
Plan Switching:
An Approach to Plan Execution in Changing Environments

Han Yu1, Dan C. Marinescu1, Annie S. Wu1, Howard Jay Siegel2,
Rose A. Daley3, and I-Jeng Wang3

1School of Electrical Engineering 2Department of Electrical and Computer Engineering
and Computer Science and Department of Computer Science

University of Central Florida Colorado State University
Orlando, Florida, 32816, USA Fort Collins, Colorado, 80523-1373, USA
{hyu, dcm, aswu}@cs.ucf.edu HJ@ColoState.edu

3Johns Hopkins University
Applied Physics Laboratory

11100 Johns Hopkins Road Laurel, MD 20723-6099
{Rose.Daley, I-Jeng.Wang}@jhuapl.edu

Abstract

The execution of a complex task in any environment
requires planning. Planning is the process of construct-
ing an activity graph given by the current state of the
system, a goal state, and a set of activities. If we
wish to execute a complex computing task in a hetero-
geneous computing environment with autonomous re-
source providers, we should be able to adapt to changes
in the environment. A possible solution is to construct
a family of activity graphs beforehand and investigate
the means of switching from one member of the fam-
ily to another when the execution of one activity graph
fails. In this paper, we study the conditions when plan
switching is feasible. Then we introduce an approach
for plan switching and report the simulation results of
this approach.

1. Introduction

A large-scale distributed computing system consists
of a collection of heterogeneous systems. Various com-
puting resources and services coexist in a system. The
availability of resources and services typically changes
quickly over time. The execution of a task cannot be
guaranteed when autonomous resource providers are
involved and when the goal of the computation is al-

lowed to change. Replanning and plan switching are
two basic strategies to overcome this uncertainty. Re-
planning is a process of either creating a new plan or
adapting the existing plan to the current conditions
of the computing environment (by using resources or
services currently available to the system). Replanning
introduces additional time for execution, as the process
of replanning and executing a computing task cannot
be overlapped. Plan switching assumes that there are
a group of activity graphs, or plans, available to per-
form a computing task. Only one plan is selected for
execution. When the execution of the plan fails, we
find an alternative plan and migrate the execution of
a computing task directly from the current plan to the
alternate. If plan switching is successful, we continue
the execution without replanning.

This paper addresses the problem of plan switching
and presents an approach to this problem. The main
idea of the approach is to create alternative plans and
locate the execution points from alternative plans for
a given task in parallel with the execution of the cur-
rent plan. When the execution cannot proceed, we
continue the execution of a computing task from a se-
lected execution point in another plan. The process of
creating alternative plans and finding execution points
has a relatively small computational cost and can be
performed in parallel with the execution of the compu-
tation. Therefore, this approach does not necessarily



increase the execution time of a computing task.

2. Related Work

Much work has been devoted to planning in uncer-
tain environments or to guarantee that the execution
of a plan satisfies the conditions or restrictions imposed
by real-time systems. These earlier approaches can be
classified into two categories: 1) constructing a plan
that can react to external events at certain reachable
states of plan execution; 2) dynamically modifying an
existing plan during plan execution.

Atkins et al. [1] address the problem of generating
fault-tolerance plans for systems that have real-time
safety requirements. Their approach combines plan-
ning with resource allocation and focuses on the inter-
face between these two components. If certain condi-
tions in plan execution cannot be satisfied, backtrack-
ing in the current plan is allowed to build an alternative
plan. Their approach is implemented upon CIRCA,
an intelligent real-time control architecture that com-
bines AI planning techniques to meet the demands in
a dynamic real-time computing and control environ-
ment [5].

Boutilier et al.’s work [2] is among the many stud-
ies of building computational models for planning in
uncertain environment. Their model uses a Markov
decision process and assumes that a system contains
a finite set of states and the probability distribution
function determines the transition among the states.
They introduce structures for the compact representa-
tion of the state space, action space, and value func-
tions of such planning domains, and illustrate how the
properties of these structures can be exploited by the
planning algorithms.

Pell et al. [6] address the issue of robust planning
in uncertain environments in their work to develop an
AI system for controlling an aircraft. The problem re-
quires planning in multiple stages; the execution of the
current plan is overlapped with the generation of the
plan for the next stage. Their approach uses a flexible
and abstract planning model that takes into account
the complexity of planning and robustness of plan ex-
ecution.

Wilkins et al. [7] use an asynchronous replanning
approach in their design of Cypress, a framework that
enables agents to achieve complex goals in a dynamic
environment. When a problem occurs during plan exe-
cution, a request for replanning is generated while the
system continues to execute the portions of the current
plan that are not affected by the problem.

In this paper, we present a different approach by
assuming that multiple plans are available to perform

a computing task and we allow dynamic plan switching
during the execution of plans.

