
1

A Simulation Study of Data Partitioning
Algorithms for Multiple Clusters

Chen Yu, Dan C. Marinescu*
School of Computer Science, University of Central Florida

Orlando, FL, 32816, USA. Email: (yuchen, dcm)@cs.ucf.edu
Howard Jay Siegel

Departments of Electrical & Computer Engineering and Computer Science
Colorado State University, Fort Collins, CO 80523-1373, USA. Email:HJ@colostate.edu

John P. Morrison
Computer Science Department, University College of Cork,

Cork, Ireland. Email: j.morrison@cs.ucc.ie

Abstract— Recently we proposed algorithms for con-
current execution on multiple clusters [9]. In this case,
data partitioning is done at two levels; first, the data is
distributed to a collection of heterogeneous parallel systems
with different resources and startup time, then, on each
system the data is evenly partitioned to the available nodes.
In this paper, we report on a simulation study of the
algorithms.

I. INTRODUCTION

The Single Program Multiple Data (SPMD) paradigm
[3] has been used for data-intensive applications for
many years. The basic idea of this approach is to
partition the data into several segments and then run
the same program on several processors with a different
segment of the data as input.

Often, the SPMD paradigm requires co-scheduling
because processes communicate with each other; the
members of a process group may need to carry out
a barrier synchronization to make sure that all have
completed a computation stage before proceeding to
the next. Thus, they must be scheduled to run con-
currently. Most co-scheduling algorithms are designed
for homogeneous computing environments and are not
suitable for large-scale distributed computing on a Grid.
Several co-scheduling algorithms for a heterogeneous
environment are based upon the assumption that the
computation on each site can start at the same time
[1]. This assumption is unrealistic for large-scale dis-
tributed computing when individual systems are located
within different administrative domains and thus are
autonomous.

There are “pleasantly” parallel algorithms where there
is no communication among the members of the process

* To whom correspondence should be addressed. Fax:(407)823-
5419, Tel:(407)823-4860.

group and we only need to merge the partial results once
every member of the group finishes execution on its
input data segment. Such “pleasantly” parallel problems
are the focus of [9]. We assume that the programs
running on heterogeneous parallel systems produce iden-
tical results, thus are logically equivalent to each other,
though their implementations may differ, each may be
optimized for the particular architecture of the target sys-
tem. This extended computational model called GSPMD
(Grid SPMD) requires more sophisticated algorithms for
data partitioning among several clusters or massively
parallel systems, and for scheduling on each system.
Indeed, space sharing of a single cluster ensures that all
nodes available for a given computation start processing
at the same time, while this is no longer true for multiple
clusters that may become available at different time.

The work we report in this paper is tied to our effort
to build an intelligent environment for large-scale dis-
tributed computing applied to computational structural
biology [2], [9]. The interest in the problem addressed
in this paper is motivated by real-life applications. For
example, we report that the computing time required to
improve the resolution of a medium-sized virus such
as Mammalian Reovirus (MRV), from about 7.6 Å to
better than 7.0 Å on 42 processing nodes, is about 14
hours/iteration [5]. The refinement process in this case
required about 100 iterations, thus the total time taken
to improve the resolution from 7.6 Å to 7.0 Å was
about 1, 400 hours, or nearly 60 days.

Sobering statistics such as these reflect that indeed we
would greatly benefit if we could use concurrently mul-
tiple clusters. The cost of very large systems consisting
of thousands of nodes is prohibitive for many research
organizations, and the access to shared resources with
very large clusters is limited. The structural biology
problem mentioned earlier, is not unique, increasingly

2

more applications tend to look at phenomena at molec-
ular or atomic level and require a very large amount of
computing cycles.

