
Software Support for Non-Numerical Computing  
on Multi-core Chips 

 
Jerry Potter  

Department of Electrical and Computer Engineering 
Colorado State University 

Fort Collins, CO 80523-1373 USA 
 

Howard Jay Siegel 
Department of Electrical and Computer Engineering

and Department of Computer Science 
Colorado State University 

Fort Collins, CO 80523-1373 USA 
 

 

Abstract - Multi-core chips present a new computing 
environment that can benefit from software support for 
non-numerical applications. Heterogeneous cores will 
allow efficient sophisticated multi-level parallel 
processing. Techniques are described that enable the 
association of the elements of related heterogeneous 
SIMD vectors.  These techniques can be used for 
processing arrays of records, dynamic allocation of a 
core’s memory and for imposing a multitasking layer of 
parallelism over a data parallel layer.  Some of the 
operating system and hardware modifications needed to 
support these techniques are discussed. A version of the 
Smith Waterman algorithm for DNA sequence 
comparison was investigated briefly to study some of the 
advantages of an associative bit-serial core.  

Keywords: associative processing, multi-core chips, 
multi-level parallelism, parallel processing, SIMD 

 
1 Introduction 

 
 Multi-core chips have been demonstrated to be very 
effective for data intensive applications such as graphics.  
An important question is: “Can this computing power be 
extended to other areas?”  Existing chips have only a few 
cores, but chips with 10s of cores have been produced 
and chips with 1000s of cores are envisioned.  These 
“massive” multi-core architectures with on-chip caches 
are similar in nature to the Processor-In-Memory (PIM) 
[7] and Intelligent RAM (IRAM) [9] designs of the 
1990s, and the bit serial SIMDs (single instruction, 
multiple data stream [3]) of the 1970/80s such as the 
Massively Parallel Processor (MPP) [12] and Connection 
Machine (CM) [5].  The success or failure of a new 
architecture is often decided by the software model upon 
which it is based.  Specifically, the PIM, IRAM, MPP 
and CM architectures were hampered because there was 

                                                           
                                                          

 This research was supported in part by the Colorado 
State University George T. Abell Endowment. 

no appropriate software support for fine grain or data 
parallelism.  
 Heterogeneous multi-core chips with on-chip memory 
provide an opportunity to address the problems of large-
scale multi-level parallel processing.  In addition to 
having multiple cores, each core can exploit vector 
SIMD operations. 
 This paper describes how the associative computing 
model can provide data parallel [14] as well as 
multitasking software support for pattern matching and 
other non-numerical problems. Languages based on the 
associative model such as ASC [11] are easy to use and 
support multilevel parallelism, but require some 
operating system enhancements and minor hardware 
improvements to future multi-core designs.  These 
modifications are discussed in this paper.
 
2 Background 
 
 Many non-numerical applications, including 
bioinformatics, database and web searching, rely more 
on pattern matching than on processing homogeneous 
arrays of vectors as is typical of graphics processing.  
These applications also process large volumes of data 
and can benefit from multi-core SIMD chips, but graphic 
processor instruction sets are designed for processing 
arrays of vectors of homogeneous data of standard 
numerical data types – i.e., bytes, integers, floats, etc.  In 
contrast, most pattern matching algorithms require 
processing heterogeneous vectors of different precisions 
and types.  
 Many languages, such as C++, organize related 
heterogeneous data into structures or records that in turn 
are collected into files.  Searching data organized as 
records with vector hardware can result in “baroque” 
expressions1, due in part to the fact that structures 
organize data orthogonal to the desired direction for 
vector processing (as shown in Figure 1).  Each vector 
consists of homogeneous data (data of the same type), 

 
1 The IBM Cell Broadband Engine Programming 
Handbook spends almost 50 pages on how to develop   
SIMD programs (p. 619- 667). 



where each vector in Figure 1 is a vertical collection of 
squares. Each record is a collection of (possibly) 
heterogeneous data fields (data items of different types), 
where each record in Figure 1 is a horizontal collection 
of squares. Thus, each vector contains items of the same 
type, one from each of the different records.  Each record 
consists of items of (possibly) different types, one from 
each of the different vectors.  SIMD programming of 
pattern matching and other non-numerical applications 
could be simplified by an approach that emphasized 
heterogeneous associations of homogeneous vectors 
instead of data structures consisting of homogeneous 
records of heterogeneous fields. 
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Figure 1 – Record versus Vector Organization 

 
 Moreover, some conventional operating system 
functions, such as memory allocation, were designed for 
records and are not efficient for processing large vectors 
across multiple cores. One possible solution is an 
Associative Data Parallel Operating System (ADPOS) 
for the chip’s cores augmenting the existing OS on the 
control processor.  This would support an OS/language 
family extension of the Linux/C++ family of software 
for SIMD cores that would improve performance of 
multi-core chips on non-numerical applications. 
 
