
Software Support for Non-Numerical Computing
on Multi-core Chips

Jerry Potter

Department of Electrical and Computer Engineering
Colorado State University

Fort Collins, CO 80523-1373 USA

Howard Jay Siegel
Department of Electrical and Computer Engineering

and Department of Computer Science
Colorado State University

Fort Collins, CO 80523-1373 USA

Abstract - Multi-core chips present a new computing
environment that can benefit from software support for
non-numerical applications. Heterogeneous cores will
allow efficient sophisticated multi-level parallel
processing. Techniques are described that enable the
association of the elements of related heterogeneous
SIMD vectors. These techniques can be used for
processing arrays of records, dynamic allocation of a
core’s memory and for imposing a multitasking layer of
parallelism over a data parallel layer. Some of the
operating system and hardware modifications needed to
support these techniques are discussed. A version of the
Smith Waterman algorithm for DNA sequence
comparison was investigated briefly to study some of the
advantages of an associative bit-serial core.

Keywords: associative processing, multi-core chips,
multi-level parallelism, parallel processing, SIMD

1 Introduction

 Multi-core chips have been demonstrated to be very
effective for data intensive applications such as graphics.
An important question is: “Can this computing power be
extended to other areas?” Existing chips have only a few
cores, but chips with 10s of cores have been produced
and chips with 1000s of cores are envisioned. These
“massive” multi-core architectures with on-chip caches
are similar in nature to the Processor-In-Memory (PIM)
[7] and Intelligent RAM (IRAM) [9] designs of the
1990s, and the bit serial SIMDs (single instruction,
multiple data stream [3]) of the 1970/80s such as the
Massively Parallel Processor (MPP) [12] and Connection
Machine (CM) [5]. The success or failure of a new
architecture is often decided by the software model upon
which it is based. Specifically, the PIM, IRAM, MPP
and CM architectures were hampered because there was

 This research was supported in part by the Colorado
State University George T. Abell Endowment.

no appropriate software support for fine grain or data
parallelism.
 Heterogeneous multi-core chips with on-chip memory
provide an opportunity to address the problems of large-
scale multi-level parallel processing. In addition to
having multiple cores, each core can exploit vector
SIMD operations.
 This paper describes how the associative computing
model can provide data parallel [14] as well as
multitasking software support for pattern matching and
other non-numerical problems. Languages based on the
associative model such as ASC [11] are easy to use and
support multilevel parallelism, but require some
operating system enhancements and minor hardware
improvements to future multi-core designs. These
modifications are discussed in this paper.

2 Background

 Many non-numerical applications, including
bioinformatics, database and web searching, rely more
on pattern matching than on processing homogeneous
arrays of vectors as is typical of graphics processing.
These applications also process large volumes of data
and can benefit from multi-core SIMD chips, but graphic
processor instruction sets are designed for processing
arrays of vectors of homogeneous data of standard
numerical data types – i.e., bytes, integers, floats, etc. In
contrast, most pattern matching algorithms require
processing heterogeneous vectors of different precisions
and types.
 Many languages, such as C++, organize related
heterogeneous data into structures or records that in turn
are collected into files. Searching data organized as
records with vector hardware can result in “baroque”
expressions1, due in part to the fact that structures
organize data orthogonal to the desired direction for
vector processing (as shown in Figure 1). Each vector
consists of homogeneous data (data of the same type),

1 The IBM Cell Broadband Engine Programming
Handbook spends almost 50 pages on how to develop
SIMD programs (p. 619- 667).

where each vector in Figure 1 is a vertical collection of
squares. Each record is a collection of (possibly)
heterogeneous data fields (data items of different types),
where each record in Figure 1 is a horizontal collection
of squares. Thus, each vector contains items of the same
type, one from each of the different records. Each record
consists of items of (possibly) different types, one from
each of the different vectors. SIMD programming of
pattern matching and other non-numerical applications
could be simplified by an approach that emphasized
heterogeneous associations of homogeneous vectors
instead of data structures consisting of homogeneous
records of heterogeneous fields.

 record of
 heterogeneous fields

ve
ct

or
 o

f
ho

m
og

en
eo

us
 d

at
a

Figure 1 – Record versus Vector Organization

 Moreover, some conventional operating system
functions, such as memory allocation, were designed for
records and are not efficient for processing large vectors
across multiple cores. One possible solution is an
Associative Data Parallel Operating System (ADPOS)
for the chip’s cores augmenting the existing OS on the
control processor. This would support an OS/language
family extension of the Linux/C++ family of software
for SIMD cores that would improve performance of
multi-core chips on non-numerical applications.

