
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-il, NO. 2, FEBRUARY 1985

Task Scheduling on the PASM Parallel
Processing System

DAVID LEE TUOMENOKSA, MEMBER, IEEE, AND HOWARD JAY SIEGEL, SENIOR MEMBER, IEEE

Abstract-PASM is a proposed large-scale distributed/parallel process-
ing system which can be partitioned into independent SIMD/MIMD
machines of various sizes. One design problem for systems such as
PASM is task scheduling. The use of multiple FIFO queues for non-
preemptive task scheduling is described. Four multiple-queue sched-
uling algorithms with different placement policies are presented and
applied to the PASM parallel processing system. Simulation of a
queueing network model is used to compare the performance of the
algorithms. Their performance is also considered in the case where
there are faulty control units and processors. The multiple-queue
scheduling algorithms can be adapted for inclusion in other multiple-
SIMD and partitionable SIMD/MIMD systems that use similar types of
interconnection networks to those being considered for PASM.

Index Terms-Distributed processing, multimicroprocessor systems,
multiple-SIMD systems, parallel processing, partitionable SIMD/MIMD
systems, PASM, performance evaluation, reconfigurable computer
systems, scheduling.

I. INTRODUCTION
A S a result of the advances in microcomputer technology,

it is now feasible to build large-scale parallel processing
systems. Two types of partitionable parallel processing sys-
tems are multiple-SIMD (e.g., MAP [14], [15]) and partition-
able SIMD/MIMD (e.g., DADO [23], PASM [22], TRAC
[20]). A multiple-SIMD system can be dynamically reconfig-
ured to operate as one or more independent SIMD (single in-
struction stream-multiple data stream) machines [51, [24] of
various sizes. Illiac IV was originally designed to be a multiple-
SIMD system [2]. A partitionable SIMD/MIMD system can
be dynamically reconfigured to operate as one or more inde-
pendent SIMD/MIMD machines of various sizes. An SIMD/
MIMD machine can operate as either an SIMD machine or
MIMD (multiple instruction stream-multiple data stream)
machine [5], [24] and can dynamically switch between the
SIMD and MIMD modes of operation (e.g., CAIP [10]).
The advantages of a partitionable parallel processing system

include: it allows multiple users to;be executing tasks simul-
taneously, it permits the size of a virtual machine to be ad-
justed to meet the needs of a task, it is fault-tolerant, and it
can overlap the execution of different subtasks of an overall

Manuscript received March 31, 1983; revised August 29, 1984. This
work was supported by the Rome Air Development Center under Grant
F30602-83-K-0119, by a Purdue University Graduate Fellowship, and
by the Air Force Office of Scientific Research, Air Force Systems Com-
mand, USAF, under Grant AFOSR-73-3581.
D. L. Tuomenoksa was with the PASM Parallel Processing Labora-

tory, School of Electrical Engineering, Purdue University, West Lafay-
ette, IN 47907. He is now with AT&T Information Systems, Lincroft,
NJ 07738.
H. J. Siegel is with the PASM Parallel Processing Laboratory, School

of Electrical Engineering, Purdue University, West Lafayette, IN 47907.

task [22]. In this paper, the problem of task scheduling on
partitionable parallel processing systems is considered. Tasks
must be scheduled so that the processor utilization is max-
imized while trying to minimize the average user response
time. PASM is a partitionable SIMD/MIMD system that is
being designed as a tool for studying parallel algorithms for
image and speech understanding applications (e.g., image
contour extraction [28]) [22]. One of the motivations for
this study is to choose a scheduling algorithm to implement
on the PASM prototype which is currently being constructed
at Purdue University [11] . Two methods for task scheduling
have been considered for use with the PASM operating sys-
tem [29]. The first method is the application of two-dimen-
sional bin packing techniques [26]. With this method the
execution time of the task must be known in order to schedule
the task. This limitation is unacceptable in the target environ-
ment for PASM. The second method, which removes this
limitation, makes use of multiple task queues.
The use of multiple queues has been applied to scheduling

on uniprocessor systems. In [7], a long range scheduling
strategy is described in which a job is inserted into the job
queue by the priority which it has accumulated in previous
passes through the service facility. The scheduling policy
makes use of several queues si, each with a given threshold
ti. A job will be put into queue si when its accumulated ser-
vice time exceeds ti while being less than ti, I. When a job
first enters the system it is put into queue sl. The example
discussed in [7] makes use of three queues. A method sim-
ilar to this has been implemented for process scheduling under
the UNIX' Time-Sharing System [191.
Coffman and Denning in [3] discuss the use of nonpreemp-

tive priority queues for job scheduling. Jobs are-given prefer-
ential treatment based on the priorities with which they are
associated. Each priority level has a corresponding queue.
Although this is similar to the discussion in [7], it differs in
that a job has a fixed priority. In a parallel processing system,
the fixed priority can be determined by the number of pro-
cessors a task requires.
Four multiple-queue scheduling algorithms are presented in

this paper. When a task is to be scheduled by the multiple-
queue algorithms, it is placed in one of the queues depenving
on a given characteristic of the task. In PASM -the queue as-
signment is determined by the number of processors that the
task requires. The performance of the scheduling algorithms is
determined via simulation. The simulator, which runs tasks
through a queueing network model of PASM, is used to deter-

1UNIX is a trademark of AT&T Bell Laboratories.

0098-5589/85/0200-0145$01.00 © 1985 IEEE

145

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 2, FEBRUARY 1985

mine processor utilization, response time, and other perfor-
mance measures [27]. It is noted that in cases where it is dif-
ficult or' impossible to develop an analytical model (such as
this), simulation is an accepted alternative for determining sys-
tem performance.
Section II is an overview of PASM. In Section III the sched-

uling algorithms are described. The results of the simulation
studies are presented and analyzed in Section IV. In Section
V the effect of hardware faults on system performance is con-
sidered. A modification to the multiple-queue scheduling
algoritlums that improves system performance in certain cases
by providing a limited form of multiprogramming is presented
in Section VI. The application of multiple-queue scheduling
algorithms to a general model for partitionable parallel pro-
cessing systems is discussed in Section VII.

II. PASM OVERVIEW
PASM, a partitionable SIMD/MIMD machine, is a large-scale

dynamically reconfigurable parallel processing system that can
be partitioned to operate as many independent SIMD/MIMD
machines of various sizes (see Fig. 1) [221. A prototype has
been designed [11] and is curtently being constructed. The
System Control Unit is a conventional machine, such as a PDP-
11/70 for the full system, and is responsible for the overall
coordination of the activities of the other components of
PASM. The Parallel Computation Unit (PCU) contains N = 2n
processors (N= 1024 for full system, 16 for prototype), N
memory modules, and an interconnection network (see Fig.
2). The PCU processors are microprocessors that peform the
acutal SIMD and MIMD computations. The PCU memory
modules are used by the PCU processors for data storage in
SIMD mode and both data and instruction storage in MIMD
mode. A pair of memory units is used for each PCU memory
module so that task execution can be overlapped with the
loading and unloading of the PCU memory modules [301.
A PCU processor and its associated memory module form a
processing element (PE). The PE's are physically addressed
from 0 to N - 1. The interconnection network provides a
means of communication among the PE's. PASM will use
either a cube [1] type or augmented data manipulator [13]
type of multistage network. These two types of networks
are currently being compared. The Memory Management
System controls the loading and unloading of the PCU mem-

ory modules from the multiple secondary storage devices of
the Memory Storage System.
The Micro Controllers (MC's) are a set of microprocessors

that act as the control units for the PE's in SIMD mode and
orchestrate the activities of the PE's in MIMD mode (see
Fig. 3). There are Q = 2q MC's (Q = 16 or 32 for full system,
4 for prototype), addressed from 0 to Q - 1, and each MC
controls N/Q PE's. A reconfigurable bus between the MC
processors and MC memories can be used to improve MC
memory utilization [22]. A PASM MC-group is composed
of an MC processor, its memory module, and the N/Q PE's
that are controlled by the MC. The N/Q PE's connected to
MC i are those whose addresses have the value i in their low-
order q bit positions. A virtual machine (VM) refers to a
hardware collection of MC-groups. A subvirtual machine
(sub-VM) of a given VM is a VM whose MC-groups are all

MEMORY
PRLSTORAGE PARALLEL USYSTEM COMPUTATION UNIT

Fig. 1. Block diagram overview of PASM.

a)EN2

z

z

o
2
w

G E -PROCESSING ELEMENT 0

; |~~~~MEM. OA MIRo

MEM. OB r PROC-.0|
PROCESSING ELEMENT I

_MEM. N-i A MICRO- IMICR
l 1BPROC.

MEM. N-1 A MICON-i
MEM N-1 .

INTERCONNECTION NETWORK

L - --Pal-t -

Fig. 2. PASM Parallel Computation Unit (PCU).

