
restated:

Umachine[j ] =
A∑

k=1

nk∑
i=1

(
t
k[i, j ]
P [k] ×uk[i, j ]×x[i, k, j ]

)
, (6)

U route[j1, j2] = b[j1, j2]

×
A∑

k=1

nk−1∑
i=1

(
Ok[i]
P [k] ×y[i, k, j1, j2]

)
. (7)

5.2. Complete allocation scenario

In the complete resource allocation scenario, the objective
is to maximize system slackness � given by (4), because all
mappings would have the same total worth. Thus, the objective
function for the Integer Linear Programming form is formally
stated as

maximize � = min
({

1 − Umachine[j ] : j ∈ M
}

∪
{

1 − U route[j1, j2] : j1, j2 ∈ M
})

. (8)

Suppose that Q represents the total number of strings con-
sidered for mapping in the system. The objective function is
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subject to set of conditions (a)–(f), explained in detail below:

[i, k, j ] ∈ {0, 1} for 1� i�nk, 1�k�Q, 1�j �M; (a)

M∑
j=1

x[i, k, j ] = 1 for 1� i�nk, 1�k�Q; (b)

x[i, k, j1] =
M∑

j2=1

y[i, k, j1, j2] for 1� i�nk − 1, 1�k�Q,

1�j1 �M; (c)

x[i, k, j2] =
M∑

j1=1

y[i, k, j1, j2] for 2� i�nk, 1�k�Q,

1�j2 �M; (d)

Umachine[j ]�1 for 1�j �M; (e)

U route[j1, j2]�1 for 1�j1, j2 �M. (f)

Condition (a) explicitly restricts decision variables x[i, k, j ]
to integer binaries {0, 1} corresponding to the “assigned/not
assigned” allocation choice for application ak

i on machine j .
Condition (b) forces each application to be mapped to the sys-
tem. Conditions (c) and (d) link the communication route as-
signment of output Ok[i] generated by application ak

i to the
allocation of applications ak

i and ak
i+1. The enforcement of uti-

lization feasibility in the system is represented by the remain-
ing two conditions (e) and (f). The objective function (8) and
conditions (e) and (f) are based on Eqs. (6) and (7). The bi-
nary restriction on decision variables y[i, k, j1, j2] is imposed
implicitly by conditions (a), (c), and (d).

The objective function (8) and the set of conditions (a)–(f)
formulate an optimization problem in the complete allocation
scenario in the Integer Linear Programming form. The Linear
Programming form that provides an upper bound on system
slackness follows from the Integer Linear Programming form as
the decision variables in condition (a) are relaxed to real num-
bers, i.e., for 1� i�nk , 1�k�Q, 1�j �M , 0�x[i, k, j ]�1.
This implies that each y[i, k, j1, j2] is also a real number.

5.3. Partial allocation scenario

In the partial resource allocation scenario the primary objec-
tive is to maximize the total worth of the strings deployed in
the system, as defined in Section 3. This transforms into the
formal representation of an objective function in the Integer
Linear Programming form:

maximize
Q∑

k=1

nk∑
i=1

⎛
⎝W [k] ×

M∑
j=1

x[i, k, j ]
⎞
⎠ . (9)

The objective function is subject to conditions (a)–(f), where
condition (b) needs to be restated due to the limited computation

or communication capacity of the resources available in the
partial allocation scenario:

M∑
j=1

x[i, k, j ] ∈ {0, 1} for 1� i�nk, 1�k�Q. (b′)

The modified condition (b′), along with conditions (a), (c),
and (d), requires each of Q strings to be either completely
mapped or not mapped at all, precluding cases where the num-
ber of mapped applications in the string is less than nk . An
Linear Programming form that provides an upper bound on to-
tal worth in the partial allocation scenario is obtained from the
derived Integer Linear Programming form when conditions (a)
and (b′) are relaxed to real numbers confined to the interval
[0,1].