3 Associative computation

3.1 Associative cells

 The associative model of computing is a data parallel
model that assumes that there is a dedicated cell of
processor and memory for every record of data even
though the data is organized as vectors (as shown in
Figure 1). In conventional languages, the size of the
vectors must be maintained by the user and must be
specified whenever a data parallel loop is to be executed.
In associative computing, the operating system maintains
the size of the vectors based on the number of records in
memory at run time, i.e., the number of records is the

size (length) of the data vectors (see Section 4.1).
Because the size of the vectors is unknown at compile
time, the programmer uses a $ notation to indicate that
the entire vector is to be processed. Thus

b[$] = c[$] + d[$] ;

replaces

for (i=begin ; i<end ; i++)
 b[i] = c[i] + d[i] ;

 Message Passing-Shared Memory Processor (MP-
SMP) supercomputers can be difficult to program, as
indicated in the following quote from the National
Partnership for Advanced Computational Infrastructure
(NPACI) Archives: “The teraflops system will be a
Message Passing-Shared Memory Processor (MP-SMP)
machine … An MP-SMP machine attempts to addresses
(sic) both of these limitations, but this is accompanied by
an increase in programming complexity (emphasis
added)” [15].

As hardware becomes cheaper, the cost of
programming becomes more significant. If the increase
in chip capacity continues, shortly there will be
thousands of processors on a chip and cost effective
programming will be a major issue. Note that the
NPACI article is concerned about the difficulty of
programming 10s and 100s of processors not 1,000s and
10,000s. George A. Miller has observed [8] that people
are limited in their ability to handle more than about
seven tasks simultaneously.
 One component of the increased complexity of
programming supercomputers is that using conventional
multitasking languages often requires breaking large
loops into many smaller loops on different processors,
greatly increasing the number of tasks that have to be
coordinated. However, the associative model processes
a vector in one logical step; no matter how large it is,
using virtual cells when necessary. Thus, a file with
10,000 records maps directly onto 10,000 virtual cells.

3.2 Associative flag vectors

 Because the index variable has been removed from the
notation, associative computing uses flag vectors as an
economical method of relating a field of a record in one
vector with the associated field in a related vector.
Consider a “payroll” data base of heterogeneous data as
shown in Figure 2. The names are alphanumeric, social
security numbers are integer and the salaries are floating
point. Data records, such as these in data structure
format, cannot, in general, be efficiently processed on
vector SIMDs because 1) a homogeneous operation can
not be applied to the various heterogeneous fields in the
record, 2) records tend to be rather short for vector
processing – several hundred fields at most, and 3) the

calculations on one vector cannot easily be associated
with the other vectors.

Name Social
Security

Salary Respond-
ers

Smith 1234567 100,000.00 False
Jones 0987654 5,000.00 True
Potter 1112233 50,000.00 False

Figure 2 – An Associative Responders Flag Vector

 However, given that you have a sufficiently large file
of records, say 10,000, with the same format, they can be
organized into vectors of 10,000 names, 10,000 social
security numbers and 10,000 salaries. These vectors can
be processed efficiently using vector operations, but a
method is needed to allow the association of one element
of a vector to be related to the corresponding element of
a record in another vector.
 Figure 2 shows an associative flag vector labeled
Responders that is used to associate a record element in
one vector with the corresponding record element in
another vector. An associative flag vector replaces the
need for indices for data parallel operations. For
example, the C++ computation:

for (i=begin ; i<end ; i++)
 if (Salary[i] >= 50000)
 Tax[i] = Salary[i] * 0.15 ;
 else
 Tax[i] = Salary[i] * 0.05 ;

would be replaced by

 if (Salary[$] >= 50000)
 Tax[$] = Salary[$] * 0.15 ;
 else
 Tax[$] = Salary[$] * 0.05 ;

where the Responders flag vector keeps track of the
comparison so that the True portion is executed for the
True inequality results and the False portion is executed
for the False inequality results.
 Flag vectors can be used to indicate parallel vector to
scalar reduction and the insertion of scalar data into a
vector. If the Falkoff minimum field algorithm [1] is
used to find the smallest salary, the result is an
associative flag vector in the Responders field. The
associative flag vector can be used in a reduction
operation to extract a datum flagged by the vector. Thus,
the reduction operation allows the logical association
between the heterogeneous Name and Salary vectors to
return the name associated with the salary found, i.e.,
“Jones,” not the salary itself. This can be written as:

 Name[minimum(Salary)] .