3. Problem Formulation

3.1 Assumptions

Plan switching is a function of intelligent middle-
ware (a detailed discussion of the middleware can be
found in [8]), based upon several assumptions:

1. A plan, or an activity graph, is a directed graph
whose vertices are the atomic activities and directed
arcs denote data and control flow dependencies. Con-
current activities are allowed, but iterative execution
of activities is not allowed. Only independent activi-
ties may be executed concurrently; no communication
among concurrent activities is allowed.

2. A family of plans are created in advance. One of
the members of the family, the one selected for execu-
tion, is called the current plan. All other plans serve as
backups but still have a chance of execution when the
current plan fails. These plans are called alternative
plans.

3. Once an activity in a plan begins execution, the
success of its execution is guaranteed. If, however, an
activity cannot be executed, we may either wait until it
can be executed or switch the execution of the current
plan to an alternative plan.

3.2 Procedure of Plan Switching

The procedure of plan switching consists of four
steps: 1) generating alternative execution plans for the
computing task; 2) detecting failures in the execution
of the current plan; 3) locating an execution point from
alternative plans in which the computation can con-
tinue from the execution point and still reach the goal
of the computation; and 4) migrating the execution
after a successful plan switching. Figure 1 shows the
procedure of plan switching.

1. Generating Alternative Execution Plans

The generation of alternative execution plans can
be performed either before the execution of a com-
putation task (i.e., before the execution of the cur-
rent plan starts), or in parallel with the execution
of the current plan. These plans are the candi-
dates for plan execution when a new plan needs to
be found for plan switching.

2. Detecting Failures in the Execution of the Current
Plan



Generate Alternative Plans

Detect Failures during
Execution

Failure?

Any Alternative Plans
Available?

Retrieve the Current Status
of Plan Execution

Deadline for Execution
Passed?

A Maximum Number of
Plan Switching Attempted?

Locate Execution Point
in Alternative Plans

Execution Point Found?

Migrate the Execution to
the New Plan

Either Terminate the Computation or
Request for Replanning

Continue Execution

Y

Y

Y

Y

Y

N

N

N

N

N

Figure 1. The procedure of plan switching.

Failure in the plan execution may occurs for a va-
riety of reasons, e.g., a failure in computing nodes
that supports the execution, the temporary un-
availability of computing resources. When fail-
ure occurs, we retrieve the current status of the
computation, collecting all intermediate data that
were generated from the execution of the current
plan.

3. Locating an Execution Point from Alternative
Plans

After we have obtained the knowledge regarding
the current status of the computation, we decide
whether plan switching can be performed. The
decision of plan switching is determined by three
conditions: 1) whether there is no alternative plan
available to perform the same computing task; 2)
whether the deadline for the computing task, if
specified by a user, has already passed; and 3)
whether a maximum number of plan switchings
have been attempted. If any one of the above
conditions is satisfied, we do not perform plan
switching, either terminating the computation or
requesting for replanning. Otherwise, we apply
the plan switching algorithm, which will be dis-
cussed in Section 4, and locate an execution point
in alternative plans so that the computation can

continue from that point.

4. Migrating the Execution

If an execution point can be found, we migrate
the execution of the computation from the cur-
rent plan to the new plan. The process of mi-
gration consists of three steps: 1) scheduling the
execution of all subsequent activities from the ex-
ecution point in the new plan; 2) transferring all
intermediate data to the corresponding comput-
ing nodes where the activities are assigned; and
3) starting the execution of the computation on
the new plan. If, however, plan switching fails, we
either terminate the computation or request for
replanning.

3.3 Definitions

We now provide several definitions necessary to for-
mulate our plan switching problems. The term “snap-
shot” has been used to determine the progress of mul-
tiple processes running on distributed systems [3]. We
use the same term to determine the progress of a plan
execution. We next introduce the concept of “congru-
ent snapshot,” which is the basis of the plan switching
approach.



Definition 1. A single snapshot is a partial de-
scription of the progress of plan execution. A single
snapshot can be defined on either a pair of consecu-
tive activities {a, b} in a plan, denoting that activity a
has finished execution while activity b is still pending,
or between an activity and a dummy activity, if the
activity has no precedent or subsequent activities.

We can annotate a plan by adding single snapshots
in three cases: 1) between every two consecutive ac-
tivities, 2) before all activities that have no precedent
activities, and 3) after all activities that have no subse-
quent activities. Figure 3 shows an annotated version
for the plan in Figure 2.

Definition 2. The subsequent activities of a sin-
gle snapshot are the set of all activities that should
be executed after the snapshot is reached. We use the
function subs(s) to denote the subsequent activities of
a given single snapshot s. For instance, in Figure 3,
subs(s1) = {a1, a2, a3, a4, a5, a6}, subs(s5) = {a5, a6},
and subs(s9) = φ. The preceding activity of a sin-
gle snapshot is a set that contains the most recent
executed activity, if it exists, before the snapshot is
reached. We use the function prec(s) to denote the
preceding activity of a given single snapshot s. For in-
stance, in Figure 3, prec(s1) = φ, prec(s5) = {a2}, and
prec(s9) = {a6}.

