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Abstract

Providing up-to-date input to users’ applications is an
important data management problem for a distributed com-
puting environment, where each data storage location and
intermediate node may have specific data available, stor-
age limitations, and communication links available. Sites
in the network request data items and each request has an
associated deadline and priority. This work concentrates on
solving a basic version of the data staging problem in which
all parameter values for the communication system and the
data request information represent the best known informa-
tion collected so far and stay fixed throughout the schedul-
ing process. The network is assumed to be oversubscribed
and not all requests for data items can be satisfied. A math-
ematical model for the basic data staging problem is given.
Then, three multiple-source shortest-path algorithm based
heuristics for finding a near-optimal schedule of the com-
munication steps for staging the data are presented. Each
heuristic can be used with each of four cost criteria devel-
oped. Thus, twelve implementations are examined. In addi-
tion, two different weightings for the relative importance of
different priority levels are considered. The performance of
the proposed heuristics is evaluated and compared by simu-
lations. The proposed heuristics are shown to perform well
with respect to upper and lower bounds. Furthermore, the
heuristics and a complex cost criterion allow more highest
priority messages to be received than a simple-cost-based
heuristic that schedules all highest priority messages first.

1. Introduction

The DARPA Battlefield Awareness and Data Dissem-
ination (BADD) program [11] includes designing an in-
formation system for forwarding (staging) data to proxy
servers prior to their usage as inputs to a local applica-
tion in a distributed computing environment, using satel-
lite and other communication links. The network combines
terrestrial cable and fiber with commercial VSAT (very
small aperture terminal) internet and commercial broadcast.
This provides a unique basis for information management.
It will allow web-based information access and linkage as
well as server-to-server information linkage. The focus is
on providing the ability to operate in a distributed server-
server-client environment to optimize information currency
for many critical classes of information.

Data staging is an important data management problem
that needs to be addressed by the BADD program. An infor-
mal description of an example of the data staging problem
in a military application is as follows. A warfighter is in a
remote location with a portable computer and needs data as
input for a program that plans troop movements. The data
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can include detailed terrain maps, enemy locations, troop
movements, and current weather predictions. The data will
be available from Washington D.C., foreign military bases,
and other data storage locations. Each location may have
specific data available, storage limitations, and communica-
tion links. Also, each data request is associated with a spe-
cific deadline and priority. It is assumed that not all requests
can be satisfied by their deadline. In a military situation, the
datastagingproblem involves positioning data for facilitat-
ing a faster access time when it is needed by programs that
will aid in decision making.

Positioning the data before it is needed can be complicat-
ed by the dynamic nature of data requests and network con-
gestion; the limited storage space at certain sites; the lim-
ited bandwidth of links; the changing availability of links
and data; the time constraints of the needed data; the pri-
ority of the needed data; and the determination of where
to stage the data [13]. Also, the associated garbage collec-
tion problem (i.e., determining which data will be deleted
or reverse deployed to rear-sites from the forward-deployed
units) arises when existing storage limitations become criti-
cal [11, 13]. The storage situation becomes even more diffi-
cult when copies of data items are allowed to reside on dif-
ferent machines in the network so that there are more avail-
able sources from which the requesting applications can ob-
tain certain data (e.g., [15]). Multiple copies of data items
also provide an increased level of fault tolerance, in cases
of links or storage locations going off-line.

The simplified data staging problem addressed here re-
quires a schedule for transmitting data between pairs of
nodes in the corresponding communication system for sat-
isfying as many of the data requests as possible. Each node
in the system can be: (1) a source machine of initial da-
ta items, (2) an intermediate machine for storing data tem-
porarily, and/or (3) a final destination machine that requests
a specific data item.

It is also assumed in this simplified version of the da-
ta staging problem that all parameter values for the com-
munication system and the data request information (e.g.,
network configuration and requesting machines) represent
the best known information collected so far and stay fixed
throughout the scheduling process. It is assumed that not all
of the requests can be satisfied due to storage capacity and
communication constraints. The model is designed to cre-
ate a schedule for movement of data from the source of the
data to a “staged” location for the data. It is assumed that a
user’s application can easily retrieve the data from this loca-
tion. The full description of the model is presented in [16];
portions are included here to aid in the presentation of the
heuristics detailed in this paper.

Three multiple-source shortest-path algorithm based
heuristics for finding a near-optimal schedule of the com-
munication steps for staging the data are presented. Each

heuristic can be used with each of four cost criteria devel-
oped. Thus, twelve implementations are examined. The
performance of the proposed heuristics are evaluated and
compared by simulations. This research serves as a neces-
sary step toward solving the more realistic and complicated
version of the data staging problem involving fault toler-
ance, dynamic changes to the network configuration, adhoc
data requests, sensor-triggered data transfers, etc.

One of the heuristic/cost-criterion pairs was examined in
[16]. That investigation used a simpler model (e.g., there
was no garbage collection), and a different set of network
parameters (e.g., the number of communication links that
can connect to a machine). The research presented here ex-
pands the work initiated in [16] by developing two addition-
al heuristics, three cost criteria, and improving the parame-
ter values to better model a BADD-like environment.

Section 2 provides an overview of work that is related
to the data staging problem. In Section 3, a mathematical
model for a basic data staging problem is provided. Sec-
tion 4 presents the multiple-source shortest-path algorithm
based heuristics for finding a near-optimal schedule of the
communication steps for data staging. A simulation study
is discussed in Section 5, which evaluates the performance
of the proposed heuristics outlined in Section 4.