Similarly, related selected items can be changed by

 Name[minimum(Salary)] = “Johnson”.

 Flag vectors are efficient and easy to use because one
fixed size vector can replace a variable number of
indices. If an array of indices is use to record a variable
number of matches at random locations in a conventional
architecture, scatter-gather hardware [6] (p. 73) is
needed to perform vector operations.

3.3 Associative searching

 Another reduction in the complexity of associative
computer algorithms is due to parallel associative
searching in place of indexing, pointing and linked lists.
Data does not need to be sorted if efficient data parallel
searching is available. More specifically, in a
conventional computer, data records can only be
organized by one key at a time: alphabetically,
numerically, by date, etc., and the programmer must
keep track of the ordering so that the data can be
reordered when necessary. But when using data parallel
associative searching, all fields can be efficiently
searched without reordering the data. That is, the data in
Figure 2 is unorganized, but the efficiency of the search
for the minimum salary is unaffected.
 The parallel searching capability allows new
algorithms for difficult problems to be developed. For
example, by definition, the processing of raw data
requires searching of unorganized data. During the
analysis of the data, multiple alternative organizational
keys, or structure codes [11], can be added to the records
without the need to sort or resort the data. Figure 3
illustrates a key for organizing the data based on the
Name vector.

Name Social
Security

Salary Key Respond-
ers

Smith 1234567 100,000.00 3 False
Jones 0987654 5,000.00 1 True
Potter 1112233 50,000.00 2 False

Figure 3 – An Organizational Key

3.4 Associative communication

 The virtual associative cells are treated as separate
processors in the associative model. Nearest neighbor
communication between (virtual) processors is achieved
by moving all items up or down equal amounts in
unison. This is denoted by modifying the $ notation by
an offset such as b[$+1] or c[$-5] assuming the data is
sorted, either naturally when input, or by software after
an organizational key has been established. This
communication can be accomplished by a regular “shift”
or data alignment operation. More complex
communication patterns can be easily expressed by using

variables with this notation, e.g., b[$+offset]. The
variable may be a scalar or a vector. If scalar, the same
offset applies to all elements. If a vector, a different
offset may be applied to each element. The hardware for
the vector version may become prohibitively expensive
for on-chip communication as this notation is equivalent
to message passing.

4 Associative data parallel
operating system

 The trend toward on-chip memories addresses the long
memory latency problem. But in order to use on-chip
memory efficiently an ADPOS is needed. Conventional
sequential and parallel operating systems are “pointer
based” and accomplish memory management using
linked lists, stacks and heaps. The single instruction
stream aspect of associative parallelism does not work
efficiently with pointer based systems. Consequently, an
associative parallel approach to on-chip memory
management that is compatible with the conventional
operating systems of the chip’s controller is an essential
component of a comprehensive Parallel and Distributed
Operating System (PDOS).
 The PDOS must divide the on-chip memory
management problem into two separate tasks: one for
programs and one for parallel data. The program OS
that must run on the chip’s controller can be equivalent
to a conventional Linux OS with the standard stack of
activation records. The memory heap, however, would
be for local scalars and constants only. The associative
component would handle the parallel data and would 1)
allocate the (virtual) memory-processor cells, 2)
administer the associative multitasking component and
3) control data flow into and out of the cores’ on-chip
memories.

4.1 Memory Management

 An associative Busy/Idle (B/I) flag vector is used to
allocate and release cells. When a new record is input,
the ADPOS allocates a new cell by setting the associated
B/I vector bit to busy. When the cell is no longer needed
it is released for reuse by setting the bit to idle, thus
maintaining effective memory utilization without
garbage collection. The B/I vector identifies the active
cells that are to be processed by the $ notation in the
SIMD expressions mentioned earlier.
 When applied to multi-core SIMD chips, the
associative B/I vector can be easily extended to virtual
cells. In order to implement virtual cells, the OS need
only to buffer two additional associative vectors
(responders and results) with each page of data records.
The responders vector maintains the logical status of the
virtual cells, the results vector contains the temporary

results and the B/I vector maintains memory allocation
status.
 As discussed in Section 3.1, because the ADPOS
maintains a record of active cells, the inner most “for
loop” is replaced by the $ notation, eliminating the need
for the programmer to maintain a count of the number of
records to be processed. This is in contrast to the MP-
SMP model mentioned earlier where not only must the
number of records be maintained but the parceling of
those records to the various processors must be
maintained, the communication between processors must
be maintained, etc.
 The associative B/I vector functionality can be
expanded to support a hierarchical multitasking data
parallel model of computing discussed in Section 4.2.

