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Abstract-Image correlation is representative of a wide variety of
window-based image processing tasks. The way in which multimi-
croprocessor systems (e.g., PASM) can use SIMD parallelism to
perform image correlation is examined. Two fundamental algorithm
strategies are explored. In one approach, all of the data that will be
needed in a processor are transferred to the processor and operated
on there. In the other, each processor performs all possible operations
on its local data, generating partial results which are then transferred
to the processor in which they are needed. The "time/space/inter-
processor-transfer" complexities of the two algorithm approaches are
analyzed in order to quantify the differences resulting from the two
-strategies. For both approaches, the asymptotic time complexity of
the N-processor SIMD algorithms is (1/N)th that of the corresponding
serial algorithms.

Index Terms-Algorithms, convolution, image correlation, image
processing, multimicroprocessor systems, parallel processing, parallel
programming, PASM, pattern recognition, SIMD machines.

I. INTRODUCTION
IMAGE correlation is a widely used procedure in many

areas of image and picture processing. This process, also
known as template matching, is used to locate an object in a
picture [5], [14] or, in image registration, to match pieces of
two pictures to one another [13]. It is used in some forms of
edge detection to find the step edge between two areas, or to
find lines, spots, or curves [14]. In digital photogrammetry
image correlation is used to find the corresponding points of
two images of a stereomodel [14]. In this application,
image sizes are typically at least 4096 X 4096 with match areas
on the order of 64 X 64.

Because image correlation requires comparing portions of
two images in a large number of relative positions, it is an ex-
tremely time consuming process. The time required to com-
plete these calculations can be reduced by exploiting the par-
allelism inherent in the task. The way in which multimicro-
processor systems (e.g., PASM [18]) can use "SIMD" par-
allelism to perform this task is examined here.
The SIMD (single instruction stream-multiple data stream)

[9], [23] machine model used here consists of a control unit,
interconnection network, and N PE's (processing elements),
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where each PE is a processor-memory pair [ 17]. This is shown
in Fig. 1. In an SIMD machine of size N = 2", the PE's are
addressed (numbered) from 0 to N - 1. In proposed systems,
N is as large as 210 [18] to 214 [12]. The control unit broadcasts
an instruction to all PE's, and all active (enabled) processors
simultaneously execute the same instruction, each on data in
its own memory. The interconnection network provides in-
ter-PE communication. SIMD parallelism has been shown to
yield significant reductions in computation time for image and
speech processing tasks (e.g., [10], [15], [20]). Here, win-
dow-based image processing tasks are considered.

In the complexity analyses that follow, it is assumed that
each required parallel inter-PE data move can be done in one
transfer step. This will be true if the interconnection network
used is a multistage network such as: 1) one employing the
generalized cube topology with individual box control [19]
(e.g., omega [ 1 1], n-cube [ 12]), 2) the data manipulator net-
work [7], or 3) the augmented data manipulator [19]. This is
because each required transfer is either a type of exchange
(cube connection [16]) or a "uniform shift" (i.e., from PE i
to PE i + k mod N, 0 < i < N, k fixed).

Only those SIMD machine features needed for the algo-
rithms that follow have been described. The model is intended
to provide a general framework in which SIMD algorithms can
be developed. In Section VI the performance of the algorithms
using an alternative model will be discussed.
The objectives of this study are as follows.
1) To demonstrate the applicability of the SIMD mode of

parallelism to a class of image processing tasks. The operations
performed in image correlation are representative of the types
of data manipulations needed for a wide variety of window-
based image processing tasks.

2) To explore two fundamental parallel algorithm strate-
gies. In one approach all of the data that will be needed by a
PE are transferred to the PE and processed there. In the other,
each PE performs all possible operations on its local data,
generating partial results which are then transferred to the PE
in which they are needed.

3) To analyze and compare the computational requirements
of the alternative algorithms. In serial algorithms, there is often
a tradeoff between computation time and space. In parallel
algorithms, the tradeoff may be a function of three parameters:
computation time, space, and inter-PE communications.

In the next section image correlation is defined. In the
subsequent sections parallel algorithms for image correlatiop
are presented and analyzed.
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Fig. 1. Model of an SIMD machine.

II. IMAGE CORRELATION

A. Definition and Serial Algorithms
An image is represented by a two-dimensional array where

each element ("pixel") has an unsigned integer value repre-
senting the "gray level" of the pixel. Image correlation involves
determining the position at which a relatively small match area

best matches a portion of an input image. Correlation measures

are used to measure the degree of similarity or disagreement
between the-match area and an equivalent size area on the
input image. Let the symbols x and y denote single elements
of arrays X and Y, where X is the match image and Y is an
area of the input image which has the same dimensions as X.
Let M be the number of elements in the match area X. Two
representative correlation measures are

SXT = >xy -ExLy/M
RXY = SXY/(SXX * SYY)(1/2)

Correlation measure SXY is the covariance of the match
area with a portion of the input area. Large positive values
indicate similarity, while large negative values indicate simi-
larity between a positive and a negative image. Values near

zero indicate little or no similarity. Correlation measure RXY
is the linear correlation coefficient of statistics. This measure
is a normalized version of SXY, with values ranging between
+1 and -1. A value of +1 indicates exact similarity, while
values near zero indicate little similarity. In general, a corre-

lation value will be computed for every possible position where
the match area will fit on the input image. The match position
where the correlation measure is maximized corresponds to
the best placement of the match area on the image.
The computation time for image correlation is dominated

by the time to compute the 2xy, Zy, and (for measure RXY)
the Ly2 values for all possible match positions. The 2x and
Lx2 values involve only the match area elements, and need to
be computed (or precomputed) only once.