FROM SYSTEM CONTROL UNIT

11
CONTROL =CNT

FSTORAGE QPnA

MICRO CONTROLLERS
Fig. 3. Organization of the PASM Micro Controllers (MC's).

contained in the given VM. All of the MC-groups within a
VM can be assigned to the same task, or different sub-VM's
that compose the given VM can be assigned to different tasks.
Control Storage contains the programs for the MC's and is
controlled by the Control Storage Controller.
A VM of size RN/Q, where R = 2r and 0 6 r < q, is obtained

by combining the efforts of R MC-group(s). According to the
partitioning rule for PASM [22], the physical addresses of
these MC's must have the same low-order q - r bits so that all
of the PE's in the partition have the same low-order q - r
physical address bits. For example, for Q = 16, an allowable
partition of the MC-groups is: 1) MC-group 6 (R = 1); 2) MC-

146

r- -,l

-

TUOMENOKSA AND SIEGEL: PASM PARALLEL PROCESSING SYSTEM

group 14 (R = 1); 3) MC-groups 2 and 10 (R = 2); 4) MC-
groups 0, 4, 8, and 12 (R = 4); and 5) MC-groups 1, 3, 5, 7,
9, 11, 13, and 15 (R = 8). Q is therefore the maximum num-
ber of partitions allowable, and N/Q PE's is the size of the
smallest partition. Futhermore, the number of MC-groups
(and PE's) in a partition must be a power of 2.
The reason for using this particular partitioning rule is be-

cause it allows networks like the Extra Stage Cube [1] and the
Augmented Data Manipulator [131, which are being consid-
ered for PASM, to be partitioned into independent subnet-
works [211. This rule is also valid for other cube type net-
works, such as the Omega [12], shuffle-exchange [16], -and
indirect binary n-cube [18] networks, as well as other data
manipulator [4] type networks such as the Gamma [17] net-
work [21].
The designator of a VM composed of an allowable partition

is the smallest physical address of the MC's in the VM. The
notation "i/j" refers to the VM of size j MC-groups with desig-
nator i. This designator corresponds to the low-order q - r bits
of the physical address of each MC in the VM. For the parti-
tions in the above example, the designators are: 6, 14, 2, 0,
and 1, respectively.
The approach of permanently assigning a fixed number of

PCU processors to each MC has the advantages that the oper-
ating system need only schedule Q MC-groups, rather than N
PCU processors; it allows the interconnection network to be
partitioned into independent subnetworks; and it simplifies
the MC/PE interaction, from both a hardware and software
point of view, when a VM is being formed. In addition, this
fixed assignment scheme is exploited in the design of the Mem-
ory Storage System in order to allow the effective use of paral-
lel secondary storage devices [30].

III. ALGORITHM DESCRIPTIONS
The multiple-queue scheduling algorithms make use of q + 1

first-in first-out (FIFO) task queues, TQO, TQ1, * , TQq, to
group tasks which are to be scheduled for execution. In the
case of PASM, the tasks are grouped by the number of MC-
groups that they require. A task that requires 2k MC-groups
will be put into task queue TQk. The multiple-queue algo-
rithms scan the queues beginning with either TQo or TQq.
In this paper, four multiple-queue scheduling algorithms are
presented: the first-fit multiple-queue, the bit-reversed first-
fit multiple-queue, the bottom-up best-fit multiple-queue, and
the top-down best-fit multiple-queue.
When TQo is examined first, the multiple-queue algorithm

selects the first task in TQk, where k is the smallest integer
such that TQk is not empty and a VM of size 2k MC-groups
is available for task execution. This step is repeated until all
queues are empty or until there is not an available VM of size
2k MC-groups where k is the smallest integer such that TQk
is not empty. When TQq is examined first, the, multiple-queue
algorithm selects the first task in TQk, where k is the largest
integer such that a VM of size 2k MC-groups is available for
execution. If TQk is empty, then the first task from TQk 1 is
selected. This process is continued until all available MC-
groups have been assigned or until k = 0.
The multiple-queue algorithms are nonpreemptive scheduling

policies, i.e., once a task is executing on a VM it cannot be

interrupted. This is a result of the fact that the MC-groups are
not multiprogrammed and that each MC processor can only
invoke the scheduler when it completes a task. The multiple-
queue algorithms are centralized scheduling algorithms [9]
since the scheduler has complete accurate information regard-
ing the states of all tasks in the system.
The four multiple-queue algorithms differ in the placement

policy used to select the VM on which the task is to be placed.
The first-fit multiple-queue (FFMQ) scheduling algorithm
selects the free VM with the smallest designator. The bit-
reversed first-fit multiple-queue (RFMQ) scheduling algorithm
selects the free VM with the smallest bit-reversed designator.
For example, consider a PASM with Q = 16 MC-groups. There
are eight VM's of size two MC-groups, with designators 0, 1,
2, * **,7. If VM's with designators .1, 2, and 4 are free, the
FFMQ algorithm would select the VM with designator 1.
Since the bit-reversed representations of 1, 2, and 4 are (100)2,
(010)2, and (001)2, respectively, the RFMQ algorithm would
select the VM with designator 4 (i.e., bit-reversed designator
(001)2). The RFMQ algorithm is considered since the MC's in
PASM are partitioned by low-order physical address bits, i.e.,
the bit-reversed values of the addresses of the MC's that are
combined to form a given VM will be consecutive.
The best-fit multiple-queue (BFMQ) scheduling algorithms

assign the task to the best VM where the best VM is deter-
mined using either the bottom-up or top-down heuristic. With
the bottom-up heuristic the effect on VM's of the smallest size
is considered first, and then to choose between equally good
possibilities, the effect on larger VM's is considered. Let the
mate of a given VM controlled by R MC's be the VM (con-
trolled by R MC's) that is grouped with the given VM to form
a VM controlled by 2R MC's. For example, for Q = 16 and
R = 4, the mate of VM 1/4 (consisting of MC-groups 1, 5, 9,
and 13) is VM 3/4 (consisting of MC-groups 3, 7, 11, and 15).
That is, VM 1/4 and VM 3/4 can be combined to form VM
1/8. Since a VM must be paired with its mate to form a larger
VM, a free VM with an active (currently being used) mate
cannot be used as a part of a larger VM of any size. Hence,
higher selection prioiity is given to free VM's with active
mates.
After checking for active mates, if more than one VM has

highest selection priority, then from the set of VM's that have
highest priority, the VM that has the largest number of active
secondary mates is selected. The secondary mates of a VM
controlled by R MC's are the two VM's each controlled by
R MCs that are grouped with the given VM (and its mate) to
form a VM controlled by 4R MCs. This process is repeated
until all levels of mates have been considered or until only
one VM has highest selection priority. After all levels have
been considered, if more than one VM has highest priority,
then the VM with the smallest designator is selected. The
bottom-up best-fit placement heuristic is similar to the buddy
system which is used for allocating storage in blocks of size
2k [25].
With the top-down heuristic the effect on the largest size of

VM is considered first and is then reduced down to smaller
sizes of VM's to resolve conflicts. This heuristic finds the VM
that is located in the most active part of the system. Initially,
the two VM's of size Q/2 MC-groups are considered. If only

147

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-1l, NO. 2, FEBRUARY 1985

one has a free sub-VM of the desired size, then it is selected.
If both VM's of size Q/2 MC-groups have a sub-VM of the
desired size that is free, then the VM of size Q/2 MC-groups
with the most active MC-groups is selected. If they have the
same number of active MC-groups, then the VM of size Q/2
MC-groups with the smallest designator is selected.
Next the two sub-VMs of size Q/4 MC-groups of the selected

VM (of size Q/2 MC-groups) are considered. The VM of size
Q/4 MC-groups is selected by the same criterion as the VM of
size Q/2 MC-groups was selected. This reduction process is
continued until a VM of the desired size is selected.
In summary, the bottom-up heuristic attempts to optimize

the current state of the system. For example, if the mate of a
free VM is active, then that VM cannot be part of any larger
VM, and hence is an optimal place to assign the task. The top-
down heuristic attempts to optimize the future state of the
system by grouping active VM's together. This difference is
illustrated by the example in Fig. 4. Consider a PASM with
16 MC-groups (Q = 16). A task that requires two MC-groups
(R = 2) is to be assigned. Currently, MC-groups 0, 1, 4, 8, 9,
and 12 are active, i.e., VM's 0/2, 1/2, and 4/2 are active. With
the bottom-up heuristic (left side of Fig. 4), since there is only
one free VM of size two MC-groups with an active mate, it is
selected. Hence, the VM 5/2 is selected. Using the top-down
heuristic (right side of Fig. 4), both VM's of size 8 MC-groups
(Q/2) have free VM's of size 2 MC-groups. Since VM 0/8 has
four active MC-groups and VM 1/8 has only two, VM 0/8 is
selected. Since only one of the sub-VMs (of size 4 MC-groups)
of VM 0/8 has a free sub-VM (i.e., VM 2/4), it is selected.
Since both sub-VMs of size 2 MC-groups of VM 2/4 are avail-
able, VM 2/2 is selected for task assignment since it has the
lowest designator. This assignment caused the loss of a VM of
size 4 MC-groups (VM 2/4) in addition to the VM of size 2
MC-groups, which is not the optimal selection for the current
state of the system. However, the top-down heuristic has as-
signed the task to the more active half of the system, in an
attempt to increase the probability that a VM of size 8 MC-
groups (i.e., VM 1/8) will become free. Both the FFMQ and
RFMQ algorithms would assign the task to VM 2/2.

In Section IV, the system performance resulting from the
use of the BFMQ algorithms is examined. In addition, the
FFMQ and RFMQ algorithms are also considered since they
have less processing overhead (in the VM selection) than the
BFMQ algorithms. Lastly, for comparative purposes the per-
formance of the first-fit single-queue (FFSQ) scheduling algo-
rithm is also considered. The FFSQ algorithm uses the first-
fit placement policy of the FFMQ algorithm, but only uses a
single FIFO task queue.

