902

I[EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, XO. 10, OCTOBER 1985

Fault Location Techniques for Distributed Control
Interconnection Networks |

NATHANIEL J. DAVIS IV, STUDENT MEMBER, IEEE, WILLIAM T SUN-YUK HSU, anp HOWARD JAY SIEGEL,
SENIOR MEMBER, IEEE :

Abstract — One class of networks suitable for use in parallel
processing systems is the muitistage cube network. This paper
focuses on fault location procedures suitable for use in networks
that employ distributed routing control through the use of routing
tags and message transmission protocols. Faults occurring in the
data lines can corrupt message routing tags transmitted over them
and thereby cause misrouting of messages. Protocol lines (used in
handshaking between network sources and destinations), if faulty,
can prevent a message path from being established or can cause
the path to “lock up” once transmission of data has begun. These
faults have more pronounced effects on the network performance
than faults previously considered for centralized routing control
systems. The single-fault location procedures presented form a
Jogical superset to those of the centralized control systems (where
message routing is dictated by the actions of a global control unit)
and can be adapted for use in both circuit and packet switching
networks.

Index Terms — Cirenit switching, cube network, distributed
processing, fault location, generalized cube, interconnection net-
works, multimicroprocessor systems, parallel processing, PASM.

I. INTRCDUCTION

ITH the advent of very large scale integrated circuit

technology, relatively inexpensive hardware systems
and subsystems are now readily available. The result has
been the greater use of multiple-processor system designs
that employ processing elements, operating in parallel, to
achieve high levels of computational power. The ability of
these parallel systems to continue operations, despite the
occurrence of faults, is of critical importance.

One class of interconnection networks suitable for use in
parallel processing systems is the multistage cube network
[15]. This class includes the omega [9], the indirect binary
n-cube [13], the baseline [6], and the generalized cube [15].
The cube network is not, however, fault tolerant. Any single
point failure in the metwork will prevent some source—
destination pair of functional subsystems from communi-

Manuscript received February 1, 1985; revised May 30, 1985. This work
was supported by the Rome Air Development Center under Contract
F30602-83-K-0119. A preliminary version of this paper was presented at the
1EEE 1985 International Conference on Parallel Processing, St. Charles, IL,
Aug. 1985.

N. 7. Davis IV was with the PASM Parallel Processing Laboratory, School
of Electrical Engineering, Purdue University, West Lafayette, IN 47907. He is
now with the Department of Electrical Engineering, Air Force Institute of
Technology, Wright-Patterson Air Force Base, OH 45433.

W.T.-Y. Hsu and H. I. Siegel are with the PASM Parallei Processing Labo-
ratory, School of Electrical Engineering, Purdue University, West Lafayette,
IN 47907.

0018-9340/85/1000-0902501.00 © 1985 IEEE g

cating. Fault tolerance can be introduced into the network
through the use of one or more “extra” stages of switches [1],
[31, [12]. Effective use of the redundant paths in the network, |
available as a result of the extra stages, requires that each |
source know the exact location of any network faults.
Previous work in fault location has concentrated on net- 3
works operating under a centralized control scheme
[2],161,17], [11]. Systems such as PASM [14] and Ultra- [
computer [8] implement the network using a distributed con- |
trol methodology. Network faults in a distributed system, |
especially faults occurring in the interconnecting links within |
the network, can cause much more severe errors in network
operations than could a similar fault in a centralized control f
system (a result of message misrouting due to the corruption
of data tags). In addition, faulty protocol lines (used in hand-
shaking between network sources and destinations) can pre-
vent a path from being established or can cause the path to [
“lock up” once the transmission of data has begun. In this *
paper, the single-fault location procedures necessary for dis- [
tributed control networks are considered. These procedures |
form a logical superset to those of the centralized systems. |
This work has been motivated by the implementation of the »
PASM system prototype [4]. I
In Section 1I, the systein and network models are defined |
and the fault model is presented. Section IIT overviews the [;
centralized control fault location procedures of [6]. An out-
|
\
|
|
\
]

line of the testing procedure for use in a distributed control |
network is presented in Section IV. Potential network faults,
their ensuing effects on the network, and the testing proce- |
dure outputs they would produce are presented in Section V.
Section VI discusses fault location techniques based on the

output responses of the testing procedures. Procedures for |
testing broadcast connections are overviewed in Section VIL.
Section VIII summarizes these results.

I1. Tur INTERCONNECTION NETWORK MODEL

Consider a parallel processing system consisting of N
functional subsystems where N = 2". The subsystems will
be assumed to be processing elements (PE’s), processors
paired with their own local memories. The interconnection
network will have N inputs (sources) and N outputs (desti- |
nations). PE i will be connected to network input i and output |
i. The multistage cube network [15] consists of n stages with ‘\
each stage being composed of N /2 two-by-two interchange
boxes. Interchange boxes in stage i pair /O lines with link

]

1

DAVIS et al.: FAULT LOCATION TECHNIQUES

labels that differ only in the ith bit position. The same label- -

ing is used for both the input and output lines connected to an
interchange box. A multistage cube network is shown in
Fig. 1, with N = 8. Each data path through the network will
be m bits wide where m is a function of the system hardware
used. Circuit switched data transmission is assumed, where
acomplete path linking the source and destination PE’s must
be established before the actual data transfer can begin.
Two different approaches can be used to govern the man-
ner in which connections are made in the network. Using
centralized control, a global network controller mediates be-
tween message requests and establishes the desired network
connections. In contrast, distributed control removes this
serial bottleneck by allowing the individual interchange
boxes to establish their own connections based on the use of
routing tags associated with each message. Distributed rout-
ing control using destination address routing tags 9] is as-
sumed in this paper. The complete routing information is
contained in a 2n bit routing tag: an n bit broadcast mask
and an n bit destination tag equal to the binary expansion of
the destination address. Interchange boxes in stage i examine
bits i of both the broadcast masks and the routing tags for the
messages at their input ports and make the switching con-
nections accordingly. If a mask bit is “1,” then a broadcast to
both outputs is to be performed. If the mask bit is “0,” then
the routing tag specifies the desired connection pattern. A “0”
imbit i of the routing tag indicates a connection to the upper
output port is desired, while a “1” indicates connection to the
lower output port. Conflicting connection requests can be

resolved using conflict resolution schemes such as those dis-

*cussed in [5], [10]. A message on the data lines will have the
 following format. The first word of the message will contain

o~

\

the message routing tag. The remaining words constitute the
actual data that are to be transmitted. The set of data lines is
assumed to include parity bit lines.