3 Associative computation 
 
3.1 Associative cells 
 
 The associative model of computing is a data parallel 
model that assumes that there is a dedicated cell of 
processor and memory for every record of data even 
though the data is organized as vectors (as shown in 
Figure 1).  In conventional languages, the size of the 
vectors must be maintained by the user and must be 
specified whenever a data parallel loop is to be executed.  
In associative computing, the operating system maintains 
the size of the vectors based on the number of records in 
memory at run time, i.e., the number of records is the 

size (length) of the data vectors (see Section 4.1).  
Because the size of the vectors is unknown at compile 
time, the programmer uses a $ notation to indicate that 
the entire vector is to be processed.  Thus 
 
b[$] = c[$] + d[$] ; 
 
replaces 
 
for (i=begin ; i<end ; i++) 
  b[i] = c[i] + d[i] ; 
 
 Message Passing-Shared Memory Processor (MP-
SMP) supercomputers can be difficult to program, as 
indicated in the following quote from the National 
Partnership for Advanced Computational Infrastructure 
(NPACI) Archives: “The teraflops system will be a 
Message Passing-Shared Memory Processor (MP-SMP) 
machine … An MP-SMP machine attempts to addresses 
(sic) both of these limitations, but this is accompanied by 
an increase in programming complexity (emphasis 
added)” [15]. 

As hardware becomes cheaper, the cost of 
programming becomes more significant.  If the increase 
in chip capacity continues, shortly there will be 
thousands of processors on a chip and cost effective 
programming will be a major issue.  Note that the 
NPACI article is concerned about the difficulty of 
programming 10s and 100s of processors not 1,000s and 
10,000s. George A. Miller has observed [8] that people 
are limited in their ability to handle more than about 
seven tasks simultaneously.  
 One component of the increased complexity of 
programming supercomputers is that using conventional 
multitasking languages often requires breaking large 
loops into many smaller loops on different processors, 
greatly increasing the number of tasks that have to be 
coordinated.  However, the associative model processes 
a vector in one logical step; no matter how large it is, 
using virtual cells when necessary.  Thus, a file with 
10,000 records maps directly onto 10,000 virtual cells.   
 
3.2 Associative flag vectors 
 
  Because the index variable has been removed from the 
notation, associative computing uses flag vectors as an 
economical method of relating a field of a record in one 
vector with the associated field in a related vector.  
Consider a “payroll” data base of heterogeneous data as 
shown in Figure 2.  The names are alphanumeric, social 
security numbers are integer and the salaries are floating 
point.  Data records, such as these in data structure 
format, cannot, in general, be efficiently processed on 
vector SIMDs because 1) a homogeneous operation can 
not be applied to the various heterogeneous fields in the 
record, 2) records tend to be rather short for vector 
processing – several hundred fields at most, and 3) the 



calculations on one vector cannot easily be associated 
with the other vectors. 
    

Name Social  
Security 

Salary  Respond- 
ers 

Smith 1234567 100,000.00  False 
Jones  0987654     5,000.00  True 
Potter 1112233   50,000.00  False 

Figure 2 – An Associative Responders Flag Vector 
 
 However, given that you have a sufficiently large file 
of records, say 10,000, with the same format, they can be 
organized into vectors of 10,000 names, 10,000 social 
security numbers and 10,000 salaries.  These vectors can 
be processed efficiently using vector operations, but a 
method is needed to allow the association of one element 
of a vector to be related to the corresponding element of 
a record in another vector. 
 Figure 2 shows an associative flag vector labeled 
Responders that is used to associate a record element in 
one vector with the corresponding record element in 
another vector. An associative flag vector replaces the 
need for indices for data parallel operations.  For 
example, the C++ computation: 
 