It is noted that the multiple-queue algorithms allow for
overlapped unloading of the output data for the previously
executed task (using the double-buffered memory modules)
with the execution of the current task. As soon as the exe-
cution of a task is completed, the next task(s) can be assigned
by the scheduler and loaded into memory (e.g., into the A
memory units) by the Memory Storage System. After the
system begins to execute the newly assigned task(s), the
Memory Storage System can unload the output data (e.g.,
from the B memory units) for the previously executed task.

Since it is not known in advance which task(s) will next be
executed by a collection of MC-groups (because it is now
known which currently executing task will finish filrst), the
use of the double-buffered memory modules for preloading
of programs and input data is not considered in this analysis
(for a discussion of preloading see [30]).

IV. PERFORMANCE ANALYSIS
In this section the results of the simulation studies for the

scheduling algorithms using a PASM with 16 MC-groups (Q =
16) are discussed. Details of the simulations are given in [27].
The performance of the system was determined using a dis-
crete-event simulation technique [6] with following schedul-
ing variations: A) FFSQ algorithm, B) FFMQ algorithm with
TQo first, C) FFMQ algorithm with TQ4 first, D) RFMQ algo-
rithm with TQ4 first, E) bottom-up BFMQ algorithm with
TQ4 first, and F) top-down BFMQ algorithm with TQ4 first.
The input parameters to the simulator consist of the mean

task interarrival time, a discrete specification for the task size
distribution, the number of faulty MC-groups, and the type of
task execution time distribution: uniform or exponential. If
a uniform distribution is requested, the range of execution
times must be specified, and if an exponential distribution is
requested, the mean task execution time must be specified.
The distribution function for the task size is specified dis-
cretely by listing the probability for each possible task size.
If there are faulty MC-groups, the physical addresses of the
faulty MC-groups must be given.

Initial studies showed that the FFMQ algorithm with TQ4
first performed significantly better than the FFMQ algorithm
with TQo first (quantitative details are presented below). This
substantiated the intuitive notion that scanning TQo first
would yield worse performance since scheduling smaller tasks
first tends to fragment the collection of MC-groups, preventing
larger tasks from running and therefore underutilizing the pro-
cessors. For this reason, the performance of the RFMQ and
BFMQ algorithms with TQ0 first was not considered.
Performance measures examined in this paper are processor

utilization and average response time. The processor utiiza-
tion is the fraction of time that the processors (MC's and PE's)
are active during the simulation. The response time for a task
is the delay between the time when a task arrives at the system
and the time when that task completes execution on the sys-
tem. The response time is being considered since a decrease in
response time has the most direct effect on the user. It is noted
that system throughput, which is examined in [27], is not
considered in this paper since for purpose of this analysis the
same conclusions can be drawn from the processor utilization.
"In computer systems, the arrival of individuals at a card

reader, the failure of circuits in a central processor, and re-
quests from terminals in a time-sharing system are processes
that are essentially Poisson in nature" [6]. Since PASM serves
requests from terminals (as does a time-sharing system), task
arrivals are modeled with a Poisson process. The performance
analysis has been divided into four independent experiments.

Experiment 1
In this experiment the task size distribution was uniform and

the task execution time distribution was exponential with

148

TUOMENOKSA AND SIEGEL: PASM PARALLEL PROCESSING SYSTEM

Bottom-Up Selection

0

ACTIVE
MATES

0

ACTIVE
MATES

Bottom-Up ACTIVE
BWest MATE

0

ACTIVE
MATES

0

ACTIVE
MATES

Status of
Micro Controllers

Status of all
possible size 2

Virtual Machines
Top-Down Selection

>m

MM

cn

In

4xQ_3)
co

rn

S40

m :> -

m -m
0~
> M ToTop-Down

Im Best

!W>4< 0

0 cn

(3
to

Q

Fig. 4. Description of the selections made by the bottom-up and the
top-down best-fit heuristics, with Q = 16.

mean of 22 s. The mean task interarrival time was 10 s. This
combination of mean interarrival time and mean task execu-

tion time was selected since it yields a high level of processor

utilization (resulting in a large number of scheduling deci-
sions) and it does not cause the system to become saturated
with any of the scheduling algorithms. The simulations were

run for 2000 "PASM seconds," and 183 tasks were scheduled
by each algorithm. The purpose of this experiment is to deter-
mine the distribution of "MC-group choices" made by the
different placement policies. Table I indicates the distribution
of "MC-group choices"made by the FFMQ, the RFMQ, both
BFMQ, and the worst-fit multiple-queue (WFMQ) algorithms,
all with TQ4 first. (The WFMQ algorithm is the same as the
bottom-up BFMQ algorithm except that higher selection prior-
ity is based on free mates instead of active mates.) A best
choice occurs when there is no other choice that is better
(using the bottom-up heuristic) and there is a choice that is
worse. The bottom-up heuristic was arbitrarily chosen over

the top-down just for the purpose of having a standard for
comparison. A worst choice occurs when there is no other
choice which is worse, but there is one which is better. When
all choices are the same (i.e., no best or worst choice exists)
or there is only one choice, the choice is classified as a same

choice. When both best and worst choices exist, all other
choices (which are neigher best or worst) are classified as

other choices.
From the table it can be seen that in approximately 70 per-

cent of the choices made by the schedulers the placement
policy did not matter since all choices were classified as same

choices. In 80 percent of the "nonsame" choices, the FFMQ
algorithm made worst choices. Considering the "nonsame"
choices made by the top-down BFMQ algorithm, 97 percent
of the choices were classified as (bottom-up) best. As a result
of this, it is expected that which best-fit heuristic is used will
not make much difference in system performance.
The two best-fit heuristics usually select the same best VM

since the VM with the most active mates tends to be in the

TABLE I
DISTRIBUTION OF "MC-GROUP CHOICES"
FFMQ RFMO BU-BFMQ TD-BFMNI| WFM

Best 2.73% 1 8.03%/ 32.79%t 31.15% 0.001
Worst 23.50% 8.209/o 0.009to O.OOo/ 32.799o
Same 70.50%/o 71.04% 67.21% 67.76% 67.21%
Other 3.28% 2.73% 0.00%fl 1.09%Mo 0.00%

most active part of the system and a free VM in the most
active part of the system tends to have active mates. When
the RFMQ algorithm schedules two tasks of the same size,
it will always assign the second task to the mate of the first
(if it is free), yielding a bottom-up best choice. As a result,
the RFMQ algorithm tends to schedule tasks together in the
same part of the system. On the other hand, the FFMQ algo-
rithm tends to schedule tasks away from each other, resulting
in more worst choices. For example, in Fig. 4 the RFMQ
algorithm would assign two tasks that each require two MC-
groups to VM's 2/2 and 6/2 (bit-reversed (010)2 and (011)2),
which are close together. The FFMQ algorithm would assign
the tasks to VM's 2/2 and 3/2, which are far apart. Hence, the
RFMQ algorithm makes more best choices than the FFMQ
algorithm.

Experiment 2

In this experiment the task execution time distribution was

uniform with minimum and maximum execution times of 1

and 15 s, respectively. The minimum execution time of 1 s is
based on the time to do a simple image processing algorithm,
such as smoothing [22], on a 300 X 300 pixel (picture ele-
ment) subimage within each PCU processor. The mean task
interarrival time was varied from 2 to 10.5 s. This range of
the mean interarrival time was selected since it ranges from
the level where the system is saturated with tasks to the level
where all scheduling algorithms yield approximately the same

performance. The task size distribution was uniform. All
simulation runs were for 5000 "PASM seconds," and the
number of task arrivals ranged from 468 to 2500. The pro-

cessor utilization and average response time are given as func-

MC 0 Active
VM 0 Active

MC 8 Active
MC 4 Active

VM 4 Active
MC 12 Active

_MC2 VM2
L MC 10
_MC 6

VM 6
MC 14 _
MC 1 Active

VM I Active
MC 0 Active

_MC 5
VM 5

_IMC 13
MC 3

VM 3
_MC 11

rMC 7 Y

LMC 15

149

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 2, FEBRUARY 1985

tions of the mean task interarrival time in Figs. 5 and 6,
respectively.
When the mean interarrival time is 9.5 s or more, each of

the scheduling algorithms is able to schedule all of the arriving
tasks. Since the same set of tasks is scheduled by each sched-
uling variation, the processor utilization is the same for all
scheduling variations (see Fig. 5). As the mean interarrival
time decreases below 6 s, the processor utilization for the
FFSQ and FFMQ with TQo first scheduling variations is con-
sistently less than the other variations. This occurs since the
multiple-queue algorithms with TQo first select the worst
task to be scheduled next while the mulitple-queue algorithms
with TQ4 first select the best task to be scheduled next. The
best task to be scheduled next is the task that requires the
most MC-groups since it results in the highest processor utiliza-
tion. The available task that requires the fewest number of
MC-groups is considered the worst task since it may be as-
signed to part of a VM which could have been used by a larger
task (which could have yielded higher processor utilization)
and causes fragmentation of the available MC-groups in the
system. The processor utilization resulting from the use of
the FFSQ algorithm is between the processor utilization result-
ing from the use of the FFMQ algorithm with TQo first and
the FFMQ algorithm with TQ4 first since it selects tasks in the
order which they arrive, sometimes selecting the best task and
sometimes selecting the worst task to be scheduled.
In this experiment for almost all mean interarrival times,

each of the multiple-queue algorithms with TQ4 first is able to
schedule and execute all of the arriving tasks. For a given
mean interarrival time, even though the algorithms do not
schedule the tasks in the same order, over the entire simulation
run the same set of tasks are scheduled and executed. As a re-
sult, the processor utilization (i.e., average utilization over
each simulation run) is the same for each of the multiple-
queue algorithms with TQ4 first.
As the mean interarrival time is decreased, the average re-

sponse time for the FFMQ algorithm with TQo first increases
much more rapidly than for the FFMQ algorithm with TQ4
first. Since the FFMQ algorithm with TQo first selects the
worst task to schedule next, the processor utilization is lower
and, overall, fewer tasks are executed. Hence, arriving tasks
must wait longer to be scheduled, resulting in an increase in
the average response time.
As the system approaches the saturation point (point at

which the system is not able to execute all arriving tasks),
the FFSQ algorithm yields shorter average response times
than the FFMQ algorithm with TQo first. This results from
the fact that the FFSQ algorithm may or may not select the
worst task to be scheduled from its single queue, while the
FFMQ algorithm with TQo first will always select the worst
task.
Although it cannot be seen from the graph, the average

response time for the FFMQ algorithm with TQ4 first is
consistently one to two percent longer than the other three
multiple-queue algorithms with TQ4 first. The average re-
sponse time for the RFMQ algorithm is usually the same
or within 0.2 percent (either shorter or longer) of both best-
fit scheduling algorithms for all arrival rates. Overall, the