The Linear Programming forms presented above result in the
initial upper bounds on system slackness and total worth in the
complete and partial allocation scenarios, respectively. How-
ever, tighter upper bounds were achieved iteratively in both
scenarios by applying the developed Branch-and-Bound algo-
rithms described in the next section.

6. Branch-and-Bound heuristics

Due to the NP-complete nature of the Integer Linear Pro-
gramming problem, in general its global optimal solution can-
not be found in polynomial time except for some special cases
described in the literature (e.g., [7,33,47]). In the complete al-
location scenario, the Branch-and-Bound algorithm, presented
in this section, was designed to improve a suboptimal solution
produced by the Permutation Space Genitor-Based algorithm
and to tighten the initial upper bound on system slackness. In
the partial allocation scenario, the Branch-and-Bound algorithm
was developed to tighten the upper bound on total worth.

6.1. Complete allocation scenario

The proposed Branch-and-Bound algorithm is a tree search
beginning at a root node that is a null solution. In the entire
tree, interior nodes represent intermediate solutions (a subset of
applications are assigned to machines), and leaf nodes represent
leaf solutions (all applications are assigned to machines). The
intermediate solution of a child node has one more application
mapped than its parent node. Call this additional application
a. Each parent node expands into M children, one for each
possible mapping of a. Nodes are said to be open until they are
expanded, whereupon they become closed.

The intermediate solution at each node is characterized by
a value of the secondary component of the objective function
(system slackness) found by solving the Linear Programming
form, derived in Section 5, for this scenario. When solving
this form, the decision variables that correspond to applications
already mapped are set to binary integers {0, 1} according to
application assignments; other decision variables are relaxed
to real numbers. The Linear Programming solutions at nodes
are used as bounds to curtail the search. Specifically, a node is
pruned (closed) if one of the following two conditions holds:
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(I) no solution can be found for the Linear Programming form
at a given node, i.e., no solution can be found that satisfies the
set of constraints (a)–(g); (II) the value of the objective function
found for the Linear Programming form is not greater than the
highest value of the objective function among the known leaf
solutions.

As it follows from condition (II), a known high-quality leaf
solution helps to avoid the explicit examination of many early
nodes in the tree and, thus, significantly narrows the search
space. In the proposed Branch-and-Bound algorithm, the base-
line solution generated by the developed Permutation Space
Genitor-Based heuristic is used for pruning until the Branch-
and-Bound algorithm determines a better solution from a leaf
node. Although pruning helps to limit the search space, the
problem of finding the global optimal Integer Linear Program-
ming solution in the complete allocation scenario remains quite
time-consuming due to the large solution space composed of
numerous application-to-machine assignment combinations.
Therefore, the total execution time for the Branch-and-Bound
heuristic was limited to 5 h.

The Branch-and-Bound algorithm can be summarized by the
following procedure. Starting from the root node, the Branch-
and-Bound heuristic iteratively attempts to reach the bottom
level of the tree by selecting a new parent from among the open
children resultant from the previous expansion. The child se-
lected is the one with the maximum objective function value.
Such a node expansion method is referred in the literature as
a depth-first search [33]. When the bottom level of the tree is
reached, M leaf solutions are generated. If the best of these leaf
solutions has an objective function value higher than that used
for pruning before, this new leaf solution is now the overall best
found so far, and will be used for future pruning. Furthermore,
this leaf solution is applied to evaluate all open intermediate
nodes currently included in the tree to close the nodes that sat-
isfy condition (II). If none of the nodes considered for picking
a parent node is open or the bottom level of the tree is reached,
a new startup node is selected in the tree to continue the search
process. The startup node selection, called backtracking [33],
is based on the highest objective function value among the
Linear Programming solutions associated with all open inte-
rior nodes currently included in the tree. It is important to note
that the Linear Programming value of a new startup node is a
new upper bound for the considered allocation problem. Thus,
every time a new startup node is selected, the upper bound be-
comes tighter if the new node’s Linear Programming solution
differs from that of the previous startup node. The described
Branch-and-Bound search process continues until: (1) the exe-
cution time limit (5 h) is reached; (2) all the nodes in the tree
are pruned except for a single leaf node, i.e., the global optimal
solution is found. Typically, due to the NP-complete nature of
the algorithm, stopping condition (2) is unlikely to occur when
the solution space of the problem is relatively large.

