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ABSTRACT

PASM, a multimicroprocessor system being
designed at Purdue University for image processing
and pattern recognition, is described. This sys-—
tem can be dynamically reconfigured to operate as
one or more independent SIMD and/or MIMD machines.
The functions that the PASM operating system will
perform are discussed, demonstrating how it will
handle a variety of types of image processing
tasks. Examples of how PASM will improve computa~—
tional speeds 1in comparison to conventional com—
puters are presented. In particular, smoothing,
histogram, and two-dimensional FFT algorithms are
analyzed.

Key words: parallel processing, SIMD, MIMD, mul-
timicroprocessor systems, FFT, image processing.

I. INTRODUCTION

As a result of the microprocessor revolution,
it is now feasible to build a dynamically reconfi-
gurable large-scale multimicroprocessor system ca-
pable of performing image processing tasks more
rapidly than previously possible. There are
several types of parallel processing systems:
SIMD, MSIMD, MIMD, and PSM.

An SIMD (single instruction stream multiple
data stream) machine [5] typically consists of a
set of N processors, N memories, an interconnec=

tion network, and a control unit (e.g. Illiac IV
{11). T7The control unit broadcasts instructions to
the processors and all active ('turned on") pro-

cessors exécute the same instruction at the same
time. Each processor executes instructions using
data taken from a memory to which only it is con—
nected. The interconnection network allows inter-—
processor communication. An MSIMD {(multiple-SIMD)
system 1is a parallel processing system which can
be structured as two or more independent SIMD
machines (e.g. MAP [131). An MIMD (multiple
instruction stream - multiple data stream) machine
[5] typically consists of N processors and N
memories, where each processor may follow an in-
dependent instruction stream (e.g. C.mmp [4101).
As with SIMD architectures, there is a multiple
data stream and an interconnection network. A PSM
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(partitionable SIMD/MIMD) system [25] is a paral-
lel processing system which can be structured as
two or more independent SIMD and/or MIMD machines
(e.g. PASM [281),

PASM, a particular PSM-type system for dimage
processing and pattern recognition, is currently
being designed at Purdue University [25]. Due to
the low cost of microprocessors, computer system
designers have been considering various multimi-
crocomputer architectures [Le.g.,2,9,11,12,18,36,
391. The system described here was the first in
the literature to combine the following features:
(1) it may be partitioned to operate as many in-
dependent SIMD and/or MIMD machines of varying
sizes (within certain constraints); and
(2) a variety of problems in image processing and
pattern recognition are being used to guide the
design choices.

Many designers have discussed the possibilities
of building large-scale parallel processing sys-

. 14 16 . .
tems, employing 2 to 2 microprocessors, in
SIMD (e.g. binary n-—cube array [181) and MIMD
(e.g. CHoPP [361) configurations. Furthermore,

developments in recent years have shown the impor-
tance of parallelism to image processing [7], wus-
ing both cellular logic arrays (e.g. CLIP [33D)
and SIMD systems (e.g. STARAN [211). Thus, the
time seems right to investigate how to construct a
computer system such as the one proposed here: a
machine which can be dynamically reconfigured as
one or more SIMD and/or MIMD machines, optimized
for a variety of important image processing and
pattern recognition tasks.

II1. PARALLELISM IN IMAGE PROCESSING

The use of parallel processing for image pro-
cessing has been limited in the past due to cost
constraints. Most systems used a small number of
processors (e.g. [11), processors of limited capa~
bilities (e.g. [201), or specialized logic modules
(e.g. [101). With the development of the mi-
croprocessor and related technologies, it is rea”
sonable to consider parallel systems using a large
number (e.g. 1024) of complete processors.

SIMD machines can be used for "local'" process”
ing of segments of images in parallel. For exam”
ple, the image can be segmented, and each proces”
sor assigned a segment. Then, following the sameé
set of instructions, such tasks as line thinning,
threshold dependent operations, and gap filling
can be done in parallel for all segments of the

image simultaneousty. Also in SIMD mode, matrix
arithmetic used in 1image processing, for such
tasks as statistical pattern recognition, can be

done efficiently.




MIMD machines can be used to perform different
“global” 1mage process1ng tasks in parallel, using
multiple copies of the 1mage or one or more shared
copies. For example, in cases where the goal is
to locate two or more distinct objects in an im—
age, each object can be assigned a processor or
set of processors to search for it.

There are also tasks which require parallel
processing in both SIMD and MIMD modes. As a sim~
ple example, consider the task of determining if a

line drawing contains a square. In SIMD mode, a
parallel processing system can segment the image
and each processor can locally determine which
points in 1its segment, if any, are possible

corners of squares. The system can then switch to
MIMD mode, where each corner will be assigned to a

processor which examines the image globally to
determine if the corner is actually part of a
square, Another SIMD/MIMD application might in-

volve using the same set of microprocessors for
preprocessing an image in SIMD mode and then doing
a pattern recognition task in MIMD mode.