Definition 3. A pair of single snapshots, sa and
sb, is independent if prec(sa) ∩ subs(sb) = φ and
prec(sb) ∩ subs(sa) = φ. For instance, snapshots s2

and s3 in Figure 3 are independent snapshots, while
snapshots s2 and s5 are not. A set of single snapshots
S is independent if every pair of single snapshots in S is
independent. For instance, in Figure 3, S = {s2, s3, s4}
is a set of independent snapshots.

Definition 4. A composite snapshot is a combi-
nation of single snapshots. We use a pair of square
brackets “[” and “]” to denote the operation of com-
bining single snapshots. For instance, [s2, s3] denotes a
composite snapshot that combines s2 and s3. A com-
posite snapshot may contain single snapshots that are
not independent of each other.

The above notions for a single snapshot can also be
applied to composite snapshots. The subsequent activi-
ties of a composite snapshot are the union of the sets of
subsequent activities of all single snapshots. The pre-
ceding activities of a composite snapshot are the union
of the sets of preceding activities of all single snapshots.
Two composite snapshots, sa and sb, are independent
if prec(sa)∩ subs(sb) = φ and prec(sb)∩ subs(sa) = φ.
For instance, in Figure 3, subs([s2, s3]) = {a2, a5, a6}∪
{a3, a5, a6} = {a2, a3, a5, a6}, prec([s2, s3]) = {a1},
and snapshots [s2, s3] and s4 are independent.

Definition 5. A snapshot is consistent if it is ei-

ther a single snapshot or a composite snapshot of a set
of independent snapshots. A consistent snapshot s in
a plan P is a global consistent snapshot if there does
not exist a single snapshot s′ in P such that s′ is not
included in s and s′ is independent of all snapshots in
s. In contrast to a single snapshot, a global consis-
tent snapshot gives a complete view of the status of a
plan execution. For instance, the composite snapshot
[s2, s3, s4] in Figure 3 is a global consistent snapshot.
This snapshot describes a status of plan execution in
which activity a1 has finished execution while activi-
ties a2, a3, and a4 are pending execution followed by
a5 and a6.

Definition 6. A global consistent snapshot s1 in
plan P1 is congruent to a global consistent snapshot s2

in plan P2 if we are able to switch execution from s1

to s2, execute the subsequent activities of s2, and fin-
ish the computing task. The subsequent activities of
s1 and s2 do not have to be the same across the two
plans; these activities within each plan must be able
to collectively complete the task. For instance, Fig-
ure 4 shows two available plans, P1 and P2, to perform
a computing task. If the task can be finished by exe-
cuting {a1, a2, a3, a4} from P1 and {b3, b4, b5} from P2,
the global consistent snapshot [s3

′, s4
′] in Plan P2 is

congruent to the global consistent snapshot [s5, s6, s7]
in Plan P1. We use the symbol “∼” to denote the re-
lation of congruency. If a snapshot s1 is congruent to
s2, s1 ∼ s2.

Definition 7. The optimal congruent snapshot for
a given snapshot is the one whose subsequent activi-
ties incur minimal execution cost among all congruent
snapshots.

3.4 Plan Switching between Congruent
Snapshots

We formulate the problem of plan switching as fol-
lows: if the execution of the current plan Pcurr can-
not proceed from a global consistent snapshot s, find a
congruent snapshot s′ of s from alternative plans and
continue the execution from s′ in the plan to which s′

belongs. Figure 4 shows an example of switching be-
tween two plans, P1 and P2. Initially, P1 is the current
plan. When the execution of P1 cannot continue in
snapshot [s5, s6, s7], a congruent snapshot [s3

′, s4
′] in

Plan P2 is found, and the plan execution is switched to
P2 from this congruent snapshot. When the execution
finishes, the complete set of activities having been ex-
ecuted is {a1, a2, a3, a4} from P1 and {b3, b4, b5} from
P2. As we allow plan switching to occur multiple times
during the execution of a computing task, a plan that
fails during execution may still have an opportunity of



a1

a
4

fork

fork

a3

a2

join a5

join a
6

Figure 2. An example plan that contains six activities.

a
1

a4

a
3

a
2

a
5

a
6

s
1

s2

s
3

s
4

s
5

s
6

s
8

s
7

s9

Figure 3. An annotated version of the plan shown in Figure 2. Nine single snapshots are added.

a1

a4

a
3

a2

a
5

a6

s
1

s2

s3

s4

s5

s6
s

8

s
7

s9

b1
b

2

b
3

b
5

s
1
'

s
5
'

s7'

b
4

s2'

s
3
'

s4' s
6
'

Plan P 1

Plan P 2

Figure 4. An example of execution switching between two plans. Snapshot [s3
′, s4

′] in Plan P2 is
congruent to snapshot [s5, s6, s7] in Plan P1.



execution if the execution fails again in the new plan.