II. SYSTEM MODEL AND BASIC ASSUMPTIONS

A process group is a set of processes running con-
currently on a set of nodes of a parallel system, be
it a cluster, a PC farm, or a supercomputer; when
the cardinality of a process group is 1, we have the
traditional sequential execution on a single processor
system. In this paper, we consider computations carried
out by several process groups concurrently on multiple
parallel systems. The fact that multiple process groups
run concurrently does not mean that all must start at the
same time.

We assume that an application A involves one com-
putation C consisting of m process groups, all of which
execute the logically equivalent programs, but each on
a different data segment: C = {G1,G2, . . .Gm}. In
turn, each process group Gi consists of ni processes
Gi = {P i

1, P
i
2, . . . P

i
ni
}, 1 ≤ i ≤ m. We assume that

we have n ≥ m target systems that form the target
systems set S = {S1,S2 . . .Sn} and wish to assign each
process group to one target system for execution with the
assumption that one target system will only accept one
process group of current computation C. We distinguish
an application A from a computation C implementing
the application on a particular system because the im-
plementations may differ; the implementations produce
identical results, thus are logically equivalent, but each
may be optimized for the particular architecture of the
target system.

The problem we wish to solve consists of several
stages:
• Determine the value of parameters describing each

system in the target systems set S for the compu-
tation C of application A.

• Identify the restricted target set, Q(π) ⊆ S of
size |Q(π)| = m and determine the actual size of
the data segment to be assigned to each restricted
target system Sj ∈ Q(π). The restricted target
systems in the restricted target set Q(π) will be
used to run the computation C and guarantee the
shortest computation C completion time under the
corresponding data partitions.

• Schedule the execution of computation C on re-
stricted target systems with the assigned data seg-
ments.

An application is characterized by a data unit (dtu),
which reflects the logical organization of data for that
application. For example, for the origin and orientation
refinement [5], a dtu consists of a number of virus
projections extracted from a micrograph. We define the
execution rate, µCj , of a computation C on a system Sj ,

as the amount of data available locally, processed in one
unit of time, using all of the resources on that system.
The execution rate, measured in dtu per unit of time
(seconds, minutes, hours), is a synergistic measure of
performance that reflects a wide range of target system
attributes, such as the system architecture, the CPU
rate, the memory access time, the amount and speed
of memory cache, the latency and the bandwidth of
the interconnection network, and the I/O latency and
bandwidth.

The execution rate also reflects the main attributes of
the application, such as the size of the working data
set, the type of parallelism (fine- versus course-grain),
and whether the application is I/O-bound versus CPU-
bound. For example, if we have a cluster with 128 nodes
and the application is the parallel origin and orientation
refinement, PO2R, program [5], then we measure the
time it takes to process 106 projections and if the time
for one iteration is 5 hours, then we say the execution
rate is 0.2 × 106 projections/hour. If we can use only
half of the nodes, then the actual execution rate becomes
0.1× 106 projections/hour.

The execution rate on one system determines the
actual execution time for a particular application with a
given input using all the resources on that system, thus,
it reflects the user perception regarding the performance
of a system for a particular computation. From this brief
discussion, it should be clear that the execution rate
can only be estimated experimentally and that it can
be affected by contention for system resources (e.g.,
the bandwidth of the interconnection network, the I/O
bandwidth) with other applications running concurrently,
when a parallel system is space shared.

Consider two systems S1 and S2 and two applications,
A1 involving computation C1 and A2 involving compu-
tation C2. It is possible that µC11 < µC12 but µC21 > µC22 .
For example, consider the case when the application
is the 3D-Discrete Fourier Transform (DFT) of a 3D-
lattice of dimension l3. The two parallel systems are:
(a) distributed memory (dm) system, e.g., a cluster of
PCs interconnected by a gigabit Ethernet, with a very
large amount of memory per node and with a parallel
file system, and (b) shared-memory (sm) system, e.g., a
cluster of PCs with an omega interconnection network
and a traditional file system. For the distributed memory
system, we partition the data into slabs of width wdm.
The computation involves a 2D-DFT of all xy-planes of
a slab along the z-axis, then a global exchange, and,
finally, a 1D-DFT along the z-axis. For the shared-
memory system, the data unit is a 3D-cube of dimension
l3sm such that l3sm = l2 × wdm and there is no explicit
communication among the processors as the data is in
a shared memory and the kernel of the 3D-DFT carries
out three 1D-DFTs. In this case, the execution rate of the

