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Abstract

In this paper we discuss the role of a broker in
a market-oriented resource allocation model for large-
scale heterogeneous systems. The simplified model
is based upon a three party system, provider-broker-
consumer. The allocation of resources is determined
by their price, their utility to the consumer, and by the
satisfaction of the consumer. The role of the broker
is to add societal objectives to resource allocation algo-
rithms and to mediate between greedy consumers and
selfish providers. A simulation experiment was con-
ducted to study the transient and the steady-state be-
havior of several performance measures, including the
average consumer satisfaction, the average utility, and
the hourly revenue.

1 Introduction

Resource management in a large-scale heterogeneous
system poses serious challenges due to the scale of the
system, the heterogeneity and inherent autonomy of
resource providers, and the large number of consumers
and the diversity of their needs. Individual members
of the community contribute computing cycles, storage,
services, and communication bandwidth to the pool of
resources available to the entire community. An effi-
cient and fair utilization of the resources can be ob-

tained only through a scheme that gives incentives to
the providers to share their resources and that encour-
ages the consumers to maximize the utility of the re-
ceived resources. A well-tested model for such a scheme
is based on an economic model, in which the resources
need to be paid for in a real or virtual currency. This
model has the advantage of being provably scalable,
and we can successfully reuse or adapt the models that
govern the economy in our society.

Economic models are attractive for resource
providers, beneficial for the consumers of resources,
and have societal benefits. Indeed, providers benefit
from contributing their resources and are encouraged to
re-invest some of their profits into additional resources.
Consumers enjoy fair treatment as the resource alloca-
tion is governed by rules that do not depend on the
individual consumer. Moreover, providers and con-
sumers have a say in the market and can make their
own decisions to maximize their utility and/or profits.
When system-centric scheduling policies are replaced
by consumer-centric policies the system becomes more
responsive to consumer needs and important problems
are solved with higher priority. Economic models allow
resource allocation and management to be more effi-
cient, the demand and supply is regulated through eco-
nomic activities and fewer resources are wasted, and ex-
cess capacity and overloading are averaged over a very
large number of providers and consumers. Resources,
e.g., CPU cycles, main memory, secondary storage, and
network bandwidth/latency, are treated uniformly and



this can facilitate the design of large-scale distributed
systems, such as computational grids. The system is
more scalable and decision-making is distributed.

In an economic model, all the participants are con-
sidered self-interested. The resource providers are try-
ing to maximize their revenues. The consumers want
to obtain the maximum possible resources for the min-
imum possible cost. The large number of participants
makes one-to-one negotiations expensive and unpro-
ductive. In this case, direct negotiation between re-
source providers and consumers is very inefficient. We
need a broker to mediate access to resources from dif-
ferent providers. A broker is able to reconcile the selfish
objectives of individual resource providers who want to
maximize their revenues, with the selfish objectives of
individual consumers who want to get the most possi-
ble utility at the lowest possible cost, and with some
global, societal objectives, e.g., to maximize the utility
of the system.

To formalize the objectives of the participants, we
use: (i) a consumer utility function, 0 ≤ u(r) ≤ 1,
to represent the utility provided to an individual con-
sumer, where r represents the amount of allocated re-
source; (ii) a provider price function, p(r), imposed by
a resource provider, and (iii) a consumer satisfaction
function, s(u(r), p(r)), 0 ≤ s ≤ 1, to quantify the level
of satisfaction; the satisfaction depends on both the
provided utility and the paid price.

The utility function should be an non-decreasing
function of r, i.e., we assume that the more resources
are allocated to the consumer, the higher the con-
sumer utility is. However, when enough resources have
been allocated to the consumer, i.e., some threshold is
reached, an increase of allocated resources would bring
no improvement on the utility. For example, if a paral-
lel application could use at most 100 nodes of a cluster,
its utility reflected by a utility function does not in-
crease if its allocation increases from 100 to 110 nodes.
The above requirements are reflected by the following
equations:

du(r)
dr

≥ 0, lim
r→∞

du(r)
dr

= 0 (1)

Sigmoid functions follow Equation (1) and are often
used to model utility. A sigmoid is a tilted S-shaped
curve that could be used to represent the life-cycles
of living, as well as man-made, social, or economical
systems. It has three distinct phases: an incipient or
starting phase, a maturing phase, and a declining or
aging phase, as shown in Figure 1.