1.0[

0.9

0.8

0.7

-A
---B

C-F

A

\ z \1
C-F

0.6-

.7_
-1

lll
V.,QeaI,
C-

0.5

0:3
2 3 4 5 6 7 8 9 10

Mean Task Interarrival Time (seconds)

Fig. 5. Processor utilization as a function of the mean task interarrival
time for the (A) FFSQ algorithm, (B) FFMQ algorithm with TQo
first, (C) FFMQ algorithm with TQ4 first, (D) RFMQ algorithm with
TQ4 first, (E) bottom-up BFMQ algorithm with TQ4 first, and (F)
top-down BFMQ algorithm with TQ4 first.

70

_a 60
r

cJ-
50

c 40
cr
c 30
c2
bO
cd

o

10

-A

- BE ~

i A B ---I C

I''

i

D-F //\:N

I-
2 3 4 5 6 7 8 9 10

Mean Task Interarrival Time (seconds)
Fig. 6. Average response time (in seconds) as a function of the mean

task interarrival time for scheduling variations (A)-(F) as defined in
Fig. 5.

bottom-up best-fit policy yields slightly shorter average re-
sponse times than the top-down. This implies that the bot-
tom-up best-fit heuristic gives a better description of what
is "best." The performance of the FFMQ algorithm with
TQ4 differs from the other multiple-queue algorithms since
it tends to make a large percentage of worst "MC-group
choices," as shown in Experiment 1. On the other hand,
the performance of the RFMQ algorithm is closer to that
of the BFMQ algorithm since it tends to make the best MC-
group choices.
In this experiment the maximum task execution time was

15 s. If the scheduler makes a bad decision in determining
to which VM a task should be assigned or about which task
should be assigned next, the effect of the decision will last
at most 15 s. In Experiment 3, the maximum execution time
is varied to determine if the effect of the bad decisions will
be increased.

Experiment 3
In this experiment the distribution for the task execution

time was uniform with a minimum of 1 s. The maximum
task execution time was varied from 12.5 to 125 s. The mean

150

TUOMENOKSA AND SIEGEL: PASM PARALLEL PROCESSING SYSTEM

task interarrival time was 30 s, the task size distribution was

uniform, and all simulations were run for 30000 "PASM
seconds," resulting in approximately 1000 task arrivals. The
average response time is given as a function of the maximum
execution time for the six scheduling variations in Table II.

For maximum execution times of less than 50 s, the average
response time does not vary significantly with changes in the
scheduling variation. When the maximum execution time is
125 s, the use of the two BFMQ algorithms results in the same

average response time. The RFMQ algorithm results in slightly
longer (0.2 percent) average response times than the BFMQ
algorithms, while the FFMQ algorithm with TQ4 first results
in significantly longer (10 percent) response times than the
RFMQ and BFMQ algorithms.
This difference in performance between the FFMQ algo-

rithm with TQ4 first and the RFMQ algorithm results from
the fact that the RFMQ algorithm makes more best "MC-
group choices" than the FFMQ algorithm (as shown in Exper-
iment 1). When the maximum task execution timhe is 62.5 s

or less, the effect of bad "MC-group choices" made by the
first-fit placement policy of the FFMQ algorithm with TQ4
first are not as significant since the processor utilization is
low (i.e., there are more processors available) and since the
effect of bad decisions does not last as long.
In summary, the longer the task execution time, the greater

the difference in performance of the four multiple-queue
algorithms with TQ4 first. This occurs since the effect of the
"MC-group choices" made by the scheduling algorithms be-
comes more significant with longer task execution times.

Experiment 4
In this experimnent the task size distribution was again uni-

form and the task execution time distribution was exponen-

tial. The mean execution time was varied from 2.5 to 20 s.

The mean task interarrival time was 10 s, and all simula-
tions were run for 20 000 "PASM seconds," resulting in

approximately 2000 task arrivals. The average reponse time
and processor utilization are given as functions of the mean

execution time for the six scheduling variations in Tables III
and IV, respectively. The average response time for small
mean exetution times is the same for all scheduling variations.
As the mean execution time is increasedi the average response

time increases rapidly for the single queue scheduling algo-
rithm. For the same reasons as given in Experiment 2, all four
multiple-queue algorithms with TQ4 first yield similar perior-
mance, indicated by similar average response times (see Table
III) and the same processor utilization (see Table IV).
Table V gives the average response time for the six schedul-

ing variations as a function of the task size for the case when
the mean execution time is 15 s. As would be expected, since
the FFSQ algorithm selects tasks for execution in the order
that they arrived, tasks of all sizes (number of MC-groups re-

quired) receive the same treatment. This is illustrated in Table
V in that the average response time varies less (on a percentage
basis) between the different task sizes for the FFSQ algorithm
than it does for the multiple-queue algorithms. The 16 MC-
group tasks have the greatest average response time since they
must always wait at the head of the queue for all previous

TABLE II
AVERAGE RESPONSE TIME (IN SECONDS) ASA FUNCTION OFTHE MAXIMUM TASK

EXECUTION TIME
Maximum FFSQ FFMQ FFMQ RFMQ BFMQ BFMQ
Execution TQ(, 1st TQ4 1st B-Up T-Down
Time
12.5 7.108 7.078 7.072 7.066 7.066 7.066
25.0 14.68 14.47 14.44 14.36 14.36 14.36
37.5 24.14 23.08 23.06 22.89 22.89 22.89
50.0 36.59 33.98 33.64 33.37 33.37 33.37
62.5 53.09 46.91 46.55 46.17 46.10 46.14
75.0 76.55 65.28 62.56 61.66 61.66 61.91
87.5 119.1 102.3 87.62 84.31 84.27 84.30

100.0 263.1 310.3 129.0 117.9 117.3 115.9
112.5 1040. 622.7 184.6 178.4 178.3 178.4
125.0 1943. 761.6 363.9 329.2 328.6 328.6

TABLE III
AVERAGE RESPONSE TIME (IN SECONDS) AS A FUNCTION OF THE MEAN TASK

EXECUTION TIME
Mean FFSQ FFMQ FFMQ RFMQ BFMQ BFMQ

Execution TQM1st TQ4 tRSt B-Up T-Down
Time Q
2.5 2.764 2.751 2.754 2.746 2.753 2.746
5.0 6.501 6.191 6.227 6.203 6.226 6.200
7.5 12.23 10.73 10.66 10.56 10.63 10.55

10.0 21.76 16.88 17.01 16.78 17.08 16.78
12.5 42.63 27.96 26.40 25.85 26.41 25.65
15.0 130.3 68.14 41.31 41.05 41.64 41.12
17.5 785.8 298.0 69.52 68.94 68.85 68.67
20.0 1750. 513.8 132.2 131.5 130.3 130.6

TABLE IV
PROCESSOR UTILIZATION AS A FUNCTION OF THE MEAN TASK EXECUTION TIME

Mean FFSQ FFMQ FFMQ RFMQ BFMQ BFMQ
Execution TQn 1st TQ4 1st B-Up T-Down
Time
2.5 0.101 -0.101 0.101 0.101
5.0 0.203 0.203 0.203 0.203
7.5 0.304 0.304 0.304 0.304

10.0 0.405 0Q405 0.405 0.405 same as same as
12.5 0.505 0.505 0.506 0.506 RFMQ RFMQ
15.0 0.604 0.603 0.606 0.606
17.5 0.648 0.646 0.707 0.707
20.0 0.660 - 0.660 0.807 Q0.808

TABLE V
AVERAGE RESPONSE TIME (IN SECONDS) AS A FUNCTION OF TASK SIZE

Taskl FFSQ FFMQ FFMQ RFMQ BFMQ BFMQ
Si7e TQ(, 1st TQ4 1st B-Up T-Down

1 131.0 19.82 41.21 41.36 41.36 41.24
2 126.7 21.99 36.63 36.79 36.88 36.67
4 127.8 19.68 32.81 32.73 32.55 32.50
8 125.3 29.93 37.25 36.18 37.80 36.47

1 6 1 141.3 252.09 58.90 58.44 59.82 58.97

tasks to complete execution before they can be scheduled
(i.e., all processors must be free).
As discussed earlier, the FFMQ algorithm with TQo first

tends to favor tasks that require one, two, or four MC-groups.
This is also illustrated by Table V. Tasks that require 16 MC-
groups are only executed when there are no other tasks to be
executed and when all MC-groups are free. This results in the
average response time for 16 MC-group tasks being an order of
magnitude longer than the other size tasks.
For the four multiple-queue algorithms with TQ4 first, the

average response time for tasks that require 16 MC-groups is
almost 60 s, while it is less than 42 s for all other tasks since
all MC-groups must be free for a 16 MC-group task to be
scheduled. Two competing properties effect the average re-
sponse time. One is, the fewer MC-groups a task requires, the
shorter its response time since it must wait less time for a
smaller size VM to become available. The other is, with the
multiple-queue algorithms with TQ4 first, the more MC-
groups a task requires the shorter its response time since the

1 51

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-il, NO. 2, FEBRUARY 1985

system attempts to schedule larger tasks first. As a result,
tasks that require four MC-groups have the shortest response
times since they take advantage of both of these effects. When
the FFMQ algorithm with TQo first is used, tasks that require
16 MC-groups cannot take advantage of either of these prop-
erties; this explains the extremely long average response times
for them.