The way in which data elements are combined to obtain the
2xy values is similar to operations performed in a variety of
important image processing tasks, including convolution and
filtering. For an input image having R rows and C columns and
a match area having r rows and c columns, there are (R - r +
1 )(C - c + 1) match positions. Serial computation of the 2xy
terms over the entire image, performed by simply sliding the
match area over the image and calculating the value of 2xy
for each overlap position, requires (R - r + 1)(R - r + 1)rc
multiplications and (C - c + 1)(C - c + l)(rc - 1) addi-
tions.

In computing the Lxy values, each match position generates
a new set of terms to be summed. No terms from one match
position can be reused in a different match position. In com-
puting the Zy and ly2 values, two (or more) input image el-
ements summed for one match position may also be summed
for another match position. The algorithms considered for
calculating the jy and 2y2 values therefore attempt to avoid
"redundant" operations, e.g., performing a sum for one match
position which has already been performed for another. The
operations performed in computing the Ly and Zy2 values,
i.e., the summing of elements under a window where the win-
dow moves over an image, are typical of operations required
for a variety of image processing tasks. These include image
smoothing, edge enhancement, and convolution using a rec-
tangular window.

Consider the following serial (uniprocessor) algorithm for
computing the Zy's, i.e., summing the pixel values in each
match area. This algorithm will be used as a basis for parallel
algorithms.
Assume that for input image I, the position of the match

area is defined by the coordinates of the input image pixel
covered by the upper left corner of the match area. Let "col-
sum" be a vector of length C, where

k+r-I
colsum (U) = K I(i,j)

i=k

where k is the row coordinate of the current position of the
match area, and 0 <j < C. Let SUM be an R - r + 1 by C -
c + I array, where SUM (i, j) is the sum of pixels of I for the
match area position (i,j), 0 < i <R - r + 1, 0 < j < C-c
+ 1.
The algorithm is shown in Fig. 2. First, colsum is initialized

for row 0 of the image. The colsum values for columns 0 to c
- 1 are summed to compute SUM (0, ). SUM (0,j) for 1 <
j < C - c + 1 is computed fromSUM (0,j- 1) by subtracting
colsum ( - 1) and adding colsum (U + c - 1). A similar
strategy is used to compute SUM (i, j) for I < i < C - c + 1
and 1 < j < R - r + 1. To do this, each colsum (U) is first
updated by subtracting I(i - 1, j) and adding I(i + r - 1,j),
0 <j <R-r+ 1.
The complexity of this serial algorithm in terms of additions

1S

4RC-Rc- 3Cr +rc+ 5C+ 3R - 2c - 3r+ 4.

(For simplicity, the additions required for loop counting and
indexing have not been included. In the SIMD algorithms
these would be performed in the control unit, and could be
overlapped with the PE operations.) This algorithm moves the
match area along the rows of the input image. Depending on
C, R, c, and r the algorithm complexity may be less by moving
along columns.

Computation of the 2y2's is similar. In this case the y2
values subtracted from the colsum's in the update process (see
Fig. 2) must be saved when they are first calculated. This in-
creases the space required for the algorithm by rC. The
arithmetic complexity is increased by RC multiplications.

If the Zxy, Zy, and Zy2 values for a given match position
are computed together, the correlation measure for that match
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I* initiaLize values of coLsum */

for j 0 to C-1 do

colsum(j) = I(0,j)

for i = 1 to r-1 do

coLsum(j) = cotsum(j) + 1(i,j)

/* compute SUM(O,j) for 0 < j < C-Cc-1) */

SUM(0,0) = coLsum(e)

for j = 1 to c-1 do

SUM(O,O) = SUM(0,0) + colsum(j)

for j = 1 to C-Cc-1) do

SUM(O,j) = SUM(O,j-1) - colsum(j-1) + colsum(j+c-1)

/* compute SUM(i,j) for 1 < i < R-(r-1) and 0 < j < C-Cc-i)) * /

for i = 1 to R-(r-1) do

l* compute SUMi,O) and update associated colsum values */

for j = 0 to c-1 do

coLsum(j) = colsum(j) - xti-1,j) + I(ivr-1,j)

SUM(i,O) = colsum(O)

for j = 1 to c-1 do_

SUM(i,O) = SUM(i,O) + coLsum(j)

J* compute SUM(i,j) and update associated colsum values for 1 < j < C(c-1)) */

for j = 1 to C-Cc-1) do

coLsum(j+c-1) = colsum(j+c-1) - I(i-l,j4c-1) + I(iIr-l,j+c-1)

SUM(i,j) = SUM(i,j-1) - cotsum(j-1) + coLsum(j4c-1)

Fig. 2. Serial algorithm to compute ly terms.

position can be calculated, and is saved only if it is the current
maximum over the correlation measure values computed so
far. Thus, the 2xy, ly, and 2y2 values for each position do
not have to be saved.

B. Parallel Image Correlation

In Section III a parallel algorithm for computing the Ix and
Jx2 values is given. In Sections IV and V, parallel algorithms
for the 2;xy, ly, and 2y2 computations are presented. For the
E2xy, ly, and 2y2 operations, two algorithm strategies are
explored. For both, the input image data will be divided among
the PE's, and each PE will compute the values of the correla-
tion measure for a portion of the input image. In the first,
"complete sums" approach, all of the data which will be needed
for the computations performed in a given PE are transferred
into that PE. All subsequent operations can then be performed
locally, so that each PE computes the "complete sums".for a
set of match positions. In the second, "partial sums" approach,
each PE performs as much of the computations as possible
using its own data, then transfers partial results to the PE in
which they are needed.