In the context of resource allocation, a sigmoid
quantifies the utility provided to an individual when
the amount of resources allocated to the consumer in-
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Figure 1. A sigmoid includes three phases:
the starting phase, the maturing phase, and
the aging phase. Normally consumers do not
want the amount of allocated resource to be
at the starting phase because the utility is too
low; they also do not want the amount of al-
located resource to be at the aging phase be-
cause they can get a little lower utility while
saving a large amount of resources.

creases. We expect the utility to be a concave function
and reaches saturation as the consumer gets all the
resources it can use effectively. The consumer utility
function could be a sigmoid [23]

u = u(r) =
(r/ω)ζ

1 + (r/ω)ζ
(2)

where ζ and ω are constants provided by the consumer,
ζ ≥ 2, and ω > 0. Clearly, 0 ≤ u(r) < 1 and u(ω) =
1/2. A plot of the sigmoid utility function is shown in
Figure 1.

The provider price could be a linear function of the
amount of resources:

p(r) = ξ · r
where ξ is the unit price. The unit price of the re-
sources can be set by convention to a constant, or it
can vary based on supply and demand. The variable
unit price ξ might be (a) subject to a peer-to-peer ne-
gotiation between the consumer and the provider, (b)
set in a centralized way similar to a commodity ex-
change, requiring global information about the supply
and demand, or (c) determined by local estimate of the
supply and demand. For example, based on the ratio
of the allocated resources to the total resources of the
provider, a function could give a lower price for the low
ratio and a higher price for the high ratio.



A consumer satisfaction function takes into account
both the utility provided to the consumer and the
price paid. For a given utility, the satisfaction func-
tion should increase when the price decreases and, for
a given price, the satisfaction function should increase
when the utility u increases. These requirements are
reflected in Equation (3).

∂s

∂p
≤ 0,

∂s

∂u
≥ 0 (3)

Furthermore, a normalized satisfaction function
should satisfy the following conditions:

• the degree of satisfaction, s(u(r), p(r)), for a given
price p(r), approaches the minimum, 0, when the
utility, u(r), approaches 0;

• the degree of satisfaction, s(u(r), p(r)), for a given
price p(r), approaches the maximum, 1, when the
utility, u(r), approaches infinity;

• the degree of satisfaction, s(u(r), p(r)), for a given
utility u(r), approaches the maximum, 1, when the
price, p(r), approaches 0; and

• the degree of satisfaction, s(u(r), p(r)), for a given
utility u(r), approaches the minimum, 0, when the
price, p(r), approaches infinity.

These requirements are reflected by Equations (4)
and (5).

∀p > 0, lim
u→0

s(u, p) = 0, lim
u→∞ s(u, p) = 1 (4)

∀u > 0, lim
p→0

s(u, p) = 1, lim
p→∞ s(u, p) = 0 (5)

A candidate satisfaction function is [19]:

s(u, p) = 1 − e−κ·uµ·p−ε

(6)

where κ, µ, and ε are appropriate positive constants.
If in the above satisfaction function the utility is

normalized, e.g., the sigmoid specified by Equation 2,
it is reasonable to let the price part be also normalized.
A candidate satisfaction function that has a normalized
price part is

s(u, p) = 1 − e−κ·uµ·(p/φ)−ε

(7)

where φ is a reference price.
A plot of the satisfaction function based on different

unit prices is shown in Figure 2. Satisfaction decreases
after a peak value because continuing to pay more as
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Figure 2. The satisfaction function of the
amount of resources r for a sigmoid utility
function and linear price functions, 0 ≤ s ≤
1. For the same amount of resources, the
higher is the price, the lower is the satisfac-
tion.

resources increase after that point does not increase
utilization.

In this paper, we consider a model where the allo-
cation of resources is determined by their price, their
utility to the consumer, and by the satisfaction of the
consumer. We present the architecture of the model,
the utility, price and satisfaction functions, as well as a
set of broker strategies. A set of simulations show that
the approach can successfully bridge the conflict of in-
terests between the consumers and resource providers
and control the global behavior of the system.