3

distributed memory system is most likely lower than that
of the shared-memory system: µDFT

dm < µDFT
sm because

the algorithm is communication intensive (it requires all-
to-all communication) and the latency and bandwidth of
the gigabit Ethernet are no match for the interconnection
network of the more expensive shared-memory system.
On the other hand, if the application is a transaction
processing (tp) system, a data unit consists of a number
of transactions. It is likely that the parallel file system
will favor the distributed memory system due to the
faster parallel I/O system, thus, µtp

dm > µtp
sm. In this

example, the codes for the DFT (and for the transaction
processing system) are likely to be very different for the
two systems, but for the same input, they should produce
identical results.

The execution rate is static, it may change only over
relatively long periods of time when the hardware and
the software of a system is fixed. We assume that in
addition to the static information provided by the exe-
cution rate, we have dynamic information regarding the
current state of each target system. At time t, we expect
to have information summarized by σC(t), the startup
vector, indicating the expected time each target system
will be available for computation C, and by ηC(t), the
duty cycle vector, indicating the expected fraction of
resources available (i.e., based upon space-sharing of a
multiprocessor system) for computation C on each target
system: σC(t) = (σC1 (t) σC2 (t) . . . σCn(t)) and ηC(t) =
(ηC1 (t) ηC2 (t) . . . ηCn(t)). For simplicity we shall drop
the dependence of time and write σC and ηC instead of
σC(t) and ηC(t), respectively.

Let ω be the input data size. An allocation of process
groups Gi ∈ C to systems Sj ∈ Q(π) is an one-to-one
mapping ν : Gi 7→ Sj . Given an allocation mapping
ν, the data partitioning problem for ν is to compute a
decomposition δ of the data set into segments of size
ων

1 , ων
2 , . . . ων

m such that ω =
∑m

i=1 ων
i .

The pair π = (ν, δ) describing both the allocation
of process groups to target systems and the data parti-
tioning is called a mapping of C to S . The completion
time vector for C associated with a particular mapping π

is T (C,π) = (T (C,π)
1 T

(C,π)
2 . . . T

(C,π)
m), where T

(C,π)
j

denotes the process group computation completion time
on the target system Sj under mapping π.

ω
(π)
j represents the size of a data segment assigned

to the system Sj under mapping π. For the sake of
simplicity, we shall drop the superscript C and write T (π)

instead of T (C,π), or σ(t) instead of σC(t) whenever the
context reveals that we are considering computation C.
The actual completion time of C under mapping π is
τ (π) = max(T (π)

1 , T
(π)
2 , . . . T

(π)
m). At time t, our goal is

to determine the optimal mapping, π, which ensures the
earliest completion time: minπ[τ (π) − t].

We use Rj , the data transfer rate, to measure the

network transfer rate between the restricted target system
Sj and the system where the input data set is located.
Thus the data segment size that Sj can get in the time
interval [t, σj(t)] is (σj(t)− t)Rj .

The basic assumptions of our model are:
1) We assume that during execution there is no

communication among process groups. In other
words, the first-level data partitioning needs not to
consider the synchronization and communication
between process groups. However, there may be
communication among processes in one process
group.

2) The heterogeneity does not affect the quality of the
results. In other words, the partial results do not
need any additional processing. The computation
has a post-processing phase when partial results
are merged together after all process groups have
finished their execution. The time spent on post-
processing phase does not count into computation
time.

3) The information µj , σj , ηj and Rj regarding the
state of system Sj is relatively stable; it does not
change from the time when the data partitioning
and the mapping are computed until the computa-
tion finishes its execution.