Message transmission in the network is controlled through
the use of two types of asynchronous protocols. A message
request/grant protocol is used to establish a path connecting
source and destination PE’s. The message request is the com-

- bination of the routing tag and a message request signal REQ.

' “Data available—data received” handshaking signals are used.
| to transmit data between the input/output ports that interface

the PE’s to the network. The network interface ports are
assumed to have the ability to validate message routing and

data transmission (e.g., through the use of parity bits or

- checksum bits and the comparison of the routing tag informa-
“tion to known destination addresses). Thus, the complete

information path will consist of the data lines (including the
parity bit lines), the message REQ line, the data available
line, the message grant line, and the data received line.
Blockages and potential faults in the network are detected
by the source PE’s when the anticipated return protocol sig-
nals are not received. The return protocol signals will not be
generated if the message is blocked within the network or if
the destination PE detects an error (e.g., a parity error or the
destination tag does not match the destination PE’s address).
This process can be facilitated through the use of watchdog

timers and/or nonacknowledge signals. Detection of a pos-

903
0 00 __0p—0 0F—0
| 4 14 2| |2 1t !
- O SUWIE TV T I
N 33X s IsAzl 13 3 |z ¥
B AA A2r2A Aar—4 ar—a P
Y U
s/\s le6fel & s [5 7
6/ \3—3/ \sp—5 X 6r—6
7 7 7 7 7 7 7
1 L
STAGE 2 [0
STRAIGHT EXCHANGE
LOWER UPPER
BROADCAST BROADCAST

Fig. 1. A multistage cube network, with N = 8, and the allowable
box settings.)
sible fault can initiate the execution of the fault location
diagnostic routine.

" A fault within the interconnection network can occur in
either ‘an interchange box or in one of the interconnection
links within the information paths. All faults will be assumed
to be nontransient. As delineated in [6], there are 16 possible
ways of connecting the inputs of an interchange box to its
outputs, as shown in Table 1. A faulty box can become stuck
in one particular invalid state, regardless of the routing infor-
mation at its input ports, or it can respond incorrectly (but
consistently) to the routing information. For an example of
the latter situation, it is possible for a box to respond correctly
when the straight state () is requested, but incorrectly when
the exchange state (Ss) is requested. Furthermore, a faulty
box may enter one incorrect state (say,.S;1) in response to.a
straight state request, and enter a different incorrect state
(say, Sp) in response to an exchange state request. Thus, a
box fault occurs when an interchange box enters an incorrect
state.

Any network fault that corrupts data on an information
path will be called a link fault. A link fault occurs in an
information line when it becomes stuck at either logical “0”
or “1,” regardless of the actual input signal that is applied to
it. The actual location of the fault can be in the link itself , an
interchange box, or in the hardware interfaces of the inter-
change boxes that the link connects. (Depending on the box
implementation, some such faults within a box may be detected
as box faults.) The fault model will allow link faults to occur
in either the data lines themselves or the lines carrying the
protocol and parity bit signals. As will be seen in Section 1v,
link faults in distributed control systems can create a large
number of network errors not found in centralized control Sys-
tems. These errors are due to the corruption of routing tags as
they are transmitted over faulty links and the ensuing mis-
routing and blocking of the messages.

: ///

-

e TABLEI
16 POSSIBLE STATES FOR A Two-BY-Tw0 INTERCHANGE BOX
Interchange Interchange
State Box State Box
Setting Setting

T
=
i

=
=

III. FAULT LOCATION IN CENTRALIZED CONTROL NETWORKS

In [6], {71, Feng, Wu, and Zhang present a comprehensive
method for detecting and locating both link and box faults in
a centralized control interconnection network. A three-phase
testing strategy is developed to detect faults within the net-
work. The testing of the network is performed in an SIMD
(synchronous) operating mode under the direction of a global
system control unit.

In phase 1, all interchange boxes are set to the straight
connection. A logical “0” and a logical “1” are transmitted
over each data link through the network. By comparing the
received output words (at the destinations) to the known
correct output specified by the system control unit, the pres-
ence of a fault can be readily determined. In phase 2, the
process is repeated with the interchange boxes set to
exchange.

The two-phase process requires the transmission of exactly
four data words and has been shown to detect all single faults
within the network for the straight and exchange settings.
The fault location can be obtained by comparing the paths on
which detected errors occurred or through the use of a binary

tree search algorithm that can isolate most faults (or, in a

few cases, indicate a localized region of two adjacent boxes
and their connecting link) in no more than max(12,6 +
2[log,(log, N)1) tests. Complete details of the testing proce-
dures can be found in [6].

Once the link faults and faults in the straight and exchange
box settings have been located, testing for the broadcast set-
tings can be performed. Each stage is individually set to

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, No. 10, OCTOBER 1985

upper (lower) broadcast, while the remaining stages are set
to either straight or exchange. Faults that resulted from
the broadcast operation can be quickly pinpointed within the
broadcast stage. Including the detection of faults in the
broadcast settings in the procedure of [6] requires a total of
max(28,4 log, N + 8, 14 + 2[log, N(log, N)Y) tests to, in
most cases, locate the fault or, in a few cases, localize the
faulty region to two adjacent boxes and their connecting
link [7]. ’

IV. NETWORK FAULT DETECTION IN DISTRIBUTED
CONTROL SYSTEMS

The set of possible fault patterns in a distributed control

network is more complex than that of a centralized control
network. This is because the routing tags which direct the
path establishment through the network and the data trans-

mission protocol lines are carried over the same information ..

paths as the data. For example, a link fault may produce an
erroneous routing tag which, in turn, may cause the message

to be misrouted — an error that is not possible in a centralized |

control system.:
The procedures and methodology described here are for

detecting and locating single faults in a distributed control

network. They are based on the network model of Section II,

. but can be adapted for other cube-type interconnection net- -

works and for different formats of the data path and protocol

lines. Specific examples will refer to a multistage cube net-
work, with 16 PE’s and a 16 bit data path. The routing tag
word will contain the 4 bit destination address in bits 3-0 of
the word and a 4 bit broadcast mask in bits 11-8. The other
bits in the word (bits 7—4 and 15—12) are not used. There are
two parity bits, a high-order bit for bits 15-8, and a low-order
bit for bits 7-0 of the 16 bit word. This format is similar to
the routing tag format used in the PASM prototype network
[4].