More detailed examples illustrating the use
PASM will be presented in Section V.
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Figure 1: Block diagram overview of PASM,
III. OVERVIEW OF PASM
A block diagram of PASKH (a partitionabte

SIMD/MIMD system) is shown in Figure 1.
of the system is the Parallel Computation Unit
(PCU), which contains N processors, N memory
modules, and the interconnection network. The Pcuy
processors are microprocessors that perform the
actual SIMD and MIMD computations. The PCU memory
modules are wused by the PCU processors for data
storage in SIMD mode and both data and instruction
storage in MIMD mode. The interconnection network
provides a means of communication among the PCU
processors and memory modules.

The Micro Controllers (MCs) are a set of mi-
croprocessors which act as the control units for
the PCU processors in SIMD mode and orchestrate
the activities of the PCU processors in MIMD mode.
Control Storage (CS) contains the programs for the
Micro Controllers. The Memory Management System
(MMS) controls the loading and unloading of the
PCU memory modules. The Memory Storage System
(MSS) stores these files. The System Control Unit
(SCU) is a conventional machine, such as a PDP~ 11,
and is responsible for the overall coordination of
the activities of the other components of PASM.

The processors, memory modules, and intercon-
nection network of the PCU are organized as shown

The heart
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Figure 2: PASM parallel computation unit,
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Figure 3: Augmented Data Manipulator network, N=8
(note that (@ connects to @ , etc.),

in Figure 2. The processors, which are physically

numbered (addressed) from 0 to N-1, where N=2n,

communicate through the interconnection network.
The network being considered is a multistage im-
plementation of the "PM2I" network [4,22,23,26]
called the Augmented Data Manipulator (ADM)
£27,321 (Figure 3). Each cetl of the network is
controlled independently. At stage x, cell j can

be connected to any or all of the following cells
at stage x-1: j, j+2X modulo N, and j—2x modulo N,
where 0<x<n. The interconnection network can be

partitioned into independent sub-networks of vary-
ing sizes which are powers of two, if the physical

addresses of the 2P processors and memory modules
in a partition have the same n-p low-order bits.
The PCU processors are microprogrammable mi-
croprocessors. This allows the instruction set to
be tailored for parallel image processing [291.




In addition, there can be two different instruc-
tion sets, one for SIMD mode and one for MIMD
‘mode. A pair of memory units is used for each PCU
memory module so that data can be moved between
one memory unit and the MSS while the PCU proces—
sor operates on data in the other memory unit.
Many computations can be more efficiently exe-
cuted if the N PCU processors are partitioned into
many smaller groups of processors, each group
behaving Llike an SIMD or an MIMD machine. The
method to provide multiple controllers is shown in
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Figure 4: PASM micro controllers (MCs),

Figure 4. There are g;gﬁ MCs, physically
addressed (numbered) from 0 to @-1. Each MC con-

trols N/Q PCU processors. There is an MC memory
module for each MC. Each MC memory module con-
tains a pair of memories so that memory loading

and computations can be overlapped. A virtual

SIMD machine of size RN/Q, where R=2" and 1<r<q,

is obtained by loading R MC memory modules with
the same instructions simuitaneously [281. Simi-
larly, a virtual MIMD machine of size RN/Q is ob-

tained by combining the efforts of the PCU proces~
sors of R MCs. For either SIMD or MIMD mode, the
physical addresses of these R MCs must have the
same low-order g-r bits since the physical ad-
dresses of all PCU processors in a partition must
agree in their low-order bits in order for the in-
terconnection network to function properly. Pos-
sible values for N and Q are 1024 and 16, respec—
tively.

More details about PASM and the ADM network can
be found in [25,27-30,32].

IV. PASMOS - THE PASM OPERATING SYSTEM

In this section, some of the problems involved
in the design of PASMOS - the PASM operating
system are discussed. The operating system for
PASM s different from that of 'general purpose"
multimicroprocessor systems, such as MAP [14], Cm*
£401, or CHoPP [371, since PASM is being developed
specifically for 1image processing and pattern
recognition.

The SCU is responsible for orchestrating the
“MMS and the MCs. In addition, the SCU is capable
of functioning as a serial processor, independent
of the rest of PASM. It can handle such tasks as
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program development and file system supervision
while the rest of PASM is executing a parallel
computation. In order to perform all of these
functions, the SCU will contain the PASM operating
system and language compilers and assemblers. The
operating system is being designed in such a way
as to minimize the possibility of the SCU becoming
a bottleneck. For example, the MMS will have its
own set of dedicated processors and the MCs will
perform many of the input-output tasks for the PCU
processors.