2 Related Work

Several commercial companies such as Entropia,
ProcessTree, Popular Power, Mojo Nation, United De-
vices, and Parabon are exploiting idle CPU cycles of
desktop machines to build computational grids. They
are able to charge consumers for access to resources,
but do not offering fiscal incentive to all resource con-
tributors. In a long term, it is unlikely that such a
model could be successful to create a maintainable and
sustainable infrastructure [5].

Economic models are at a better position - resource
providers are encouraged because they can benefit from
allocting resources to consumers. Several economic
models are used for trading computational resources
[7]:

- Commodity Market : resource providers advertise



their resource prices and charge users based on the
amount of resources used. The pricing policy could
be based on a flat fee, the resource usage duration,
the subscription, and the demand and supply [14].
Mungi [12], Enhanced MOSIX [1], and Nimrod/G [6]
are some of the systems based upon the commodity
market model.

- Posted Price: this model, used by Nimrod/G [6], is
similar to the Commodity Market Model except that
it advertises special offers to attract users.

- Bargaining : resource owners and users/brokers nego-
tiate with each other until they reach a mutually agree-
able price. This model is mostly used in a market that
does not have a clear demand-and-supply relationship
and price. Examples of systems include Mariposa [13]
and Nimrod/G [6].

- Tendering/Contract-Net : first users/brokers adver-
tise their requirement, then resource owners respond
with their bids, and at last users/brokers choose a re-
source owner to use its resource. Mariposa [13] applies
this strategy.

- Auction: resource owners announce their resources
and invite bids, then an auction process is performed
with users/brokers, and at last the winner user/broker
uses the resource. Different auction policies can be
used: 1) English auction; 2) first-price sealed-bid auc-
tion; 3) Vickrey auction (second-price sealed-bid); and
4) Dutch auction. In English auction, all bidders are
free to increase their bids exceeding other offers; when
no bidder is willing to increase the bid, the auction
ends and the highest bidder wins. In first-price sealed-
bid auction, every bidder submits a sealed-bid and the
highest bidder wins. In Vickrey auction, every bidder
submits a sealed-bid and the highest bidder wins at the
price of the second highest bidder. In Dutch auction,
the resource owners start by a high price and continu-
ously decrease the price until a bidder is will to take the
resource at the current price. Spawn [20] and Popcorn
[16] use this model.

- Bid-based Proportional Resource Sharing : the per-
centage of resources allocated a user is a function of
the user’s bid and other users’ bids. Rexec/Anemone
[8] implements this model.

- Community/Coalition/Bartering : a community of re-
source owners share each other’s resources. Those re-
source owners contribute to the community get cred-
its by sharing their resources. The credit of a resource
owner decides how much resources he can get from oth-
ers. Condor [9], SETI@home [17], and Mojo Nation
[15] are based on this model.

- Monopoly/Oligopoly : one or a small number of re-
source owners decide the price and it is not possible
to negotiate the price. Nimrod/G [6] embraces this
model.

Some systems use more than one strategy. For ex-
ample, Nimrod/G supports three different models: the
Commodity Market model, the Posted Price model,
and the Monopoly/Oligopoly model.

The efficiency of two different market-based resource
allocation schemes, commodities markets and auctions,
are discussed in [21] and [22]. These papers define con-
cepts such as price stability, market equilibrium, con-
sumer efficiency, and provider efficiency and show that
the commodities markets are better choices for control-
ling grid resources than auction strategies.

An approach to implement automatic selection of
multiple negotiation models to adapt to the computa-
tion needs and change of resource environment is dis-
cussed in [18]. A task-oriented mechanism for measur-
ing the economic value of using heterogeneous resources
as a common currency is analyzed in [11]; resource con-
sumers can compare the advantage of participating in a
computational grid with the alternative of purchasing
their own resources necessary, and resource providers
can evaluate the profit of putting their resources into
a grid. A comparative analysis of market-based re-
source allocation by continuous double auctions and by
the proportional share protocol versus a conventional
round-robin approach is presented in [10].