The fundamental testing procedure remains similar to that
described in [6], [7]. To check for link stuck-at faults, each
set of links carrying data or parity bits must have two bitwise
complementary words transmitted over it. Procedures for
isolating these types of faults will be discussed in Section V.
To test for faults in the interchange boxes, we shall first
attempt to set cach box to the valid states Sy, and Ss (straight
and exchange). Broadcast settings will be evaluated sepa-
rately. Faults will be detected by examining the test pat-
terns which propagate through the network and are received
by the destination PE’s, and by combining this information
with the blockage/timeout information available from the
source PE’s.

The basic testing procedure for straight and exchange set- |

tings is divided into two phases. In each phase we shall

attempt to detect if there are one or more Taulty paths and, :
through their intersection, isolate the faulty component. In |
phase 1, all boxes are preset to the “straight” setting through |
the actions of routing tags submitted to the network by the |
source PE’s. Each source PE sends its own address as the |

destination address tag (bits 4—15 are set to zero). Call

DAVIS ef al.: FAULT LOCATION TECHNIQUES

the process of sending routing tags through the network to
preset all paths the sefup. ‘

If some block or routing error is detected, all paths are
immediately dropped (by negating REQ), and phase 2 of the
test is begun. If, however, no block or routing error occurred,
cach PE will begin the data transfer testing subphase of
phase 1. The first data word to be transmitted will be the
bitwise complement of the routing word. If again no error is
detected, a second data word, with different parity, is sent
through the network to ensure the links carrying the parity
bits have been tested properly. This is necessary because, for
adata path with an even number of bits (as assumed here), the
parity bit values will remain the same for the routing tag word
in setup and the first data word, since complementing a word
with an even number of bits does not change its parity bit.
The second data word is formed by complementing bits 0 and
8 of the first data word, i.e., the low-otder bit from each byte.

As an example of this phase of the testing .procedure,
consider a 16 PE system. PE 6 would have a phase 1 routing
tag word of 0000000000000110 with parity bits 00. The first
data word would be 1111111111111001 with parity bits 00.
The second data word would be 1111111011111000 with paz-
ity bits 11. Every data and parity link in the information path
will have had both logical “0” and logical “1” signal levels
transmitted over it.

In phase 2, the setup procedure involves having each
source PE send the complement of its address as the desti-

, nation tag. This is equivalent to requesting that all inter-

change boxes be set to exchange (setting Ss). As in phase 1,
all unused bits are set to “0” for convenience. If no block or

| routing error occurs in the setup subphase, the PE’s will send

as the first data word the bitwise complement of the routing
word, '
If no error is detected with the transmission of the first data

- word, an extra data word with different parity is sent through

the network to ensure that the links carrying the parity bits
have been properly tested. This second data word is formed
in the same way as that in phase 1, i.e., by complementing
bits 0 and 8 of the first data word. Continuing with the ex-
ample from phase 1, PE 6 would have a phase 2 routing tag
word of 0000000000001001 with parity bits 00. The first
data word would be 1111111111110110 with parity bits 00.
The second data word would be 1111111011110111 with par-
ity bits 11. .

The destination’s network interface verifies the message
routing during setup (by examining the destination address
portion of the setup word) and the parity for every received
word. If there are no errors, it then generates the return
protocol signals for the source PE.

V. THE EFFECTS OF NETWORK FAULTS

Faults occurring in a network that uses distributed control
can cause much more serious operational errors than in a
comparable centralized control network. Faults and their
concomitant error patterns generated by the two phases of the
straight and exchange setting tests are discussed below for
both link and box faults. '

905
A. Error Patternsfo’r Link Stuck Faults

Two types of link faults can occur: faults in the data path
or parity bit links, or faults in the links which carry the
message protocol signals. Table II is a complete listing of the
errors caused by each type of link fault. In the table, columns
“one phase” and “other phase” record the received error sig-+
nals (if any) and do not necessarily correspond to the
phase 1-phase 2 testing sequence.

1) Type 1: Faults on the Data Path and Parity Bits:
Functionally, Type 1 faults can be divided into five cases.

Case I: A link fault occurs in a bit that is not used by the
routing word. No matter how the unused bits are scrambled,
messages will still be routed to their correct destinations.
Since all unused bits are set to “0” in setup, if a link carrying
one of these bits is stuck at “1,” there will only be one parity
error in each test phase (Type 1, Case 1a of Table ID.Ifa

link carrying the bit is stuck at “0,” no error will occur during

setup. When the first data word is sent through the network,
all unused bits are set to “1.” Parity checks will then result in. -
one érror in each phase (Type 1, Case 1b of Table D).

Case 2: A link fault occurs in a routing bit after that bit
has already been examined for routing purposes. For exam-
ple, if alink carrying bit 3 of the destination tag has a stuck-at
fault between stage 1 and stage 0, the message routing will
not be affected (for routing purposes, bit 3 would have al-
ready been examined at stage 3). This type of fault produces
the same fault patterns as Case 1 (Type 1, Case 2a and
Type 1, Case 2b of Table II).