An important issue for the Branch-and-Bound algorithm is
the order in which applications are considered in the node ex-
pansion process. In the conducted experiments, three different
orderings of applications were tested to identify the one result-
ing in the best performance. An arbitrary ordering implies that

applications from Q strings are randomly shuffled. As opposed
to such a random-based approach, a max-first ordering contains
applications ranked in descending order of their average load
estimate ALk[i], which is associated with each application i in
string Sk : 1�k�Q, and defined as

ALk[i] = 1

P [k]×
⎡
⎣ 1

M
×

M∑
j=1

uk[i, j ]×t
k[i, j ] + bav×Ok[i]

⎤
⎦ .

Applications in a min-first ordering are ranked in ascending
order of their average load estimate.

6.2. Partial allocation scenario

Three major goals were addressed in the partial allocation
scenario by applying the Branch-and-Bound technique based
on Linear Programming formulations derived in Section 5: (1)
finding a tighter bound than the initial upper bound on total
worth achievable in the system for a given set of Q strings;
(2) finding a tighter bound than the initial upper bound on sys-
tem slackness achievable for the subset of A strings, A�Q; (3)
making an attempt to find a better allocation for the subset of A
strings to maximize system slackness. The subset of A strings,
referred to in (2) and (3), is essentially the subset of mapped
strings in the best chromosome produced as the Permutation
Space Genitor-Based heuristic terminates, characterized by the
highest known total worth value. Goals (2) and (3) with respect
to the subset of A strings are identical to the goals in the com-
plete allocation scenario with respect to the set of Q strings. As
such, the Branch-and-Bound algorithm designed for the com-
plete allocation scenario can be applied to address (2) and (3)
when the set of Q strings is replaced with the subset of A strings
in the corresponding Linear Programming formulation.

For goal (1), a tighter bound than the initial upper bound
on total worth can be found by applying another Branch-and-
Bound algorithm to find a solution for the Integer Linear Pro-
gramming form given by objective function (9) and conditions
(a), (b′), (c)–(f), where condition (a) is relaxed to allow for
real numbers confined to the interval [0,1]. The node expan-
sion and backtracking mechanisms in this Branch-and-Bound
remain identical to those designed for the complete alloca-
tion scenario. In contrast, the tree structure considered here is
different—nodes are associated with strings as opposed to the
complete allocation scenario where nodes are associated with
applications. Each parent node generates two children when
expanded where the children represent the cases when a new
string is either loaded or not loaded to the system. The term
“loaded” is used here as opposed to “mapped” to emphasize
that no actual application assignments are produced due to re-
laxed condition (a). Call a string from the set of Q strings
processed when the two nodes corresponding to the loaded/not
loaded decisions made for that string are included in the tree.
In the Linear Programming form for a given interior node, the
sum in condition (b′) is set to 0 or 1 for the processed strings,
and relaxed to real numbers confined to the interval [0,1] for the
others. The total worth value found by the Permutation Space
Genitor-Based heuristic is used for the initial node pruning
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until the Branch-and-Bound algorithm finds a better leaf solu-
tion (all strings are processed). In contrast to a large solution
space in the complete allocation scenario, where the number

of leaf nodes could reach M
∑Q

k=1 nk , the solution space that
needs to be explored for the considered Integer Linear Pro-
gramming form is significantly smaller, composed of at most
2Q leaf nodes. Thus, the Branch-and-Bound heuristic is able to
converge to the global optimal solution in a reasonable amount
of time for a given simulation setup (about 1 h). Recall that the
discussed Integer Linear Programming form does not represent
the actual allocation problem due to relaxed condition (a). The
order in which Q strings are processed in the tree search affects
the convergence time because early improvement of the best-
known leaf solution helps to curtail the search space and avoid
redundant computations. Three different orderings of strings
were considered in the experiments. An arbitrary ordering is
based on a random arrangement of Q strings. A max-first or-
dering contains strings ranked in descending order of their av-
erage worth per average load estimate AWAL[k], defined for
each string as:

AW AL[k] = W [k]∑nk

i=1 ALk[i] .