3 Broker Models

The role of a broker is to facilitate the resource al-
location. We do not support task migration. Once al-
located to a site, we expect the task either to complete
its execution there, or if it fails to complete at that
site, to be restarted at a different site. We also as-
sume that a matchmaking service has previously been
invoked to establish that indeed the resources required
by a consumer Ui exist at site Rj .

Several broker models can be constructed subject to
these restrictions. For example, we could consider spe-
cialized brokers that mediate access to sets of “similar”
resources, e.g., one broker is responsible for all clusters,
another for high performance parallel systems, one for
systems with graphical capabilities, and so on. An al-
ternative model where individual brokers mediate ac-
cess to any type of resources is possible. We could also
construct models in which one consumer is allowed to
request services from one broker only; alternatively one
could construct models where one consumer requests
services from competing brokers.



The provider-broker-consumer model involves the
set of resource providers R, the set of consumers U ,
and broker B. Brokers have “societal goals” and at-
tempt to maximize the average utility and revenue, as
opposed to providers and consumers that have indi-
vidualistic goals; each provider wishes to maximize its
revenue, while each consumer wishes to maximize its
utility and do so for as little cost as possible. To recon-
cile the requirements of a consumer and the candidate
providers, a broker first chooses a subset of providers
such that the satisfaction is above a high water mark
and all providers in the subset have equal chances to
be chosen by the consumer. We call the size of this
subset satisficing size, and denote it as σ. The model
consists of the following steps (Figure 3):

1. All resource providers reveal their capacity and
pricing parameters to the broker: ∀Rj ∈ R send
cj and ξj , where cj and ξj are the resource capacity
and the unit price of Rj , respectively.

2. A consumer Ui sends to the broker: (1) the para-
meters of its utility function: (ζi, ωi), (2) the para-
meters of its satisfaction function: (µi, εi, κi, φi),
and (3) the maximum number of candidate re-
source providers to be returned.

3. The broker performs an algorithm and returns a
list of candidate resource providers Ri to consumer
Ui.

4. Consumer Ui selects the first provider from Ri and
verifies if the provider can allocate the required
resources. If it can not, the consumer moves to
the next provider from the list until the resources
are allocated by a provider Rj .

5. Rj notifies the broker about the resource alloca-
tion to Ui.

The brokering algorithm is summarized in Figure
4. The amount of resources to be allocated is deter-
mined during the algorithm according to a broker strat-
egy. Simple strategies would be to allocate the same
amount of resources to every consumer, or to allocate
to every consumer a random amount of resources. A
better strategy, discussed in this paper, is to allocate
an amount of resources such that the utility of the re-
source to the consumer reaches a certain target utility
τ . To determine the amount of resources allocated to
the consumer, the broker uses Equation 8 derived from
the definition of u(r), Equation 2:

r = e
ln( τ

1−τ
)

ζ +ln(ω) (8)

Several quantities are used in the next section to
characterize the resource management policy for broker
B and its associated providers and consumers:

1. The average hourly revenue for providers. The
revenue of a provider is over all of its resources.
This average is over the set of all providers con-
nected to B.

2. The consumer admission ratio. This ratio is the
number of admitted consumers over the number
of all consumers connected to B. A consumer is
admitted into the system when there is a provider
able to allocate resources, otherwise the consumer
is dropped.

3. The average consumer utility. This average is over
the set of all admitted consumers connected to B.

4. The average consumer satisfaction. This average
is over the set of all admitted consumers connected
to B.

4 A Simulation Study

Market oriented resource allocation algorithms are
very difficult to analyze analytically. To understand
the transient and the steady state behavior of the
system we conducted a simulation study using YAES
[24, 4]. The behavior of the model is determined by
two parameters that can be chosen by the broker: the
target utility τ and the satisficing size σ. We investi-
gate the performance of the model for different τ and
σ values. When we study the effect of τ , we use σ = 1,
and when we study the effect of σ, we use τ = 0.9. We
also compare the system performance of our scheme
for several σ values with a random strategy. In this
case, we randomly choose a provider from the set of
all providers, without considering the satisfaction func-
tion.