4.2 Multitasking

 In the traditional associative SIMD model, where
every record has a dedicated processor, some processors
may be idle while others are busy. Multiple Associative
Computing (MASC) addresses this issue [10]. As a
simple example of its execution, assume a population
can be divided into two mutually exclusive sets. For
example, those citizens who earn $50K or more annually
and those who earn less. Assume also that the tax rate
for those earning less than $50K is 5% while the tax rate
for those earning $50K or more is 15%. The traditional
associative data parallel method for calculating the taxes
of all citizens, as described in Section 3.2, is to select all
citizens who earn less than $50K and calculate their
taxes (the processors associated with those citizens that
earn $50K or more are idle during this step) and then
select all citizens who earn $50K or more and calculate
their taxes (the processors associated with those citizens
that earn less than $50K are idle during this step). That
is, the program for both cases must be broadcast to all
processors but is executed only by those which require it.
As a result the processors are, on average, idle half of the
time.
 Because the citizens form mutually exclusive groups,
both computations can take place simultaneously if
hardware is provide to allow both instruction streams to
be sent in parallel and each processor executes the
instruction stream appropriate for it. Figure 4 illustrates
how the Responders register can be augmented by a
Task ID register to address this issue. ADPOS
administers the processors by updating the Task ID
register of a cell when a new task is assigned. The
instruction stream of Figure 4 would carry the task IDs
as well as the instructions. An instruction would only be
executed by those cells with 1) the correct task ID and 2)
a True responders bit. Expanding this technique to more
than two cases reduces the problem with case statements,
which Hennessy and Patterson [4] (p. 650) identify as a
major drawback to SIMD computation.

:
:

:
:

:
:

Tax = Salary *.05 01

Tax = Salary *.15 02

Responders Task
 ID Salary Tax

 50,000.00 7,500.00

 5,000.00 250.00

True 02

 True 01

Instruction stream

Figure 4 – MASC – A Multilevel Parallel Architecture

5 Hardware

 Some hardware enhancements are needed to support full
associative computing on multi-core chips, such as a
complete on-chip controller capable of running a traditional
multitasking OS so that the chip is a complete parallel
processor, not an adjunct array processor. In more
advanced applications, the “host” processor would become
the I/O server for the multi-core chip. The need for on-chip
communication was discussed briefly in Section 3.4. A
brief discussion of hardware support for some of the other
items follows.

5.1 Heterogeneous cores

 Non-numerical applications would benefit from
heterogeneous cores. That is, cores which are specialized
for the different data types, such as an integer core, a 32 bit
floating point core, etc. A bit serial core would be
beneficial for the associative computing model. In
particular, the Falkoff maximum value and related
algorithms are used extensively and they work best with bit
serial data. Conventional vector register cores can be used
to find minimum and maximum values, but they can not
find the least upper bound and greatest lower bound
relative to a specified value in one pass as can the modified
Falkoff algorithm [11] (p. 50). These operations are helpful
when processing structure codes and organizational keys.

5.2 Flag vectors

 Associative flag vectors allow the elements of one
vector to be associated with the corresponding elements of
another. Many multi-core designs utilize fixed size vector
registers. Assuming a 128 bit vector register, a search on
sixteen 8 bit data elements will perform 16 comparisons in
parallel where each comparison is separated on 8 bit
boundaries. While a search on eight 16 bit data elements
will perform 8 comparisons in parallel. Because the fixed
size vector register supports varying size fields, flag vector
alignment between vectors of different types can be
difficult. That is, a search on sixteen 8 bit data elements
will yield a 16 bit flag vector. In order to maintain the
element by element association with, say 32 bit floating
point data, in other 128 bit registers, the hardware must
separate the 16 bit flag vector into four 4 bit flags, one for
each of the four 128 bit registers containing the associated
32 bit data. Special flag vector operations that can divide
and allocate the bit flags appropriately are necessary.

5.3 Parallel to scalar reduction

 The reduction operation, described in Section 3.2, is used
frequently and needs to be supported in the hardware. A
flag vector has a one (True) in the i-th position and zeros
(False) elsewhere to signify to the hardware that the i-th
element of the associated vector is to be extracted. More
than one element of a vector can be flagged and with
hardware support, the values of the associated vector can be
extracted for processing one by one in a loop by “updating”
the flag vector after every extraction.