Strings in a min-first ordering are ranked in ascending order of
their AW AL[k].

7. Simulation experiments and results

7.1. Simulation setup

The purpose of the simulation was to evaluate the perfor-
mance of the developed mapping heuristics in two different
workload scenarios. For each scenario, the hardware part of
the intended system was composed of a heterogeneous suite
of eight machines. The bandwidth of each inter-machine
communication route was determined by sampling a uniform
distribution on the interval between 1 and 10 Mb/s. Typi-
cally, multiple applications executing on the same machine
access shared data from the physical memory system mak-
ing unnecessary any physical movement of this data. Thus,
all intra-machine data transmission times were set to 0, i.e.,
b[j, j ] = 0. The time-of-flight, i.e., time needed for the first
transmitted bit of data to reach the destination [22], was as-
sumed to be negligible on each communication route. For all
experiments, it also was assumed that an application could be
executed on any machine, and its output could be transferred
over any communication route. The two workload scenarios
were distinguished by a different number of strings considered
for mapping and different ranges for the periods of the strings.

Recall that a partial allocation scenario occurs in the over-
subscribed system when not all the strings in a given set can
be successfully allocated because some hardware component in
the system would exceed its 100% utilization limit. To model
this situation, a set of 75 strings was generated and the string
periods were set to be tight, as explained below. For the com-

plete allocation scenario 45 strings were created with more re-
laxed period values.

The developed heuristics were tested for operation with
strings composed of a different number of applications deter-
mined randomly within the range from 1 to 10. The nominal
execution time and nominal machine CPU utilization require-
ment associated with each application in the string were set
by sampling a uniform distribution in the intervals between 1
and 10 s, and between 0.1 and 1 s, respectively. In the same
fashion, the size of the output generated by each application in
the string was chosen in the interval from 10 to 100 kbytes.

In addition to average nominal execution time t
k
av[i], in-

troduced in Section 4, let the average time to transmit one
bit of data in the system, bav, be calculated as the average
across all possible communication routes in the system: bav =

1
M2

∑M
j1=1

∑M
j2=1 b[j1, j2]. The random variable � with a uni-

form distribution in a particular range that was inserted to con-
trol the tightness of period P [k] associated with each string.
All these new variables were combined in the following way
to set a period of string Sk: P [k] = �× max{tkav[i] : 1� i�nk ,
bav × Ok[z] : 1�z�nk − 1}. The range for the random vari-
able � for the complete allocation scenario was set to [3,4.5],
and for the partial allocation scenario was set to [2,3].

An interactive software framework has been developed for
this study that allows for simulation, testing, and result visual-
ization of the designed mapping techniques. The optimization
package Lingo 9.0 was employed to compute Linear Program-
ming solutions in the Branch-and-Bound algorithms. For each
scenario, 50 simulation runs were performed, which allow for
a 95% confidence interval [13] computation.

7.2. Experimental results

Fig. 3(a) demonstrates how the system slackness was
gradually improved by the Permutation Space Genitor-Based
heuristic over time for a typical run in the complete allocation
scenario. In 87% of the runs the heuristic was able to gener-
ate unique offspring while performing mutation and crossover
operations, and the heuristic was terminated when the second
stopping criterion, i.e., 2000 iterations without a change in
the best chromosome, was reached. Additional experiments
revealed that an increase in the maximum number of iterations
without a change in the best chromosome does not affect the
performance of the heuristic. In the remaining 13% of the runs,
at some point in time the Permutation Space Genitor-Based
heuristic failed to produce a new unique chromosome within
10 min and was terminated. A typical run of the Permutation
Space Genitor-Based heuristic lasted for less than 16 min.
Fig. 3(b) shows an example where the final Permutation
Space Genitor-Based heuristic’s result passed to the follow-up
Branch-and-Bound algorithm was improved twice. In addition
to that, the upper bound on system slackness was tightened
by the Branch-and-Bound as the algorithm progressed. A tight
upper bound is very important to evaluate the quality of the
final result—in practice such an evaluation can be used to
determine when the algorithm needs to be stopped.
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Fig. 3. System slackness in the complete allocation scenario achieved over time in a single run by applying the hybrid two-stage resource allocation method:
(a) progress of the Permutation Space Genitor-Based heuristic; (b) the final result of the Permutation Space Genitor-Based heuristic passed to the follow-up
Branch-and-Bound algorithm was improved twice. The upper bound on system slackness was tightened by the Branch-and-Bound as the algorithm progressed.