2. Related Work

To the best of the authors’ knowledge, there is currently
no other work presented in the open literature that address-
es the data staging problem, designs a mathematical model
to quantify it, or presents a heuristic for solving it. Due to
space constraints, the reader is referred to [17] for a more
thorough discussion of the related work. A problem that
is, at a high level, remotely similar to data staging is the
facility location problem in management science and oper-
ations research (e.g., [9]). Data management problems sim-
ilar to data staging for the BADD program are studied for
other communication systems [1, 2, 4, 8]. Other areas that
are somewhat related include modifying routing schemes
[3], mapping tasks onto a suite of distributed heterogeneous
machines (e.g., [5, 6, 18]), and earliest deadline first [12,
14] scheduling for real-time systems. Lastly, other research
exploring heuristics for use in the BADD environment have
been performed [10]. All of this research is related, but does
not develop a mathematical model like the one researched
here nor do they examine a network similar to BADD-like
network being used in this research.

3. Mathematical Model

A quantitative mathematical model for a basic data stag-
ing problem is presented in this section. This model allows
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the heuristics introduced in Section 4 to be presented for-
mally. As stated and discussed in Section 1, this document
concentrates on solving a simpler version of the data staging
problemstatically, where all parameter values for the com-
munication system and the data request information stay
fixed throughout the scheduling process. The values of all
parameters in the following model may change temporally
to reflect the dynamic nature of the underlying network sys-
tem when the model is extended and used in a dynamic sit-
uation. In that case, the parameter values represent the best
known information collected at the given point in time (e.g.,
all requests for data elements include only those known at
any specific time instant).

The model includes information about (1) the nodes in
the network, (2) the links in the network, and (3) the data
requests in the network. Each machine has parameters for
the storage capacity and node number. A link has an avail-
ability starting time, availability ending time, bandwidth, la-
tency, source node, and destination node. Every request has
an approximate data item size, list of sources, and a desti-
nation. A source of a data item consists of a node number
and a time after which the data is available on that node. A
destination for a data item contains a node number, priority,
and deadline for the data request. This description of the
network and associated data requests is used to formulate
the mathematical model for solving the basic data staging
problem.

A communication systemM consists ofm machines
fM [0];M [1]; :::;M [m� 1]g. Each machine can be a serv-
er that stores data elements and/or a client that makes data
requests to the system. Each machine also can be an inter-
mediate node for storing a copy of a specific data item tem-
porarily.Cap[i](t) represents the available memory storage
capacity of machineM [i] (0 � i < m) from timetj to tj+1

(the interval fromtj to tj+1 is not necessarily equal to one
time unit).

A network topology graphGnt specifies the connectivi-
ty of the communication system for the machines inM. A
set ofm verticesV= fV [0]; V [1]; :::; V [m � 1]g is gen-
erated that corresponds to them machines in the commu-
nication system, where nodeV [i] corresponds to machine
M [i]. Two machines may be connected directly by zero
or more communication links. In this model, if two ma-
chines are connected by the same transmission link during
nl non-overlapping and discontinuous time intervals, then
nl different virtual links corresponding to the appropriate
available time intervals are used to represent this situation
(e.g., the availability of a satellite link for fifteen minutes
each hour). Also, each transmission link is uni-directional.
A bi-directional link between two machines is represented
as two different virtual uni-directional links that correspond
to the transmission link in each direction (for each time in-
terval).

Let Nl[i; j] be the total number of unidirectional vir-
tual communication links fromM [i] to M [j]. L[i; j][k]
denotes thek-th unidirectional virtual communication link
from M [i] to M [j], where0 � i; j < m, i 6= j, and0 �
k < Nl[i; j]. For eachL[i; j][k], a directed edgeE[i; j][k]
fromV [i] toV [j] is included inGnt. All the included edges
constitute the set of edgesE of Gnt. EachL[i; j][k] is asso-
ciated with one unique time interval during which the corre-
sponding physical link is available for communication. Let
Lst[i; j][k] denote the time when linkL[i; j][k] becomes
available (link start time) andLet[i; j][k] denote the time
when linkL[i; j][k]’s availability terminates (link end time).
With the above notation, linkL[i; j][k] is available between
Lst[i; j][k] (starting time) andLet[i; j][k] (ending time).
Each virtual link also has an associated bandwidth.

Let a dataitem be a block of information that can
be transferred between machines. For any data itemd,
j d j represents the size of the associated data item. Let
D[i; j][k](j d j) denote the communication time for trans-
ferring data itemd (from machineM [i] to machineM [j]
through theirk-th dedicated virtual link within the time in-
terval [Lst[i; j][k]; Let[i; j][k]]). TimeD[i; j][k](j d j) in-
cludes all the various hardware and software related compo-
nents of the inter-machine communication overhead (e.g.,
network latency and the time for data format conversion
betweenM [i] andM [j] when necessary). MachinesM [i]
and/orM [j] may be intermediate nodes for transferringd
rather than the original source or the final destination node
of d.

It is assumed that each machine can send different data
items (each via a different link) to its neighboring machines
in the network simultaneously. Future work may relax this
assumption.

Supposen is the number of data items with distinctive
names (identifiers) available in the corresponding commu-
nication systemM . Let� = fÆ[0]; Æ[1]; :::; Æ[n� 1]g be the
set of these data items, where eachÆ[i] is unique. For ex-
ample, a weather map of Europe generated at 2 p.m. would
have a different name than a weather map of the same re-
gion generated at 6 p.m. A datalocationtablethat specifies
the initial locations of then available data items can be con-
structed with the following notation. LetNÆ[i] be the num-
ber of different machines that the data itemÆ[i] is located at
initially. Source[i; j] denotes thej-th initial source location
of the data itemÆ[i] (with no implied significance for the or-
dering of the sources), where0 � i < n, 0 � j < NÆ[i],
and0 � Source[i; j] < m. Also, Æst[i; j] denotes the time
at whichÆ[i] is available at itsj-th initial source location
(start time).