Summary
The single FIFO queue used by the FFSQ algorithm has a

tendency to become blocked by tasks that require a large num-
ber of processors. The improved performance of the multiple-
queue algorithms results from the elimination of the blockage
problem. When the system is heavily loaded, the FFMQ algo-
rithm with Too first tends to schedule tasks that require one,
two, or four MC-groups, while making tasks that require 8 and
16 MC-groups wait; in addition, scheduling the smaller tasks
first decreases processor utilization since the free MC-groups
tend to become fragmented 'and cannot be grouped to form
larger VM's. The system pepiformance resulting from the use
of all four multiple-queue algorithms with TQ4 first is similar.
This occurs since they all select the "best" task (i.e., the task
that requires the largest number of MC-groups) when selecting
the next task to be scheduled. Selecting the "best" task to
schequle tends to limit the iimpact of the placement policy.
Due to the extra overhead in the "selection processes" used

by the BFMQ algorithms for selecting the best VM, the BFMQ
algorithms take move time to perform the scheduling opera-
tions. It'has been determined that the use of the RFMQ
algorithm in certain cases results in slightly better system per-
formance than the FFMQ with TQ4 first. Since the system
performances resulting from the use of the RFMQ and both
BFMQ algorithms are approximately the same, and the RFMQ
algorithm requires less computation time than the BFMQ
algorithms, the RFMQ algorithm appears to be the algorithm
of choice for PASM when there are no faulty processors. In
the next section the relative performance of the algorithms
when there are faulty MC-groups is considered.

V. SYSTEM FAU LTS

In this section the performance of the multiple-queue algo-
rithms when they are faulty MC-groups is considered. In gen-
eral, an Mt-group is faulty if the MC or one of its PE's is
faulty. Depending on which MC-group(s) is faulty, the sys-
tem perfor-mance varies. However, the faulty MC-group(s)
can be selected! by switching boards. From the simulation
studies in this section, the best MC-group(s) to be faulty can
be selected.

If a VM is assigned to a real-time task with a long execution
time, the4 MC-groups that compose the VM will not be avail-
able to execute other tasks for an extended period of time. In
the same way that the best MC-groups to be faulty can be
selected, the best MC-groups (or VM) to which a real-time task
is to be assigned can be selected. If a task is known to have a
long execution, the task scheduler will not schedule the task
until the optimal VM is available, increasing overall system
performance.,
Since PASM is not able to execute tasks that require the en-

tire system when there is a faulty MC-group, for simulations in

this section tasks require from one to eight MC-groups (recall,
Q = 16 is assumed). As in Section IV, the effect on the pro-
cessor utilization and the average response time is considered.
The performance of the system is determined using the mul-
tiple-queue algorithms with TQ4 first [i.e., scheduling varia-
tions C) through F)]. Two experiments are considered.

Experiment 5
In each simulation run there were 2' faulty MC-groups, 0 <

i<q, and the faulty MC-groups compose VM j/2i, O <2q-i<
All possible values of i and j were considered. For case i = 0
and 0 1< 16, the faulty MC-group forms VM j/l; for case
i = 1 and 0 j<8, the two faulty MC-groups form VM j12;
and so forth for larger values of i. The task execution time
distribution was uniform with minimum and maximum of 1
and 15 s, respectively (as in Experiment 2). The mean task
interarrival time was 3.5 s so that the maximum processor
utilization would be approximately 50 percent, the maximum
allowable processor utilization when there is a faulty VM of
size 8 MC-groups. The task size distribution was uniform with
minimum and maximum of one and eight MC-groups, respec-
tively. All simulation runs were for 3000 "PASM seconds,"
resulting in approximately 850 task arrivals. The purposes
of this experiment are 1) to determine which scheduling vari-
ation is the most fault-tolerant and 2) to determine if the
system performance depends on which VM of a given size is
faulty.
The average response time for the four multiple-queue algo-

rithms with TQ4 first are given as functions of the size and
designator of the faulty VM in Table VI. For the cases when
there is a faulty VM of size one MC-group (i.e., one faulty
MC-group in the system), the BFMQ algorithms yield a smaller
variance in average response time and have the lowest average
response time since they are better able to schedule tasks
around the faulty MC-groups. Consider the case when all
MC-groups are free, except for the faulty MC-group in VM
1 of size 8 MC's (i.e., one of the MC-groups: 1, 3, 5, * * ,15
is faulty). If the FFMQ algorithm is used to assign the next
task, it will be assigned to VM 0/8 or to a sub-VM ofVM 0/8.
As a result there are no free VM's of size 8 MC-groups. On the
other hand, if the fault had been in VM 0/8, only a task that
requires eight MC-groups would be assigned to VM 1/8.
Hence, the FFMQ algorithm naturally attempts to pack tasks
that require from one to eight MC-groups into VM 0/8. As a
result, if the faulty MC-group is in VM 0/8, tasks that require
one, two, or four MC-groups will be packed around the faulty
MC-groups. The FFMQ algorithm therefore performs worse
when the faulty MC-group is a member of VM 1/8 (i.e., an odd
numbered MC-group). The RFMQ algorithm has a large varia-
tion in average response time for similar reasons as the FFMQ
algorithm.
When there is a VM of size 2 MC-groups which is faulty, the

average response time for the BFMQ algorithms vary from 12.3
to 12.7 s. The upper bound on the average response time has
only increased by 0.2 s while the lower bound has increased by
almost 1 s from the one faulty MC-group case. The main cause
of the increase is from tasks that require one MC-group. In the
one faulty MC-group case, there was an MC-group (the mate of
the faulty MC-group) that could only execute tasks that re-

152

TUOMENOKSA AND SIEGEL: PASM PARALLEL PROCESSING SYSTEM

TABLE VI
AVERAGE RESPONSE TIME (IN SECONDS) AS A FUNCTION OF THE FAULTY VM

Faulty FFMQ RFMQ BFMQ BF^MQ
VM 7Q4 1st B-Up T-Down

- 10.10 9.48 9.53 9.52
0/1 13.32 11.57 12.401 11.88
1/1 13.90 1 3.25 11.54 11.94
2/1 13.11 12.43 11.71 11.87
3/1 13.69 14.09 12.50 11.93
4/1 12.24 11.70 12.31 1 1.88
5/1 13.69 14.14 11.54 11.95
6/1 12.99 12.48 11.61 11.87
7/1 13.47 14.16 12.40 11.93
8/1 12.79 11.57 12.40 11.88
9/1 13.67 13.25 11.54 11.94
10/1 12.88 12.43 11.69 11.87
11/1 13.60 14.09 12.48 11.93
12/1 12.12 11.70 12.31 11.88
13/1 13.42 14.14 11.54 11.95
14/1 12.88 12.48 11.61 11.87
15/1 13.32 14.16 12.40 11.93
0/2 13.68 12.21 12.32 12.46
1/2 14.24 14.52 12.46 12.58
2/2 13.40 12.83 12.55 12.59
3/2 13.95 14.41 12.57 12.69
4/2 13.24 12.21 12.28 12.46
5/2 14.00 14.52 12.31 12.58
6/2 13.22 12.83 12.26 12.59
7/2 13.68 14.41 12.32 12.69
0/4 17.61 16.26 16.78 16.28
1/4 17.89 18.02 17.60 17.17
2/4 18.16 16.26 16.76 16.28
3/4 17.61 18.02 16.78 17.17
0/8 177.51 1 77.53 1 76.89 1 76.89
1/8 177.51 1 77.53 176.89 176.89

quire one MC-group. This results in a decrease in average re-

sponse time for tasks that require one MC-group, which in turn
affects the overall average response time. On the average, the
BFMQ algorithms give the best overall performance when
there are two faulty MC-groups. The FFMQ and RFMQ algo-
rithms vary in average response time for similar reasons as they
did in the one faulty MC-group cases.