In order to distribute the input image, the N PE's of the
system are logically configured as an NR X NC rectangular
grid, on which the R X C image is superimposed. Thus, with
the possible exception of the rightmost column and bottommost
row of PE's, each PE holds an R' X C' subimage, where R' =
rR/NR1 and C' = rC/NCl. This is shown in Fig. 3. The values
for NR and NC will be chosen to minimize execution time of
the algorithms, and will be discussed in Section IV-A.

(An alternative to these approaches is to assume that the
SIMD machine has the capability to load the image data into

PE O PE 1 ... PE NC-i

PE NC PE Nc+1 PE 2N -1

R
pixeLs I

pixeLs5 L

pixels

PE N-1Nc PE N-1

C pixels

Fig. 3. Data assignment of R X C image to N PE's.

of the input array which is needed in several PE's could be
loaded into the appropriate PE's (with little or no cost) si-
multaneously. This would eliminate the need for inter-PE
transfers. However, the memory management necessary to
place each image point in the appropriate location in each PE
may be significantly more complex than the memory man-
agement needed to load the PE memories with disjoint sub-
images. This approach will require an "intelligent" memory
management system and more storage in each PE, and will not
be considered here.)

In the algorithms to compute the 2xy, 2y, and ly2 values,
it will initially be assumed that the results calculated (i.e., the
Zxy,5y, and 2y2 values) are saved. For the calculation of
RXY and SXY, this will not be necessary, as will be described
in Sections IV-C and V-C. However, so that each of the 2xy,
2y, and 2y2 algorithms can be applied to other related com-
putations, in the presentations it will be assumed that the re-
sults for the whole image are to be stored.

III. 2X AND 2X2 COMPUTATION

The 2x and Jx2 values may be precomputed and stored
with the match area, or computed in a straightforward manner
in parallel before calculating the 2xy, 2y, and 2y2 values.
Simply assign to each PE M/N of the match area pixels. Each
PE first computes x2 for all the elements it holds. It then sums
its x values and sums its x2 values. All of these local 2x and
local 2x2 sums are then combined using a recursive doubling
approach [22] (see Fig. 4). Each even numbered PE J sends
its local 2x result to PE J + 1. Simultaneously, each odd
numbered PE J + I sends its local Ex2 to PE J. The odd
numbered PE's add the received data to their local 2x and
then compute the whole 2;x using recursive doubling, with the
result saved in each odd numbered PE. Similarly, the even
numbered PE's compute Jx2. These two recursive doublings
can occur simultaneously. The odd and even PE's then ex-
change results, so that each PE contains both 2x and 2x2.
This requires M/N multiplications, n + (2M/N) - 2 addi-
tions, and n + 1 inter-PE data transfers. (A serial algorithm
will require M multiplications and 2M - 2 additions.) Each

several PE's simultaneously. With this capacity, an element PE will store 2;x and 2;X2 for later use.
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Fig. 5. Example of overlap position requiring data transfers. The shaded
pixel represents the "beginning" of the overlap position. The arrows indicate
the directions of the data transfers. (Proportions of match area to a PE's
subimage are not necessarily to scale.)

STEP 0 STEP 1 STEP 2
TRANSFER/ADD TRANSFER/ADD TRANSFER/ADD

Fig. 4. Recursive doubling for an N = 8 PE system. In general, a recursive
doubling algorithm will consist of n = log2 N transfer/add steps. At step
i, 0 < i < n, exchanges are performed between PE's j and j + 2i, where the
ith bit ofj is 0.

IV. COMPLETE SUMS APPROACH

A. 2xy Computation

In the complete sums approach each PE will compute the
correlation measure for overlap positions which "begin" in the
PE (i.e., for which the upper left corner of the match area

overlaps a point of the PE's subimage). Each PE will therefore
compute the correlation measure for R'C' match positions. The
computations will be performed simultaneously in all PE's. For
match positions where the portion of the input image is not
fully contained in a single PE (Fig. 5), the needed points will
be transferred before the computations are performed. Such
transfers will occur simultaneously for all PE's, so that at the
same time that a pixel is being transferred, for example, from
PE J + 1 to PE J, the corresponding pixel is being transferred
fromPEJ+ 2toPEJ+ 1,fromPEJ+ 3toPEJ+2,and
so on.

Depending on the size relationships between r and R' or c

and C', the transferred elements may come from PE's adjacent
to PE J, or from several levels of adjacent PE's. If, for example,
the match area dimension in one direction is large in com-

parison to the dimension of the portion of the input area stored
in each PE, the matches will extend over several PE areas in
that direction. This is shown for the case where c > C' + 1 and
r < R' + I in Fig. 6. PE J will transfer some y values a distance
greater than one, and will receive some y values from a distance
greater than one. Without loss of generality, in the subsequent
discussions, it will be assumed that elements are needed only
from adjacent PE's.

PE J PE J+1 PE J+2

C

l_ rzizz _______ hr
I I I

I

cl

Fig. 6. Example of overlap position which requires PE J to receive data
from PE J + I and PE J + 2.

When computing the E2xy values, all PE's will use the same
match area element simultaneously, so that element can be
broadcast to all PE's from the control unit. Alternatively, if
PE memory space is available, the match area, which is typi-
cally small, can be held in each PE's memory. The time to
perform the broadcast from the control unit versus the memory
fetch from the PE memory will be implementation dependent.
In the space analyses that follow, it will be assumed that the
match area values are broadcast from the control unit.

Computation of all of the 2xy terms will be accomplished
in the time required to compute the 2xy terms for the R' X C'
subimage held in a single PE. These times are summarized in
the first column of Table I. Storage will be required for the
PE's portion of the input image (R'C' elements), for the
computed Ixy values (R'C' elements), and for the input image
elements transferred to the PE in order to provide all of the
data needed for the PE's match positions. The number of
transferred elements is (c l)R' + (r -1)C' + (r - l)(c -
1); however, it is not necessary to store all of these values at the
same time. Consider the extra storage needed for nonlocal y
values by a typical ("nonedge") PE J. The analysis is divided
into two cases. It will show that at any point in time at most (2c
- 2)(r - 1) + 1 locations are required.