Suppose� is the number ofrequested data items with
distinctive names (identifiers) in the corresponding com-
munication systemM , where(0 � � � n). Let Rq =
fRq[0]; Rq[1]; :::; Rq[��1]g be the set of the requested da-
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ta items. EachRq[j] (0 � j < �) is the name of a da-
ta item and there must exist ani (0 � i < n), such that
Rq[j] = Æ[i]. EachRq[j] must be unique. A datarequest
table that specifies the requests of data items can be con-
structed with the following notation. LetNrq[j] denote the
number of different requests forRq[j]. Request[j; k] de-
notes the number of the machine from which thek-th re-
quest for data itemRq[j] originates (with no implied order
among the requests), where0 � j < �, 0 � k < Nrq[j],
and0 � Request[j; k] < m. (It is assumed that a given ma-
chine generates at most one request for a given data item.)
Also,Rft[j; k] denotes the finishing time (or deadline) af-
ter which the data itemRq[j] on itsk-th requesting location
is no longer useful (e.g., data items may be needed before
a specific time when certain decisions must be made). The
deadlines are set by the users’ applications. Two requests
for the same data item, terminating on two different desti-
nations, could result in different deadlines for each of the
destinations.

A machine functioning as an intermediate node for a da-
ta itemRq[j] does not need to keep the data item local in-
definitely. Instead, at time units after the latest deadline
for the requested data itemRq[j], the data item is removed
from the storage of any intermediate nodes (i.e., garbage
collection is performed). In this way, storage capacity is
reclaimed by removing data items after they are no longer
needed, and a level of redundancy is provided in the system
in cases where a link, an intermediate node, or a destination
might lose its copy ofRq[j]. The scheduling heuristics do
not remove a data item from any of its sources or destina-
tions because it is considered outside the scope of responsi-
bility of the scheduler.

Suppose the priority of each data request is between
0 and P, where P is the highest priority possible (i.e.,
P corresponds to the class of most important requests).
Priority[j; k] denotes the priority for the data request of
the data itemRq[j] on itsk-th requesting location. The pri-
ority of each request would be set by the command structure
present in the problem, and two different requests for the
same data item can have different priorities (e.g., if a gener-
al and a private both request the air traffic orders, obviously
the general would have a higher priority than the private).

SupposeW [i] (0 � i � P ) denotes the relative weight
of thei-th priority. These weightings allow system adminis-
trators to specify the relative importance of a priority� data
request versus priority� data request, where0 � �; � � P .

Assume that the scheduling procedure of the communi-
cation steps starts at time 0. LetS = fS0; S1; :::; S��1g
denote a set of� distinct schedules for the communication
steps of transmitting requested data items. Consider a spe-
cific scheduleSh, where0 � h < �. Thek-th request for
data itemRq[j] is satisfiablewith respect toSh if Rq[j] can
be obtained by the requesting machine,M [Request[j; k]],

before the deadline,Rft[j; k]. Let Srq[Sh] denote the set
of two-tuplesf(j; k) j k-th request of the data itemRq[j] is
satisfiable using scheduleShg.

The effect, E[Sh], of the scheduling schemeSh is
defined asE[Sh] = �

P
(j;k)2Srq[Sh]

W [Priority[j; k]]:
Given this mathematical model, the globaloptimization
criterionused for data staging in this document, for a specif-
ic communication system, is to find anSh such thatE[Sh]
is minimized (i.e., the total sum of the weighted priorities
of all satisfiable data requests with respect toSh is maxi-
mized). It should be noted that an exhaustive set of sched-
ules is not created in this research.

4. Data Staging Heuristics

4.1. Introduction

The heuristics for solving the data staging problem are
based on Dijkstra’s algorithm for solving the multiple-
source shortest-path problem on a weighted and directed
graph [7]. Dijkstra’s algorithm takes as input a direct-
ed graph with weighted edges, and produces as output the
shortest path from a set of source nodes to every other node
of the graph. More detailed information about Dijkstra’s
algorithm can be found in [7].

All necessary communication steps are scheduled by the
data staging heuristics. These heuristics consider all data
requests together and utilize the following strategies collec-
tively: (1) find the shortest path for each data item as if it is
the only requested data in the system, (2) resolve conflicting
requests, (3) maximize the weighted sum of the priorities of
the potentially satisfiable data requests, and (4) consider the
urgency of a request as its deadline approaches. The mod-
el used for the heuristics and implementation details about
the heuristics are presented in Subsections 4.2 through 4.4.
Subsections 4.5 through 4.7 discuss the three heuristics that
have been developed. These heuristics are built upon Dijk-
stra’s multiple-source shortest-path algorithm. The heuris-
tics iteratively pick which data item to transfer next based
on a cost function. Subsection 4.8 presents background in-
formation about the cost criteria components, and details
the four cost criteria used in this research. The mathemat-
ical model developed for the simplified data staging prob-
lem appears in [24], where one of the twelve heuristic/cost-
criterion pairs was examined using a simpler system config-
uration. Some information from that paper appears in this
section as necessary background for the discussion of the
data staging heuristics.

4.2. Adaptation of Dijkstra’s Algorithm

For each requested data itemRq[i], an instantiation,
Gnt[i], of the graphGnt (defined in Section 3) is created.
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Let VS [i] be the set of source nodes corresponding to the
machines that are the initial locations of the data itemRq[i].
Let VD [i] be the set of destination nodes corresponding to
the machines that are making data requests forRq[i] (i.e.,
machinesRequest[i; k]; 0 � k < Nrq[i]). (It is assumed
thatVS [i]\VD [i] = ;.) The weight on an edgeE[b; j][k] of
Gnt[i] is the communication time required to transferRq[i]
from machineb to machinej over virtual link L[b; j][k].
Let the length of a path from a source nodevs 2 VS [i]
to a destination nodevd 2 VD [i] be defined as the differ-
ence between the time when data itemRq[i] is available on
vs and the time data itemRq[i] arrives atvd (via the ma-
chines and the communication links along the path). This
time can be calculated using the various parameters defined
in Section 3. With the definedGnt[i], VS [i], andVD [i], a
separate multiple-source shortest-path problem is well de-
fined for each requested data item in the context of the data
staging problem.