For the two faulty MC-group case; the use of the bottom-up
BFMQ algorithm tends to result in shorter average response

times than the top-down BFMQ algorithm. The bottom-up
heuristic performs better since it tends to assign task that re-

quire one and two MC-groups to the VM that has faulty sec-

ondary mates or a faulty mate, respectively, leaving the
other MC-groups free for larger tasks! The top-down heuristic
performs worse since it tries to assign the task to the most
active part of the system with the hope that the task(s) exe-

cuting in the least active part of the system will complete,
leaving a free VM of size 8 MC-groups. However, if the faulty
VM is in the currently least active part of the system, this will
never be true.
When there is a faulty VM of size 4 MC-groups, the top-

down BFMQ algorithm yields shorter response times than the
bottom-up BFMQ algorithm in three out of four cases. This
change from the one and two faulty MC-group cases occurs

since a faulty VM of size 4 MC-groups will tend to always be
in the most active half of the system. As a result, task that
require one, two, and four MC-g'roups will usually be assigned
to the mate of the faulty VM by the top-down BFMQ algo-

nrthm. On the other hand, the- bottom-up heuristic performs
worse since tasks that require one and two MC-groups are less
likely to be assigned to theQ half of the system with the faulty
VM (of size 4 MC-groups). As with the previous case there is
variation in the average response time for the FFMQ and
RFMQ algorithms.

Lastly, when there is a faulty VM of size 8 MC-groups, the
performance is the same no matter which of the two VM's of

size 8 MC-groups is faulty since this situation is equivalent to
having a system with only eight MC-groups (i.e., Q = 8), no
matter which VM of size 8 MC-groups is faulty. Overall, in
the one, two, and four faulty MC-group cases, the BFMQ algo-
rithms have the lowest average response times.
In each of the one, two, and four faulty MC-group cases

listed in Table VI, the processor utilization is the same for
both BFMQ algorithms (0.52518) while it varies slightly for
the FFMQ and the RFMQ algorithms (ranging from 0.52486
to 0.52518). In each of the eight faulty MC-group cases, the
processor utilization decreases from the one, two, and four
faulty MC-group cases since the maximum possible processor
utilization is now 0.5 (50 percent).
From this experiment it appears that the BFMQ algorithms,

on the average, yield the shortest response times, and have the
most consistent performance; i.e., if a VM of size j is faulty,
system performance will not depend greatly on which VM of
size j is faulty (see Table VI).

Experiment 6

This experiment is a study of the cases where there are two
faulty MC-groups. As in Experiment 5, the task execution
time distribution was uniform with minimum and maximum
of 1 and 15 s, respectively; the task size distribution was uni-
form with minimum and maximum of one and eight MC-
groups, respectively (recall that no tasks that require sixteen
MC-groups can be executed if there is a faulty MC-group in
the system); the mean task interarrival time is 3.5 s; and all
simulations were run for 3000 "PASM seconds," resulting in
approximately 850 task arrivals. All two faulty MC-group
cases that are isolated to the same VM of size 8 MC-groups and
include MC-group 0 are considered (i.e., MC-group 0 and
another even numbered MC-group). The purpose of this ex-
periment is to show how the different two-fault cases affect
the average response time for tasks of each size.
The average response time for the four multiple-queue algo-

rithms with TQ4 first is given as functions of the physical
addresses of the faulty MC-groups in Table VII. (Note: the
entries in the first and second lines of Table VII are the same
as and were generated by the same simulation runs as the
entries in the first and second lines of Table VI.) Each pair
of faulty MC-groups can be classified in one of the following
cases.. In case I both faults are in the same VM of size 2 MC-
groups; in case II both faults are in the same VM of size 4
MC-groups but not in the same VM of size 2 MC-groups; and
in case III both faults are in the same VM of size 8 MC-groups
but not in the same VM of size 2 or 4 MC-groups. The average
response time for a task that requires 2' MC-groups is given
as a function of the number of MC-groups for one of each of
these fault cases in Table VIII.
When there is one faulty MC-group, there is a decrease in

the average response time for tasks that require one MC-group.
The cause for the decrease is that the mate of a faulty MC-
group is only able to execute tasks that require one MC-group.
There is an increase in the average response time for tasks that
require two, four, and eight MC-groups since the fault prevents
the formulation and use of certain VM's. For example, there
is an increase in the average response time for tasks that re-

153

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-1l, NO. 2, FEBRUARY 1985

TABLE VII
AVERAGE RESPONSE TIME (IN SECONDS) AS A FUNCTION OF THE PHYSICAL

ADDRESSES OF THE FAULTY MC-GRouPS (MCG's)
FaultY Fault FFMQ RFMQ BFMQ BFMQ
MUGS Case* 7TQ]St H-Up T-Down
none 10.10) 9.48 9.53 9.52
0 - 13.32 11.57 12.40 11.88
0,2 III 46.50 31.18 31.12 43.63
0,4 11 14.90 14.69 14.85 14.90)
0,6 III 45.83 31.27 31.12 43.63
0,8 13.68 12.21 12.32 12.46
0,10 III 46.10 31.18 31.12 43.63
0,12 II 14.78 14.69 14.85 14.9(0
0,14 III 45.82 31.27 31.12 43.63

*In case I both faults are in the same VM of size 2 MC-groups; in case
II both faults are in the same VM of size 4 MC-groups but not in the
same VM of size 2 MC-groups; and in case III both faults are in the
same VM of size 8 MC-groups but not in the same VM of size 2 or 4
MC-groups.

TABLE VIII
AVERAGE RESPONSE TIME (IN SECONDS) AS A FUNCTION OF TASK SIZE FOR THE

THREE TWO-FAULT CASES
Fault Task Faulty FFMQ RFMQ BFMQ BFNIQ
Case* Size MCGs TQ4 1st B-Up T-Down

no 1 - 9.402 8.81)5 8.827 8.800
no 2 - 8.707 8.518 8.541 8.541
no 4 - 9.222 8.785 8.797 8.705
no 8 - 12.78 11.58 11.73 11.80
one 1 0 8.301 8.510 8.519 8.565
one 2 0 8.716 8.790 8.8(04 8.777
one 4 0 11.29 9.676 9.724 9.991
one 8 0 23.81 18.54 21.57 19.38

1 1 0,8 9.016 9.566 9.555 9.528
1 2 0,8 9.108 9.087 9.068 9.064
1 4 0,8 11.32 10.05 10.13 9.991
1 8 0,8 24.14 19.39 19.75 20.44
II 1 0,4 8.290 8.289 8.289 8.289
II 2 0,4 12.29 11.76 11.90 11.78
1 4 0,4 12.64 11.07 10.97 11.07
Il 8 0,4 25.14 26.35 26.87 27.09
III 1 0,2 8.113 8.118 8.118 8.118
III 2 0,2 8.158 8.087 8.062 7.850
III 4 0,2 101.9 64.34 64.33 94.47
III 8 0,2 63.29 41.46 41.27 59.88

*See Table VII footnote.

quire eight MC-groups that results from the fact that the sys-

tem can only form one VM of size 8 MC-groups instead of the
two VM's that it can form when there are no faulty MC-groups.
In case I only one VM of size 2 MC-groups is faulty, so com-

pared to the no fault case the only tasks that are significantly
affected are tasks that require eight MC-groups. For case II,
two VMs of size two MC-groups contain faulty MC-groups, so

there is an increase in the average response time for tasks that
require two MC-groups over case I. There is a decrease for
tasks that require one MC-group since the mates of the faulty
MC-groups can only execute tasks that require one MC-group.
For case III there is an increase in the average response time
for tasks that require four MC-groups since the system is only
able to create two VMs of size 4 MC-groups instead of the four
VM's that it can form when there are no faulty MC-groups and
the three VMs that it can form in cases I and II. Furthermore,
since the two nonfaulty VM's of size 4 MC-groups form the
only VM of size 8 MC-groups, a task that requires four MC-
groups cannot be executed while a task that requires eight MC-
groups is being executed. This interference also results in an
increase in the average response time for tasks that require
eight MC-groups. Hence, the average response time where
there are two faulty MC-groups is affected by which two
MC-groups are faulty. In case III (when the faulty MC-groups
are separated), the bottom-up heuristic does better than the

top-down since it assigns tasks that require one and two MC-
groups close to the faulty MC-groups while the top-down is
less likely to since the faulty MC-groups may not be in the
most active part of the system. This leaves those MC-groups
that do not have faulty mates free to execute larger tasks.
In general, the bottom-up BFMQ algorithm tends to yield the
best performance (see Table VI).
Summary
When there is a faulty MC-group, the system is still able to

execute tasks that require from one to four MC-groups with
little increase in response time (see Table VIII). If there is
more than one faulty MC-group, provided the faulty MC-
groups are isolated to one VM of size 4 (cases I and II), the
system can still perform without excessive delays for the
user (see Table VII). If the faulty MC-groups are not isolated
to the same VM of size 4, it may be possible to switch the
boards containing the faulty MC-groups so that the faults can
be isolated to the same VM (discussed below). The perfor-
mance of the two BFMQ algorithms is comparable in all-cases,
except for case III where the bottom-up BFMQ algorithm
yields significantly better performance. The average perfor-
mance of the RFMQ algorithm is approximately the same
as the bottom-up BFMQ algorithm; however, there is a greater
variance in the average response time for the RFMQ algorithm
(see Table VI). Hence, the advantage of the bottom-up BFMQ
algorithm is that its performance is not a function of which
MC-group is faulty.
In the previous section it was determined that the RFMQ

algorithm was the algorithm of choice for a PASM with no
faulty MC-groups. When there are faulty MC-groups, the per-
formance of the RFMQ algorithm depends on which MC-
groups are faulty. In certain cases the RFMQ algorithm per-
forms as well or slightly better than the bottom-up BFMQ
algorithm (e.g., MC-group 0 is faulty, see Table VI) while in
other cases it performs worse (e.g., MC-group 1 is faulty, see
Table VI). Therefore, in cases where the unusable MC-groups
can be selected (e.g., MC-group 0 instead of MC-group 1), the
RFMQ algorithm can perform as well or better than the
BFMQ algorithms.
There are two situations when the unusable MC-groups can

be selected. The first occurs when there is faulty hardware.
Consider the case when there is a faulty PE board in MC-
group 1. If a replacement board is not available, it may be
possible to switch the faulty PE board with one of the PE
boards from MC-group 0, resulting in improved system per-
formance (using RFMQ). The second situation where un-
usable MC-groups can be selected is when a task is known
a priori to have a very long execution time. The scheduler
could then use this knowledge to assign the task to an opti-
mal VM. If the unusable MC-groups cannot be selected, the
bottom-up BFMQ algorithm yields the best performance
and is the algorithm of choice for PASM.