We define the demand-capacity ratio as the ratio of
the amount of resources requested by the consumers to
the total capacity of resource providers. While the ca-
pacity can be exactly determined, the level of demand
is practically limited by the sigmoid shape of the utility
curve. In the computation of the demand-capacity ra-
tio, for each consumer and each resource, it is assumed
that for the requested resource the corresponding util-
ity value is 0.9. We investigate the performance of the
model in the steady-state under various scenarios of
demand-capacity ratio for different τ and σ values.

In our simulation, the system consists of 100
providers and a broker. The capacity of providers is a
random variable normally distributed with the mean of
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Figure 3. The brokering process: 1) Providers send to the broker their resource capacity and pric-
ing parameters; 2) A consumer sends to the broker a request; 3) The broker executes a brokering
algorithm and returns to the consumer a list of resource providers; 4) The consumer selects the
first provider from the returned list and confirms that it can satisfy the resource requirements; if it
can not, chooses the next provider, until one of the providers allocates the needed resources; 5) If a
resource provider allocates resources to the consumer, it notifies the broker about this allocation.

BROKERING ALGORITHM
INPUT request req, , , a finite set of resource providers ps
OUTPUT a finite set of suggested resource providers ss
BEGIN

determine amount so that req.u(amount) =
        FOR each resource provider rp in ps

      r = min (amount, available resources of rp)
satisfaction = req.s (req.u(r), rp.p(r))

        END FOR
        sort elements in ps according to their satisfactions
        randomize the sequences of the first items in ps
        keep the elements in ps that have the highest req.cardinality satisfaction degrees and remove the rest

ss = ps
END

Figure 4. The brokering algorithm performed by the broker. req contains a utility function u, a satis-
faction function s, and a cardinality that specifies the number of resource providers to be returned
by the broker. τ is the target utility. σ is the satisficing size.

1000 and the standard deviation of 500. All providers
use a linear pricing strategy (see Table 1). Initially,
there is no consumer in the system. The inter-arrival
time of consumers follows an exponential distribution

with the mean of 2 seconds. The service time, i.e.,
the time a consumer uses the resource allocated to it,
follows an exponential distribution with the mean of
λ seconds. By varying the λ parameter we modify



Parameter Range

ξ [1, 10]
ω [20, 40]
κ [0.02, 0.04]
µ [2, 4]
ε [2, 4]
φ [900, 1000]

Table 1. Parameters of the simulation with a
uniform distribution.

demand-capacity ratio so that we can study the behav-
ior of the system under different loads. The parameters
of the utility function of consumers are uniformly dis-
tributed in the ranges shown in Table 1. With these
values, for the fixed value of utility of 0.9, the resource
demands of the consumers are exponentially distrib-
uted with mean of 500. For simplification we let the
maximum number of resource providers to be returned
by the broker be 100 for all consumers.

In every case, we run the simulation 50 times. We
show the average value and a 95% confidence interval.
We report the average hourly revenue, the consumer
admission ratio, the average consumer satisfaction, and
the average consumer utility collected over the most
recent one hour interval:

1. As a function of time: for several levels of target
utility τ (Figure 5, 6, 7, and 8); for several levels
of satisficing size σ (Figure 9, 10, and 11).

2. As a function of the demand-capacity ratio: for
several levels of of target utility τ (Figure 12, 13,
14, and 15); for several levels of satisficing size σ
(Figure 16, 17, 18, and 19).

Figure 5 shows that the average hourly revenue in-
creases rapidly during the transient period, followed by
a slow decrease due to resource fragmentation1, and
reaches a steady value for the steady state. The larger
is τ , the more resources are allocated to consumers,
and the higher is the average hourly revenue. Figure
6 shows that when τ is set to 0.8, 0.85, or 0.9, the
system is capable of handling all consumer requests.
So for these τ values the consumer admission ratio is
approximately 1.0 and the corresponding plots overlap
with each other. When τ is equal to 0.95, the sys-
tem is not capable of handling all consumer requests in

1Resource fragmentation is an undesirable phenomena; in our
environment the amount of resources available from any single
provider cannot meet the target utility value for any request and
an insufficient amount of resources is allocated.