First, consider when the match area (upper left corner) is
positioned in row i, 0 < i < R' - r (see Fig. 7). (c I)r loca-
tions are required for nonlocal y data, for the y data for col-

PE 0

PE 1

PE 2

C'

PE J

PE J+1
C

R'

/ ~~~~~rt I j\ I
PE J+NC PE J+1-+NC

cI
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TABLE I
COMPLEXITY OF COMPLETE SUMS AND PARTIAL SUMS

ALGORITHMS FOR COMPUTING 2xy TERMS
Complete Sums Partial Sums

# muLt steps R'C'rc R'C'rc

# add steps R'C'(rc-1) R'C'(rc-1)

# transfer R'(c-1)+C'(r-1) R'(c-1)+C'(r-1)
steps +(r-1)(c-1) +(r-1)(c-1)

space 2R'C'+(2c-2)(r-1)+1 2R'C'

0 1 0 *O -l

R'-I X z=z } r

C-c C-

C

Fig. 7. Indexing in a PE's subimage.

umns 0 to c-2 of rows i to r + i -1 of PEJ + l's subimage.
The 2xy values can be calculated by moving the match area

from position (0, 0) to (0, 1) to ... (0, C' - 1), then from (1,
0) to (1, 1) to .* (1, C' -1), * and finally from (R' - r, 0)
to (R' -r, 1), to .. (RI'-r,- C'-1).
Next consider when the match area is positioned in row i,

R- r < i < R' (see Fig. 7). In this case, at most (2c- 2)(r
- 1) + 1 locations are required for nonlocal y data. For these
match positions the match area will move along columns in-
stead of rows, from (R' -r + 1, C' - 1) to (R' - r + 2, C'-
l) to ..(R'- 1,C'-I),thenfrom(R'-r+ 1,C -2)to(R'
- r + 2, C'-2) to ... (R'-1, C' -2), - * - and finally, from
(RI'-r + 1, O) to (R'- r + 2, O) to .. (R' -1,0). For match
positions (i, j) where R' - r < i < R', and j is fixed at a value
in the range 0 < j < C' - c, the nonlocal y data needed are

rows Oto r - (R' - i) -1 of columnsj toj + c - 1 of PE J +
Nc's subimage. For match positions (i, j), where R' - r < i
< R', and j is fixed at a value in the range C' - c < j < C', the
nonlocal y data needed are rows i to R' - 1 of columns 0 to c

- (C' -j) -1 ofPE J + l's subimage, rows 0to r - (R' -i)
- 1 of columns j to C' - 1 ofPE J + NC's subimage, and rows

Oto r - (R' -i) -1 of columns 0 to c - (C'-j) - I ofPE J
+ Nc + 1's subimage. The maximum nonlocal y storage
needed for this range of i and j is (2c - 2)(r 1) + 1.

For given c, r, C, R, and N, the number of arithmetic op-

erations required for the algorithm is minimized by minimizing
the subimage area a = R'C'. By choosing a = RC/N, i.e., by
dividing the input equally among the PE's, this minimum is
attained. The number of transfer steps will be minimized by
the values of C' and R' for which the expression

(r-l)C'+(c-1)R'

is minimized. Minimizing with respect to R' gives

R' = ((ra-1)* a/(c - 1))(l/2)

subject to the constraints that R' and aIR' be integers. It will
follow that

C' = ((c - 1) * a/(r - 1))(1/2).

In the special case where c = r, the image should be distributed
such that

C' = R' = a(1/2)

that is, each PE should contain a square subimage.

B. ly and zy2 Computation

The complete sums algorithms to compute 2;y and 2y2
values will be based on the serial 2y and 2y2 algorithms, with
each PE operating on an (R' + r - 1)(C' + c - 1) sub-
image.

Consider computing ly and ly2 in a typical ("nonedge")
PE J. A total of (r - l)C' + (c - I)R' + rc - 1 y values must
be transferred into the PE from adjacent PE's, as discussed in
the previous subsection. The transfers are as shown in Fig. 5.
However, it is not necessary to store all of these if a data item
is transferred only when it is first needed. This is explained
below in two cases. It will be shown that at most (c - 1)r lo-
cations will be required at any point in time.
When the match area is positioned in row i of the PE's sub-

image, 0 < i < R' - r, (c -1 )r storage locations are required
for nonlocal y data, for the y data for columns 0 to c - 2 of
rows i to r + i - 1 of PE J + l's subimage.
When the match area is positioned in row i of the PE's sub-

image, R'-r < i < R', at most (c - 1)(r - 2) locations are
required for nonlocal y data. Most y data can be incorporated
into the current 2y being computed and the appropriate
"colsum" vector location when it is transferred into a PE. The
only y data that needs to be saved is that which will be needed
for later "colsum" updates. Specifically, this is rows R' - r +
I to R' - 2ofcolumns0toc - 2ofPEJ + 1.
Using these data storage strategies, the 2y and 2;y2 values

for each match position can be calculated as described in the
serial algorithms (for a (C' + c - 1)(R' + r -1) image). The
complexities for the ly and 2y2 computations are given in
column one of Tables II and III, respectively.

C. RXY and SXY Computation

To compute RXY (or SXY) the previously described oper-
ations are interleaved so that the 2xy, ly, 2y2, and RXY
(SXY) values for one match position are computed before the
match area is moved to a new position. The maximum RXY
(SXY) value and its match position coordinates are saved. The
computation ofRXY is described; the SXY computation is a
subset of those operations.