VERTICAL_EXT[$] = VERTICAL[$-1][J] – SIGMA;
VERTICAL_INT[$] = VERTICAL[$-1][J] – RHOSIGMA;
VERTICAL_EXT[$] > VERTICAL_INT[$] ?
 VERTICAL[$,J] = VERTICAL_EXT[$] : VERTICAL[$,J] = VERTICAL_INT[$];
VERTICAL[$,J] > 0 ?
 VERTICAL[$,J] = VERTICAL[$,J] : VERTICAL[$,J] = 0;
HORIZONTAL_EXT[$] = HORIZONTAL[$-1][J] – SIGMA;
HORIZONTAL_INT[$] = HORIZONTAL[$-1][J] – RHOSIGMA;
HORIZONTAL_EXT[$] > HORIZONTAL_INT[$] ?
 HORIZONTAL[$,J] = HORIZONTAL_EXT[$] : HORIZONTAL[$,J] = HORIZONTAL_INT[$];
HORIZONTAL[$,J] > 0 ?
 HORIZONTAL[$,J] = HORIZONTAL[$,J] : HORIZONTAL[$,J] = 0;
DIAGONAL[$,J] = DIAGONAL[$-1][J-1] + DELTA[SEQb[J]];
DIAGONAL[$,J] > VERTICAL[$,J] ?
 DIAGONAL[$,J] = DIAGONAL[$,J] : DIAGONAL[$,J] = VERTICAL[$,J];
DIAGONAL[$,J] > HORIZONTAL[$,J] ?
 DIAGONAL[$,J] = DIAGONAL[$,J] : DIAGONAL[$,J] = HORIZONTAL[$,J];

Figure 5 – Smith-Waterman Bit-Serial Data Parallel Pseudo Code

5.4 Branching operations

 Additional associative instructions such as an efficient
“branch on register zero” instruction are important.
Considerable time can be saved if there is the capability to
determine that all responders to a query are false and the
associated code can be skipped. Some algorithms branch
frequently over short distances so that a branch mechanism
that does not disrupt the instruction pipeline would be most
helpful. One possibility is a “branch” that simply inhibits
the execution of the next 1 or 2 instructions rather than
disrupting the pipeline. The maximum number of
instructions to skip depends on the costs involved, such as
the length of the pipe, etc.

5.5 Multitasking instruction stream

 A multitasking instruction stream can be implemented in
several different ways. For example, it could be
implemented either physically with a “very wide instruction
stream” or in the time domain where the instruction
delivery time is much shorter than its execution time.
ADPOS needs one or two instruction streams dedicated to
administering the cores. Special control instructions for
ADPOS that cannot be ignored by the cells would also be
needed. For example, “listen to instruction stream n,” start
and halt.
 Section 4.2 illustrates how an IF statement can be
mapped onto multiple processors automatically by ADPOS.
The associative computing model assumes that Miller’s
observation is correct and that a programmer can manage
approximately seven tasks simultaneously. Thus a
minimum of three instruction steams and a maximum of
nine or ten would be reasonable.

6 Smith-Waterman algorithm

 As a test of the effectiveness of an associative bit serial
core, the Smith-Waterman algorithm for detecting the
similar regions in two protein sequences was programmed
in ASC, an associative computing emulation language
described in [11]. The ASC program was used to verify the
pseudo code design shown in Figure 5. The pseudo code
was then used to estimate the execution time of the
algorithm given the proposed associative model
enhancements. One advantage of this implementation of the
algorithm is that it minimizes branching. The code shown
does not require any branching because it is based on a bit
serial “select bits” operation represented by the C++
conditional operator [6] (p. 636). Accordingly, the
multitasking aspect described in Section 4.2 was not needed
and was not investigated.

It was estimated that with this design, using the
associative instructions described in this paper, two
sequences of 128 nucleotides each can be processed in
approximately 14,336 instructions. On an 8-core chip at 4
Ghz this equates to about 36 billion cell updates per second.
When adjusted for the number of cores and their speed, this
is about 50% faster than the 3 billion cell updates per
second reported in Farrar [2] 2.
 In the optimized design, the overall execution time is
dominated by the movement of data to and from the
registers so that the advantage of a bit-serial multi-core
implementation would be the ability to 1) avoid branching
and the associated pipeline disruptions, and 2) adjust the
size of the fields used to score the similarity of the regions

2 It is important to note that the envisioned hardware
designs used in this estimate have not been implemented
and may not produce the anticipate results while the cited
report was obtained on actual hardware.

to reflect the precision required at each stage of the
algorithm thus optimizing the movement of data between
memory and registers.