the transient period, and some consumer requests are
dropped. As time goes on, due to resource fragmenta-
tion, many consumers are allocated smaller amounts of
resources (below the one required by the target utility).
Thus, more consumers can be admitted to the system,
increasing the consumer admission ratio. However,
these additional consumers would operate at lower lev-
els of utility and satisfaction. During the steady state,
all consumers can be admitted and the consumer ad-
mission ratio is 1. Figure 7 shows that the average
consumer satisfaction increases slowly during the tran-
sient period and reaches a stable value in steady state.
The average consumer satisfaction is higher when τ is
smaller because the smaller is τ , the more consumers
can be admitted by resource providers with cheaper
prices and these consumers experience higher satisfac-
tions. Figure 8 shows that at the startup of the system,
with all the providers available, the early customers will
have a relatively higher average utility (although lim-
ited by the value of τ). The average utility slowly de-
creases to a stable value during the steady state, which
shows the adaptation of the system to the current load
conditions. The average consumer utility is lower when
τ is smaller.

Figure 9 shows that the average hourly revenue in-
creases rapidly during the transient period. It de-
creases slowly due to resource fragmentation after the
transient period and leads to a stable value in steady
state. A small value of σ limits the number of choices
the broker has and this restriction leads to lower aver-
age hourly revenues. The larger is σ, the higher is the
average hourly provider revenue. The random strategy,
which corresponds to the maximum value of σ =| R |,
has the highest average hourly provider revenue. Fig-
ure 10 shows that after the unpredictable early stages of
the transient period, the average consumer satisfaction
increases gradually to a stable value in steady state.
The average consumer satisfaction is higher when σ is
smaller. Indeed, when σ = 1 we direct the consumer to
that resource provider that best matches the request.
When we select at random one provider from the set of
all providers we observe the lowest average consumer
satisfaction. Indeed, when we resort to a random strat-
egy we have a high probability to select a less than op-
timal match for a given request. The optimal match
is the top ranked element of the candidate resource
provider list. Figure 11 shows that the average con-
sumer utility is lower when σ is smaller; the random
strategy has the highest average consumer utility be-
cause it has the largest σ. When σ is larger consumers
have a better chance to get resources according to the
τ values.

Figure 12 shows that as the demand-capacity ratio
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Figure 5. Average hourly revenue vs. time (in
seconds) for σ = 1 and τ = 0.8, 0.85, 0.9, and
0.95. Top: transient period. Bottom: steady
state. The larger is τ , the more resources are
allocated to consumers, and the higher is the
average hourly revenue.

increases, the system experiences a transition from a
lightly loaded to a heavily loaded state, and eventu-
ally reaches saturation. The average hourly revenue
increases and reaches a steady value when the system
is saturated. The stable values for different τ values
are the same. The larger is the τ , the earlier the av-
erage hourly revenue reaches the stable value because
the more resources are allocated to consumers and the
earlier the system reaches saturation. Figure 13 shows
that the consumer admission ratio for a lightly loaded
system is 1; as the load increases some consumers are
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Figure 6. Consumer admission ratio vs. time
(in seconds) for σ = 1 and τ = 0.8, 0.85,
0.9, and 0.95. Top: transient period. Bottom:
steady state.

rejected and the ratio drops. The larger is τ , the ear-
lier the system starts rejecting consumers and the ad-
mission ratio starts the drop. Figure 14 shows that
for a lightly loaded system the average consumer sat-
isfaction increases when the demand-capacity ratio in-
creases until it reaches a steady value. With a smaller
τ the consumers are allocated smaller, cheaper blocks
of resources. As long as the resource allocation is suf-
ficiently large, the cheaper allocation leads to a higher
satisfaction. Figure 15 shows that for a lightly loaded
system the average consumer utility decreases until it
reaches a steady value as the demand-capacity ratio
increases. The smaller is τ , the lower is this steady
value.