The performance results of 50 runs against the secondary ob-
jective metric component are shown for the complete allocation
scenario in Fig. 4. In 34% of the cases, the Branch-and-Bound
algorithm was able to improve the results of the Permutation
Space Genitor-Based heuristic, i.e., to find a resource allocation
with a higher value of system slackness. Fig. 4 depicts the best
performance achieved when the max-first ordering was used to
rank applications while constructing a tree in the Branch-and-
Bound algorithm. In the rectangle above each bar, the top cor-
responds to the initial upper bound for that run and the bottom
corresponds to the upper bound tightened with the Branch-and-
Bound algorithm. Table 1 compares the efficiency of the max-
first, min-first, and arbitrary orderings for the system slackness
improvement and upper bound tightening. The results were
averaged across 50 runs for each of the orderings. The high-
est efficiency exhibited by the max-first ordering is based on
the fact that allocations for applications were resolved in the
tree in descending order of their average load estimate. This
ordering corresponds to the well-known bin-packing principle

[29] implying that allocation is first resolved for the workload
components with high resource consumption requirements. In
contrast, the performance results of upper bound tightening
on system slackness revealed the Branch-and-Bound algorithm
to be relatively insensitive to application orderings. Averaged
across 50 runs, the achieved system slackness including any
Branch-and-Bound improvements was 0.47 for the complete
allocation scenario, and 0.11 for the partial allocation scenario;
the achieved system slackness per run normalized against the
corresponding upper bound was 81% for the complete alloca-
tion scenario, and 83% for the partial allocation scenario. The
much lower absolute system slackness in the partial allocation
scenario must be expected: the system is “packed” with appli-
cations to the point where the remaining slack is not adequate
to accommodate an extra string.

For the partial allocation scenario, the experimental results
obtained with the Permutation Space Genitor-Based heuristic
for the primary component of the performance metric (total
worth) are shown in Fig. 5(a). The performance for each run
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Fig. 4. The system slackness achieved by the Permutation Space Genitor-Based heuristic, and the upper bound calculation with follow-up improvements
provided by the Branch-and-Bound algorithm in the complete allocation scenario for 50 experimental runs. The results are plotted against the corresponding
upper bounds tightened by the Branch-and-Bound algorithm in all experimental runs. The Branch-and-Bound algorithm improved the results of the Permutation
Space Genitor-Based heuristic in 34% of runs, and for these improved runs, the increment in performance averaged 4.65%. These increments are shown by
the black rectangles.

Table 1
Performance of the Branch-and-Bound algorithm improving system slackness averaged across 50 runs in the complete and partial allocation scenarios

Scenorio Ordering System slackness improvement Sys. slackness upper bound

Successful runs (%) Improvement over first stage (%) 95% conf. interval Average value 95% conf. interval

Complete allocation Max-first 34 4.65 [2.92, 6.38] 0.59 [0.55, 0.63]
Min-first 28 2.87 [0.52, 5.22] 0.59 [0.57, 0.61]
Arbitrary 10 2.54 [1.32, 3.76] 0.59 [0.57, 0.61]

Partial allocation Max-first 40 6.46 [4.12, 7.81] 0.32 [0.26, 0.38]
Min-first 30 3.25 [2.36, 4.14] 0.32 [0.25, 0.39]
Arbitrary 8 4.42 [1.78, 7.84] 0.34 [0.27, 0.41]

is plotted along with the corresponding upper bound tightened
by utilizing the developed Branch-and-Bound algorithm. The
convergence to a tighter upper bound was reached in 4.7 min
on average across 50 runs when strings were arranged in the
max-first order, 6.3 min when strings were arranged in the min-
first order, and 7.4 min when strings were arranged in an ar-
bitrary order. The Permutation Space Genitor-Based heuristic
performed well in this scenario achieving mappings that aver-
aged above 80% of the upper bound.