4. Algorithm Design

The process of finding a congruent snapshot for a
given snapshot consists of three steps: 1) generate a set
of global consistent snapshots for each plan; 2) identify
congruent snapshots from the set of global consistent
snapshots; and 3) select a congruent snapshot from the
identified congruent snapshots.

1. Finding Global Consistent Snapshots

To find a set of global consistent snapshots for a
plan, we first set S to be the set of all single snap-
shots in the plan. Then we repeat the every step
in Figure 5 to update the snapshots in S until S
cannot be further updated. The final set S is the
set of global consistent snapshots of a plan. Note
that S does not necessarily contain all global con-
sistent snapshots of a plan.

2. Locating Congruent Snapshots for a Given Snap-
shot

Locating congruent snapshots from alternative
plans allows a plan executor to easily switch task
execution from the current plan to an alternative
plan, when temporary or permanent failure occurs
in current plan execution. During the execution of
the current activity(ies), we try to find the congru-
ent snapshots for the snapshot after the execution
of the current activity(ies) finishes. There are two
criteria for a snapshot to be congruent: 1) all its
subsequent activities can be executed; 2) the exe-
cution of the subsequent activities is able to pro-
duce the data that satisfy all goals for the comput-
ing task. One way to verify a congruent snapshot
is based on the preconditions and postconditions
of every subsequent activity (refer [8] for detailed
information). Figure 6 shows the pseudo code for
locating congruent snapshots.

3. Selecting a Congruent Snapshot

Once we have identified congruent snapshots in
step two, we are able to estimate the computa-
tional cost of all subsequent activities for each con-
gruent snapshot. If the computational costs of ac-
tivities are not given or are difficult to estimate, a
rough estimation that simply counts the number
of subsequent activities for a congruent snapshot is
applied. The congruent snapshot to be selected is
the one that incurs the lowest computational cost
among all congruent snapshots found in step two.

What should we do if there does not exist a congru-
ent snapshot when plan switching is requested? There
are three options: 1) send out a request for replan-
ning; 2) terminate the execution of the current plan
completely and execute an alternative plan from the
beginning; and 3) roll back the execution of the cur-
rent plan to the previous global consistent snapshot
and try to find a congruent snapshot for that snapshot.
We discuss the third option in detail.

Rollback is a process of backtracking the computa-
tion to a previous saved point when a failure occurs,
so that the whole computation does not have to be
resumed from the beginning [4]. We say an activity
is reversible if we can roll back the execution of the
activity completely to the snapshot right before it is
executed. In order to roll back the execution of activ-
ities, we need to record every global consistent snap-
shot that has been reached and an ordered list of all
activities that have been executed in the current plan.
When a plan execution cannot proceed and there is not
a congruent snapshot for the current snapshot, we try
to roll back the execution of the last executed activ-
ity. If the activity is not reversible, we have to choose
one of the first two options, either perform replanning
or choose another plan to execute from the beginning.
Otherwise, we roll back the execution of the activity,
regress the computation to the previous snapshot, and
attempt to find a congruent snapshot for this snapshot.
If a congruent snapshot exists, we switch the execution
of the computation to another plan. If, however, a
congruent snapshot is still unavailable, we repeat the
preceding steps and roll back the execution of previous
activities, until we have successfully reached a snapshot
that has a congruent snapshot, or the execution of the
computation cannot be further rolled back.

5. Simulation Study

We perform a simulation study to evaluate the ef-
fectiveness of plan execution. The simulation environ-
ment consists of a number of randomly generated plans.
Both the sizes of plans (denoted by the number of activ-
ities) and the number of subsequent activities of each
activity in a plan may be different but follow Gaussian
distributions. In average, a plan contains ten activi-
ties and each activity has two subsequent activities. A
maximum ten plan switches can occur during the com-
putation of an entire task. If this limit is reached, we
terminate the process and mark the plan execution as
a failure. We also assume that all activities have the
same computational costs.

We test different cases by varying the success rate of
activity execution, the probability of a global consistent



Begin.
1. For each snapshot s in S, find all single snapshots that are independent of s.
2. If s has at least one independent snapshot, do

a. Remove s from S.
b. For each of its independent snapshots s’, do

(1) Combine s with s’.
(2) If the combined snapshot is not in S, include it in S.

c. End for.
3. End if.
End.

Figure 5. The procedure of finding global consistent snapshots for a plan.