Case 3: In this case, a link fault occurs in a routing bit -
before that bit has been examined in the setup process. Since
a link of this nature carries a “1” in the setup of one phase and
a “0” in the setup of the other, in one of the phases there will
be no setup error, but an error will occur when transferring
the first data word. In the other phase, there will be an error
in setup. Two routing possibilities may happen. The er-
roneous bit may successfully request an erroneous path and,
in turn, block an otherwise good path— causing a block and
arouting error (Type 1, Case 3b of Table II)— or, if the good
path has already been established, the erroneous path will be
blocked and the only error in that phase would be a block
(Type 1, Case 3a of Table II).

Case 4: A fault occurs on a link carrying a parity bit.
Here, a link carrying a parity bit is stuck at “1” or “0.” In both
test phases, this will either be detected during setup or when
transmitting one of the two data words. There will either be
errors in both phases when doing data transfers (Type 1,
Case 4a of Table II), routing errors in setup in both phases
(Type 1, Case 4b of Table II), or an error in the setup in one
phase and an error in data transfer in the other phase (Type 1,
Case 4c of Table IT) (routing error here refers to a parity error
in the setup word, not a misroute).

Case 5: A link carrying a broadcast bit is stuck so that a
broadcast operation is erroneously requested. The erroneous
broadcast request may succeed in neither, one, or both of the
two test phases (Type 1, Case 5 of Table II). The observed
errors depend on whether the broadcast setting is successfully
set up (which will result in a parity error detected at a desti-
nation and a blockage of the correct path of another mes-

906
TABLE II
FAULT PATTERNS FOR LINK STUCK FAULTS
Fault patterns for Link Stuck Faults
one phase other phase
Case Faulty Link setup data setup data
- transfer transfer
TYPE 1
ig unused bits OEK E OEK E
2a destination bit;, E E
2b does not affect routing OK E OK E
3a destination bit, B OK E
3b aflects routing EB OK E
4a OK E OK E
4b parity bit E E
4c B OK E
5a broadcast bit B B
5b asserted, EB EB
5¢ affects routing EB B
TYPE 2 :
i message request stuck negated B B
2 message grant stuck negated B B
3 data available stuck negated E E
4 data received stuck negated E E-
ﬂgi message request stuck asserted gg OK gg
(i} message grant stuck asserted OK OK OK OK
v data available stuck asserted, OK E OK B
before stage 0
s data available stuck asserted, E E
after stage 0
9 data received stuck asserted, OK E OK E
after stage n-1
data received stuck asserted
10 before stage n-1 ' E E
Fault pattern notation: '
“QK” -- No errors or blocks in that testing subphase.
“E" .- Only 1 PE detects a routing or parity error.
“B” -~ Oply | PE detects a block.
“ER” .. One PE detects a routing error, 1 or more PEs detects blocks.

sage), or if the broadcast request is blocked at the box in
which the broadcast would be performed (by the other box
input correctly establishing its path first and thus preventing
the broadcast setting).

2) Type 2: Link Faults in Control Links: There are four
control lines which can be stuck at asserted or negated: mes-
sage request, message grant, data available, and data
received.

Case 1: A link carrying a message request signal is stuck
in the negated state. To set up an interchange box, a mes-
sage’s request signal must be asserted. If not, the message
will not propagate through the box, causing a perceived
blocking error to be detected. This will occur in both test
phases (Type 2, Case 1 of Table II).

Case 2: Alink carrying a message grant signal is stuck in
the negated state. A perceived blocking error will be detected
in each phase (Type 2, Case 2 ‘of Table II).

Case 3: A link carrying a data available signal is stuc& in
the negated state. A routing error will occur in each phase
because the assertion of the data available signal is never
detected by the destination port, and as a result, the data
received signal is never returned to the source PE (Type 2,
Case 3 of Table II).

Case 4: A link carrying a data recelved 31gnal is stuck in
the negated state. This will result in one routing error in each
phase since no data received signal returns to indicate that the
routing tag has been received (Type 2, Case 4 of Table II).

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 10, OCTOBER 1985

Case 5: A link carrying a message request signal is stuck

.in the asserted state. Because message request is always as-

serted, the portion of the last path that is after the fault
location (and established before the link failed) will not be
dropped and will remain held through the fault isolation pro-
cedure. Depending on what this last path was, there are
several different fault patterns. If the held path consists of all
straight or all exchange box settings, there will be no routing
errors or blocks in one phase, but a routing error and a block
in the other phase (Type 2, Case 5a of Table II). Note that
the new routing tags generated by the source PE will be
treated as nontag data items by the incorrectly held path,
causing the routing error. If the held path consists of a com-
bination of straights and exchanges, there will be a routing
error and one or more blocks in each phase (Type 2, Case 5b
of Table II).

Case 6: A link carrying the message grant signal is stuck
in the asserted state. This will produce no errors or blocks in
the normal fault location procedure. The only way to detect
this is to deliberately attempt to set up paths which will be
blocked in the network and check for the signal being stuck
{Type 2, Case 6 of Table II).

Cases 7 and 8: A link carrying the data available signal is
stuck at the asserted state. Assume that the data available
signal is edge-sensitive and that active low logic is being used
in the network implementation (both reasonable assumptions
for typical port handshaking signals). The errors that can be
generated will depend on whether the stuck link is before or
after stage O (i.e., whether it is the network output link or not).

In Case 7, a data available link is stuck at asserted before
stage O (recall from Fig. 1 that stage O is the network output
stage). An edge is still produced on subsequent links when
the path is first set up. Hence in both phases, no error or block
occurs in setup, but errors will occur when transmitting the-
first data word since the destination port will not receive the
required negated-to-asserted edge on the data available line
to gate the data word in (Type 2, Case 7 of Table II).

For Case &, a data available link is stuck at asserted after
network—destination interface port). As a result.of the fault,
the port never detects an edge transition being produced on
this control link. In each phase, there will be one routing
error only. The fault patterns generated here are identical to

“those in Case 3 (Type 2, Case 8 of Table II).

Cases 9 and 10: A link carrying the data received signal
is stuck at asserted. Similarly to Cases 7 and 8, the errors
generated depend on whether the bad link is before stage
n— 1. .