Consider the computation performed in a typical ("non-
edge") PE J. In order to combine the algorithms of Sections
IV-A and IV-B, the 2xy algorithm must be slightly modified.
The match area will move over the image in the way that was
described in the 2y algorithm, that is, from position (0, 0) to
(0, 1) to... (0, C'- 1), then from (1, 0) to (1, 1) to . (1, C'
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TABLE II
COMPLEXITY OF COMPLETE SUMS AND PARTIAL SUMS

ALGORITHMS FOR COMPUTING ly TERMS
Complete Sums Partial Sums

# add steps 4R'C'+3R'c+C'r 4R'C'+R'c+3C'r
-R'+C'+rc -3R'-5C'+rc

-r -3r-c+3

# transfer R' (c-1 )+C'(r-1) R'(c-1)+C'(r-1)
steps +(r-1)(c-1) +(r-1)(c-1)

space 2R'C'+(C'+c-1) 2R'C'+C'
+(c-1)r

TABLE III
COMPLEXITY OF COMPLETE SUMS AND PARTIAL SUMS

ALGORITHMS FOR COMPUTING 2y2 TERMS
Complete Sums Partial Sums

# mult steps (R'+r-1)(C'+c-1) R'C'

# add steps 4R'C'+3R'c+C'r 4R'C'+R'c+3C'r
-R'+C'+rc -3R'-5C'+rc

-r -3r-c+3

# transfer R'(c-1)+C'(r-1) R'(c-1)+C'(r-1)
steps +(r-1)(c-1) +(r-1)(c-1)

space 2R'Ci+(C'+c-1)(r+1) 2R'C'+C'(r+1)

- *nd finally, from (R'- 1, 0) to (R'- 1, 1) to- * (R'
-1, C' - 1). The worst case for space is for 0 < i < R' - r,
when r(C' + c - I) space is needed for y2 values and r(c - 1)
for y values (plus "colsums" and the original image). Less
space is needed when R' - r < i < R because space is not
needed for nonlocal y2 values.
Column one of Table IV summarizes the total time, trans-

fers, and space used. The time is a summation of that for
computing 2xy, ly, and ;y2 for every match position. The
transfers are for the nonlocal y data needed. The space is for
the PE's own subimage, the nonlocal y storage described above,
and the extra storage used for intermediate results in calcu-
lating 2y and 2y2.
Once each PE has found its own maximum RXY value,

recursive doubling [22] can be used to find the overall maxi-
mum and its location. This will require 0(n) additional in-
ter-PE transfers.

V. PARTIAL SUMS APPROACH

A. 2;xy Computation

The partial sums procedure for computing the 2xy values
consists of three steps. The first step is the generation of partial
sums by performing all parts of the calculation that can be
done using the data within each PE. In the second step the
results of the partial sums generation are transferred so that
each PE contains all of the partial sums needed to form the
2;xy terms. In the last step the final sums are developed within
each PE by combining the appropriate partial sums. The de-
tails for this procedure follow. It is assumed that the match
area elements are either broadcast from the control unit or
stored in each PE's memory, as was discussed in Section
IV-A.

In the first step of the algorithm, each PE, independently
of the others, computes the "partial sums" of match point-
image point products that can be computed with its own data.
This can be visualized by sliding the match area M over the
image area in each PE, as shown in Fig. 8. At each match

TABLE IV
COMPLEXITY OF COMPLETE SUMS AND PARTIAL SUMS

ALGORITHMS FOR COMPUTING RXY

Complete Sums

# mult steps those for Exy and ry

Partial Sums

those for Exy and Ly2

f add steps those for Exy, ty, and Ey2 those for Ixy, Ey, and Ly2

# transfer
steps

space

R' (c-l)+C' (r-1)
+(r-1)(c-1)

R'C'+(C'+c-1)(r+2)+r(c-1)

3ERl(c-1)+C' (r-1)
+(r-1) (c-1)]

R'C'+r(3C'+2c-2)

In Addition to the Above, Each Approach Uses 2 Subtractions, 3 Multipli-
cations, 2 Divisions, and I Square Root Operation for Each of the R'C' Match
Positions in Order to Combine Terms. Both Methods also Require 0(n) Ad-
ditional Transfers for Determining the Maximum RXY Value (and Its
Coordinates in the Input Image) Over All PE's.

RG *0 0

CI psum(-r+l,-c+l )
-1)

0

L It I LJ
psum(R'-1,-c+1) psum(R'-1 ,C'-1)

Fig. 8. Overlap positions in the partial sums approach and the terms of
the partial sums (psum) array calculated.

area-image area position from Fig. 8, a "par-tial sum" is gen-
erated. For each location where an image point and match
point overlap in a given position, the product of the image and
the match points is calculated; all the products for that match
area-image area position are then summed. The partial sum
terms generated by this procedure can be viewed as forming
a (R' + r - 1) X (C' + c - 1) array called "psum." In Fig. 8
the element of "psum" into which the partial sum is stored is
given for each of the example overlap positions. A match po-
sition will again be numbered by the input subimage coordi-
nates (i, j) of the upper left corner of the match area. Since the
match area may not be contained in the input image area,
however, the ranges of i and j differ from those in the serial and
complete sums algorithms: If the upper left corner of the input
subimage is considered to be position (0, 0), -r < i < R' and
-c < < C'. The number of partial sums that must be com-
puted in each PE is (r + R' - 1) (c + C'- 1). To develop these
terms, every element of the match area M will be multiplied
by every element of the input area in the PE. Therefore, the
number of multiplications required is rcR'C'. The number of
additions required is equal to the number of multiplications
minus the number of terms generated, or rcR'C' - (r + R' -
1)(c+ C'- 1).