In attempting to define the many functions that
PASMOS must perform, it is instructional to look
at a "typical" job and trace it through various
stages of execution that occur while it is being
processed by the system. The following scenario
will be used to serve that purpose.
1. Input a program: Use conventional
facilities.

2. Compile (assemble) the wuser's program: The
compiler (assembler) will need to include header
information regarding PASM resource requirements,
1/0 requirements, and data formatting information,
as well as standard loader information.

3, Input data from real-time device (e.g. camera)
or mass storage: This requires a program to format
the raw data into a structure that the MMS can
handle, based on the header information mentioned
above or user commands. The file management sys-—
tem will need to supervise distribution of data to
the MSS and maintain file identification informa-
tion. If the required data is already in the MSS,
then PASMOS must create a table associating the
data file ID with the job ID. Other desirable op-
tions may include system commands that specify I/0
devices to be used and choice of format.

4. Transfer of the generated object code to CS:
This requires a file management system for main-
taining file identity and protection. The origi-
nal object code may have come from the SCU disk,
where it was temporarily stored after being com-
piled (assembled), or directly from the SCU during
compilation (assembly), buffered in blocks. The
files reside in CS on a long term basis.

5. Based on the header information and/or program
declarations, set wup the PCU environment: To es—
tablish a virtual SIMD or MIMD machine of size P,
the SCU will need to allocate or schedule P/Q MCs
and update assignment tables.

6. Transfer formated data from the MSS to the PCU
memories: Instructions are dissued to the MMS to
transfer data from the MSS to the PCU memories as-
sociated with the MCs chosen in (5),

7. Transfer the instructions from CS to the
propriate MC memories: This will
(possibly simultaneously with (6)) by
or a system routine which
SCU/MC registers (see [28]1) 1in conjunction with
appropriate commands to the CS controller. When
the MCs are ready, both the MCs and the PCU pro-
cessors wWill be switched to read from the correct
memory units.

8. Initiate task execution: The first program in~
structions will verify that all PCU memories have
been properly loaded by checking all job and data
IDs to make sure they match. Once this is accom~
plished the task is executed.

9. Respond to task interrupts: This can be han~”
dled by system software, special purpose hardware,

interactive

ap-
be performed
the Lloader
uses special shared




or a dedicated microprocessor (see [30]). Whatev-
er the means, when an MC enters the wait state,
the SCU must determine which task was assigned to
that MC and whether the wait is due to an actual
task termination, an I/0 request, or an error.

10. Transfer data results from PCU memories to
the MSS: This requires the SCU or MCs to issue
commands to the MMS to effect the transfer.

11. Format the data for output: If the formatting
required is an inherently parallel task, the PCU
processors perform this function, otherwise it is
taken care of by the SCU and MMS.

A PDP-11 has been wused as a controller in
STARAN [3] and is a promising candidate for PASM's
SCU. Software is readily available to perform
conventional editing, filing, and interactive I/0
functions. There are many additional capabilities
required of an operating system designed for a
paratlel processor. Six major functions that
PASMOS will perform are discussed here: data for-
matting, file management, SCU/MC job flow instruc-
tions, task scheduling, task interrupt processing,
and memory management supervision.

Data Formatting. The data being processed may
have to be formatted <(stored 1in a particular
manner) in the PCU memories and the MSS to ex-
pedite efficient parallel processing. In general,
image or other data that has been read in and is
stored as a sequence of binary words (raw data) is
not necessarily in a form readily used by the PCU.
It must be reformatted in such a manner as to aid
the MMS 1in performing a fast and efficient
transfer from the MSS to the PCU memories. Data
formats will be specified explticitly and/or impli-
citly by the user's program. Several formats will
be available along with system routines for the
initial conversion of the raw data to a user (or
compiler) specified format, conversion between
formats, and conversion from the internal formats
to external formats similar to that of the origi-
nal data for use by display peripherals or storage
on disk or tape. Unlike the serial pre- and post-
processing (data formatting) discussed in [11, the
format conversion routines will use the PCU to
perform those tasks that are inherently parallel,
leaving only serial tasks to be performed by the
SCU or MMS. Many image processing tasks are
currently being investigated to determine those
formats that are most useful.

Included in the information maintained in
tables by PASMOS are the names of data files
stored in the MSS and their format. By maintain-
ing this information, the same data file can be
stored in two or more formats. By using the MSS
for long term storage of files, it is possible to
reuse processed data without having to format the
original data with each new application.