Begin.
1. P-curr = the currently executing plan.
2. A-curr = the set of currently executing activities.
3. s-curr = the global consistent snapshot after all activities in A-curr finishes.
4. S = {}. /* initially, the set of congruent snapshots is empty */
5. For each alternative plan P, do

a. For each global consistent snapshot s in P, do
(1) If subs(s) can be executed from s-curr and the execution of subs(s)

produces the data that satisfy all goals for the computing task, include
s in S.

b. End for.
6. End for.
End.

Figure 6. The procedure of locating congruent snapshots for a given snapshot in the current plan.



snapshot being a congruent snapshot, and the number
of available plans to a computing task. We test each
case 50 times, each time using a set of randomly gener-
ated plans. We use the algorithm shown in Figure 5 to
generate the set of global snapshots of each plan. We
evaluate the performance with two criteria: the success
rate of plan execution (i.e., the number of runs out of
50 runs that a computation task can successfully fin-
ish) and, for the successful runs, the average number of
plan switchings performed. Table 1 lists the parameter
settings for the experiment.

We first test the case in which there are three avail-
able plans (i.e., one current plan and two alternative
plans) and the probability of congruent snapshots is
fixed at 0.1. We vary the success rate of a computing
activity between 0.4 and 0.9. No activity is allowed to
roll back its execution. Figure 7 shows the number of
successful runs in each case and the minimum, average,
and maximum number of plan switchings in the suc-
cessful runs. The results indicate that a lower success
rate of computing activities increases the possibility
and occurrences of plan switchings. As a congruent
snapshot cannot always be found when plan switching
is requested, a lower success rate of computing activ-
ities results in a higher probability of failure in plan
execution.

Next, we evaluate the impact of the probability of
congruent snapshots on the success of plan switching.
We test the cases in which only 1% and 5% of the global
consistent snapshots are congruent snapshots. Again,
the success rate of a computing activity is set between
0.4 and 0.9, and no activity is allowed to roll back its
execution. The simulation results, shown in Figures 8
and 9, indicate that the probability of congruent snap-
shots has profound effect on the success of plan switch-
ing. A lower probability leads to a lower possibility
of finding a congruent snapshot, and thus reduces the
success rate of plan execution. When the probability
of congruent snapshots is reduced to 0.01, the failure
of plan execution, in most cases, is due to inability to
find congruent snapshots rather than overreaching the
maximum allowed number of plan switches. This re-
sult indicates that allowing rollback of plan execution
might be an effective cure to plan execution when the
probability of congruent snapshots is low.

Figure 10 shows the results in additional 10 runs
when rollback of plan execution is enabled and all ac-
tivities in a plan are reversible. The probability of con-
gruent snapshots is kept as low as 0.01. Obviously,
allowing rollback of activity execution gives more op-
portunities for finding congruent snapshots and thus
increases the probability of a successful plan switch.
Comparing Figures 9(a) and 10(a), only for some of the

different probabilities of a successful activity does roll-
back improve the percentage of successful runs. How-
ever, Figure 11 indicates that in those failed runs, al-
lowing rollback offers more chances for plan switching
among alternative plans. Some runs fail solely because
a maximum number of plan switches have already been
attempted.

In the third case, we study whether the number of
alternative plans affects the success of plan switching.
We repeat the above tests by setting the probability of
congruent snapshots to 0.05 but increase the number
of plans to six. Activities are not allowed to roll back
their execution. The simulation results, shown in Fig-
ure 12, demonstrate that having more alternative plans
definitely improves the performance of plan switching,
especially in cases where the probability of a successful
activity is low (≤ 0.6). When there are six available
plans, the success of plan switching is less likely to rely
on the success rate of activity execution, as more global
consistent snapshots (hence more congruent snapshots)
are available from alternative plans.

6. Conclusions and Future Work

This paper focuses on the problem of plan switching:
switching the execution of a computing task among
multiple plans. We formulate the problem of plan
switching and present an approach to the problem.
This approach introduces the concept of congruent
snapshots that allow transition from the execution of
one plan to another. The main idea of the approach
is to find congruent snapshots from alternative plans
so that when the execution of the current plan fails,
we continue the execution of the task from a selected
congruent snapshot in another plan.

A simulation study on this approach indicates that
a high probability of congruent snapshots, a high suc-
cess rate of computing activities, and more alternative
plans can improve the performance of plan switching.
In addition, allowing rollback of activity execution of-
fers additional opportunities to find congruent snap-
shots, thus is also benefiting plan switching.

Future work will address the problem of improv-
ing the process of selecting the congruent snapshot for
continuing the plan execution. Currently, the congru-
ent snapshot to be selected is the one that has the
lowest cost of subsequent activities among all candi-
dates. While this is a simple approach, it may result
in switching to a plan that contains inexecutable ac-
tivities so that another request of plan switching may
be inevitable. Other heuristics can be embedded into
this process to balance both the execution cost of a
computing task and the success rate of plan execution.