213

- Pspum( i ,j)



IEEE TRANSACTIONS ON COMPUTERS, VOL. C-31, NO. 3, MARCH 1982

Once the partial sums have been computed independently
in the PE's, it is necessary to combine the results from other
PE's to build the complete sums. Using the criterion that the
upper left corner element of the match area must be present
in a partial sum for it to remain in a PE, the terms in the
rightmost C' columns and bottommost R' rows of the "psum"
array are kept in the PE, and are labeled "KEEP" in Fig. 9.
Those elements "above" the kept area are transferred to PE's
"above" this PE. Similarly, those elements "to the left" of the
kept area are transferred to PE's "to the left," and the terms
on the upper left are transferred to PE's diagonally above and
to the left. As in the complete sums approach, the distance
which elements will be transferred depends on the size rela-
tionships between r and R' and c and C'. The number of in-
terprocessor transfers which will be required is equal to the
total number of "psum" terms generated minus the number
of terms kept (which is the number of image area points
originally in each PE). Thus, the number of transfers required
is (r + R' - l)(c + C' - 1) - R'C'.

In the final step of this method, the partial sums transferred
are combined with the partial sums that were kept to yield the
final sums 2xy. The number of additions required to complete
these calculations is equal to the number of partial sum terms
that were transferred.

Rather than implementing the partial sums method as three
separate steps, less space is required if the three steps for a
given match position are executed in sequence. As soon as a
non-"kept" partial sum is computed, it can be transferred to
its destination PE and saved in the memory location which will
eventually hold the 2xy term of which it is a part. The exe-
cution time remains the same, and the only storage that is
needed in each PE is two R'C' element arrays, one for the input
image and one for the 2xy values. The complexity of the
partial sums 2xy algorithm is summarized in column two of
Table I.
B. ly and 2yy2 Computation
The partial sums algorithms for computing the 2y and jy2

values are similar in strategy to the partial sums method for
computing the 2xy values. Each PE computes 2y or 2y2
terms for all match positions or portions of match positions for
the R' X C' subimage which it contains. The partial sums ly
and Iy2 algorithms are based on the serial 2y and 2y2 algo-
rithms. As in the serial algorithms, a C'-element vector "col-
sum" is used to save the column sums computed so far. After
processing of row k,-r < k < R'

(k+r-1
i L I(i,j) -r < k < 0

i=o

Clsum) k+r-lI

i=k

, I(i,j) R<-r < k <R'
i=k

where 0 < j < C'. Unlike the serial and complete sums algo-
rithms, for each row the leftmost sum consists of a single col-
umn sum (colsum (0)), and for -c + 1 < j < 0, the sum for
position (i, j) is computed by adding colsum (j + c - 1) to the
sum for position (i,j - 1). Similarly, for C' - c < j < C', the
sum for position (i, j) is obtained by subracting colsum (i-

r-1

c-i CI

C I

Fig. 9. Partition and direction of transfer of elements of partial sums
array.

1) from the sum for position (i,j - 1). The sums (and colsums)
for the topmost and bottommost r rows are computed in an
analogous manner. In the "center" of each PE's subimage, the
operations performed are identical to those in the serial and
complete sums algorithms. The number of additions performed
to generate the partial sums in each PE will be 4R'C' + 2C'r
- 2R' - 4C' - 2r + 2. As for the partial sums 2;xy algorithm,
the results which must be transferred are those in the non-
"KEEP" area in Fig. 9. Each of these elements is added to a
"kept" partial sum in the appropriate PE. The complexities
of the partial sums X2y and ,y2 algorithms are summarized
in column two of Tables II and 1II.
C. RXY and SXY Computation
As described for the complete sums method in Section IV-C,

for image correlation measures RXY or SXY, the 2xy, 2y,
and Yy2 computations will be interleaved so that all three are
computed for a given match position before the match area is
moved to a new position. The computation of RXY is de-
scribed.
The modifications required for the RXY computation in-

volve the storage for partial (incomplete) 2xy, 2y, and 1y2
sums. In the algorithms described, a non-"kept" partial sum
was transferred from the PE in which it was computed to its
destination PE, and stored in the memory location for the 2xy
(or 2y or 2y2) of which it was a part. For the complete RXY
computation, space is not needed for all of a PE's local 2xy,
ly, and Jy2 values. Provisions must therefore be made for the
incomplete sums. The procedure will be based on the X2y al-
gorithm. It will be explained in terms of three cases (ranges
of match positions). It will be shown that at most 2[(C' + c -
l)(r - 1) + c - 1] locations are required to hold incomplete
sums at any point in time.

Consider first a match position which is fully contained in
the PE's subimage, i.e., position (i, j), where 0 < i < R' - r
and 0 < j < C' - c. The 2xy, 2y, and 2y2 computations can
be interleaved, and RXY for the position can be computed. For
the same i range, when j exceeds C' - c (i.e., C'- c < j < C'),
two partial sums must be combined to produce the complete
sum for each of 2xy, 2y, and 2y2. After computing the 2xy
partial sum for position (i, C' - c + k), 1 < k < c, each PE can
compute the partial sum for position (i, -c + k) and transfer
its value to the left, where the total 2xy sum for position (i,
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C'- c + k) is then completed. By postponing computation of
2xy for position (i, - c + k) until it is needed, no extra space

is required for row i's incomplete 2xy values. A comparable
savings in space cannot be realized in the ly and jy2 com-
putations, since the computation of these partial results cannot
be postponed (without doing additional summations). Except
for the topmost and leftmost edges, the ly (and 2y2) sum for
each match position is computed in terms of the sum for a
previous match position, so: 1) some previous results must be
saved, and 2) the order in which the sums are computed cannot
be altered or interrupted. The partial sum for position (i, - c
+ k), 1 < k < c, must be computed and saved until it can be
combined with the partial sum for position (i, C' - c + k). The
same c - 1 locations can be used for each row i in the range.
Thus, c - I locations are needed to save partial 2y results, and
c - 1 locations for partial Xy2 results for match positions (i,
j)where0< i <R'-rand-c+ I .j <0.