In Case 9, assume that a data received link is stuck at
asserted after stage n — 1 (the input stage of the network).
As with the data available signal, assume that the data re-
ceived signal is edge-sensitive. An edge will be produced
when the path is first established. Hence, in both phases, no
error or block .occurs in setup, but errors will occur when |
transmitting the first data word since the source port will not
receive the required negated-to-asserted edge on the data
received line (Type 2, Case 9 of Table II).

“For Case 10, let a data received link be stuck asserted

- S

DAVIS ef al.:

FAULT LOCATION TECHNIQUES

before stage m — 1. Since the stuck link is between
stage n — 1 and the source port, no edge is ever produced on
this bad link. In each phase; there will be one routing error
only (Type 2, Case 10 of Table II).

B. Error Patterns for Interchange Box Faults

Interchange box faults in interconnection networks with
distributed routing schemes are handled in much the same
way as are Feng and Wu’s switching element faults in [6].
Differences lie primarily in the additional effects of the m
bit data path and the routing and protocol schemes, not ad-
dressed in [6]. This class of faults will be described briefly
with emphasis being placed on these differences.

[nitially, two groups will be considered: a faulty state when
S, is the desired state and a faulty state when S5 is desired
(broadcast states are discussed in Section VII). The possible
fault patterns for interchange box faults in these states are
summarized in Table III. In the analysis, it is assumed that a
box fault will affect all lines of an input port in the same way.

1) Faulty State in S,: This refers to the condition where

the combination of the routing tag and REQ signals requests

setting a box to Sy, but, because of a fault in the internal logic
of the box, it is set to some other state instead. From Table I

there are 15 possible erroneous states. Erroneous states So, 51,
S, 8., Ss, and Sg are straightforward — messages are either
misrouted or blocked, and error-checking hardware at the
PE’s detects routing etrors or blocks. For erroneous states S;
and Sy, one of the messages requesting passage through the
faulty box is blocked, while the other message is sent to both
output lines. The effect of this will be a blocked message and
a routing error signal from the second incorrect output. The
box input port hardware is assumed to perform a logical AND
operation on the returning protocol signals from each of the
box output ports to detect the presence of an error condition
(i.e., message received logically 0) from either output link.
The error signal is, in turn, propagated towards the respective
source PE. The error patterns resulting from these eight er-
roneous states are similar to those of [6].

The remaining seven erroneous states, Ss, S7, So, S11, Sus
Su, and S;5, may involve changes to the routing tags, and
therefore, new considerations come to bear. The routing tags
can become corrupted when one of the messages at the output
links of the faulty box is the result of the two input messages
overwriting each other. The effect of having two input bits
write to the same output bit is defined in a way similar to that

~ of Feng and Wu in [6]. If the two input bits are identical, the

output bit will be equal to either one of the inputs. However,
if the input bits are different, the output bit will always be a
“1” or always a “0,” i.e., an overwritten bit position always

© sticks at the same value. When two m bit routing words are

: rransferred to the same output link, some bits in the resulting

- tag may be scrambled by the overwrite. Depending on the
. message at the output link of the faulty box, there are two

resultant cases.
In the first case, the message is changed by the overwrite
so that an error in the bits of the setup word which specify the

~ destination address is generated. A routing error is detected.

907
TABLE il
FAULT PATTERNS FOR INTERCHANGE BOX FAULTS
Interchange Box Faults)
Desired Setting is S;y Desired Setting is S;
Observed Errors Observed Errors
Erroneous Setup Data Erroneous Setup Data
Transfer Transfer
S 2B S 2B
Sy EB 5 B
S, B S, EB
S EB Ss EB
5 EB S, .B
Sga 2E
S 8] SZb OK 2E
Sea 2K . S.a 2E .
Sgb OK 2F Sb OK 2B
S.a 2E
S;b E S YE‘B
S¢a 2E
S B S:b OK 2E -
Sga 2E
Sib 0K 2B S | IE
S8 9E Sia 9E
Sub oK 2E S,;b E
Siz EB . Si EB
Syea 2E Sysa 98
Si3b __E Sysb OK 2E
S¢a 2E Siga 2E
Si4b OK 2E 5y4b E
8152 1 2E Sisa 2E
Sysb OK 2K Sysb OK 2B
Fault pattern notation:
“QK” -~ No errors or blocks in that testing subphase.
“E" -- Only 1 PE detects a routing or parity error.
“9E” _. Two PEs detect routing or parity errors.
“B” -- Only 1 PE detects a block.
“9B" -- Two PEs detect a block.
“EB" - One PE detects a routing error, 1 or more PEs detects blocks.

For example, if a stage i box is in erroneous state S, bit i of
the setup word using the lower input should be a “1.” Assume
the two setup words entering the box are merged so that bit i
is overwritten and is stuck at “0.” Thus, a destination with a
“1” in its ith address bit position will receive a setup word
with a “0” in the ith bit position. The source PE’s requesting
a path through the faulty interchange box will detect this error
since the error condition is propagated back to both PE’s.

In the second case, the message can be changed by the

.overwrite so that an error in the destination address part of the

setup word is not generated as a result of the overwritten bits
(e.g., for a stage i box, bit i of the message at the lower
output of S¢ in Table I should be “1” and is stuck at the same
value because of the overwrite). The proper return protocol
signals are propagated back to both of the affected source
PE’s. In this case, no routing error or block is detected in the
setup for Sg, Sg, S11, S, and Sis. However, the first data word
is a bitwise complement of the routing tag, while the over-
written bits always stay at the value they tock in the setup. An
error will result from the parity check, and both source PE’s
receive the error signal. The result is two routing errors. In
the setup for S; and Sy, one of the messages is misrouted
regardless of whether the overwritten message was scram-
bled. For example, the message at the upper output of §; in
Table I is misrouted, and the lower input performs a logical
AND operation on both returning protocol signals and informs
the PE connected to the lower input of the error. In these two
states, a single routing error in the setup will result.