VI. ALGORITHM MODIFICATION
The multiple-queue algorithms attempt to assign tasks so

that the processor utilization is maximized while trying to
minimize the average user response time. Unlike the first-fit
shelf scheduling algorithm [261, the multiple-queue sched-

154

TUOMENOKSA AND SIEGEL: PASM PARALLEL PROCESSING SYSTEM

uling algorithms do not require the user to specify the maxi-
mum allowable execution time for the task. The user only
needs to specify the number of MC-groups required to execute
the task. This is an advantage in the PASM environment since
many algorithms will be experimental and a good approxima-
tion to the execution time will not be known. In addition,
the multiple-queue algorithms are nonpreemptive, i.e., once a
task begins to execute on a VM its execution will not be inter-
rupted until it is completed.
Giving tasks exclusive control of VM's for "unlimited" pe-

riods of time makes it possible for tasks that require from
1 to Q/2 MC-groups (N/Q to N/2 PE's) with long execution
times to significantly increase the response time for tasks that
require the entire system (N PE's). Consider the following
example where the mean task execution time is 25 s. A task
requiring one MC-group that has an execution time of 500 s
is'being executed by the system. During the 500 s period that
the one MC-group task is being executed, it is not possible for
the system to execute tasks that require the entire system.
(However, it is possible for it to execute tasks of all other
sizes.) Since 500 s is significantly greater than the mean execu-
tion time of 25 s, the response time for tasks that require the
entire system may be increased during this period.
This problem can be solved by putting a limit on the amount

of time that a task can wait to be scheduled. If the time limit
is exceeded, the system stops executing the current task(s) and
begins to execute the waiting task(s) that has been loaded into
the alternate memory units. This type of context switch on
PASM does not require any extra transfers between primary
memory and secondary storage since both the executing
task(s) and the waiting task(s) can be loaded into the double-
buffered memory modules and the system can dynamically
switch between the memory units. The limit on the amount
of time a task can wait to be scheduled is a function of pro-
cessor utilization. Since longer response times are acceptable
when processor utilization is high, the greater the processor
utilization, the greater the limit.
A second problem can occur when the system is heavily

loaded. Since the multiple-queue algorithms with TQq first
select tasks from TQo last, tasks that require one MC-group
can experience excessive delays when the system is heavily
loaded. This problem can also be eliminated by limiting the
time a task can wait in a queue. Hence, the maximum re-
sponse (or wait) time for any task can be limited. It is noted
that with the addition of this feature the multiple-queue
algorithms will no longer be nonpreemptive. These modifica-
tions, which provide a limited form of multiprogramming, are
currently being investigated.

VII. RELATION TO THE GENERAL MODEL
A general model for a partitionable parallel processing sys-

tem is given in Fig. 7. This model applles to both multiple-
SIMD and partitionable SIMD/MIMD systems. The model con-
sists of Q control units, N PE's, a secondary storage system for
the control units, a secondary storage system for the PE's, a
switch that is used to connect a control unit to a group of
PE's, and a partitionable interconnection network for commu-
nication among the PE's. Each control unit and PE contains a

Fig. 7. A general model of a partitionable parallel processing system.

processor and a memory module. Either a separate system
control unit (not shown in Fig. 7), e.g., PASM, or a dedicated
control unit, e.g., MAP [141, [15], is responsible for overall
system coordination. In the case of PASM, the switch is fixed
in that a given PE is always connected to the same control unit
(MC), and large machines are created by combining the efforts
of control units (MC's). In [81, it is assumed that the switch
provides all possible interconnections between control units
and PE's, e.g., the crossbar type of switch used in MAP. In
this case, all of the control units are not always used.
The multiple-queue algorithms can be adapted to the general

model provided that the interconnection network can be parti-
tioned into independent subnetworks. In addition, in order
to use the best-fit placement policies, system partitioning must
be restricted in the following way. Given that PE i is in a VM
of size K, where 1 <K S N, there is only one way to select the
other PE's that form that VM, i.e., given the size of a VM and
the address of any PE in that VM uniquely determines the set
of PE's that forms the VM. This restriction results from the
fact that the best-fit policies are based on the concept of com-
bining nonoverlapping VM's together to form larger VM's.
The following cube and data manipulator type networks can
be partitioned so that they meet these restrictions: Augmented
Data Manipulator [131, Extra Stage Cube [1], Gamma [17],
Omega [14], indirect binary n-cube [181, and the shuffle-
exchange [16] (see [21]). Systems with a binary-tree type
network (topology) can also be partitioned so that these re-
strictions can be met (e.g., DADO [23]). If the tasks, which
are to be scheduled, are to be grouped by task size, a task
queue must be provided for each possible task size. Since all
of the above networks are partitioned by powers of 2, this
limits the number of task sizes to the powers of 2. It is noted
that a cube type network can be partitioned in more than one
way. The multiple-queue algorithms can be used provided that
the cube network is always partitioned in a consistent way
(e.g., always by the high-order bits). An alternative structure
is to position the interconnection network between the pro-
cessors and the memories instead of using it to connect the

1 55

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-Il, NO. 2, FEBRUARY 1985

PE's. The multiple-queue algorithm can also be adapted for
use with this type of arrangement.

VIII. CONCLUSION

It has been shown that the multiple-queue algorithms yield
significantly better performance than the use of a single first-
in first-out queue. Since all multiple-queue algorithms (with
TQq first) are able to select the best task (the task that yields
the highest processor utilization) that is next to be scheduled
for execution (through the use of the multiple queues), the
best-fit placement policies of the BFMQ algorithms do not
yield a significant improvement in performance over the first-
fit and bit-reversed first-fit policies of the FFMQ and RFMQ
algorithms, respectively. Since the partitioning rules for
PASM are based on the low-order bits, the RFMQ algorithm
performs better than the FFMQ algorithm. Hence, when there
are no faulty MC-groups, the RFMQ algorithm is the best algo-
rithm to use for PASM. However, when there are faulty MC-
groups, the bottom-up BFMQ algorithm is the best algorithm
to use for PASM. Therefore, when there are no faulty MC-
groups detected by the system, the scheduler will use the bit-
reversed first-fit placement policy, and when there are faulty
MC-groups detected, scheduler will use the bottom-up best-fit
placement policy. As discussed in Section VII, this task sched-
uling scheme can be adapted for scheduling processing ele-
ments on other multiple-SIMD and partitionable SIMD/MIMD
systems.

ACKNOWLEDGMENT

The authors gratefully acknowledge the suggestions made by
the referees. A preliminary version of portions of the material
in this paper was presented at the 3rd International Confer-
ence on Distributed Computing Systems, October 1982.

REFERENCES

[1] G. B. Adams, III and H. J. Siegel, "The extra stage cube: A fault-
tolerant interconnection network for supersystems," IEEE 7rans.
Comput., vol. C-31, pp. 443-454, May 1982.

[2] G. Barnes, et al., "The Illiac IV computer," IEEE Trans. Com-
put., vol. C-17, pp. 746-757, Aug. 1968.

[3] E. G. Coffman, Jr. and P. J. Denning, Operating Systems Theory.
Englewood Cliffs, NJ: Prentice-Hall, 1973.

[4] T. Feng, "Data manipulating functions in parallel processors and
their implementations," IEEE Trans. Comput., vol. C-23, pp.
309-318, Mar. 1974.

[5] M. J. Flynn, "Very high-speed computer systems," Proc. IEEE,
vol. 54, pp. 1901-1909, Dec. 1966.

[6] S. H. Fuller, "Performance evaluation," in Introduction to Com-
puter Architecture, 2nd ed., H. S. Stone, Ed. Chicago, IL:
Science Research Associates, 1980, pp. 527-590.

[7] A. N. Habermann, Introduction to Operating System Design.
Chicago, IL: Science Research Associates, 1976.

[8] K. Hwang and L. M. Ni, "Resource optimization of a parallel
computer for multiple vector processing," IEEE Trans. Comput.,
vol. C-29, pp. 831-836, Sept. 1980.

[9] R. Y. Kain, A. A. Raie, and M. G. Gouda, "Multiple processor
scheduling policies," in Proc. 1st Int. Con! Distributed Com-
puting Systems, Oct. 1979, pp. 660-668.

[10] J. Keng and K. S. Fu, "A special purpose architecture for image
processing," in Proc. 1978 IEEE Comput. Soc. Conf Pattern
Recognition Image Processing, June 1978, pp. 287-290.

[11] J. T. Kuehn, H. J. Siegel, and P. D. Hallenbeck, "Design and
simulation of an MC68000-based multimicroprocessor system,"
in Proc. 1982 Int. Conf Parallel Processing, Aug. 1982, pp.
353-362.