File Management. The file management system
will maintain the usual file identity information
and the data format information discussed above.
It will also keep track of which data files in the
MSS are associated with each program file in €S
when in SIMD mode. In MIMD mode, both program and
data files are stored in the MSS. There 1is also
the option of including a coordination program to
be executed by the MCs when a group of MIMD pro-
grams are executed by the PCU. This necessitates
the inclusion of a table in the file management
System to keep track of which program and data
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files stored in the MSS are associated with each
coordination program file in CS.

SCU/MC Job Flow Instructions. Before a job be-
gins executing, the data must be properly format-
ted and loaded into the appropriate memory units.
It must be possible to control interactively the
processing of image data, which may involve either
SCU or MC intervention during execution. In addi-
tion, there are applications that lend themselves
to the ability to specify more than one parallel
task such that several independent tasks can be
executing at the same time, and one parallel task
then uses the results of one or more previous
parallel tasks as its input. Image registration
[381 is one such application that can realjze
greater execution speed over implementation as a
single parallel task if multiple parallel tasks
are allowed. Some tasks may require the same set
of PCU processors to preprocess an image in SIMD
mode, and then continue processing in MIMD mode.

In order to satisfy all these requirements, job
flow 1instructions executed by the SCU or MCs are
provided. The job flow instructions make it pos~
sible to specify data usage, define more than one
task, conditionally execute tasks, interactively
control task execution, and manipulate data files
between tasks, to name just a few possibilities.

Task Scheduling. The PASMOS scheduler allo-
cates MCs to SIMD jobs and PCU processors to MIMD
jobs. It follows that the smatlest number of pro-
cessors that can be allocated to an SIMD job is
N/@, however a smaller number can be allocated to
an MIMD job if the processors operate as a "host-
less” virtual machine. Because of the high execu-
tion speed and the overhead associated with moving
jobs in and out of the system, no timesharing is
performed within a virtual machine in the PCU.
Timesharing of the SCU is performed when there are
multiple wusers with simultaneous requests for SCU
support.

To make scheduling more efficient and to sim—
plify its implementation, the user must specify a
maximum PCU time limit to complete a job. For in-
teractive tasks, a user must specify the maximum
PCU time limit to produce a desired visual output.
Thus, a job is removed from the system when it has
completed (or produced its output display) or when
it has reached its maximum time Limit. This means
an interactive job may be removed from the PCU
while the wuser is observing the output display.
Other factors that influence scheduling are the
number of processors the job requires and whether
it is an SIMD or an MIMD job or one requiring both
modes (only a subset of the processors is capable
of execution in both SIMD and MIMD modes [291).

In those jobs containing more than one task,
maximum resource requirements are based on the sum
of the requirements of those tasks that can be ex-
ecuted simultaneously or the requirements of the
largest task, whichever is greater. Information
on which to make an evaluation is supplied by the
compiter and is contained in the header record ac-
companying the compiled code.

Because the MC and PCU memories are double buf-
fered (i.e., use dual memory units to overlap the
toading/unloading with job execution), the
scheduler can begin assigning resources to the
next batch of tasks and start loading the instruc-
tions and data immediately after initiation of the




current tasks. Once a task is complete, if the
preloading ©f the next task has been done, both
the execution of this next task and the unloading
of the output of the previous task can be initiat=
ed simultaneously by switching the memory unit
connections.  Where jobs containing more than one
task are concerned, such that the output of one or
more tasks is input to another, the intelligent
scheduter will load the instructions for the
latter task in the memory associated with the MCs
whose PCU memories contain some or all of the
results of the former tasks. This kind of careful
scheduling will minimize the amount of data mani-
pulation the MMS has to do.

There are image processing tasks where a large
volume of data must be processed by the same pro-
gram, €.9., analyzing many "memory frames" of data
from satellite sensors. In such cases, the data
input requirements are known and the scheduler can
easily exploit the double-buffered PCU memories
and load "frames" of data in advance.

Task Interrupt Processing. There are three
conditions that can cause the MCs executing a task
to enter the wait state and issue an interrupt:
1) normal termination; 2) the need for particular
input or output servicing that only the SCU can
perform; or 3) an error condition. When an inter-
rupt is received, the SCU must determine which
task was running on the MC it is responding to,
check an error flag to verify normal interrupt,
and, based on the job flow instructions associated
with that task, proceed to issue commands to han-
dle the I/0 need or to transfer control to the
scheduler to initiate a new task. The error is
signalled by means of an error register Q bits
wide. Once the interrupt has been serviced, all
the interrupt signals of MCs assigned to the in-
terrupting task are cleared. An investigation of
several methods that can be used to determine
which task interrupted the SCU, dincluding time,
cost, and complexity analyses, appears in [30].