2) Faulty State in Ss: This refers to the condition where

908

the combination of the routing tag and REQ signals requests
setting the intérchange box to Ss, but the box is set to some
other state instead. As for the case where the desired state was
S10, there are 15 possible erroneous states. The way in which
fault patterns are generated is very similar to those of Sy
Refer to Table III for a complete description of the fault
patterns generated by each type of fault.

V1. ISOLATION OF SINGLE FAULTS

Tables II and HI summarize the errors resulting from the
different types of faults after the first two phases.of the testing
procedure. The principle behind the testing procedure is to
determine the fault type, i.e., whether a link or an inter-
change box is faulty, and the location of the fault. This is
done by recording the path on which faults are detected in
each phase and intersecting the faulty paths.

Notice that in the condition denoted by “EB” in the tables,
i.e., one PE detects a routing error with one or more PE’s
detecting blocks, only the path which resulted in the routing
error is considered to be the faulty path. This is because the
blocked path may be fault free, but it was blocked by a
misrouted message. If no routing errors are detected in a test
phase but blocks occurred (i.e., in the conditions denoted by
“B” and “2B”), paths with blocks are considered faulty
paths. This is because there is no detected error in the net-
work which could have caused a fault-free path to be blocked.
The exception to this rule is for faults belonging to Group 3,
as explained below. In the conditions denoted by “2E,” two
paths are considered to be faulty paths.

Looking over the tables of results for link faults and box
faults, the faulty respomses can be divided into several
groups. These are considered below.

A. Group 1: Two Faulty Paths in Either the Setup or Data ,
Transfer of a Single Phase

This refers to situations where the error conditions denoted
by “2E” and “2B” are detected, either in the setup or in the
data transfer. Referring to Tables IT and I11, these conditions
will only be registered if an interchange box is faulty, i.e., if
the desired state is Sy, and the erroneous state is Sy, S5, Ss, S»a,
So, S11, Sz, Su, and S5 or if the desired state is S5 and the
erroneous state is Sy, S¢, S7, So, Sio, Sud, Si3, Sua, and Si;.
Since two faulty paths were registered in a single phase,
intersection of these two paths will pinpoint the faulty box.

B. Group 2: No Setup Errors in 'One or Both Phases, Data
Transfer Error in Phase(s) Where No Setup Error Occurred

In this group, no setup errors occur in one or both setup
subphases. Where the setup is valid, a single error will be
detected in the ensuing data transfer. This group includes link
faults of Type 1, Cases 1b, 2b, 3, and 4a and c, and Type 2,
Cases 7 and 9. Interchange box faults are not in Group 2
since they never generate a single error in data transfer in one
or both phases (see Table III). '

Referring to Table 1I; a Group 2 link fault always gener-
ates one faulty path in each phase. Since fault patterns of this
type can be definitely identified as being caused by link

[EEE TRANSACTIONS ON COMPUTERS, VOL. C-34, No. 10, OCTOBER 1985

faults, intersection of the faulty path obtained in phase 1 and
that obtained in phase 2 will isolate the faulty link.

C. Group 3: No Anomaly in One Phase, Only One Faulty
Path in the Other Phase :

This group includes all those conditions where no anomaly
(i.e., no routing error, parity error, or block) was detected in
one phase, but an error and/or block in setup or data transfer
was detected in the other phase. Hence, if faulty test patterns
of this group were detected, only one faulty path will be
registered and further tests are necessary to isolate the fauit.

From Table II, only one type of link fault might produce
fault patterns of this group: Type 2, Case 5a. The fault pat-
tern produced here is the condition denoted by “EB.” If the
fault were in an interchange box, several types of faults
would generate patterns belonging to this group.

a) The faulty box would work normally if it were set to Sy
in the phase 1 test, but in the phase 2 test, instead of being set
to Ss, it is set to 51, S5, S5, Ss, Ss, S1ub, Si, or Sub. Of these
eight possibilities, $;, S4, S;b, and Syub do not produce the
condition denoted by “EB” and are thus easily recognized as
box faults instead of a link fault of Type 2, Case 3a.

b) The faulty box would work normally if it were set to Ss
in the phase 2 test, but in the phase 1 test, instead of being set
to Sy, it is set t0 Sy, S, S, Sa, S7b, Sg, Sip, or Sib. Of these
eight possibilities, S,, 85, $;b, and Si;b do not produce the
conditien denoted by “EB” and are thus easily recognized as
box faults instead of a link fault of Type 2, Case 5a.

For the “EB ™ fault conditions in this group, both paths are
considered faulty, and the location of the faulty component is
exactly pinpointed by the intersection of the two paths on
which the routing/parity error and the block lie. If the “EB”
condition is caused by link fault Type 2, Case 5a, the inter-
section of the faulty path and the blocked path will give the
interchange box immediately after the stuck link. If more
than one block is deteécted, each blocked path is intersected
with the path containing the routing/parity error. The compo-
nent(s) obtained by the intersection that is closest to the input
stage of the network is considered to be the faulty compo-
nent. Hence, the faulty component is either the interchange
box indicated by the intersection of the two bad paths, or an
input link on that box.

‘For the remaining faults in. this group (the non-“EB”
cases), a binary tree search algorithm can be used to isolate
the fauit. See the discussion given in [6] under the section cn
“Switching Element Faults,” Case 1.