As usual, we use the speedup to measure the effec-
tiveness of parallel execution. The relative improvement
of mapping π2 with completion time τ (π2) over mapping
π1 with completion time τ (π1) ≥ τ (π2) is measured by
the relative speedup: Speedupπ2/π1 = τ (π1)/τ (π2).

III. OPTIMAL MAPPING AND DATA PARTITIONING
ALGORITHMS

An optimal mapping and data partitioning algorithm
for a GSPMD problem ensures the earliest possible
completion time given the time when each system be-
comes available, as well as the execution time on each
system. Unfortunately, we cannot estimate very accuracy
either the execution time, or the time when resources
become available, thus in practice the mapping and data
partitioning are likely to be near-optimal [9].

We call the algorithms for finding an optimal mapping
without data staging:
• Flexible Mapping (FlexMap) - when we wish to use

as many systems as possible to ensure the earliest
possible completion time, and

• Fixed Mapping (FixMap) - when the number of
systems is restricted to a specific value.

FlexMap algorithms are well suited when there are no
restrictions regarding the maximum number of process
groups, or the number of target systems we could use.
A greedy algorithm that uses as many target systems as
feasible has the shortest possible completion time. The
basic idea of the FlexMap algorithm [9] is to order the

4

systems in target set S based on their startup times with
the earliest first, then start with an empty restricted target
set, iteratively add a new target system with the earliest
startup time to it and then compute the new completion
time τ until no improvement can be achieved.

In practice, we expect to be constrained either by the
the internal logic of application which limits the number
of process groups, or by considerations such as the
cost to access a system, the complexity of coordination,
or the failure rates. To address these problems, we
developed FixMap algorithm [9].

For many applications the data staging time could be
significant. While the nodes within one parallel system
are often inter-connected by Gbps networks, multiple
parallel systems are interconnected via the Internet
and/or Local Area Networks where congestion control
and contention limit the actual data transmission rates
and lead to a significant data staging time.

We also consider a data partitioning scheme that
ensures that data staging for each target system Si in
restricted target set S(π) finishes before σi, the time
when system Si becomes available. We call the optimal
mapping algorithms with data staging FlexMapDS and
FlexMapDS, respectively.

IV. A SIMULATION STUDY

We simulate an ensemble of 200 target systems and
investigate the completion time, τ , function of the input
data set size, ω for FlexMap and FlexMapDS algorithms.
We also study the completion time function of the num-
ber of process groups, m, for FixMap and FixMapDS
algorithms.

Each target system is characterized by a vector con-
sisting of: the startup time σ, the execution rate µ, the
duty cycle η, and the data transfer rate R. The four
random variables are normally distributed. The mean
and standard deviations of the four random variables
are respectively: σ (the start-up time) 25 and 5 hours; µ
(the execution rate) 750 and 80 Mdtu/hour; η (the duty
cycle) 0.75% and 0.05%; and finally R (the data transfer
rate) 450 and 30 Mdtu/hour.

In our simulation we first construct n random vectors
(µi, σi, ηi, Ri), ∀Si ∈ S which characterize the target
set S . Then the algorithms select the restricted target
set, Q(π), and the amount of data allocated to each
system. The algorithms are deterministic, thus for a
given target set configuration, S , and input data set size,
ω, the completion time and the number of systems in
the restricted target set, | Q(π) |, are the same under
mapping π during each run.

For some of the experiments, we calculate the con-
fidence intervals for different target set configurations.
Multiple target set configurations are derived from a
basic configuration by shuffling the process rates on

target systems, while keeping the other parameters, the
startup time, the duty cycle, and the data transfer rate
unchanged. We generate 100 different configurations,
run the algorithms on each configuration, and record the
95% confidential intervals.