Memory Management Supervision. Loading and un-
loading the PCU memories is relegated to the MMS.
The SCU and MCs act as supervisors issuing com~
mands to the MMS. The SCU uses job information
supplied by the compiler to coordinate issuance of
commands to the MMS with the activities of the
scheduler. For most real time applications, it
must be possible to perform a parallel DMA opera-
tion to achieve a high speed transfer of data from
the PCU memories to a peripheral device. Foster
estimates that a parallel 1I/0 channel 256 bits
wide capable of 0.3 microseconds per store can
achieve a bandwidth of 0.85 gigabits per second,
which far exceeds conventional I/0 channels, and
Es]more than adequate for real time applications
63.

This section has attempted to identify many of
the major functions of PASMOS. The next section
demonstrates how PASM may be used to solve pattern
recognition and image processing problems.

V. IMAGE PROCESSING ON PASM
One typical image processing task consists of
repla?ing each point of an image by the value of a
function which depends on the point and its neigh-
bgrs. Examples of such tasks are smoothing and
@1”3 thinning. Other common tasks include build-
ing histograms and performing FFTs.

Ideally, a high level language for image pro-
cessing will allow algorithms for such tasks to be
expressed easily. As an example, a high Llevel
language algorithm which first smooths an image
and then builds a histogram is given below. The
language constructs used are described in [303].
The algorithm, "average," has "pixin" as an input
image and "pixout" as an output image. Both "pix-
in" and “pixout” have 512 by 512 pixels. The
"average" routine also has as an output a histo-
gram called "hist." Each point of pixin is an
eight bit unsigned integer representing one of 256
possible gray levels.

Each point in the smoothed image, "pixout," has
the average gray level of the corresponding point
in "pixin" and its eight nearest neighbors. Boun-
dary points of "pixout" are not calculated since
their corresponding points do not have eight adja-
cent neighbors. A 256 bin (one bin for each gray
level) histogram of the smoothed image 1is con-
structed and stored in "hist." This algorithm is
shown in Figure 5.

Consider how this could be implemented on a
system such as PASM. Suppose that 1024 processor
and memory pairs (PEs) are available, and that the
compiler specifies that each stores a 16 by 16
block of the 512 by 512 image. Assume that the
1024 PEs are logically arranged as an array of 32
by 32 PEs, and that the PE addresses range from 0
to 1023:

PE0 PET ... PE 31
PE 32 PE33 ... PE 63

PE 992 . . . PE 1023

Assume that the 16 by 16 blocks are stored in row
major order. Thus, PE 0 stores the pixels in
columns 0 to 15 of rows 0 to 15, PE 1 stores the
pixels in columns 16 to 31 of rows 0 to 15, and so

PROCEDURE average

/*define pixin and pixout to be 512x512

arrays of unsigned eight bit integers #/

UNSIGNED BYTE pixin[5121[5121, pixout[5121C5123;

/*define hist to be a 256 word integer array*/

INTEGER hist[256];

/*define x and y to be index sets */

INDEX x, y;

/*declare pixin to be loaded by input data and

pixout and hist to be unloaded as output datax/

DATA INPUT pixin OUTPUT pixout, hist;

/*define the sets of indices which x and y

represent, i.e., x and y represent the

integers between 1 and 510 inclusive */

x =y = {1 *5102;

/*compute average of each point and its eight

nearest neighbors (simultaneously if possible)*/

pixoutfxILyl = (pixinLx=13Cy-11+pixinLx-11Cyl+
pixinLx-13Ly+11+pixinlx1Cy-1]+pixinLxI[yl+
pixinlxILy+11+pixinlx+13Ly-11+pixinlx+11{y3+
pixinCx+11Ly+11)/9;

/*initialize each bin to zerox/

histl0 + 2551 = Q;

/*compute histogram/

histCpixoutfx1Cyll = histlpixoutCx1fyl1+1;

END average

Figure 5: High tlevel Llanguage algorithm for
smoothing and computing histogram.
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on. In general, N = Zn PEs operate on a picture
of 2

2n/2 by 2"/2 array, where n/2 is an integer, such
that each PE stores in its memory a block of pix~

els of size 2k-(n/2) by 2k-(n/2)_

For notational purposes, let each PE
its 16 by 16 matrix as

by 2k pixels. The PEs are arranged as a

consider

h€0,00 . . . h(0,14) h(0,15)
H = e e = -
hC15,00 . . . h(15,15)

Also, let the subscripts of h(i,j) extend to -1
and 16, if necessary, in order to aid in calcula-
tions across boundaries of two adjacent blocks in
different PEs. For example, the pixel to the left
of h(0,0) is h(0,~1), and the pixel below h({15,15)
is h(16,15). so, -1 < i,j < 16.