Dijkstra’s algorithm, in general, is applied to a directed
graph with weighted edges and a set of source nodes [7].
For each node in the graph, the algorithm generates a short-
est path from any of the sources of the data item to that
node (using the weighted edges). The heuristics examined
here begin by applying Dijkstra’s algorithm toGnt[i] for
each requested data itemRq[i]. More detailed information
about Dijkstra’s algorithm can be found in [7]. Then the
heuristics consider all data items collectively. A more de-
tailed description of how Dijkstra’s algorithm functions in
the heuristics can be found in [25].

The implementation of Dijkstra’s algorithm in the
heuristics checks: (1) that all machines have enough mem-
ory capacity,Cap, to hold the data item being transferred
until the garbage collection scheme schedules its removal;
(2) that the communication links are available; and (3) the
initial time that the data item is available on a source. This
information is for the shortest path from some source node
to a destination. At the completion of Dijkstra’s algorithm,
the shortest path from any source to all nodes in the network
is known (clearlyVD[i] � all machines).

4.3. Combining Paths for Multiple Data Items

After applying the multiple-source shortest-path algo-
rithm for each of the� requested data itemsRq[i] individ-
ually, � sets of shortest paths are generated. For the exam-
ple shown in Figure 1, there are four valid communication
steps that can be scheduled (specified by asterisks). But
different valid communication steps may have conflicting
resource requirements (e.g., machineM [0] cannot send da-
ta itemsRq[0] andRq[1] to machineM [3] over the same
virtual link simultaneously due to a link conflict). Thus, a
local optimization criterion is used to select one of the valid
communication steps to be scheduled (refer to Subsection
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Request[0, 0] Request[0, 1] Request[0, 2] Request[0,3]

(a)   Rq[0]
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Source[1, 0]

Source[1, 1]

Request[1, 0] Request[1, 1]

(b)   Rq[1]

Figure 1. An example communication system
that requests (a) Rq[0] and (b)Rq[1].

4.8 for more information).

Readers should notice that it may be impossible to use
the individually shortest paths to all destinations for each
data item due to possible communication link and memo-
ry space contention in the network when transferring other
data items during the same time interval. Also, a multiple-
source shortest-path algorithm forGnt[i] attempts to mini-
mize the time when only a given requested data itemRq[i]
is obtained by its corresponding requesting locations. But
as stated in Section 1, request deadlines and the priorities
of all potentially satisfiable data requests must be taken in-
to account (as well as the sharing of the memory capacity
of machines and the communication links by multiple data
items).
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4.4. Garbage Collection

Leaving a copy ofRq[i] on machineM [r] after it is sent
to the next machine on the shortest path allows this copy
to be used as an intermediate copy for forwardingRq[i]
to some other machines. For the example communication
step of transferringRq[0] fromM [0] toM [3] shown in Fig-
ure 1(a), by tracing the shortest paths generated forM [7],
M [8], andM [9], the set of intermediate machines can be
determined asf3, 5g. At some time duration after the latest
deadline forRq[i], as discussed in Section 3, the available
memory capacity ofM [r] is incremented byj Rq[i] j to
simulate the removal ofRq[i] from its memory. So for the
example,M [3] andM [5] would keepRq[i] in their local
memory for time units after the latest deadline among ma-
chinesM [6], M [7], M [8], andM [9]. The data item is kept
on the intermediate machines for this time duration to pro-
vide a level of fault tolerance in cases when communication
links or storage locations become unavailable, or the case
where a link, an intermediate node, or a destination loses its
copy of the data.

4.5. Partial Path Heuristic

Each iteration of this heuristic involves: (1) perform-
ing Dijkstra’s algorithm for each data request individually,
(2) for the valid next communication steps, determining the
“cost” to transfer a data item to its successor in the shortest
path, (3) picking the lowest cost data request and transfer-
ring that data item to the successor machine (making this
machine an additional source of that data item), (4) updat-
ing system parameters to reflect resources used in (3), and
(5) repeating (1) through (4) until there are no more sat-
isfiable requests in the system. In some cases, Dijkstra’s
algorithm would not need to be executed each iteration for
a particular data transfer, i.e., if the data transfer did not use
resources needed for any future transfers. This optimization
is not yet considered because this research is not focusing
on minimizing the execution time of the heuristics them-
selves.

This heuristic will schedule the transfer for the single
“most important” request that must be transferred next,
based on a cost criterion. The heuristic is called the partial
path heuristic (referred to as partialin Figures 2 and 3)
because only one successor machine in the path is sched-
uled at each iteration. If a data item is partially scheduled
through the system and because of other scheduled trans-
fers the requesting destination’s deadline is no longer satis-
fied, the scheduled transfers remain in the system (the initial
transfers were scheduled because the deadline could have
been satisfied). Reasons the schedule for this now unsatis-
fiable request is not removed include: (1) in a dynamic sit-
uation, a change in the network could allow the request to

be satisfied; and (2) removing the already scheduled trans-
fers would require restarting the scheduling for all data re-
quests because of conflicts that might have occurred. Sub-
sections 4.6 and 4.7 present the other two heuristic methods
explored. The various cost criteria used with the heuristics
are described in Subsection 4.8, and the heuristics are eval-
uated in Section 5.