A. FlexMap and FlexMapDS

Fig. 1. (a) FlexMap algorithm. The completion time (in hours)
function of the number of iterations for a fixed input data set size. At
each iteration we add a new system to the restricted target set if the
startup time of the system is earlier that the current completion time;
thus, the completion time monotonously decreases as we iterate. The
input data size ω = 1012 dtu. (b) FlexMapDS algorithm. The number
of target systems which experience data set reduction to guarantee the
termination of data staging, function of the input data set size (in units
of 2× 1011 dtu).

We study the effect of the input data set size (mea-
sured in dtu, data units) upon the completion time
and upon the optimal number of systems used. For
the first type of studies of the FlexMap algorithm we
consider a fixed input data set size, ω = 1012 dtu;
the algorithm terminates after 191 iterations, thus we
could use for data partitioning 191 systems out of the
200 systems available. Figure 1(a) shows the completion
time function of the number of iterations and Figures
2(a) and 2(b) detail the first 15 and the last 15 iterations,
respectively. If we define the speedup as the ratio of
the completion time for the first iteration of a range of
consecutive iterations to the completion time for the last
iteration of the range, we notice that:

Speedup1−15 =
2050
100

= 20.50 , (1)

5

Speedup177−191 =
34

33.9
= 1.00294. (2)

This indicates to us that the benefits of using an in-
creasingly larger number of systems have to be balanced
against the additional cost and overhead to coordinate
multiple sites.

Fig. 2. FlexMap algorithm. (a) The completion time (in hours) during
the first 15 iterations. (b) The completion time (in hours) during the
last 15 iterations of the execution simulated in Figure 1(a).

In fact, the FlexMap algorithm should have an addi-
tional termination condition:

FlexMap Algorithm With Controlled Speedup
.......
if (τ (j)/τ (j−1) < MinSpeedupPerIteration)

exit;
.......

End

To study the effect of the data set size, we increase ω
from 1011 dtu to 25×1011 dtu in increments of 2×1011

dtu and observe the evolution of the completion time,
Figure 3(a), and the size of the optimal target systems
set, Figure 3(b).

Figure 3(b) reveals that, as expected, the number
of systems used for a given application increases as
the input data set size increases for the FlexMap
and FlexMapDS algorithms, given an input target sys-
tem set S . In this experiment, the resource vectors
(µi, σi, ηi, Ri), ∀Si ∈ S are the same, only the data
set size increases. For a relatively small input data

Fig. 3. FlexMap and FlexMapDS algorithms. (a) The completion time
(in hours) function of the input data set size; the input data set size
increases in units of 2× 1011 dtu. (b) The size of restricted target set
(the number of systems used) when the input data set size increases
in units of 2× 1011 dtu.

set size, after a few iterations, the completion time
becomes shorter than the startup time of the systems
outside of the restricted target set (the systems we have
already selected). As the input data set size increases,
the completion time after the same number of iterations
increases and allows us to include more systems in the
restricted target set. We conclude that:

ωa > ωb =⇒ | Q(π)(ωa) | ≥ | Q(π)(ωb) |, (3)

and a similar relation holds for the completion time after
iteration j:

ωa > ωb =⇒ τ (j)
ωa

≥ τ (j)
ωb

. (4)

For example, consider the FlexMap algorithm; when
ω = 1011 dtu, only 50 systems could be included in
the restricted target set, the algorithm stops after 50
iterations; the completion time is 21.7 hours. As the
amount of input data, ω, increases to 3 × 1011 dtu, an
additional 63 target systems are included in the restricted
target set and the algorithm stops after 113 iterations;
the completion time becomes 26.1 hours. Thus, even
though the data set size doubles, the completion time
increase only by 25%. It is also interesting to note that
the number of systems targeted by the algorithm more
than doubles, thus the amount of data allocated to the
first 50 systems increases only by about 20%. We expect

6

that:
n

m
>> 1 =⇒ ωa

ωb
>>

τ
(π)
ωa

τ
(π)
ωb

. (5)

In this experiment, when the input data set increases
19 fold, ω = 19 × 1011 dtu, the FlexMap algorithm is
able to use all n = 200 systems in the target set. As the
number of systems in the restricted target set approaches
n, it becomes increasingly more difficult to find systems
that can be included in the restricted target set, Figure
3(b).