7 Conclusion and future work

 Programming multi-core parallel processors using
conventional multitasking approaches is a difficult task.
The associative data parallel paradigm promises to simplify
that task, but several hardware modifications are necessary
to effectively implement it. Specifically, 1) the core
processors’ vector operations need to be augmented with
associative flag vectors to i) facilitate the coordination of
vector operations on heterogeneous data, ii) reduce or
eliminate the need for scatter-gather operations, iii) support
dynamic data parallel memory allocation, iv) reduce the
burden of partitioning tasks among multiple processors, v)
support data parallel to scalar reduction and the insertion
of scalar data into vectors; 2) a bit serial core is needed to
support associative data parallel searching for the
maximum, minimum, LUB, and GLB elements in a vector;
3) special hardware is needed to combine and partition the
flag vectors when the logical vector to hardware vector
register mappings vary due to the type of data being
processed; 4) the flag vector needs to be augmented with a
task ID field to support multitasking, then with an
expanded fully capable control processor, multilevel
heterogeneous parallelism can be supported.
 The hardware modifications described here are primarily
on a per core basis. Our future efforts will concentrate on
1) implementing associative support software on existing
multi-core chips to verify our model, 2) determining what
specific communication hardware enhancements are needed
to support the associative model across the multiple cores
of a chip, and 3) how the associative paradigm can be
mapped across multiple multi-core chips.

8 References

[1] Falkoff, D., “Algorithms for Parallel-Search
Memories,” J. ACM, Vol. 9, 1962, pp. 488-511.
[2] Farrar, M., “Smith-Waterman Speeds Database
Searches Six Times Over Other SIMD Implementations,”
Bioinformatics, Vol. 23, 2007, pp. 156-161.
[3] Flynn, M. J., “Very High-speed Computing Systems,”
Proceedings of the IEEE, Vol. 54, Dec. 1966, pp. 1901-
1909.
[4] Hennessy, J. L. and D. A. Patterson, Computer
Architecture: A Quantitative Approach, Morgan Kaufman
Publishers, Amsterdam, 2003.
[5] Hillis, W. D., The Connection Machine, MIT Press,
1989.
[6] IBM Cell Broadband Engine Programming Handbook,
Version 1.0, April 19, 2006.
[7] Kogge, P. M., T. Sunaga, H. Miyataka, K. Kitamura,
and E. Retter, “Combined DRAM and Logic Chip for

Massively Parallel Applications,” 16th IEEE Conference on
Advanced Research in VLSI, 1995.
[8] Miller, G. A., “The Magical Number Seven, Plus or
Minus Two: Some Limits on Our Capacity for Processing
Information,” The Psychological Review, Vol. 63, 1956, pp.
81-97.
[9] Patterson, D., T. Anderson, N. Cardwell, R. Froman, K.
Keeton, C. Kozyrakis, R. Thomas and K. Yelick, “A Case
for Intelligent RAM,” IEEE Micro, Vol. 17, No. 2, 1997,
pp. 34-44.
[10] Potter, J., J. Baker S. Scott, A. Bansal, C. Leangsuksun
and C. Asthagiri, “ASC: An Associative Computing
Paradigm,” in Associative Processing and Processors,
edited by A. Krikelis and C. Weems, IEEE Computer
Society, Los Alamitos, CA, 1997, pp. 188-194.
[11] Potter, J., Associative Computing – A Programming
Paradigm for Massively Parallel Computers, Plenum
Publishing, New York, 1992.
[12] Potter, J. (ed.), The Massively Parallel Processor, MIT
Press, 1985.
[13] Rognes, T. and E. Seeberg, “Six-fold Speed-up of the
Smith-Waterman Sequence Database Searches Using
Parallel Processing on Common Microprocessors,”
Bioinformatics, Vol. 16, 2000, pp. 699-706.
[14] Siegel, H. J., L. Wang, J. J. So, and M. Maheswaran,
“Data Parallel Algorithms,” in Parallel and Distributed
Computing Handbook, edited by A. Y. Zomaya, McGraw-
Hill, New York, NY, 1996, pp. 466-499.
[15] “Preparing for the Arrival of the Teraflops SP,”
NPACI Online, Vol. 3, Issue 8, April 14,
www.npaci.edu/online/v3.8/SCAN1.html, 1999.