A general algorithm to perform the smoothing on
pixel h(i,j) to yield smoothed pixel hs(i,j) is:
for i «+ 0 to 15 do
T for j +0 1015 do

Ths(,3) « 1/9%Ch i+, ) +h (=1, 50 +h (5, j+1)
th(i, j=1)+h(Gi+1,5-1)+h(§+1,j+1)
+h(Gi=1,3+1)+h =1, §=1)+h (5,50

The approach of this algorithm is to perform 1024
16 by 16 pixel evaluations in parallel rather than
one 312 by 512 pixel evaluation as in the sequen-
tial algorithm.

At the boundaries of each 16 by 16 array, data
must be transmitted between PEs in order to calcu-
late the smoothed value, hs. For example, he-1,0
must be transferred from the PE "above" the local
PE, except for PEs 0 through 31, those at the "top
edge' of the logical array of PEs (pixels on the
edges of the 512 by 512 array are not smoothed).

To take these data transfers into consideration,
the following steps must be executed before the
algorithm above. "SET ICN to PE+j" sets the

interconnection network so that PE P sends data to
PE P + j modulo N, O < j < N. PEs transfer data
through Data Transfer Registers, The data are
loaded into the DTRin of each PE, the TRANSFER
command moves the data through the network, and
the final data are retrieved from DTRout [32].
Each PE has a unique address expressed in binary
as a number between 0 and N-1. The command "MASK
laddress setl" is a PE address mask that deter-
mines which PEs will execute the instructions that
follow [23,24]. The address set is specified as

an n-bit number composed of O's, 1's, and X's,
where X is "don't care'. Superscripts are used as
repetition factors. For example, MASK [X90] en—

ables only PEs whose addresses match the mask, 1in
this case, only even numbered PEs. A negative ad-
dress set disables all PEs whose addresses match.

MASK [—X9DJ enables all odd numbered PEs and dis-
ables all even numbered PEs. The absence of a
mask implies all PEs are active.

In order to calculate the values of hs in PE i,
data must be sent from PE i+1 (as well as others).
The transfer of data from PE i+1 is illustrated as

follows. h'(i, i) denotes an entry in the H matrix
of PE i+1.
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PE i PE i+1
he,m . .. h¢0,15) h€0,16) = h' (0,
h(1,00 . .. h(1,15) 44— hQ1,16) = h' (1,0
h{15,00 . . . h{15,15) h{15,16) =-h:(;5,0)
The compiler generated code for this transfer

can be expressed as follows, assuming 16 words can
be transfered as a block. Note that the mask

E-X51SJ deactivates the PEs on the right edge of

the image, i.e., PEs 31,63,...,1023
SET ICN to PE-1;
DTRin + h(O ~ 15,
TRANSFER;

MASK [-Xx>1°3 h(0 > 15, 16) + bTRout;
The transfers of data for the remaining three
sides of the array H, i.e., PEs i-1, i+32, and
i-32, are accomplished in a similar manner.

The four points h(0,0), h<0,15), h(15,0), and
h(15,15) require data that reside in PEs i-33,
i-31, i+31, and i+33, respectively. This necessi-
tates four additional parallel pixel transfers.

In order to perform a smoothing operation on a
512 by 512 image by the parallel smoothing of 256
point blocks of size 16 by 16, the total number of
words transferred is 4(16) + 4 = 68 words. The
corresponding sequential atgorithm needs no data
transfers between PEs, but calculates hs for 512 #

o;

512 = 262,144 points. 1f no data transfers were
needed, the parallel algorithm would be faster
than the sequential algorithm by a factor of
262,144/256 = 1024, If it is assumed that the

data transfer of each word requires about as much
time as one smoothing operation, then the time
factor is 262,144/324 = 809. That is, the parat-
lel algorithm is about three orders of magnitude
faster than the seguential algorithm. The approx-
imatijon s a generous one, since calculating the
addresses in memory of the nine pixels requires
the compiler to perform nine multiplications using
the subscripts [8]. Block transfers of the data
on the four sides of the array could be done ra-
pidly with a pipelined multistage interconnection
network [32].

Another factor which must be considered is pro-
cessor speed. An IBM 370 will process data faster
than a typical microprocessor. Even with possible
differences in processing speed, PASM will still
perform this task two to three orders of magnitude
faster.

Now consider implementing the histogram calcu-
lation. The dimage is distributed through 1024
PEs, as described above. The goal now is to
create one 256 bin histogram, hist, of the image
which will reside in PE 0. The histogram is to be
used to determine a threshold value for the image.