The completion time computed with the FlexMapDS
algorithm is slightly longer than the one produced by
the same algorithm without data staging, Figure 3(a);
the difference increases as the input data size increases.
This behavior is expected; to ensure that data staging is
completed before the actual startup time of a system, the
algorithm may reduce the amount of input data assigned
to some systems in the restricted target set, and thus
delay the completion time.

Figure 3(b) shows that the size of the restricted target
set becomes slightly larger when input data set size
increases and data staging is involved. This is due to
the fact that more systems in the restricted target cannot
finish their data staging in time based on its original
data partition produced by the FlexMap algorithm; the
algorithm has to reduce the amount of data allocated to
these systems, Figure 1(b). When the input data set size
reaches 23 × 1011 dtu, the FlexMapDS algorithm does
not produce a solution; the amount of data allocated to
each one of the 200 target systems is reduced and the
total amount of data that can be processed is smaller
than the input data set size ω.

B. FixMap and FixMapDS

Fig. 4. FixMap algorithm. The completion time (in hours) after each
target system replacement operation; ω = 1012 dtu, m = 85. 95%
confidence intervals are shown.

The FixMap algorithm is more complex, it requires
occasional reorganization of the restricted target set and
occasional removal from this set of less performant

systems. For our first experiment, the data set size is
ω = 1012 dtu and the size of the restricted target set is
limited to m = 85. We record the completion time under
the FixMap algorithm when a system from the restricted
target set is replaced by a more performant one. Figure
4 shows that 14 such replacement operations lead to a
speedup of:

Speedup14 replc =
41.05
40.71

= 1.008. (6)

Fig. 5. FixMap algorithm. The completion time (in hours) when (a)
10 ≤ m ≤ 100; ω = 1012 dtu; (b) 110 ≤ m ≤ 200, ω = 1012 dtu.
95% confidence intervals are shown.

Next, we study the speedup of the FixMap and
FixMapDS algorithms when the number of process
groups increases, but the input data set size is fixed,
ω = 1012 dtu. Figures 5 (a) and (b) present the case
when 10 ≤ m ≤ 100 and 110 ≤ m ≤ 200, respectively.
The speedup due to the FixMap algorithm is:

Speedup10−100 =
180
40

= 4.5 , (7)

Speedup110−200 =
37.4
33.9

= 1.10324. (8)

The results are similar to the ones obtained for the
same input data set size, ω = 1012 dtu) with ther
FlexMap algorithm, Figure 2. The FixMapDS algorithm
produces no solution when m < 80; the total amount of
data processed by a subset consisting of 80 or fewer
systems is smaller than the input data set size 1012

dtu. When m ≥ 80, the computation completion time
generated by FixMapDS algorithm is longer than the

7

counterpart generated by FixMap algorithm. This result
is expected because some restricted target systems may
experience data set reduction, when data staging is
considered, in order to finish their data staging on time,
and thus lead to the redistribution of workload and a
longer computation completion time. Note that the gap
between completion times generated by the FixMapDS
and FixMap algorithms keeps decreasing as m increases.
This tendency implies that the discrepancies between
the restricted target sets generated by the FixMapDS
and FixMap algorithms become less significant when m
increases. Indeed, as the amount of data assigned to each
target system is smaller when m increases, the chance
that the data staging does not finish on time decreases.
The FixMapDS and FixMap algorithms produce identi-
cal results when all the systems in the restricted target
set generated by the FixMapDS algorithm finish their
data staging before their startup time.

Fig. 6. (a) FixMap algorithm. The completion time (in hours) function
of the input data set size; the input data set size increases in units of
2×1011 dtu and m = 85. (b) FixMapDS algorithm. The input data set
size increases in units of 0.2×1011 dtu and m = 85. 95% confidence
intervals are shown.