Fig. 5(b) illustrates the performance of the Permutation Space
Genitor-Based heuristic and the follow-up max-first variant of
the Branch-and-Bound heuristics maximizing the secondary
component of the objective metric, i.e., system slackness. As
Table 1 shows, compared to the complete allocation scenario,
all three variants of the Branch-and-Bound heuristic succeeded
in system slackness improvement over the results of the Per-
mutation Space Genitor-Based heuristic in approximately the
same number of runs, but their relative improvement on system
slackness was higher.

As indicated before, the Branch-and-Bound heuristic re-
quires a relatively long execution time. The effectiveness

of the heuristic depends on the quality of the leaf solution
used for pruning and on the size of the search space. In the
successful runs, the Branch-and-Bound heuristic improved
system slackness over the Permutation Space Genitor-Based
heuristic in average by 4.65% (complete allocation scenario)
and 6.46% (partial allocation scenario). However, when eval-
uated with respect to the intervals between the Permutation
Space Genitor-Based heuristic’s solutions and the corre-
sponding tightened upper bounds, the average improvement
is 18.73% and 24.32%, respectively. Finally, even if the
Branch-and-Bound heuristic does not improve the results, it
produces a tighter upper bound, so a practitioner can estimate
the chance of improving the final solution and make an in-
formed decision as to when the search process needs to be
terminated.

8. Related work

A number of papers in the literature have studied the issue
of finding an initial resource allocation that is robust against
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Fig. 5. Performance in the partial allocation scenario for 50 experimental runs: (a) total worth achieved by the Permutation Space Genitor-Based heuristic
plotted against the upper bound on total worth tightened with the Branch-and-Bound algorithm in all experimental runs; (b) system slackness achieved by the
Permutation Space Genitor-Based heuristic with a follow-up improvement provided by the Branch-and-Bound algorithm. The Branch-and-Bound improved the
results of the Permutation Space Genitor-Based heuristic in 40% of runs, and for these improved runs, the increment averaged 6.46%. These increments are
shown by the black rectangles. The upper bound was tightened by the Branch-and-Bound in all experimental runs.

unpredictable workload increases (e.g., [3,4,10,12,14,18,19,23]).
These studies are compared below.

The nature of the problem described in [3] is similar to the
presented problem in this paper. Periodically running applica-
tions are organized in sequential strings, which are subject to
the imposed end-to-end latency and throughput constraints. In
that study it is assumed that the computation time of an appli-
cation sharing a given machine with N − 1 other applications
was N times its nominal execution time. This results in conser-
vative execution time estimates in a shared environment. Fur-
thermore, there is no notion of nominal utilization—i.e., it is
assumed that all applications utilize 100% of the CPU when
executing. Our research does not make such assumptions about
execution time and CPU utilization; therefore, the approach
taken is quite different from that in [3].

Slack-based techniques explored in this work approach ro-
bust resource allocation by increasing the amount of unused
computation or communication capacity across all hardware
resources in the system. A similar performance metric was ap-
plied in [12,19] to achieve robust schedules in job-shop and
real-time environments, respectively. Specifically, an attempt
in those works was made to provide each task with extra time
(defined as slack) to execute so that some level of uncertainty
can be tolerated without having to reallocate.