Parameter Value

Number of Runs 50

Number of Plans 3, 6

Avg. Number of Activities 10

Maximum Number of Plan Switches 10

Avg. Number of Subsequent Activities 2

Prob. of an Successful Activity 0.4 - 0.9, with increase step of 0.1

Prob. of a Congruent Snapshot 0.01, 0.05, and 0.1

Table 1. Parameter settings for the experiment.

0

10

20

30

40

50

60

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity

0

2

4

6

8

10

12

0.
4 

/ M
in

0.
4 

/ A
vg

0.
4 

/ M
ax

0.
5 

/ M
in

0.
5 

/ A
vg

0.
5 

/ M
ax

0.
6 

/ M
in

0.
6 

/ A
vg

0.
6 

/ M
ax

0.
7 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
8 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
9 

/ M
in

0.
9 

/ A
vg

0.
9 

/ M
ax

N
um

be
r 

of
 P

la
n 

S
w

itc
hi

ng
s 

in
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 7. The simulation results on the effect of the success rate of a computing activity to the
success of plan switching. (a) The number of successful runs out of 50 runs. (b) The average,
minimum, and maximum number of plan switches in successful runs.



0

10

20

30

40

50

60

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity

0

2

4

6

8

10

12

0.
4 

/ M
in

0.
4 

/ A
vg

0.
4 

/ M
ax

0.
5 

/ M
in

0.
5 

/ A
vg

0.
5 

/ M
ax

0.
6 

/ M
in

0.
6 

/ A
vg

0.
6 

/ M
ax

0.
7 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
8 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
9 

/ M
in

0.
9 

/ A
vg

0.
9 

/ M
ax

N
um

be
r 

of
 P

la
n 

S
w

itc
hi

ng
s 

in
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 8. The simulation results when 5% of the global consistent snapshots are congruent snap-
shots. (a) The number of successful runs out of 50 runs. (b) The average, minimum, and maximum
number of plan switches in successful runs.

0

10

20

30

40

50

60

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity

0

2

4

6

8

10

12

0.
4 

/ M
in

0.
4 

/ A
vg

0.
4 

/ M
ax

0.
5 

/ M
in

0.
5 

/ A
vg

0.
5 

/ M
ax

0.
6 

/ M
in

0.
6 

/ A
vg

0.
6 

/ M
ax

0.
7 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
8 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
9 

/ M
in

0.
9 

/ A
vg

0.
9 

/ M
ax

N
um

be
r 

of
 P

la
n 

S
w

itc
hi

ng
s 

in
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 9. The simulation results when 1% of the global consistent snapshots are congruent snap-
shots. (a) The number of successful runs out of 50 runs. (b) The average, minimum, and maximum
number of plan switches in successful runs.



0

2

4

6

8

10

12

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity

0

2

4

6

8

10

12

0.
4 

/ M
in

0.
4 

/ A
vg

0.
4 

/ M
ax

0.
5 

/ M
in

0.
5 

/ A
vg

0.
5 

/ M
ax

0.
6 

/ M
in

0.
6 

/ A
vg

0.
6 

/ M
ax

0.
7 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
8 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
9 

/ M
in

0.
9 

/ A
vg

0.
9 

/ M
ax

N
um

be
r 

of
 P

la
n 

S
w

itc
hi

ng
s 

in
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 10. The simulation results showing the effectiveness of allowing rollback in plan execution
when all activities are reversible and 1% of the global consistent snapshots are congruent snap-
shots. (a) The number of successful runs out of 10 runs. (b) The average, minimum, and maximum
number of plan switches in successful runs.

0

2

4

6

8

10

12

0.
4 

/ M
in

0.
4 

/ A
vg

0.
4 

/ M
ax

0.
5 

/ M
in

0.
5 

/ A
vg

0.
5 

/ M
ax

0.
6 

/ M
in

0.
6 

/ A
vg

0.
6 

/ M
ax

0.
7 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
8 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
9 

/ M
in

0.
9 

/ A
vg

0.
9 

/ M
ax

N
um

be
r 

of
 P

la
n 

S
w

itc
hi

ng
s 

in
 F

ai
le

d 
R

un
s

Probability of a Successful Activity / (Min, Avg, Max)

0

2

4

6

8

10

12

0.
4 

/ M
in

0.
4 

/ A
vg

0.
4 

/ M
ax

0.
5 

/ M
in

0.
5 

/ A
vg

0.
5 

/ M
ax

0.
6 

/ M
in

0.
6 

/ A
vg

0.
6 

/ M
ax

0.
7 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
8 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
9 

/ M
in

0.
9 

/ A
vg

0.
9 

/ M
ax

N
um

be
r 

of
 P

la
n 

S
w

itc
hi

ng
s 

in
 F

ai
le

d 
R

un
s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 11. The minimum, average, and maximum number of plan switches before the plan execution
fails. (a) Rollback of execution is not allowed. (b) Rollback of execution is allowed.