4.6. Full Path/One Destination Heuristic

The full path/onedestinationheuristicproduces a com-
munication schedule that avoids partial paths that are later
blocked. The behavior of the partial path heuristic showed
that if a data itemRq[i] was selected for scheduling a trans-
fer to its next intermediate location (a “hop”), in the follow-
ing iteration, the same requested data item,Rq[i], would
typically be selected again to schedule its next hop. The
full path/one destination heuristic (referred to as fullonein
Figures 2 and 4) attempts to exploit this trend by selecting a
requested data item with one of the cost criterion discussed
in Subsection 4.8 and scheduling all hops required for the
data item to reach its lowest cost destination before execut-
ing Dijkstra’s algorithm again.

The partial path heuristic may construct a partial path (of
many links) that it later cannot complete (due to network or
memory resources being consumed by other requested data
items). However, the part of the path constructed may block
the paths of the other requested data items, causing them
to take less optimal paths or causing them to be deemed
unsatisfiable. The full path/one destination heuristic avoids
this problem. An advantage the partial path approach does
have over the full path/one destination approach is that it
allows the link-by-link assignment of each virtual link and
each machine’s memory capacity to be made based on the
relative values of the cost criteria for the data items that may
want the resource.

4.7. Full Path/All Destinations Heuristic

The full path/alldestinationsheuristicbuilds on the full
path/one destination heuristic and requires fewer executions
of Dijkstra’s algorithm then the other two heuristics. In the
full path/one destination heuristic, a data item is transferred
from a single source to a single destination, even if there are
multiple destinations requesting the same data item. The
full path/all destinations heuristic (referred to as fullall in
Figures 2 and 5) will schedule all paths for a single data
item that share the next machine in the path as an interme-
diate machine. By scheduling the path to multiple destina-
tions, fewer executions of Dijkstra’s algorithm are required
as compared to the full path/one destination heuristic.

This approach was considered because it was expected to
generate results comparable to the full path/one destination
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heuristic, but with a smaller heuristic execution time. The
schedules generated by the three heuristics are compared in
Section 5.

4.8. Cost Criteria

Four cost criteria that use “urgency” and “effective pri-
ority” have been devised for the three heuristics present-
ed. Each of these cost criteria was chosen so as to vary
the effect these two parameters will have in determining the
next communication step. This subsection begins by defin-
ing “urgency” and “effective priority” and then the four cost
criteria used are discussed.

To begin, defineAT [i; j] as the shortest path time ob-
tained from the last execution of Dijkstra’s algorithm, which
is a lower bound for the arrival time when requests for all
data items are considered collectively. IfRq[i] were the
only request in the system,AT [i; j] is the time for the re-
quest to reach machineRequest[i; j]. LetRft[i; j] denote
the finishing time (or deadline) after which the data item
Rq[i] on itsj-th requesting location is no longer useful (as
mentioned in Section 3). AssumeM [r] is the next machine
in the shortest path from a given source to thej-th desti-
nation to receive data itemRq[i]. Let the set of all such
destinationsj be calledDrq[i; r]. A satisfiability function
Sat[i; r](j) is 1 if a request for data itemRq[i] is scheduled
to be received at thej-th requesting destination (through
machineM [r]) before its deadline; and 0 if the request for
data itemRq[i] is scheduled to be received after its dead-
line. Note that if the request cannot be satisfied using the
shortest path, there is no other path that will cause it to be
satisfied.

As an example of the definition ofSat[i; r](j), con-
sider the shortest paths generated by selecting first the
valid communication step for transferringRq[0] fromM [0]
to M [3] in Figure 1(a). For this example,Drq[0; 3] =
fM [7];M [8];M [9]g. Suppose that the request deadlines
for Rq[0] are as follows (in some abstract time units): 10
for M [7]; 15 for M [8]; and 5 forM [9]. Suppose further
that the shortest path estimate has shown that the network
can deliverRq[0] at time: 12 forM [7]; 11 for M [8]; and
8 for M [9]. Then,Sat[0,3](0) = 0, Sat[0,3](1) = 1, and
Sat[0,3](2) = 0.

Recall from Section 3 thatPriority[i; j] denotes the pri-
ority for the data request for the data itemRq[i] on itsj-th
requesting location and thatW [k] (0 � k � P ) denotes
the relative weight of thek-th priority. Let Efp[i; r](j)
denote the effectivepriority for the data request ofRq[i]
from its j-th requesting location, whereEfp[i; r](j) =
Sat[i; r](j) �W [Priority[i; j]].

SupposeUrgency[i; r](j) denotes the urgency for the
data request ofRq[i] from its j-th requesting location,
whereUrgency[i; r](j) = �Sat[i; r](j) � (Rft[i; j] �

AT [i; j]), where smallerUrgency[i; r](j) implies that it is
less urgent to transferRq[i] to thej-th requesting location.
Note that the urgency would take into consideration the im-
pact of factors such as the number of intermediate nodes
and the bandwidths of the links between nodes. The unit of
measure for theUrgency term is seconds.

Four cost functions for transferring the requested data
itemRq[i] from machineM [s] toM [r] via an available di-
rect virtual link are each defined using urgency and effective
priority as defined above. Readers should notice that (1) ap-
plying Dijkstra’s algorithm to obtainAT [i; r] through short-
est paths, (2) maximizingEfp[i; r](j), and (3) maximizing
Urgency[i; r](j) follow the three strategies for designing
data relocation heuristics recommended in (1), (3), and (4),
respectively, in Subsection 4.1.

If Sat[i; r](j) is 0 for all r that correspond to valid next
machines that receiveRq[i] and the associated values of
j, that request receives no resources and the data does not
move from its current locations. The request is not eliminat-
ed from the network. Currently the heuristics are applied to
a static system; as this constraint is loosened and a dynamic
system is explored, links might become available that would
facilitate the delivery of an otherwise unsatisfiable request.
Thus, requests that are at one point in time unsatisfiable,
might become satisfiable at a later point in time.

The following information about the links in the network
is available: bandwidth available on a link, duration a virtu-
al link is available, and size of each data item. In the model
used here, the time interval a virtual link is needed to trans-
fer a specific data itemRq[i] is determined by dividing the
size of the data item,jRq[i]j, by the bandwidth available on
the link.