In [4] it was demonstrated that when application execution
parameters are known as a function of workload then a mea-
sure of robustness better than system slackness could be used.
However, in the given shipboard environment, such a function
is unknown, and therefore the system slackness is an appropri-
ate measure to use.
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The research in [10] considers a single-machine scheduling
environment where the processing times of individual jobs are
uncertain. The system performance is measured by the total
flow time (i.e., the sum of completion times of all jobs). Given
the probabilistic information about the processing time for each
job, the authors determine the normal distribution that approx-
imates the flow time associated with a given schedule. A given
schedule’s robustness is then given by one minus the risk of
achieving substandard flow time performance. The risk value is
calculated by using the approximate distribution of flow time.
It is important to note that, in contrast to [10], the workload
increases are expected in the Adaptive and Reflective Middle-
ware Systems environment but not specified stochastically. If
this information was known, the accuracy of a robustness met-
ric could be improved by using techniques similar to those in
[10,39].

Our combination of evolutionary algorithms with the Incre-
mental Mapping Routine is conceptually similar to [14,45]. For
example, in [14] the goal is to minimize a weighted combina-
tion of the cost of the system and the execution time of a set of
tasks. A genetic algorithm manipulates a set of chromosomes,
where each chromosome is composed of a subset of resources
available in the system, and an ordering of tasks. A separate
greedy heuristic operates on each chromosome to derive a map-
ping and the associated execution time for the set of tasks.

As opposed to heuristic scheduling algorithms finding ap-
proximate (or suboptimal) solutions, exact algorithms for find-
ing optimal solutions are based on Integer Linear Programming.
Although solving an Integer Linear Programming formulation
is NP-hard, significant progress has been made in the develop-
ment of efficient Integer Linear Programming algorithms. For
example, Integer Linear Programming CASA schedulers for
VLSI architectural synthesis, such as OASIC [18] and ALPS
[23], have produced better designs than heuristic algorithms for
medium-sized problems in comparable time. However, with an
increase in the problem scale the performance of Integer Linear
Programming schedulers degrades significantly while heuristic
approaches are still able to produce high-quality solutions in a
reasonable amount of time. In our work, a specially designed
first-stage evolutionary heuristic was utilized to find a high-
quality baseline solution that was used efficiently in the second-
stage Branch-and-Bound algorithm to narrow the search. As a
result, the baseline solutions were improved in at least 34% of
cases for the considered resource allocation problems.

It is important to note that an implementation of both the
Permutation Space Genitor-Based heuristic and Branch-and-
Bound algorithm can be done in a parallel fashion. Parallel ex-
ecution for Genetic Algorithms was done in [28], where the
authors achieved a significant execution speed-up due to parti-
tioning the global population into multiple subpopulations. The
search for each subpopulation was then performed by a phys-
ical processing element (PPE) concurrently with other PPEs.
After each iteration, the best chromosome found across all PPEs
was shared and inserted into each subpopulation. The authors
in [28] addressed the problem of a resource allocation for Di-
rect Acyclic Graphs (DAGs), where the goal was to minimize
makespan. In our work, the applications were organized in se-

quential strings (versus DAGs), and the performance metric
was different from makespan. Furthermore, the throughput and
latency constraints that must be satisfied in our work signifi-
cantly limited the set of feasible solutions. As this set was not
easily described with the operators of the Genetic Algorithm,
we designed a greedy heuristic to “cast” chromosomes gener-
ated in the permutation space to feasible solutions.

The same idea of search space partitioning among multiple
processing elements was presented in [25] for the A� algorithm,
which mapped DAGs into a distributed computer system. Sim-
ilar to Branch-and-Bound, A� is a structural exploration of the
search tree, where the node with the best bound is selected
for expansion. Due to NP-completeness of resource allocation
problem in heterogeneous systems, both the A� and Branch-
and-Bound heuristics are incapable of finding the global op-
timal solution(s) for a realistic size problem in a reasonable
amount of time. Given the scale of the search space in our
work, A� most likely will never reach a leaf solution in the al-
located time and ends up with multiple partial solutions. This
was our motivation for the depth-first search tree expansion
method applied in Branch-and-Bound. In our design, we ap-
plied the concept of “anytime algorithms,” such that the best
solution found so far is always available when the algorithm is
stopped. In addition, the tight upper bounds obtained with LP
relaxation allowed us to prune a significant number of branches
and reduce the search space. Although, the problem domains
in [25,28] differ from ours, the search space partitioning and
the interaction scheme among PPEs proposed in those studies
can readily be adapted in our method.