[12] D. H. Lawrie, "Access and alignment of data in an array pro-
cessor," IEEE Trans. Comput., vol. C-24, pp. 1145-1155, Dec.
1975.

[13] R. J. McMillen and H. J. Siegel, "Routing schemes for the aug-
mented data manipulator network in an MIMD system," IEEE
Trans. Comput., vol. C-31, pp. 1202-1214, Dec. 1982.

[14] G. J. Nutt, "Microprocessor implementation of a parallel pro-
cessor," in Proc. 4th Symp. Computer Architecture, Mar. 1977,
pp. 147-152.

[15] -, "A parallel processor operating system comparison," IEEE
Trans. Software Eng., vol. SE-3, pp. 467-475, Nov. 1977.

[16] D. S. Parker, "Notes on shuffle/exchange-type switching net-
works," IEEE Trans. Comput., vol. C-29, pp. 213-222, Mar.
1980.

[171 D. S. Parker and C. S. Raghavendra, "The gamma network: A
multiprocessor interconnection network with redundant paths,"
in Proc. 9th Symp. Comput. Architecture, Apr. 1982, pp. 73-
80.

[18] M. Pease, "The indirect binary n-cube microprocessor array,"
IEEE Trans. Comput., vol. C-26, pp. 458-473, May 1977.

[19] D. M. Ritchie and K. Thompson, "The UNIX time-sharing sys-
tem," Bell Syst. Tech. J., vol. 57, pp. 1905-1929, July 1978.

[20] M. C. Sejnowski, E. T. Upchurch, R. N. Kapur, D. P. S. Charlu,
and G. J. Lipovski, "An overview of the Texas reconfigurable
array computer," in Proc. AFIPS 1980 Nat. Comput. Conf.,
May 1980, pp. 631-641.

[21] H. J. Siegel, Interconnection Networks for Large-Scale Parallel
Processing: Theory and Case Studies. Lexington, MA: Lexing-
ton Books, 1984.

[22] H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr.,
H. E. Smalley, Jr., and S. D. Smith, "PASM: A partitionable
SIMD/MIMD system for image processing and pattern recogni-
tion," IEEE Trans. Comput., vol. C-30, pp. 934-947, Dec. 1981.

[23] S. J. Stolfo and D. P. Miranker, "DADO: A parallel processor
for expert systems," in Proc. 1984 Int. Conf Parallel Processing,
Aug. 1984, pp. 74-82.

[24] H. S. Stone, "Parallel computers," in Introduction to Computer
Architecture, 2nd ed., H. S. Stone, Ed. Chicago, IL: Science
Research Associates, 1980, pp. 363-425.

[251 D. C. Tsichritzis and P. A. Bernstein, Operating Systems. New
York: Academic, 1974.

[26] D. L. Tuomenoksa and H. J. Siegel, "Application of two-dimen-
sional bin packing to task scheduling in PASM," in Proc. Allerton
Conf. Communication, Control, and Computing, Univ. Illinois,
Urbana, Oct. 1981, p. 542.

[27] -, Design of the Operating System for the PASM ParallelPro-
cessing System, School Elec. Eng., Purdue Univ., Lafayette, IN,
TR-EE 83-14, May 1983.

[28] D. L. Tuomenoksa, G. B. Adams, 111, H. J. Siegel, and 0. R.
Mitchell, "A parallel algorithm for contour extraction: Advan-
tages and architectural implications," in Proc. IEEE Comput.
Soc. Computer Vision Pattern Recognition 1983, June 1983,
pp. 336-344.

[29] D. L. Tuomenoksa and H. J. Siegel, "A distributed operating
system for PASM," in Proc. 17th Hawaii Int. Conf System
Sciences, Jan. 1984, vol. 1, pp. 69-77.

[30] -, "Task preloading schemes for reconfigurable parallel pro-
cessing systems," IEEE Trans. Comput., vol. C-33, pp. 895-905,
Oct. 1984.

David Lee Tuomenoksa (S'79-M'83) was born
in Morristown, NJ, on October 14, 1958. He
received the B.S. degree in 1980 and the Ph.D.
degree in 1983, both in electrical engineering
from Purdue University, West Lafayette, IN.
As a graduate student, he was a Research As-

sistant for the School of Electrical Engineering,
Purdue University. He was also awarded a Pur-
due University Fellowship for Graduate Study.
In June 1983 he joined AT&T Informationi
Systems where he is currently a Member of the

Technical Staff of the Integrated Systems Laboratory, Lincroft, NJ.
His research interests include computer architecture, operating systems
for distributed/ parallel computer organizations, image processing, and
system reliability.
Dr. Tuomenoksa is a member of the Association for Computing Ma-

chinery and Eta Kappa Nu, Tau Beta Pi, and Phi Kappa Phi.

156

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. SE-11, NO. 2, FEBRUARY 1985

Howard Jay Siegel (M'77-SM'82) was born in
New Jersey on January 16, 1950. He received
the S.B. degree in electrical engineering and the
S.B. degree in management from the Massachu-
setts Institute of Technology, Cambridge, in
1972; the M.A. and M.S.E. degrees in 1974, and
the Ph.D. degree in 1977, all in electrical engi-
neering and computer science from Princeton
University, Princeton, NJ.
In 1976 Dr. Siegel joined the School of Elec-

trical Engineering, Purdue University, West La-
fayette, IN, where he is currently an Associate Professor. His research

interests include parallel/distributed processing, multimicroprocessor
systems, and image and speech understanding.
Dr. Siegel is currently the Chairman of the ACM SIGARCH (Special

Interest Group on Computer Architecture). His previous activities in-
clude serving as Program Co-Chairperson of the 1983 International Con-
ference on Parallel Processing, as the General Chariman of the Third In-
ternational Conference on Distributed Computing Systems (1982), as
an IEEE Computer Society Distinguished Visitor, as Chairman of the
IEEE Computer Society TCCA (Technical Committee on Computer
Architecture), and a guest editor of the IEEE TRANSACTIONS ON COMPUTERS.
He is a member of Eta Kappa Nu and Sigma Xi.

Evaluating Software Development by Analysis of
Changes: Some Data from the Software

Engineering Laboratory
DAVID M. WEISS AND VICTOR R. BASILI, MEMBER, IEEE

Abstract-An effective data collection methodology for evaluating
software development methodologies was applied to five different soft-
ware development projects. Results and data from three of the projects
are presented. Goals of the data collection included characterizing
changes, errors, projects, and programmers, identifying effective error
detection and correction techniques, and investigating ripple effects.
The data collected consisted of changes (including error corrections)

made to the software after code was written and baselined, but before
testing began. Data collection and validation were concurrent with
software development. Changes reported were verified by interviews
with programmers. Analysis of the data showed patterns that were
used in satisfying the goals of the data collection. Some of the results
are summarized in the following.

1) Error corrections aside, the most frequent type of change was an
unplanned design modification.
2) The most common type of error was one made in the design or

implementation of a single component of the system. Incorrect re-
quirements, misunderstandings of functional specifications, interfaces,
support software and hardware, and languages and compilers were gen-
erally not significant sources of errors.

3) Despite a significant number of requirements changes imposed on
some projects, there was no corresponding increase in frequency of
requirements misunderstandings.
4) More than 75 percent of all changes took a day or less to make.
5) Changes tended to be nonlocalized with respect to individual

components but localized with respect to subsystems.
6) Relatively few changes resulted in errors. Relatively few errors

required more than one attempt at correction.
7) Most errors were detected by executing the program. The cause

of most errors was found by reading code. Support facilities and tech-
niques such as traces, dumps, cross-reference and attribute listings,
and program proving were rarely used.

Manuscript received December 13, 1982; revised April 25, 1984. This
work was supported in part by the National Aeronautics and Space
Administration under Grant NSG-5 123 to the University of Maryland.
V. R. Basili is with the Department of Computer Science, University

of Maryland, College Park, MD 20742.
D. M. Weiss is with the Naval Research Laboratory, Washington, DC

20375.

Index Terms-Software change analysis, software change data, soft-
ware errors, software measurement.

I. INTRODUCTION

IN previous and companion papers [1]-[4] we have dis-
cussed how to obtain valid data that may be used to evalu-

ate software development methodologies in a production en-
vironment. Briefly, the methodology consists of the following
five elements.
1)Identify goals. The goals of the data collection effort

are defined before any data collection begins. We often relate
them to how well the goals for a product or process are met.
2) Determine questions of interest from the goals. Specific

questions, derived from the goals, are used to sharpen the goals
and define the data to be collected. Answering the questions
derived from each goal satisfies the goal.
3) Develop a data collection form. The data collection form

used is tailored to the product or process being studied and to
the questions of interest.
4) Develop data collection procedures. Data collection is

easiest when the data collection procedures are part of normal
configuration control procedures.
5) Validate and analyze the data. Reviews and analyses of

the data are concurrent with software development. Valida-
tion includes examining completed data collection forms for
completeness and consistency. Where necessary, interviews
with the person(s) supplying the data are conducted.
The purpose of this paper is to present the results from such

an evaluation. The data presented here were collected as part
of the studies conducted by NASA's Software Engineering
Laboratory [5]. In this section we present an overview of the
SEL and the projects analyzed for this paper. Section II des-
cribes the application of the methodology described in the

0098-5589/85/0200-0157$01.00 © 1985 IEEE

157