Suppose that the current chosen communication step is
to transfer the requested data itemRq[i] from M [s] to
M [r]. Before repeating the above heuristics for determining
the next communication step(s), the following information
must be updated: the list of virtual links and their start and
stop times, the available memory capacity on any machines
thatRq[i] has been placed, the sources ofRq[i] must now
include all machines thatRq[i] has been moved to/through,
and the time at whichRq[i] can be removed from any inter-
mediate machines.

The cost criteria are designed so that the next chosen
communication step should be the one that has the smallest
associated cost among all valid next communication step-
s for transferring allRq[i], where0 � i < �. Suppose
WE � 0 is the relative weight for the effective priority fac-
tor andWU � 0 is the relative weight for the urgency factor
in the scheduling.

For the first cost criterion (C1), theCost1[s; r][i; j][k],
for transferring the requested data itemRq[i] from machine
M [s] to M [r], via link L[s; r][k], for the j-th destination,
is defined as:Cost1[s; r][i; j][k] = �WE � Efp[i; r](j)
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�WU � Urgency[i; r](j): The rationale for choosing the
above cost for local optimization is as follows. First, only
a valid next communication step whose associatedSat[i; r]
is not 0 will facilitate satisfying data request(s). The first
term ofCost1[s; r][i; j][k] attempts to give preference to a
satisfiable data request with a priority higher than the other
requests. Furthermore, to satisfy as many data requests as
possible, intuitively it is necessary to transfer a specific data
item to the requesting locations whose deadlines are soon-
er. This intuition is captured by the inclusion of the urgency
term. Thus, collectively with the consideration of the prior-
ity of satisfiable data requests and the urgency of those data
requests in this local optimization step, using this cost cri-
terion in the data staging heuristic should generate a near-
optimal communication schedule that reasonably achieves
the global optimization criterion.

The second criterion (C2) examines theCost2[s; r][i][k]
for transferring the requested data itemRq[i]
from machine M [s] to M [r] via link L[s; r][k]:
Cost2[s; r][i][k] = �WE � (

P
j2Drq[i;r]Efp[i; r](j))�

WU � (maxj2Drq[i;r] Urgency[i; r](j)): This cost function
considers all requests forRq[i] whose shortest path passes
through machineM [r] and sums their weighted priorities.
Rather than summing all of the urgency terms for these
destinations, the most urgent satisfiable request is added in
Cost2. This method of capturing the urgency is used as a
heuristic to maximize the sum of the weighted priorities of
satisfied requests because if the most urgent request for an
item passing throughM [r] is satisfied, it is more likely that
all requests for this data item passing throughM [r] will be
satisfied.

TheCost3[s ; r ][i ][k ] for transferring the requested da-
ta item Rq[i] from machineM [s] to M [r] via link
L[s; r][k] (C3) is: Cost3[s ; r ][i ][k ] =

P
j2Drq[i;r]

Efp[i; r](j)=Urgency[i; r](j): The third criterion takes the
weighted priority for a destination and divides it by the ur-
gency for this destination, and then sums over all the des-
tinations with satisfiable requests for data itemRq[i] on
a path through machineM [r]. This cost is a sum of the
weighted priorities of satisfiable requests normalized by the
urgency of each request. Note that this heuristic does not
useWE or WU . This is because the effective priority is
divided by the urgency and soWE divided byWU acts
as a scaling factor that would not affect the relative cost
of the requests. For example, if two data itemsi1 and i2
are competing for the use ofL[s; r][k], the relative value of
Cost3[s ; r ][i1 ][k ]=Cost3 [s ; r ][i2 ][k ] will be unchanged by
including any givenWE to weight theEfp[i; r](j) factors
and any givenWU to weight theUrgency[i; r](j) factors.

The Cost4[s; r][i][k] for transferring the request-
ed data item Rq[i] from machine M [s] to M [r]
via link L[s; r][k] (C4) is: Cost4[s; r][i][k] =
�WE �

P
j2Drq[i;r]Efp[i; r](j)� WU �

P
j2Drq[i;r] Urgency[i; r](j): This last criterion sums

the weighted priorities of all satisfiable requests for data
itemRq[i] on a path through machineM [r] and combines
that with the sum of the urgency for those same satisfiable
requests. ComparingCost2 and Cost4, it should be
noted that the urgency term for each destination whose
shortest path shares an intermediate nodeM [r] is summed
in Cost4, whereasCost2 simply takes the maximum of
the urgency terms over this same set of destinations. The
benefit ofCost4 is demonstrated by the following example.
The first data item,Rq[i], is requested by four machines
that all have identical priorities, and have anAT that is
very close to their deadlines. The second data item,Rq[j],
is also requested by four destinations that have the same
identical priorities, but only one destination has anAT that
is close to its deadline.Cost2 will be unable to differentiate
between these two data requests, butCost4 will chose to
scheduleRq[i] beforeRq[j].

All four of these cost criteria are used in conjunction with
the partial path heuristic and the full path/one destination
heuristic. For the full path/all destinations heuristic,Cost1
is not used because it does not capture the fact that a data
item can be sent to multiple destinations.

5. Simulation Study

5.1. Introduction

To perform the simulation study, network topologies and
data requests must be generated, values forWE andWU

must be determined, and other scheduling schemes need to
be created to compare to the heuristics discussed in Sec-
tions 4.5 through 4.7. Rather than just choosing one net-
work topology and set of data requests, 40 test cases are
generated because one test case cannot reflect the range of
possible data requests and network configuration scenarios.
The three heuristics are executed using each of these cases
and the results are averaged. The properties for data re-
quests and the underlying communication systems are ran-
domly generated with uniform distributions in predefined
ranges representing a subset of the systems in a BADD-like
environment (see Subsection 5.3). The sources and request-
ing machines for all data items are also generated randomly.
The test generation program guarantees that the generated
communication system is strongly connected [7], such that
there is a path consisting of unidirectional physical trans-
mission links between any pair of machines in both direc-
tions.