Figure 16 shows that the stable values for different σ
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Figure 7. Average consumer satisfaction vs.
time (in seconds) for σ = 1 and τ = 0.8, 0.85,
0.9, and 0.95. Top: transient period. Bottom:
steady state. The average consumer satis-
faction is higher when τ is smaller.

values are the same. The larger is σ, the earlier the sta-
ble value is reached. The random strategy is the first
one to reach the steady value. Figure 17 shows that
the smaller is σ, the earlier the system starts rejecting
consumers. Figure 18 shows that before saturation, the
smaller is σ, the higher is the average consumer sat-
isfaction because consumers have more chance to get
resources from providers offering cheaper prices (recall
that average consumer satisfaction is over only admit-
ted consumers). After saturation, the larger is σ, the
higher is the average consumer satisfaction. The ran-
dom strategy has the largest steady consumer satis-
faction. Figure 19 shows that before saturation, the
smaller is σ, the lower is the average consumer utility
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Figure 8. Average consumer utility vs. time
(in seconds) for σ = 1 and τ = 0.8, 0.85,
0.9, and 0.95. Top: transient period. Bottom:
steady state. The average consumer utility is
lower when τ is smaller.

because consumers have more chance to be admitted
by providers offering cheaper resources with lower util-
ities. After saturation, the larger is σ, the lower is the
average consumer utility because consumers have more
chance to be admitted by providers with lower utilities
(recall that average consumer utility is based only on
admitted consumers).

5 Conclusions and Future Work

In this paper we discuss the role of a broker in mar-
ket oriented resource allocation models for large-scale
heterogeneous systems. The scale of the system, the
heterogeneity of resources, the diversity of the pricing



0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5
x 10

7

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

σ = 1
σ = 10
σ = 20
RANDOM

0 0.5 1 1.5 2

x 10
5

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

x 10
7

TIME

A
V

E
R

A
G

E
 H

O
U

R
LY

 R
E

V
E

N
U

E

σ = 1
σ = 10
σ = 20
RANDOM

Figure 9. Average hourly revenue vs. time (in
seconds) for τ = 0.9 and σ = 1, 10, and 20.
For the random strategy, σ =| R |= 50. Top:
transient period. Bottom: steady state. The
larger is σ, the higher is the average hourly
provider revenue.

structures, the large number of consumers and the va-
riety of their needs, make such models difficult to an-
alyze. Utility-based resource allocation has been suc-
cessfully adopted in the area where only one type of re-
source is used and the user population is limited, such
as in [2]. In this paper we are considering the case when
either there is only one critical resource in the system or
the multiple critical resources can be represented with
a synthetic “superresource.” This simplification allows
us to derive rules of thumb for the adjustment of broker
parameters to improve the performance of the system.
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Figure 10. Average consumer satisfaction vs.
time (in seconds) for τ = 0.9 and σ = 1, 10,
and 20. For the random strategy, σ =| R |= 50.
Top: transient period. Bottom: steady state.
The average consumer satisfaction is higher
when σ is smaller.

A more complex model based on resource vectors and
multi-dimensional utility, price, and satisfaction func-
tions is considered in [3]. In a multi-dimensional re-
source allocation, however, the resource providers can
be only arranged in a partial order, which requires dif-
ferent assumptions.

Our simulation results show that the τ and σ para-
meters can be used to control the global behavior of
the system. A broker could monitor the system per-
formance and adjust τ and σ values for performance
improvement. We are able to anticipate the results
of different actions of such a broker. For example,
if the broker perceives that the system is overloaded
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Figure 11. Average consumer utility vs. time
(in seconds) for τ = 0.9 and σ = 1, 10, and 20.
For the random strategy, σ =| R |= 50. Top:
transient period. Bottom: steady state. The
average consumer utility is lower when σ is
smaller.

and many consumers have to be dropped, it has two
choices: decrease τ or increase σ. If it decreases τ ,
more consumers are admitted, while the system expe-
riences a decrease of average hourly avenue, a decrease
of average consumer utility, and an increase of average
consumer satisfaction. If the broker increases σ to ad-
mit more consumers, there are an increase of average
hourly avenue, an increase of average consumer util-
ity, and a decrease of average consumer satisfaction. It
seems counterintuitive that when we increase the util-
ity we get lower satisfaction, but it reflects the fact that
when we increase the utility the cost may be increased
to a level beyond the optimum satisfaction.
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Figure 12. Average hourly revenue vs.
demand-capacity ratio in steady state for σ =
1 and τ = 0.8, 0.85, 0.9, and 0.95. The larger
is the τ , the earlier the average hourly rev-
enue reaches the stable value because the
more resources are allocated to consumers
and the earlier the system reaches satura-
tion.
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