Next, we investigate the effect of the input data set
size on the results produced by the and FixMapDS
algorithms. For FixMap we set m = 85 and increase
the data set size in the range 1011 ≤ ω ≤ 25 × 1011

dtu in steps of 2× 1011 dtu; for FixMapDS we increase
the data set size in steps of 0.2× 1011 dtu, in the range
0.1 × 1011 ≤ ω ≤ 1.5 × 1011 dtu, Figure 6(a). The
completion time increases linearly with the size of the

input data set for the FixMap algorithm. Since m is
fixed, the linear increase shows that the data partitioning
algorithm works well; the additional amount of data
allocated to each system is proportional to the system
resources.

Figure 6(b) shows that the FixMapDS algorithm does
not produce a solution when ω > 1.1 × 1011 dtu. The
computation completion time increases linearly at first,
and, as the input data size keeps growing, it increases
much faster. When the amount of input data is relatively
small, few systems cannot finish data staging on time
and experience a data set reduction; also, the pool of
systems outside the restricted target set is large and these
systems can be used to reduce the completion time and
overcome the effect of larger input data size. When the
input data size is large and the number of process groups
is fixed, a larger percentage of systems fail to finish data
staging in time; then the algorithm has to reduce the data
segment size assigned to them but fewer systems are in
the pool of potential replacements.

Figures 6(a) and 3(a) show that when input data
set size is relatively small the FixMap and FlexMap
algorithms exhibit similar behavior. When ω = 1011

dtu, although m = 85, only 50 target systems could
be used; the explanation for this behavior was given in
Section IV-A - Figure 3 (b) - and completion time was
the same as the one using the FlexMap algorithm. When
ω increases to 3 × 1011 dtu, the FlexMap algorithm
uses 113 systems while the FixMap algorithm could
only use 85 systems. The FlexMax algorithm always
ensures the shortest possible completion time for a given
data set size and for a given configuration of available
systems; this is confirmed by the simulation results when
ω > 3× 1011 dtu.

Fig. 7. FixMap algorithm. The number of process groups function of
the input data set size to achieve the same completion time; initially
ω = 1011 dtu and m = 10.

Lastly, we investigate if the FixMap algorithm allows
us to maintain the same completion time when the input
data set size increases. Figure 7 illustrates the evolution
of the number of process groups (equal to the number
of systems in the restricted target set) function of the

8

input data set size, when we force the completion time
to be constant. Initially ω = 1011 dtu and m = 10; for
ω = 5 × 1011 dtu, we have m = 80. If ω ≥ 8 × 1011

dtu, we can no longer ensure the same completion time
with 200 target systems.

V. SUMMARY AND FUTURE WORK

The time complexity of the algorithms pre-
sented in this paper are: O(n log(n)) for FlexMap,
O(n2) for FixMap, O(n2 log(n)) for FlexMapDS, and
O(n3 log(n)) for FixMapDS [9]. While the efficiency
of the algorithms is of concern, we note that in practice
the number of systems in the target set, n, is relatively
small, unlikely to exceed 103, thus the running time of
the mapping and data partitioning algorithms are likely
to be of the order of seconds. Yet algorithm efficiency
is critical for error recovery.

Our main concern is the speedup of the data-intensive
computation, and this depends upon the total amount of
computing cycles available. An optimal mapping and
data partitioning algorithm ensures the earliest possible
completion time given the time when each system be-
comes available, as well as the execution time on each
system. Unfortunately, we cannot estimate with utmost
accuracy either the execution time, or the time when
resources become available, thus in practice the mapping
and data partitioning are likely to be near-optimal.