for (i=begin ; i<end ; i++) 
  if  (Salary[i] >= 50000) 
      Tax[i] = Salary[i] * 0.15 ; 
  else 
      Tax[i] = Salary[i] * 0.05 ; 
 
would be replaced by  
 
  if  (Salary[$] >= 50000) 
      Tax[$] = Salary[$] * 0.15 ; 
  else 
      Tax[$] = Salary[$] * 0.05 ; 
 
where the Responders flag vector keeps track of the 
comparison so that the True portion is executed for the 
True inequality results and the False portion is executed 
for the False inequality results. 
 Flag vectors can be used to indicate parallel vector to 
scalar reduction and the insertion of scalar data into a 
vector.  If the Falkoff minimum field algorithm [1] is 
used to find the smallest salary, the result is an 
associative flag vector in the Responders field. The 
associative flag vector can be used in a reduction 
operation to extract a datum flagged by the vector. Thus, 
the reduction operation allows the logical association 
between the heterogeneous Name and Salary vectors to 
return the name associated with the salary found, i.e., 
“Jones,” not the salary itself.  This can be written as: 
 
 Name[minimum(Salary)] . 
 
Similarly, related selected items can be changed by 

 
   Name[minimum(Salary)] = “Johnson”. 
 
 Flag vectors are efficient and easy to use because one 
fixed size vector can replace a variable number of 
indices.  If an array of indices is use to record a variable 
number of matches at random locations in a conventional 
architecture, scatter-gather hardware [6] (p. 73) is 
needed to perform vector operations.   
 
3.3 Associative searching 
 
 Another reduction in the complexity of associative 
computer algorithms is due to parallel associative 
searching in place of indexing, pointing and linked lists.  
Data does not need to be sorted if efficient data parallel 
searching is available.  More specifically, in a 
conventional computer, data records can only be 
organized by one key at a time: alphabetically, 
numerically, by date, etc., and the programmer must 
keep track of the ordering so that the data can be 
reordered when necessary.  But when using data parallel 
associative searching, all fields can be efficiently 
searched without reordering the data.  That is, the data in 
Figure 2 is unorganized, but the efficiency of the search 
for the minimum salary is unaffected. 
 The parallel searching capability allows new 
algorithms for difficult problems to be developed.  For 
example, by definition, the processing of raw data 
requires searching of unorganized data.  During the 
analysis of the data, multiple alternative organizational 
keys, or structure codes [11], can be added to the records 
without the need to sort or resort the data.  Figure 3 
illustrates a key for organizing the data based on the 
Name vector. 
 

Name Social 
Security 

Salary Key Respond-
ers 

Smith 1234567 100,000.00 3 False 
Jones  0987654     5,000.00 1 True 
Potter 1112233   50,000.00 2 False 

Figure 3 – An Organizational Key 
 
3.4 Associative communication 
 
 The virtual associative cells are treated as separate 
processors in the associative model.  Nearest neighbor 
communication between (virtual) processors is achieved 
by moving all items up or down equal amounts in 
unison.  This is denoted by modifying the $ notation by 
an offset such as b[$+1] or c[$-5] assuming the data is 
sorted, either naturally when input, or by software after 
an organizational key has been established.  This 
communication can be accomplished by a regular “shift” 
or data alignment operation.  More complex 
communication patterns can be easily expressed by using 



variables with this notation, e.g., b[$+offset].  The 
variable may be a scalar or a vector.  If scalar, the same 
offset applies to all elements.  If a vector, a different 
offset may be applied to each element.  The hardware for 
the vector version may become prohibitively expensive 
for on-chip communication as this notation is equivalent 
to message passing.  
 
4 Associative data parallel  
operating system 
 
 The trend toward on-chip memories addresses the long 
memory latency problem. But in order to use on-chip 
memory efficiently an ADPOS is needed.  Conventional 
sequential and parallel operating systems are “pointer 
based” and accomplish memory management using 
linked lists, stacks and heaps.  The single instruction 
stream aspect of associative parallelism does not work 
efficiently with pointer based systems.  Consequently, an 
associative parallel approach to on-chip memory 
management that is compatible with the conventional 
operating systems of the chip’s controller is an essential 
component of a comprehensive Parallel and Distributed 
Operating System (PDOS). 
 The PDOS must divide the on-chip memory 
management problem into two separate tasks: one for 
programs and one for parallel data.  The program OS 
that must run on the chip’s controller can be equivalent 
to a conventional Linux OS with the standard stack of 
activation records.  The memory heap, however, would 
be for local scalars and constants only.  The associative 
component would handle the parallel data and would 1) 
allocate the (virtual) memory-processor cells, 2) 
administer the associative multitasking component and 
3) control data flow into and out of the cores’ on-chip 
memories. 
 