Similarly, for partial match positions along the top of the
PE's subimage, where the row index is -r + k, 1 < k < r,
computation of partial Exy sums can be postponed until they
are needed, but the partial 2;y and ly2 sums must be com-
puted and saved until the corresponding ly and 2y2 sums for
row R' - r + k have been calculated. Here, separate storage
locations are needed for each row i, -r < i < 0, and column
j, -c <j < C'. Therefore, for each of ly and Jy2, (C' + C-
1 )(r - 1) additional locations will be needed.
The partial sums complexity for computing RXY is sum-

marized in Table IV. The time is a summation of that for
computing 2xy, 2y, and 2y2 for every match position. The
transfers are for the non-"kept" partial sums. The space is for
the PE's own subimage, the incomplete Iy and ly2 values
which must be saved until they can be completed, and the in-
termediate results in calculating Xy and 2y2.
As in the complete sums method, recursive doubling can be

used to obtain the position of maximum correlation over all of
the PE's.

VI. COMPARISON OF APPROACHES

Tables I-IV contrast quantitatively the complete and partial
sums approaches to the operations involved in image correla-
tion. In order to more readily compare the two approaches, let
R' = C' = I' and r = c = M'. The results are shown in Table
V. Figs. 10, 1 1, and 12 show an example of the differences in
the number of addition, multiplication, and transfer steps,
respectively, for the two strategies for a range of input image
sizes when the match area size is 64 X 64 (M' = 64) and there
are 256 PE's (N = 256).
As can be seen from the table, for each of the individual

Exy, Xy, and ly2 algorithms, the complete sums approach
requires more space and/or arithmetic operations than the
partial sums approach. However, when these algorithms are
interleaved to compute and locate the maximum RXY value,
the complete sums method requires more arithmetic opera-
tions, but fewer inter-PE transfers and less space. Which
method is faster will therefore depend on the relative time to
perform arithmetic operations versus transfers. For example,
if the time to perform a transfer equals the time to perform a
multiplication, then the complete sums method will be faster.

TABLE V
COMPARISON OF THE COMPLETE SUMS AND PARTIAL SUMS

APPROACH ES

Space

Ac-Ap

Ixy

ly2

RXY

0

Mc-Mp

0

*Tp-Tc Difference

0 Sc-Sp=

2(M') -4M'+3

8I '+3M'-3 Sc-Sp=

(M' ) -1

8I'+3M'-3 21'M'-2I' 0

+(M') 2-2M1+1

161+6M'-6 2I'M'-2I' 2(2I'M'-2I'

+(M'l) -2_m+1 +(Ml) -2M'+1l)
Notation:

Sc-Sp=

(M' )2_1

Sp-Sc=2I 'M1'

-2 I '-2M'+2

R'= C' = I'
r = c = M'

Ap = Adds for Partial Sums Approach
Ac = Adds for Complete Sums Approach
Tp = Inter-PE Transfers for Partial Sums Approach
Tc = Inter-PE Transfers for Complete Sums Approach
Mp = Multiplies for Partial Sums Approach
Mc = Multiplies for Complete Sums Approach
Sp = Space for Partial Sums Approach
Sc = Space for Complete Sums Approach

.+471

x

-o
X

tu

CLa

-u
*0

u

3.68 -

2.89 -

2.09 -

1.30 -

.506
8 9 10 11

log2 of image rows & columns

Fig. 10. Difference in the number of addition steps for the RXY computation
between the complete sums (cs) and partial sums (ps) algorithms, under
the assumptions that R = C, r = c = 64, andN = 256. Shown as a function
of log2R.

If inter-PE transfers can be overlapped with arithmetic oper-
ations, then the partial sums method will be faster. Thus, in
order to determine which approach will be faster on a partic-
ular system, the exact timings for these operations must be
considered.
The difference in the space required for the two approaches

is not large. However, if the PE memories are small, or for the
RXY computation if C' is large, the space difference may be
a factor in selecting an algorithm.
Some basic differences resulting from the two algorithm

strategies are evidenced in the RXY complexities. In the
complete sums approach, two PE's hold and operate on some
of the same image elements. As a result, redundant arithmetic
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Fig. 11. Difference in the number of multiplication steps for the RXY
computation between the complete sums (cs) and partial sums (ps) algo-
rithms, under the assumptions that R = C, r = c = 64, andN = 256. Shown
as a function of log2R.
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Fig. 12. Difference in the number of transfer steps for the RXYcomputation
between the complete sums (cs) and partial sums (ps) algorithms, under
the assumptions that R = C, r = c = 64, andN = 256. Shown as a function
of log2R.

operations are performed in the 2y and 2y2 computations, i.e.,
the sum (or product) of the same two elements is sometimes
performed in two PE's. These redundant operations are not
performed in the partial sums algorithms. On the other hand,
the partial sums method requires more transfers. Each nonlocal
y value needed by a PE is transferred in only once in the
complete sums approach and three times (as part of partial ly,
2y2, and 2xy terms) in the partial sums approach.
One aspect of parallel algorithms that may be of interest is

the application of measures evaluating what portion of time
is being spent "managing" the parallelism rather than per-
forming useful computations [21]. One such measure is the
ratio of communication ("overhead"), time to computation
time. For both approaches, for subimage sizes much greater
than match area sizes, the order of magnitude of this ratio for
the 2xy computation (and therefore for RXY, since the 2xy
computation dominates the RXY computation) is proportional

to the square root of the number of PE's and inversely pro-
portional to the geometric mean of the sizes of the image and
match areas:

(communication time)/(computation time)
[R'(c - 1) + C'(r - 1) + (r - 1)(c - 1)]/(R'C'rc).