These randomly generated patterns of data requests and
the underlying communication systems are used for three
reasons: (1) it is beneficial to obtain cases that can demon-
strate the performance of the heuristics over a broad range
of conditions; (2) a generally accepted set of data staging
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benchmark tasks does not exist; and (3) the system details
of actual environments where these data heuristics could be
employed are constantly changing as new technologies are
introduced. Determining a representative set of data staging
benchmark tasks remains an unresolved challenge in the re-
search field of data staging and is outside the scope of this
document.

Finding optimal solutions to data staging tasks with real-
istic parameter values are intractable problems. Therefore,
it is currently impractical to directly compare the quality of
the solutions found by the three heuristics with those found
by exhaustive searches in which optimal answers can be ob-
tained by enumerating all the possible schedules of commu-
nication steps. Also, to the best of the authors’ knowledge,
there is no other work presented in the open literature that
addresses the data staging problem and presents a heuristic
for solving it (based on a similar underlying model). Thus,
there is no other heuristic for solving the same problem with
which to make a direct comparison of the heuristics pre-
sented in this document. To aid in the evaluation of these
heuristics, two lower bounds and two upper bounds on the
performance of the heuristics are provided.

5.2. Lower and Upper Bounds

To provide lower bounds for the performance of the
three heuristics presented here, two random search based
scheduling procedures were devised. The first (looser) low-
er bound is a random-search based scheduling procedure
that performs Dijkstra once for each requested data item,
assuming it is the only requested item in the network. Then
the paths through the network are scheduled for each da-
ta item, finishingRq[i] beforeRq[i + 1] (where the order-
ing of the data items is arbitrary). If a conflict arises, e.g.,
the link a transfer is attempting to schedule is no longer
available, the request is dropped and not satisfied. This
approach is referred to as singleDijkstra random(shown
as singleDij randomin Figure 2) because Dijkstra’s algo-
rithm is only executed once for each data item. This ran-
dom based method is used to illustrate that executing Dijk-
stra’s algorithm more than once, with updated communica-
tion system information, is advantageous.

The only difference between the second random proce-
dure and the partial path heuristic is that, instead of choos-
ing a valid communication step using a cost function as dis-
cussed for the partial path heuristic, the Dijkstrarandom
heuristic(shown as randomDijkstra in Figure 2) randomly
chooses an arbitrary valid communication step to schedule.
This heuristic is used to show the importance of using a cost
criterion for decision making.

The first (looser) upper bound used for comparison
(shown as upperboundin Figure 2) is the total weighted
sum of the priorities of all requests in the system (it assumes

all requests can be satisfied). The second upper bound rep-
resents those requests that could be satisfied if each were
the only request in the system (shown as possiblesatisfyin
Figure 2). The loose upper bound is not equal to the upper
bound because some requests cannot be satisfied due to lack
of link bandwidth and/or machine storage (even when it is
the only request in the system).

5.3. Parameters Used in Experiments

Creating the properties of a network structure that are
expected to occur in the field is a difficult endeavor. The
parameters used were chosen to reflect a representative sub-
set of a BADD-like environment. The number of machines
in the communication system is between ten and twelve.
Each machine has between 10MB to 20GB memory stor-
age capacity. The outbound degree of a machineM [i] (i.e.,
the number of machines thatM [i] can transfer data items
to directly through physical transmission links) is between
four and seven. There are at most two physical unidirec-
tional transmission links between any two machines (there
can be none). The adjacency matrix is created by selecting
each machine in the network and randomly determining the
outbound degree of the machine to be between the bounds
mentioned above. Once the outbound degree is chosen, the
end machines for the links are randomly generated. The
network creation software makes sure that a link does not
originate and end at the same machine.

The total number of data requests is 20 to 40 times the
number of machines in the system. The sources and desti-
nations for a data item are randomly selected from the set of
machines in the system such that: (1) there are at most five
sources, (2) there are at most five destinations, and (3) a des-
tination for a data item is not also a source of the same data
item. Each data item size ranges from 10KB to 100MB. The
simulations that were performed utilized two different pri-
ority weightings. The first used a weighting of 1, 5, and 10
for low, medium, and high priority requests, and the second
used a weighting of 1, 10, and 100 for low, medium, and
high priority requests. Each data item a destination requests
has an associated priority; therefore, two destinations that
request the same data item may have differing priorities for
that data item.

The bandwidth of each physical transmission link is be-
tween 10Kbit/sec and 1.5Mbit/sec. The link availability
times were generated as follows. First, a duration for a par-
ticular virtual communication link between two machines
was chosen from the setf30 minutes, one hour, two hours,
four hoursg. The percentage of the day (24 hours) that a giv-
en physical link is available is then chosen between 50 and
100 percent of the day, in increments of ten percent. The
number of virtual communication links is then determined
by taking the time the link is available during the day
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Figure 2. Comparison of the heuristics’ best cost criterion performance for the 1, 10, 100 weighting
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Figure 3. The partial path heuristic results for the 1, 10, 100 weighting scheme and various cost
criteria.
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Figure 4. The full path/one destination heuristic results for the 1, 10, 100 weighting scheme and
various cost criteria.
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Figure 5. The full path/all destinations heuristic results for the 1, 10, 100 weighting scheme and
various cost criteria.
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(percentage available� 24 hours) and dividing by the vir-
tual link duration chosen above (for a given communication
link, all virtual links will have the same duration). The start-
ing time of the first virtual link is randomly chosen between
0 and (1/3) * (total unavailable time of the communication
link). The unavailable time between virtual links is ran-
domly chosen such that: (1) no two virtual links for the
same physical link overlap in time, (2) the percentage of the
day the physical link is available is as chosen above, (3) the
number of virtual links is as calculated above, and (4) the
unavailable time is> 0.