4.1 Memory Management 
 
 An associative Busy/Idle (B/I) flag vector is used to 
allocate and release cells.  When a new record is input, 
the ADPOS allocates a new cell by setting the associated 
B/I vector bit to busy.  When the cell is no longer needed 
it is released for reuse by setting the bit to idle, thus 
maintaining effective memory utilization without 
garbage collection. The B/I vector identifies the active 
cells that are to be processed by the $ notation in the 
SIMD expressions mentioned earlier. 
 When applied to multi-core SIMD chips, the 
associative B/I vector can be easily extended to virtual 
cells.  In order to implement virtual cells, the OS need 
only to buffer two additional associative vectors 
(responders and results) with each page of data records.  
The responders vector maintains the logical status of the 
virtual cells, the results vector contains the temporary 

results and the B/I vector maintains memory allocation 
status.   
 As discussed in Section 3.1, because the ADPOS 
maintains a record of active cells, the inner most “for 
loop” is replaced by the $ notation, eliminating the need 
for the programmer to maintain a count of the number of 
records to be processed.  This is in contrast to the MP-
SMP model mentioned earlier where not only must the 
number of records be maintained but the parceling of 
those records to the various processors must be 
maintained, the communication between processors must 
be maintained, etc. 
 The associative B/I vector functionality can be 
expanded to support a hierarchical multitasking data 
parallel model of computing discussed in Section 4.2.  
 
4.2 Multitasking 
 
 In the traditional associative SIMD model, where 
every record has a dedicated processor, some processors 
may be idle while others are busy.  Multiple Associative 
Computing (MASC) addresses this issue [10].  As a 
simple example of its execution, assume a population 
can be divided into two mutually exclusive sets.  For 
example, those citizens who earn $50K or more annually 
and those who earn less.  Assume also that the tax rate 
for those earning less than $50K is 5% while the tax rate 
for those earning $50K or more is 15%.  The traditional 
associative data parallel method for calculating the taxes 
of all citizens, as described in Section 3.2, is to select all 
citizens who earn less than $50K and calculate their 
taxes (the processors associated with those citizens that 
earn $50K or more are idle during this step) and then 
select all citizens who earn $50K or more and calculate 
their taxes (the processors associated with those citizens 
that earn less than $50K are idle during this step).  That 
is, the program for both cases must be broadcast to all 
processors but is executed only by those which require it.  
As a result the processors are, on average, idle half of the 
time. 
 Because the citizens form mutually exclusive groups, 
both computations can take place simultaneously if 
hardware is provide to allow both instruction streams to 
be sent in parallel and each processor executes the 
instruction stream appropriate for it. Figure 4 illustrates 
how the Responders register can be augmented by a 
Task ID register to address this issue. ADPOS 
administers the processors by updating the Task ID 
register of a cell when a new task is assigned.  The 
instruction stream of Figure 4 would carry the task IDs 
as well as the instructions.  An instruction would only be 
executed by those cells with 1) the correct task ID and 2) 
a True responders bit.  Expanding this technique to more 
than two cases reduces the problem with case statements, 
which Hennessy and Patterson [4] (p. 650) identify as a 
major drawback to SIMD computation.   
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Tax = Salary *.05       01 

Tax = Salary *.15       02  

Responders     Task  
                         ID   Salary     Tax 

   50,000.00              7,500.00 

    5,000.00                 250.00 

True       02 

 True        01 

Instruction stream

 
Figure 4 – MASC – A Multilevel Parallel Architecture 

 
5 Hardware 
 
 Some hardware enhancements are needed to support full 
associative computing on multi-core chips, such as a 
complete on-chip controller capable of running a traditional 
multitasking OS so that the chip is a complete parallel 
processor, not an adjunct array processor.  In more 
advanced applications, the “host” processor would become 
the I/O server for the multi-core chip. The need for on-chip 
communication was discussed briefly in Section 3.4. A 
brief discussion of hardware support for some of the other 
items follows. 
 