9. Summary

This paper presents methods for efficiently and robustly man-
aging both computation and communication resources in the
intended distributed system. The system is expected to oper-
ate in an unpredictable environment where the workload might
increase, possibly invalidating a resource allocation that was
based on the initial workload estimate. The focus in the design
of the allocation heuristics was to achieve the highest level of
total worth of the strings deployed in the system while max-
imizing system slackness at that level. System slackness is a
measure that quantitatively reflects the system’s potential to ab-
sorb unpredictable increases in input workload.

Formed by combining the efficient evolutionary Genitor-
based search methods with a specially designed string allo-
cation Incremental Mapping Routine, the Permutation Space
Genitor-Based heuristic was used to generate baseline solutions
in the complete and partial allocation scenarios. Further re-
source allocation improvement with respect to system slackness
and iterative upper bound tightening for both objective metric
components were based on the developed Branch-and-Bound
algorithms. To establish the foundation for these algorithms,
the considered resource allocation problems were formulated
in the Integer Linear Programming form. Due to the high-
quality of the baseline solutions provided by the Permutation
Space Genitor-Based heuristic, the search spaces explored by
the Branch-and-Bound algorithms were significantly reduced.
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As a result, the Branch-and-Bound algorithm succeeded in 34%
of the experiment runs with 4.65% improvement over the re-
sults of the Permutation Space Genitor-Based heuristic in the
complete allocation scenario, and in 40% of the experiment
runs with 6.46% improvement over the results in the partial
allocation scenario. By demonstrating a performance ranging
from 81% to 83% of the upper bound, the proposed combi-
natorial mapping approach indicates a significant potential to
produce effective resource allocations in an environment asso-
ciated with unpredictable workload increases.

Although the proposed resource allocation technique was de-
signed for the specific Adaptive and Reflective Middleware Sys-
tems project, its application is not limited to that environment.
For example, the problem of initial resource allocation for pe-
riodic applications is an important issue for embedded systems
(e.g., [34,40]) and sensor networks (e.g., [48]). Similar to the
environment considered in this work, many of such systems
process periodic data received from various sensors producing
results for actuators and must deliver a specific level of QoS
while being a subject to possible workload increases. The ap-
plication domains include surveillance for homeland security,
monitoring vital signs of medical patients, and automatic target
recognition systems. Thus, the proposed hybrid two-stage ro-
bust resource allocation scheme can readily be adapted in those
systems.
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Appendix A.

Table A.1 presents the glossary of notation.

Table A.1

Glossary of notation

Sk kth string specified by a sequence of nk applications{
ak

1ak
2 . . . ak

nk

}
W [k] Worth factor of kth string
P [k] Period of time between sequential raw data sets processed

by kth string
m[i, k] Machine to which application ak

i is assigned
tkcomp[i] Estimated computation time for application ak

i on machine
m[i, k]

tktran[i] Estimated time to transfer output Ok[i] from ak
i to ak

i+1

in string Sk

t
k[i, j ] Nominal data set processing time of ak

i executing on ma-
chine j

uk[i, j ] Average CPU utilization of machine j when ak
i processes

a nominal data set
Umachine[j ] Utilization of machine j

b[j1, j2] Time to transmit one bit of data from machine j1 to machine
j2

U route[j1, j2] Utilization of the communication route from machine j1

to machine j2

M Number of heterogeneous machines in the system
� System slackness, i.e., the minimum utilization capacity

remaining across all computation and communication re-
sources

t
k
av[i] Average nominal execution time of ak

i computed across M

machines
uk

av[i] Average nominal CPU utilization of ak
i computed across

M machines
Q Total number of strings considered for mapping
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