Since the image hs is spread out over 1024 PEs,
each PE will calculate a 256 bin histogram based
on its segment of the image. Then these "local"
histograms will be combined using the algorithm
described below. Tnis is demonstrated for N = 8,
instead of 1024, 1in Figure 6. Until the last
step, the histogram is passed as two independent
halves. Two simultaneous recursive doubling al-
gorithms sum the two halves, and the results re-
side in PEs 0 and 1. The last step merges the two
halves into the final histogram of 256 bins. Each
step of the algorithm is a data transfer followed
by an addition. After step 1, even numbered PEs




N}
=
3

w
=
R

w

3

B4, 5 r 5

1

6 Ab,7 6 [ 6

7 7 86,7 7 7 7

A7

Histogram calculations for N=8,

Let Ai be the hist(0+127) data for PE i.

Let Bi be the hist{128+255) data for PE i.
Let Ai,j be the sum Ai + A(i+1) + ... + Aj.
Let Bi,j be the sum Bi + B(i+1) + ... + Bj.

Figure 6:

hold atl of the first half of hist, and odd
bered PEs hold all of the second half. After
2, PEs 0 and &4 hold atl of the first half of hist
and PEs 1 and 5 hold the second half of hist.
After step 3, PE O holds all of the first half of
hist, and PE 1 holds alt of the second half of
hist. The final step merges the two halves in PE
0. Thus, N pieces of the histogram, hist, are
summed to PE O in ((logzN) + 1) * (# bins)/2

parallel data transfers and additions, where,
here, # bins = 256. For N = 1024, an algorithm is
shown in Figure 7. (For 1increased efficiency,
"unused" PEs are left enabled and their calcula-
tions are ignored.)

A sequential algorithm for calculating hist re-
quires 512 * 512 = 262,144 steps. The paraltel
algorithm described above uses 16 * 16 = 256 steps
for each PE to calculate its local histogram, and
(n + 1) * 128 steps (transfer and add) to merge
the histogram into PE 0, where n = 10. The
difference in calculation time is thus about two
orders of magnitude.

num-
step

/*Step 1:Exchange between PE i and i+1, i evenx*/
MASKEX90] index +128; indx2 «0; SET ICN to PE+1;

MASKEX91J index +0; indx2 «128; SET ICN to PE-1;
DTRin + hist(index =+ index + 127); TRANSFER;
hist{indx2 + indx2 + 127) +

DTRout + hist(indx2 + indx2 + 127);
/* 9 more steps yield hist(0 » 127) in PE O, */
/* hist(128 + 255) in PE 1. */
for i =2 to 10 do

SET ICN to PE-2' 1; _
DTRin + hist(indx2 + indx2 + 127); TRANSFER;
hist(indx2 +» indx2 + 127) +« DTRout +
hist(indx2 + indx2 + 127);

/*merge the two halves in PE 0%/

SET ICN to PE-1;

DTRin + hist{128 + 255); TRANSFER;

hist(128 + 255) « DTRout;

Figure 7: Implementation of histogram
for N = 1024.

calcutation
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Recall that ideally the user will program in a
high level Llanguage (as in Figure 5) and it will
be the task of the compiler to produce a machine
language implementation (as in Figure 7). In ad-
dition, there will be facilities for '"parallel”
programmers to program directly in PASM assembly
language.

As another example of the applicability of
parallel computations to image processing tasks,
the two dimensional Fast Fourier Transform (FFT)
is considered. The implementation of an M-point
one-dimensional FFT, often used in speech process-
ing [31], is presented first. The two—dimensional
FFT on an M by M point array is then defined in
terms of the one-dimensional transform.

The discrete Fourier transform (DFT) of a se-
quence {x(m)}, 0 < m < M is defined as
-l -j /My mk
X = ¥ xtme ) 0<k<M
n=0

Straightforward computation requires D(Mz) opera-

tions. The fast Fourier transform (decimation—
in-frequency algorithm) divides {x(m)} into se-
guences {x1(m)}, equal to the first half of

{x(m)}, and {xz(m)}, equal to the second half of

{x(m) 3. The even and odd samples of the M-point
DFT for {x(m))} can be computed in terms of the two
M/2 point DFTs:

m/2-1

- mk
X (2k) g; Dxq(m) + x5 (M1 Wy /o
m=0
M/2-1 o mk
X(2k+1) = z; Ex1(m)—x2(m)] HM Wy/2
m=0
where W, = e—j(z“/n)
M
For M a power of 2, repeated application of this

algorithm computes the DFT in O(MlogaM) operations

£15,191. Figure 8 shows a flow graph of the com=
putations in computing a 16-point FFT. Since the
FFT requires O(MLogzm) arithmetic operations,

given M processors the asymptotic lower time bound
is 0(logzM). Parallel implementations of the FFT

have been discussed by Pease and Stone [16-18,34].