5.1 Heterogeneous cores 
 
 Non-numerical applications would benefit from 
heterogeneous cores.  That is, cores which are specialized 
for the different data types, such as an integer core, a 32 bit 
floating point core, etc.  A bit serial core would be 
beneficial for the associative computing model.  In 
particular, the Falkoff maximum value and related 
algorithms are used extensively and they work best with bit 
serial data.  Conventional vector register cores can be used 
to find minimum and maximum values, but they can not 
find the least upper bound and  greatest lower bound 
relative to a specified value in one pass as can the modified 
Falkoff algorithm [11] (p. 50).  These operations are helpful 
when processing structure codes and organizational keys. 
  
 
 
 

 
5.2 Flag vectors 
 
   Associative flag vectors allow the elements of one 
vector to be associated with the corresponding elements of 
another. Many multi-core designs utilize fixed size vector 
registers.  Assuming a 128 bit vector register, a search on 
sixteen 8 bit data elements will perform 16 comparisons in 
parallel where each comparison is separated on 8 bit 
boundaries.  While a search on eight 16 bit data elements 
will perform 8 comparisons in parallel.   Because the fixed 
size vector register supports varying size fields, flag vector 
alignment between vectors of different types can be 
difficult.  That is, a search on sixteen 8 bit data elements 
will yield a 16 bit flag vector.  In order to maintain the 
element by element association with, say 32 bit floating 
point data, in other 128 bit registers, the hardware must 
separate the 16 bit flag vector into four 4 bit flags, one for 
each of the four 128 bit registers containing the associated 
32 bit data.  Special flag vector operations that can divide 
and allocate the bit flags appropriately are necessary. 
 
5.3 Parallel to scalar reduction 
 
 The reduction operation, described in Section 3.2, is used 
frequently and needs to be supported in the hardware. A 
flag vector has a one (True) in the i-th position and zeros 
(False) elsewhere to signify to the hardware that the i-th 
element of the associated vector is to be extracted. More 
than one element of a vector can be flagged and with 
hardware support, the values of the associated vector can be 
extracted for processing one by one in a loop by “updating” 
the flag vector after every extraction. 



 
 
VERTICAL_EXT[$]    = VERTICAL[$-1][J] – SIGMA; 
VERTICAL_INT[$]    = VERTICAL[$-1][J] – RHOSIGMA; 
VERTICAL_EXT[$]    > VERTICAL_INT[$]    ? 
    VERTICAL[$,J]  = VERTICAL_EXT[$]    : VERTICAL[$,J] = VERTICAL_INT[$]; 
VERTICAL[$,J]      >  0                 ? 
    VERTICAL[$,J]  = VERTICAL[$,J]      : VERTICAL[$,J] = 0; 
HORIZONTAL_EXT[$]  = HORIZONTAL[$-1][J] – SIGMA; 
HORIZONTAL_INT[$]  = HORIZONTAL[$-1][J] – RHOSIGMA; 
HORIZONTAL_EXT[$]  > HORIZONTAL_INT[$]  ?  
   HORIZONTAL[$,J] = HORIZONTAL_EXT[$]  : HORIZONTAL[$,J] = HORIZONTAL_INT[$]; 
HORIZONTAL[$,J]    >  0                 ? 
   HORIZONTAL[$,J] = HORIZONTAL[$,J]    : HORIZONTAL[$,J] = 0; 
DIAGONAL[$,J]      = DIAGONAL[$-1][J-1] + DELTA[SEQb[J]]; 
DIAGONAL[$,J]      > VERTICAL[$,J]      ? 
    DIAGONAL[$,J]  = DIAGONAL[$,J]      : DIAGONAL[$,J] = VERTICAL[$,J]; 
DIAGONAL[$,J]      > HORIZONTAL[$,J]    ? 
    DIAGONAL[$,J]  = DIAGONAL[$,J]      : DIAGONAL[$,J] = HORIZONTAL[$,J];  

Figure 5 – Smith-Waterman Bit-Serial Data Parallel Pseudo Code 
 

5.4 Branching operations 
 
 Additional associative instructions such as an efficient 
“branch on register zero” instruction are important.  
Considerable time can be saved if there is the capability to 
determine that all responders to a query are false and the 
associated code can be skipped. Some algorithms branch 
frequently over short distances so that a branch mechanism 
that does not disrupt the instruction pipeline would be most 
helpful.  One possibility is a “branch” that simply inhibits 
the execution of the next 1 or 2 instructions rather than 
disrupting the pipeline.  The maximum number of 
instructions to skip depends on the costs involved, such as 
the length of the pipe, etc. 
  