0

10

20

30

40

50

60

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

N
um

be
r 

of
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity

0

2

4

6

8

10

12

0.
4 

/ M
in

0.
4 

/ A
vg

0.
4 

/ M
ax

0.
5 

/ M
in

0.
5 

/ A
vg

0.
5 

/ M
ax

0.
6 

/ M
in

0.
6 

/ A
vg

0.
6 

/ M
ax

0.
7 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
8 

/ M
in

0.
7 

/ A
vg

0.
7 

/ M
ax

0.
9 

/ M
in

0.
9 

/ A
vg

0.
9 

/ M
ax

N
um

be
r 

of
 P

la
n 

S
w

itc
hi

ng
s 

in
 S

uc
ce

ss
fu

l R
un

s

Probability of a Successful Activity / (Min, Avg, Max)

(a) (b)

Figure 12. The simulation results for cases in which six plans are available for execution and 5% of
the global consistent snapshots are congruent snapshots. (a) The number of successful runs out of
50 runs. (b) The average, minimum, and maximum number of plan switches in successful runs.

In addition, the algorithm shown in Figure 5 can
only find a subset of all global consistent snapshots of
a plan. Another approach to improving the success of
plan switching is to design an algorithm that finds all
global consistent snapshots of a plan so that more con-
gruent snapshots can be located when plan switching
is requested.

Acknowledgments

This research was supported by National Sci-
ence Foundation grants MCB9527131, DBI0296035,
ACI0296035, and EIA0296179, the DARPA In-
formation Exploitation Office under contract No.
NBCHC030137, by the Colorado State University Cen-
ter for Robustness in Computer Systems (funded by the
Colorado Commission on Higher Education Technology
Advancement Group through the Colorado Institute
of Technology), and by the Colorado State University
George T. Abell Endowment. Approved for public re-
lease, distribution unlimited.

References

[1] E. M. Atkins, T. F. Abdelzaher, K. G. Shin, and E. H.
Durfee. Planning and resource allocation for hard real-
time, fault-tolerant plan execution. Journal of Au-
tonomous Agents and Multi-Agent Systems, 4:57–78,
2001.

[2] C. Boutilier, T. Dean, and S. Hanks. Planning under
uncertainty: structural assumptions and computational

leverage. In New Directions in AI Planning, pages 157–
172, 1996.

[3] K. M. Chandy and L. Lamport. Distributed snapshots:
determining global states of distributed systems. ACM
Transactions on Computer Systems, 3(1):63–75, 1985.

[4] J. Gray and A. Reuter. Transaction Processing: Con-
cepts and Techniques. Morgan Kaufmann Publishers,
1993.

[5] D. J. Musliner, E. H. Durfee, and K. G. Shin. World
modeling for the dynamic construction of real-time con-
trol plans. Journal of Artificial Intelligence, 74(1):83–
127, 1995.

[6] B. Pell, E. Gat, R. Keesing, N. Muscettola, and
B. Smith. Plan execution for autonomous spacecraft.
In Proceedings of AAAI-96 Fall Symposium, pages 109–
116, 2004.

[7] D. E. Wilkins, K. L. Myers, and J. D. Lowrance. Plan-
ning and reacting in uncertain and dynamic environ-
ments. Journal of Experimental and Theoretical AI,
7(1):197–227, 1995.

[8] H. Yu, X. Bai, G. Wang, Y. Ji, and D. C. Marinescu.
Metainformation and workflow management for solving
complex problems in grid environments. In Proceed-
ings of the 13th Heterogeneous Computing Workshop
(HCW), 2004.

Biographies

Han Yu received his Ph.D. in Computer Science
from the University of Central Florida (UCF) in 2005.
He received BS degree from Shanghai Jiao Tong Uni-
versity in 1996 and MS degree from the University of
Central Florida in 2002. His research area includes grid



and distributed computing, evolutionary computation,
and AI planning.

Dan C. Marinescu is Professor of Computer Sci-
ence at University of Central Florida. He is a Provost
Research Professor and Scientific Director of the Inter-
disciplinary Information Science and Technology Lab-
oratory at UCF. From 1984 till 2001 he was a Profes-
sor in the Department of Computer Science at Pur-
due University. He is conducting research in parallel
and distributed computing, computational structural
biology, and quantum computing. He has co-authored
more than 160 papers published in refereed journals
and conference proceedings. He is the author of the
book Internet-based Workflow Management published
by Wiley in 2002, has co-edited Process Coordination
and Ubiquitous Computing published by CRC Press
in 2002. His most recent book Approaching Quantum
Computing was published by Prentice Hall in 2004. He
is a member of the editorial board of several journals
and member of the Program Committee for interna-
tional conferences. He was the keynote speaker and tu-
torial lecturer at scientific meetings in US and abroad.
He has consulted for industry and government. See
http://www.cs.ucf.edu/∼dcm for additional informa-
tion.