D. Group 4: Anomalies in the Setup of Both Phases

In this group, one faulty path is generated in the setup of
both phase 1 and phase 2. This group covers all the remain-
ing link faults except Type 2, Case 6, and also the inter-
change box faults in which a particular box is set to an
erroneous state(s) in both phase 1 and phase 2. The three
error conditions possible in the setup are “E,” “EB,” and “B.”
All possible combinations of these conditions are sum-
marized in Table IV. From Table II, it can be observed that
link faults which generate fault patterns in the setup of both

DAVIS et al.: FAULT LOCATION TECHNIQUES

TABLEIV
GRoOUP 4 FAULT PATTERNS

Fault Patterns for Group 4
hase 1 hase 2
Subgroup lJsetup Psetup
1 E E
2 E EB
3 E B
4 EB E
5 EB EB
8 EB B
7 B E
3 B EB
9 B B

phases always produce identical fault patterns in both phases.
Hence, combinations of fault patterns which are not identical
in both phases (Table IV, Subgroups 2, 3, 4, 6, 7, and 8) are
immediately identifiable as interchange box faults. Since two
faulty paths are obtained after the two-phase test, the inter-
section of the faulty paths will locate either the faulty box or
a pair of interchange boxes connected by a link. The latter
condition and subcases 1, 5, and 9 of Table IV require spe-
cial procedures to further isolate the faulty component. These
procedures, which involve trying to pinpoint the fault by
setting boxes in different stages to different valid states, are
described in detail in [6] and are an abbreviation of their tree
search algorithm.

E. Group5: No Anomalies Detected

In this group, no errors are detected in either the straight,
the exchange, or the broadcast testing (discussed in Sec-
tion VII) phases. This could indicate the presence of one
remaining fault type—a Type 2, Case 6 link fault (a mes-
sage grant protocol line is stuck asserted). Knowing the
source PE that requested the diagnostic testing and the path
that it was trying to set up when the initial network error was
detected (the fault was in that particular path), the location of
the fault can be determined. Blocking paths can be system-
atically established in the network that are known to conflict

with the path containing the fault. If the faulty path and a

blocking path intersect before the fault location, the grant
signal should become negated (as a result of the blockage). If
the paths intersect after the fault location, the grant signal
will remain asserted, despite the path being blocked. The
fault is identified as being in a particular link when a block
in the preceding interchange box causes the grant signal to be
negated, while a block in the succeeding box does not negate
the signal. The search for the fault location can be performed
in a binary tree search fashion and will require O(log, n)
steps to complete.

F. Fault Location Summary

After the first two phases of the testing, it is possible to
detect all link faults and single straight and exchange faults.
The location of the component can be determined by exam-
ining the combination of error signals or, at worst case, nar-
rowed to a pair of interchange boxes and their connecting
links. Group 4 faults present the most difficult combination
of error patterns. In those cases where the fault has not been

909

completely isolated, the special procedures-described in [6]
are necessary to further isolate the fault.

VII. TESTING FOR BROADCASTS

If no anomalies are detected in the two-phase test for the
straight and exchange settings, the broadcast states will be
validated. Since possible link faults have been checked for, °
only interchange box faults need to be considered.

The basic procedure is very similar to that used in [7]. Each
stage will in turn be set to both the upper and the lower
broadcast states (51, and S5), with all other stages being set to
straight for simplicity. Since the broadcasting stage is
known, any anomaly immediately pinpoints the fault.

The testing procedure is divided into two subphases for
each stage. Suppose stage i is being tested. In the setup
subphase for upper broadcast testing, all boxes in the stage i
are set to Sp. Bach of the N/2 PE’s with a “0” in bit i of its
address sends its own address as the destination address, and

a broadcast tag which is all “0”s except for bit i, which would .

be a “1.” If no anomaly is detected, the PE’s perform the data
transfer subphase by sending the bitwise complement of the:
message header in order to check for overwrites (discussed
below).

In the setup subphase of lower broadcast testing, all boxes
in the stage being tested are set to S5. Each of the N/2 PE’s
with a “1” in bit i of its address sends its own address as the
destination address, and a broadcast tag which is all “0”s
except for bit i, which would be a “1.” If no anomaly is
detected, the PE’s perform the data transfer subphase by
sending the bitwise complement of the message header.

In either subphase, the presence of an erroneous overwrite
state can be detected by having the N/2 previously idle PE’s
attempt to establish paths using all straight connections. An
overwrite state would not block the new straight request, as
should normally happen. Instead; data from both inputs
would be overwritten and the ensuing parity errors would be
detected. 4
_ In summary, the stagewise validation of the network for
broadcasting would take O(n) tests where n is the number of
stages. Because the links and the interchange boxes not per-
forming broadcasts are assumed to be fault free, any anomaly
would immediately isolate the faulty box.

VIII. SUMMARY

In this paper, an existing fault detection and location pro-
cedure for centralized routing control networks has been
overviewed and extended for use in distributed routing con-
trol systems. Networks that employ distributed routing con-
trol transmit both message routing and protocol information
and data through the network. The errors that could occur in
these networks were analyzed and shown to be a superset of
the errors occurring in a centrally controlled system. Faults
occurring in the data lines could corrupt the message routing
tags transmitted over them and thereby cause the misrouting
of messages. Additionally, protocol lines used in the hand-
shaking between source—destination PE pairs, if faulty, could

910

prevent a message path from being established or could cause
the path to become “locked up” once the transmission of data
has begun. A fault detection and location procedure, pat-
terned after the ones presented in [6], [7], was developed.
The procedure is executed in three phases where each phase
involves the transmission of routing control information to
set up the desired network connections and the transmission
of data words to test the integrity of the paths. Response
patterns to the test messages were derived for link faults in
the data path as well as in the protocol links. Interchange box
faults and their associated fault patterns were also in-
vestigated. Faults were detected by the source PE’s, as per-
ceived routing and/or parity errors, rather than through the
inspection of received data at the destinations as in [6], [7].

While the procedures described in this paper were specifi-
cally targeted to a circuit switched network implementation,
the approach could be modified for packet switched networks
using similar control protocol structures. In packet switch-
ing, protocol lines connect interchange boxes in adjacent
stages rather than the sources and destinations in circuit
switching. As a result, the effects of faults in these lines will
tend to be more localized than in the circuit switched net-
works discussed in this paper.

REFERENCES

G.B. Adams ITI and H. J.Siegel, “The extra stage cube: A fault-tolerant
interconnection network for supersystems,” IEEE Trans. Comput.,
vol. C-31, pp. 443-454, May 1982.

D. P. Agrawal, “Testing and fault tolerance of multistage interconnection
networks,” IEEE Comput., vol. 15, pp. 41-53, Apr. 1982.