Under the assumptions that R = C = I, R' = C' = IJNN/, and
r = c = M', it can be shown that this ratio is proportional to
v/IM'.
The SIMD machine model used assumed a multistage

network which can perform each required data transfer in a
single step. Consider instead an SIMD machine where the PE's
are connected in a nearest neighbor pattern, i.e., PE i is con-
nected to PE i + 1, i - 1, i + N1!2, and i - N1'2 (arithmetic
mod N). Examples of such machines are the Illiac. IV [4], DAP
[8], CLIP4 [6], and MPP [3]. In analyzing the two algorithm
approaches, the number of transfer steps must be increased.
Assuming NC = NR = N112, the nearest neighbor connection
scheme requires 1 transfer step to do each of the PE i to PE i
+ 1, i - 1, i + NC, and i - NC transfers, and 2 transfer steps
todoeachofthePEitoPEi+Nc+ l,i+Nc-1,i-Nc
+ 1, and i - NC - 1 transfers. Furthermore, if the match area
extends over more than two PE's (see Fig. 6), additional
multiple data transfer steps will be needed. (Even though two
transfers are required for some steps, typically each transfer
in a nearest neighbor network will be faster than a transfer
through a multistage network.) The results in Tables I-V can
therefore be applied to nearest neighbor connected systems by
modifying the transfer step counts as described. (The number
of transfers for recursive doubling will also be increased.)

In the SIMD machine model in Section I it was assumed
that each processor was associated with a local memory to form
a PE. Consider a different organization where the processors
are separate from the memories, and the interconnection
network is used to connect the processors to the memories.
Interprocessor communications can be accomplished by
writing into and reading from the shared memory. STARAN
is an SIMD machine organized in this way [1], [2]. Since all
memory accesses go through the interconnection network,
there are no explicit interprocessor data transfers (assuming
a network such as one of those mentioned in Section I were
used). Thus, with such an organization the partial sums ap-
proach is faster than the complete sums approach. (In the
STARAN machine, the interconnection network is not flexible
enough to allow the processors to access the appropriate
memories in all cases (e.g., processor i to memory i + Nc +
1). In these cases, an additional pass through the network will
be required to align the data.)

It is also possible to make some general observations -about
the adaptability of the SIMD algorithms and strategies pre-
sented here to the MIMD (multiple instruction stream-mul-
tiple data stream) [9] mode of operation. In an MIMD system
communicating processors have their own instruction streams
as well as their own data streams. Although MIMD processing
allows each processor to operate completely independently of
the others, for this application it is most reasonable to consider

216



SIEGEL et al.: APPROACHES TO IMAGE CORRELATION

a limited MIMD operation in which the processors are per-

forming their computations asynchronously, but with each
processor executing the same program. The performance of
the image correlation algorithms in an MIMD environment
will depend on the actual model assumed for the MIMD
system.
One possible MIMD model is analogous to the initial SIMD

model described, in which each processor has an associated
local memory. For both the complete sums and partial sums
approaches, efficient operation in the MIMD mode will require
giving up the data processing sequencing and interleaving of
operations introduced in the SIMD algorithms to save space.

The complete sums algorithm can be implemented efficiently
(with respect to execution time) by having all PE's initially
send the data points to be shared to the appropriate neigh-
boring PE's. Then the PE's can proceed asynchronously.
Similarly, the partial sums algorithm can be implemented
efficiently if each PE first computes all of its partial sums then
transfers them to the PE's in which they will be needed. Each
PE can then proceed independently. In both cases, since there
will not be the implicit synchronization of SIMD processing,
inter-PE transfer protocols will have to be established.
The alternative model discussed for an SIMD system (i.e.,

all memory accesses processed through the interconnection
network) can also be a model for an MIMD system. With this
model any processor can access any memory module. Processor
i will still treat the subimage in memory i as the "local" data
it is responsible for processing. To implement the complete
sums approach, when processor j needs data from memory i,
i i, it just accesses memoryj through the network. However,
due to the asynchronous nature of MIMD machines, the al-
gorithm timings may be increased as a result of network
and/or memory contention. For the partial sums method to
be feasible in this environment, it will again be necessary to
compute all partial sums at the outset in order to avoid possibly
long delays caused by a processor j requesting a partial sum
that has not yet been computed from memory i. Processing can

then proceed directly, with a provision that there must exist
a mechanism for verifying that a requested partial sum has in
fact been computed, and again with the possibility of degraded
performance due to network and/or memory contention.

VII. CONCLUSIONS

The SIMD algorithms presented demonstrate how SIMD
parallelism can be used to reduce the execution time of com-
putationally intensive image processing tasks. For the image
correlation algorithms, the asymptotic complexity for arith-
metic operations is reduced from O(RCrc) for the serial algo-
rithm to O(RCrc/N) for the N-PE par'tllel algorithms. The
overhead of inter-PE communications incurred has asymptotic
complexity O(C'r + R'c + rc).

In summary, SIMD algorithms to perform the window-
based operations needed for image correlation have been ex-

plored. Two fundamental algorithm strategies were presented,
and their time-space-transfer complexities were compared.

Through studies and analyses such as this, more can be learned
about both the art of parallel programming and the ways in
which parallelism can be exploited in image processing.
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