5.5 Multitasking instruction stream 
 
 A multitasking instruction stream can be implemented in 
several different ways.  For example, it could be 
implemented either physically with a “very wide instruction 
stream” or in the time domain where the instruction 
delivery time is much shorter than its execution time.  
ADPOS needs one or two instruction streams dedicated to 
administering the cores.  Special control instructions for 
ADPOS that cannot be ignored by the cells would also be 
needed.  For example, “listen to instruction stream n,” start 
and halt. 
 Section 4.2 illustrates how an IF statement can be 
mapped onto multiple processors automatically by ADPOS.  
The associative computing model assumes that Miller’s 
observation is correct and that a programmer can manage 
approximately seven tasks simultaneously.  Thus a 
minimum of three instruction steams and a maximum of 
nine or ten would be reasonable.    
 

6 Smith-Waterman algorithm 
 
 As a test of the effectiveness of an associative bit serial 
core, the Smith-Waterman algorithm for detecting the 
similar regions in two protein sequences was programmed 
in ASC, an associative computing emulation language 
described in [11].  The ASC program was used to verify the 
pseudo code design shown in Figure 5. The pseudo code 
was then used to estimate the execution time of the 
algorithm given the proposed associative model 
enhancements. One advantage of this implementation of the 
algorithm is that it minimizes branching.  The code shown 
does not require any branching because it is based on a bit 
serial “select bits” operation represented by the C++ 
conditional operator [6] (p. 636). Accordingly, the 
multitasking aspect described in Section 4.2 was not needed 
and was not investigated.  

It was estimated that with this design, using the 
associative instructions described in this paper, two 
sequences of 128 nucleotides each can be processed in 
approximately 14,336 instructions.  On an 8-core chip at 4 
Ghz this equates to about 36 billion cell updates per second.  
When adjusted for the number of cores and their speed, this 
is about 50% faster than the 3 billion cell updates per 
second reported in Farrar [2] 2.   
 In the optimized design, the overall execution time is 
dominated by the movement of data to and from the 
registers so that the advantage of a bit-serial multi-core 
implementation would be the ability to 1) avoid branching 
and the associated pipeline disruptions, and 2) adjust the 
size of the fields used to score the similarity of the regions 
                                                           
2 It is important to note that the envisioned hardware 
designs used in this estimate have not been implemented 
and may not produce the anticipate results while the cited 
report was obtained on actual hardware. 



to reflect the precision required at each stage of the 
algorithm thus optimizing the movement of data between 
memory and registers.   
 
7 Conclusion and future work 
 
 Programming multi-core parallel processors using 
conventional multitasking approaches is a difficult task.  
The associative data parallel paradigm promises to simplify 
that task, but several hardware modifications are necessary 
to effectively implement it. Specifically, 1) the core 
processors’ vector operations need to be augmented with 
associative flag vectors to i) facilitate the coordination of 
vector operations on heterogeneous data, ii) reduce or 
eliminate the need for scatter-gather operations, iii) support 
dynamic data parallel memory allocation, iv) reduce the 
burden of partitioning tasks among multiple processors, v) 
support data parallel to scalar reduction and  the insertion 
of scalar data into vectors; 2) a bit serial core is needed to 
support associative data parallel searching for the 
maximum, minimum, LUB, and GLB elements in a vector; 
3) special hardware is needed to combine and partition the 
flag vectors when the logical vector to hardware vector 
register mappings vary due to the type of data being 
processed;  4) the flag vector needs to be augmented with a 
task ID field to support multitasking, then with an 
expanded fully capable control processor, multilevel 
heterogeneous parallelism can be supported.  
 The hardware modifications described here are primarily 
on a per core basis.  Our future efforts will concentrate on 
1) implementing associative support software on existing 
multi-core chips to verify our model, 2) determining what 
specific communication hardware enhancements are needed 
to support the associative model across the multiple cores 
of a chip, and 3) how the associative paradigm can be 
mapped across multiple multi-core chips.  
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