Annie S. Wu is an Associate Professor in the
School of Electrical Engineering and Computer Science
and Director of the Evolutionary Computation Labo-
ratory at the University of Central Florida (UCF). Be-
fore joining UCF, she was a National Research Council
Postdoctoral Research Associate at the Naval Research
Laboratory. She received her Ph.D. in Computer Sci-
ence & Engineering from the University of Michigan.

Howard Jay Siegel holds the endowed chair po-
sition of Abell Distinguished Professor of Electrical
and Computer Engineering at Colorado State Uni-
versity (CSU), where he is also a Professor of Com-
puter Science. He is the Director of the CSU Informa-
tion Science and Technology Center (ISTeC). ISTeC
a university-wide organization for promoting, facilitat-
ing, and enhancing CSU’s research, education, and out-
reach activities pertaining to the design and innovative
application of computer, communication, and informa-
tion systems. Prof. Siegel is a Fellow of the IEEE
and a Fellow of the ACM. From 1976 to 2001, he was
a professor in the School of Electrical and Computer
Engineering at Purdue University. He received a B.S.
degree in electrical engineering and a B.S. degree in
management from the Massachusetts Institute of Tech-
nology (MIT), and the M.A., M.S.E., and Ph.D. de-
grees from the Department of Electrical Engineering
and Computer Science at Princeton University. He has
co-authored over 300 technical papers. His research in-

terests include heterogeneous parallel and distributed
computing, parallel algorithms, parallel machine inter-
connection networks, and reconfigurable parallel com-
puter systems. He was a Coeditor-in-Chief of the Jour-
nal of Parallel and Distributed Computing, and has
been on the Editorial Boards of both the IEEE Trans-
actions on Parallel and Distributed Systems and the
IEEE Transactions on Computers. He was Program
Chair/Co-Chair of three major international confer-
ences, General Chair/Co-Chair of six international con-
ferences, and Chair/Co-Chair of five workshops. He is
a member of the Eta Kappa Nu electrical engineer-
ing honor society, the Sigma Xi science honor soci-
ety, and the Upsilon Pi Epsilon computing sciences
honor society. He has been an international keynote
speaker and tutorial lecturer, and has consulted for in-
dustry and government. For more information, please
see www.engr.colostate.edu/∼hj.

Rose Daley is a member of the Senior Profes-
sional Staff at the Johns Hopkins University Applied
Physics Lab (JHU/APL). She holds a B.S. in Electri-
cal Engineering from Rensselaer Polytechnic Institute
and an M.S. in Computer Science from the John Hop-
kins University, specializing in Distributing Comput-
ing. She has over twenty years experience architect-
ing and implementing software systems, including both
distributed large-scale tactical systems encompassing
multiple operating systems and communication proto-
cols, and enterprise systems with large databases on
internal Intranets. She is the PI for a project for adap-
tive middleware in large-scale computing environments
as well as two internal efforts for developing specialized
architecture frameworks. She has led numerous efforts
in architecture and modeling, resource management,
determining tactical mission sensitivity to network re-
source attacks and casualties, including development of
several tactical and enterprise DoD systems.

I-Jeng Wang is a Principal Professional Staff with
the Research and Technology Development Center at
the Johns Hopkins University Applied Physics Labora-
tory. He has a joint appointment with the Johns Hop-
kins University Computer Science Department as a Re-
search Assistant Professor. He received the M.S. degree
from Penn State University in 1991 and the Ph.D. de-
gree from Purdue University in 1996, both in Electrical
Engineering. From 1996 to 1997, he was a postdoctoral
fellow with the Institute for Systems Research at the
University of Maryland, where he conducted research
in intelligent control and stochastic approximation.
Since October 1997, he has been with JHU/APL where
he manages and directs internal research in developing
scalable algorithms for solving large-scale DoD prob-
lems in areas including resource allocation, wireless



networking and pattern recognition. He is the Co-PI
of a project on mission-oriented resource management
for a Total Ship Computing Environment funded by
the DARPA IXO ARMS program. He was the PI of a
project on adaptive information control to develop ef-
ficient resource allocation techniques for dynamic QoS
provisioning over distributed and disparate networks,
funded by the DARPA AICE program. He was a Co-
PI of a project on autonomous internetworking funded
by the Army Collaborative Technology Alliance, under
which he leads a multi-organization team to develop
scalable and dynamic routing protocols. His current
research interests include stochastic optimization and
control, sensor networks, wireless networking, and dis-
tributed Bayesian learning and inference. He is an as-
sociate editor for the IEEE Transactions on Automatic
Control.