The starting time for a data item is sometime between 0
and 60 minutes (0 signifying some start time of the schedul-
ing period, such as midnight or 6 a.m.). The deadline of a
request for a data item is 15 to 60 minutes after the data
item’s available time. Thus, the effective duration of the
simulation is two hours. The time duration parameter for
garbage collection,, was set to six minutes. Therefore, a
particular intermediate machineM [r] will keep a data item
in its local memory for six minutes after the latest deadline
for Rq[i]. Sources and final destinations hold data for the
remainder of the simulation.

Let the E-Uratio be WE /WU . As shown by the cost
functions introduced in Subsection 4.8, the E-U ratio may
affect the performance of the cost criterion (Cost1, Cost2,
andCost4). Figures 2 through 5 show the performance
of the heuristic/cost-criterion pairings examined. It can be
seen from the figures how the E-U ratio affects the per-
formance of the heuristic/cost-criterion pairings. All data
points in Figures 2 to 5 are the average of the same 40 ran-
domly generated test cases.

5.4. Evaluation of Simulations

The results shown in Figures 2 through 5 are for the
1, 10, 100 weighting scheme. The results of the 1, 5, 10
weighting are similar and are not shown here (see [17]). In
the interval from�3 to 5, the horizontal axis contains the
log10 of the E-U ratio. The pointsinf and�inf are the
two extremes, whereinf only considers the effective prior-
ity term, while�inf only considers the urgency term.

Figure 2 shows average lower and upper bounds (defined
in Subsection 5.2) and the average performance of the best
cost criterion for each of the heuristics, which happens to be
Cost4. (The minimum and maximum values for the perfor-
mance of these heuristics over the 40 individual test cases
with Cost4 are presented in [17].) The performance of the
partial path heuristic is shown in Figure 3, the full path/one
destination heuristic in Figure 4, and the full path/all des-
tinations heuristic in Figure 5 (recall thatCost1 does not
capture that a data item can be sent to multiple destinations
and is therefore not considered in the full path/all destina-
tion heuristic). These graphs highlight the performance of

the four cost criteria for each of the heuristics implemented.
Each of the cost criteria was developed for specific fea-

tures. The best cost criterion of the four investigated is
Cost4. This cost criterion combines the sum of the pri-
orities and the sum of the urgencies of multiple destinations
whose shortest path passes through a particular node.Cost1
performs worse thanCost4 because it does not consider
moving data to satisfy multiple requests, whichCost4 does.
The drawback ofCost2 is that the minimum urgency term
allows nonurgent data items withinDrq to become sched-
uled and block more urgent requests for other data items.
Using the ratio of priority and urgency inCost3 was meant
to directly associate the priority of a request with its partic-
ular urgency. This allows a nonurgent and urgent request
for a particular data item to be represented fairly (i.e., take
care of the problem withCost2). The results in Figures 3,
4, and 5, show that this was not the case, most likely due
to scaling (i.e., one very smallUrgency[i; j] may have too
much impact on the total cost). Future cost criteria might
be designed to capture the original intent.

An advantage ofCost3 is that it gives results that were
close to those ofCost4 with its best E-U ratio, while being
independent of the E-U ratio. Thus, in environments where
it is difficult to predict which E-U ratio to use,Cost3 may
be preferred.

Additional results pertaining to execution time and aver-
age number of links traversed was collected. This informa-
tion can be found in [17] due to space constraints.

Lastly, when comparing the performance of the heuris-
tic/cost criterion combinations for differing priority weight-
ing schemes, the 1, 10, 100 weighting satisfies more high-
er priority requests and fewer medium and low priority re-
quests than the 1, 5, 10 weighting, as was expected. This
performance was then compared to a simplified scheme that
scheduled all high priority requests before any medium pri-
ority requests, and all medium priority requests before any
low priority requests. This method provides a cost-guided
(versus arbitrary) approach to basing scheduling decisions
only on the priority of individual requests. It was found that
the heuristic/cost criterion combinations performed better
than this simplified scheduling scheme in all cases.

6. Conclusions

Data staging is an important data management issue for
distributed computer systems. It addresses the issues of
distributing and storing over numerous geographically dis-
persed locations both repository data and continually gen-
erated data through an oversubscribed network, where not
all data requests can be satisfied. When certain data with
their corresponding priorities need to be collected together
at a site with limited storage capacities in a timely fashion,
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a heuristic must be devised to schedule the necessary com-
munication steps efficiently.

The performance of eleven heuristic/cost-criterion pairs
were shown, and compared to upper and lower bounds. Ten
of the twelve possible combinations have been first explored
in this paper. The eleventh was explored in [16] utilizing a
simpler network model. The network model used here has
been modified from [16] to allow a more realistic version of
garbage collection to be implemented and utilizes network
parameters that more closely match a BADD-like environ-
ment. The twelfth heuristic/cost-criterion (the full path/all
destinations andCost1) did not make sense and was not ex-
amined in this research. The results presented show that for
the system parameters considered (e.g., priority weighting,
network loads), the combination of theCost4 and the full
path/one destination heuristic performed the best, when us-
ing the measure of weighted sum of priorities satisfied. This
heuristic allowed more highest priority messages to be re-
ceived than a simple-cost-based heuristic that schedules all
highest priority messages first.

Because each heuristic/cost-criterion pair has advan-
tages, the pair that performs best may differ depending on
the system parameters (i.e., the actual environment where
the scheduler heuristic/cost-criterion pair will be deployed).
Future work will explore how the heuristics perform when
varying the congestion of the network and when additional
priority weighting schemes are considered.
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