FlexMap algorithms always ensure the earliest possi-
ble completion time because, in principle, they can take
advantage of all the systems available, while FixMap
algorithms are required to use at most a subset of size
m of all the n systems available. Once we fix n, the
completion time initially decays exponentially as the
number of systems used increases for both FlexMap and
FixMap algorithms. As we approach saturation, when
m → n, the speedup obtained by increasing the number
of systems used, becomes closer to 1. As we note in
Section IV-A, the benefits of using an increasingly larger
number of systems have to be balanced against the
additional cost and overhead to coordinate multiple sites
and the FlexMap algorithm should have an additional
termination condition reflecting a cost-benefit analysis.

When the data set size increases the algorithms ex-
pand the set of systems to which process groups are
mapped, initially faster, and, as m → n, this expansion
proceeds at a much slower rate because fewer systems
are available. The completion time increases linearly for
a FixMap algorithm and quasi-linearly for a FlexMap
one. If we wish to keep the same completion time when
the input data set size increases we need to use an
increasingly larger number of systems.

The algorithms are extended to cover the case when
the data staging cannot be completed before each system
becomes available. In this case, we determine an approx-
imate data staging time for each site. Then we adjust the

amount of data allocated to each system to guarantee that
the data staging terminates before the system becomes
available. Our simulation shows that data staging has
little effect, it increases slightly the completion time and
the size of the restricted target set.

VI. ACKNOWLEDGEMENTS

This research was supported in part by National
Science Foundation grants ACI0296035, EIA0296179,
CNS0615170, the Colorado State University George T.
Abell Endowment, and by I2Lab Graduate Fellowship
at the College of Engineering & Computer Science at
University of Central Florida.

REFERENCES

[1] M.J. Atallah, C.L. Black, D. C. Marinescu, H.J. Siegel, and T.L.
Casavant. Models and Algorithms for Co-Scheduling Compute-
Intensive Tasks on a Network of Workstations. J. Parallel and
Distrib. Comp., 16(4):319–327, 1992.

[2] X. Bai, H. Yu, G. Wang, Y. Ji, D. C. Marinescu, G.M. Marinescu,
and L. L. Bölöni. Coordination in Intelligent Grid Environments.
Proc. IEEE, 93(3):613–630, 2005.

[3] F. Darema-Rodgers, V.A. Norton, and G.F. Pfister. Using A
Single-Program-Multiple-Data Computational Model for Par-
allel Execution of Scientific Applications. Technical Report
RC11552, IBM T.J Watson Research Center, November 1985.

[4] N. Fujimoto and K. Hagihara. Near-optimal Dynamic Task
Scheduling of Independent Coarse-grained Tasks onto a Compu-
tational Grid. 32th Int. Conf. on Parallel Processing (ICPP-03),
pp. 391–398, 2003.

[5] Y. Ji, D.C. Marinescu, W. Zhang, X. Zhang, X. Yan, and
T.S.Baker. A Model-based Parallel Origin and Orientation Re-
finement Algorithm for CryoTEM and its Application to the
Study of Virus Structures. J. Struct Biology, 154 (1):1–19, 2006.

[6] H.D. Karatza. A Simulation - Based Performance Analysis of
Gang Scheduling in a Distributed System. Proc. 32nd Simulation
Symp., pp. 11–15, 1999.

[7] K. Kurowski, B. Ludwiczak, J. Nabrzyski, A. Oleksiak and J.
Pukacki. Improving Grid Level Throughput Using Job Migration
And Rescheduling. Scientific Programming 12(4):263–273, 2004.

[8] S.Y. You, H.Y. Kim, D. H. Hwang, and S.C. Kim. Task Schedul-
ing Algorithm in GRID Considering Heterogeneous Environ-
ment. Proc. Int. Conf. on Parallel and Distributed Processing
Techniques and Applications, (PDPTA ’04), pp. 240–245, 2004.

[9] C. Yu, G., D. C. Marinescu, H.J. Siegel, and J. P. Morrison. Data
Partitioning for Large-Scale Distributed Systems (submitted).