C.-Y. Chin and K. Hwang, “Packet switching networks for multi-
processors and data flow computers,” IEEE Trans. Comput., vol. C-33,
pp: 991-1003, Nov. 1984.

N.J. Davis IV and H.I. Siegel, “The PASM prototype interconnection
network,” in Proc. 1985 Nat. Comput. Conf., July 1985, pp. 183—190.
, “The performance analysis of partitioned circuit switched multi-
stage interconnection networks,” in Proc. 12th Symp. Comput. Architec-
fure, June 1985, pp. 387-3%94.

T.-Y. Feng and C.-L. Wu, “Fault-diagnosis for a class of multistage
interconnection networks,” IEEE Trans. Comput., vol. C-30,
pp. 743-758, Oct. 1981.

T.-Y. Feng and Q. Zhang, “Fault diagnosis of multlstage interconnection
networks with four valid states,” in Proc. Fifth Int. Conf. Distrib. Com-
put. Syst., May 1985, pp. 218-226.

A. Gottlieb, R. Grishman, C.P. Kruskal, X. P. McAuliffe, L. Rudolph,
and M. Snir, “The NYU Ultracomputer— Designing an MIMD shared-
memory parallel computer,” IEEE Trans. Comput., vol. C-32,
pp. 175-189, Feb. 1983.

D.H. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. C-24, pp. 1145-1155, Dec. 1975.

M. Lee and C. -L. Wu, “Performance analysis of circuit switching base-
line interconnection networks,” in Proc. 11th Symp. Comput. Architec-
ture, June 1984, pp. 82-90.

W.Y.-P. Lim, “A test strategy for packet switching networks,”
1982 Int. Conf. Parallel Processing, Aug. 1982, pp. 96-98.
K. Padmanabhan and D. B. Lawrie, “A class of redundant path multi-
stage interconnection networks,” IEEE Trans. Comput., vol. C-32,
pp. 1099-1108, Dec. 1983.

M. C. Pease I1I, ““The indirect binary n-cube microprocessor array,” IEEE
Trans. Comput., vol. C-26, pp. 458-473, May 1977.

[4]
(5]

(6]

[7

—t

8

i}

9
[10]

in Proc.

f11]
{12}

[13]

[14]

H.J. Siegel, L.J. Siegel, F.C. Kemmerer, P.T. Mueller, Jr., H.E.
Smalley, Ir., and S.D. Smith, “PASM: A partitionable SIMD/MIMD
system for image processing and pattern recognition,” IEEE Trans. Com-

put.,

vol. C-30, pp. 934-947, Dec. 1981.

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-34, NO. 10, OCTOBER 1985

' [15] H.JI. Siegel, Interconnection Networks for Large-Scale Parallel Process-
ing: Theory and Case Studies.
1985.

Lexington, MA: Lexington Books,

Nathaniel J. Davis IV (§’82) was bormn in Alex-
andria, VA, on February 13, 1954. He received the
B.S. degree in 1976 and the M.S. degree in 1977,
both in electrical engineering, from Virginia Poly-
technic Institute and State University, Blacksburg,
“and the Ph.D. degree in electrical engineering in
1985 from Purdue University, West Lafayette, IN.
He is currently a Captain in the U.S. Army Signal
Corps and is an Assistant Professor with the De-
partment of Electrical Engineering, Air Force Insti-
tute of Technology, Wright—Patterson Air Force
Base, OH. While attending Purdue University, he was a Graduate Research
Assistant and worked on the development of the PASM parallel processing
system. His previous assignments within the U.S. Army have been as an
Instructor at the Air Force Institute of Technology and as a Communication-
Electronics Officer with the 35th Signal Brigade (Corps) (Airborne), Fori
Bragg, NC. His research interests include computer architecture, commu-

nications networks, interconnection networks, parallel processing, and system |

modeling and performance analysis.
Dr. Davis is a member of the IEEE Computer Society and the Eta Kappa Nu,
Tau Beta Pi, and Sigma Xi honorary societies.

William Tsun-Yuk Hsu was born in Hong Kong on
March 6, 1962, He received the B.S. degree in 1983
and the M.S. degree in 1985, both in electrical engi-
neering, from Purdue University, West Lafayette,
IN, and is now beginning work towards the Ph.D.
degree at Purdue University.

He has worked as a Graduate Research Assistant
on the design of the PASM parallel processing
system. His research interests include computer ar-
chitecture, parallel processing, interconnection
networks, and graph theory.
of the Eta Kappa Nu and Phi Kappa Phi honorary

Mr. Hsu is a member
societies.

Howard Jay Siegel (M’77-SM’82) was born in
New Jersey on January 16, 1950. He received the
B.S. degree in electrical engineering and the B.S.
degree in management from the Massachusetts In-
stitute of Technology, Cambridge, MA, in 1972
and the M.A. and M.S.E. degrees in 1974 and the
Ph.D. degree in 1977, all in electrical engineering
and computer science, from Princeton University,
Princeton, NJ.

In 1976 he joined the School of Electrical Engi-
neering, Purdue University, West Lafayette, IN,
where he is currently a Professor and Director of the PASM Parallel Processing
Laboratory. His research interests include parallel/distributed processing, com-
puter architecture, and image and speech understanding.

Dr. Siegel has published over 100 technical papers and is the author of the
book Interconnection Networks for Large-Scale Parallel Processing: Theory
and Case Studies (Lexington Books, 1985). He has served as Program Co-
Chairperson of the 1983 International Conference on Parallel Processing, as the
General Chairman of the Third International Conference on Distributed Com-
puting Systems (1982), as an IEEE Computer Society Distinguished Visitor, as
Chairman of the IEEE Computer Society Technical Committee on Computer
Architecture (TCCA), as Chairman of the ACM Special Interest Group on
Computer Architecture (SIGARCH), and as a Guest Editor of the IEEE TrANs-
ACTIONS ON COMPUTERS. He is currently an Area (Associate) Editor of the

Journal of Parallel and Distributed Computing. He is a member of the Eta .

Kappa Nu and Sigma Xi honorary societies.