An algorithm to perform the FFT computations on
an SIMD machine which contains a virtual machine
(partition) having M complete processors is
presented here. The PEs are numbered from 0 to
M-1. Assume the processor in each PE contains at
least four fast access general purpose registers
(A,B,X, and Y), and an address register (ADDRESS) .
For 0 < i <M, the register ADDRESS in PE i con-
tains the integer i. ADDRESS (j) denotes the j-th
bit of ADDRESS. Interprocessor communications are
specified in terms of the Cube interconnection
network [23]. Let z = LogZM - 1. The Cube net-~

work consists of z+1 interconnections, Cubei, 0 <

j < z, defined as:

Cubei (pz"'p1po) = pz.'.pi+1p-'|pi_1...pol
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Figure 8: Computation of a 16-point FFT
(decimation-in-frequency algorithm).

where pz"'p0 is the binary representation of an

arbitrary PE address, and E& is the complement of

Pi- When the Cubei interconnection is executed by
the PEs, the contents of PE j's DTRin are copied
into the DTRout of PE Cubei(j). This occurs for

all j simultaneously, for 0 < j < M and PE j ac-
tive. Thus, Cubei connects each PE to the PE

whose address differs from its address only in the
i=th bit position. Each Cube interconnection is
realizable in one pass by a number of networks
discussed in the literature, including PASM's ADM
network [27].

For the SIMD algorithm, it is assumed that the
i-th sample point s(i) of the sequence for which
the FFT is being computed is in the memory of PE
i. The algorithm in Figure 9 uses the Cube net-
work to perform the FFT, using PEs 0 to (M/2)-1 to
perform the computations. The Cubez interconnec-

tion is used to perform the initial data align-
ment. Figure 10 illustrates the pattern of data
transfers and computations performed. As shown in
Figure 10, upon exit from the algorithm, PEs O to
M/2-1 contain the FFT of the M-point signal {s(m)}
in bit reversed order, i.e., f(i3i211io) is in po-

the FFT

whose "bit reversed” indices are 2i and 2i+1 in
the X and Y registers respectively (e.g., for
M=16, PE 6 contains f(3=0011=reverse of 1100) and
f(11=1011=reverse of 1101). To complete the algo-
rithm, f(i) must be moved to PE i, 0 < i < M. It
can be shown that wusing the Cubez function to

transfer the set of Y samples from PEs 0 to M/2-1
to PEs M/2 to M-1, respectively, produces two bit
reversed sequences of length M/2, spread out over
the M PEs. The samples that belong in PEs 0 to

sits P . .
ition 10111213. PE 1 contains samples
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/*Compute the M-point FFT using PEs 0 to M/2-1,
where z = l092M = 1 and initially the A register
of PE i contains s(i) and the B register of PE i
s(i+M/2). The "twiddle factors" N: have

been precomputed in each PE.*/

contains

X + A+B; /*Butterfly */
k + ADDRESS; /*for M-point =/
Y <« (A-B) * Uk /*FFT. *x/

M;
/* An M/21°point FFT is performed by a butterfly
(see Figure 8) followed by two M/21+1—point FFTs
executed in parallel. For an M/21—point FFT, the

twiddle factor for the r-th butterfly, 0 < r <
R i
M2 sz, is W= w119, w/

w2
for i «+1 to z do

MASK [X'0x%"'1 A + X; DTRin « Y;

/*Align*/
MASK [X'1x*7'1 DTRin « X; B + Y; /*data */
SET ICN to Cube _.; TRANSFER; Ixfor */

mASK Dx'0xZ711 B « DTRout; /#M/2'-point  */
MASK [X'1xZ711 A « DTRout; /*FFT butterfly.*/
X « A+B; /*Perform Zi M/Zi-point FFT */
k « (ADDRESS * 2') mod M/2; /*butterflies  */

Y « (A-B) * u;; /*in parallel. */

Figure 9: Algorithm to compute the M-point FFT.

Cube Lote

2 iube! Cubgo

Figure 10: Computation of a 16-point FFT using the
Cube interconnection network (see Figure 8 and 9).

M/2-1 are in PEs 0 to M/2-1, but each sample is in
the PE the low order z bits of whose address is
the bit reverse of where the sample should be.
Similarly, PEs M/2 to M-1 contain the samples that
belong in PEs M/2 to M-1, but in bit reversed or-
der (based on the low-order z bits). It is there-




fore necessary to apply to the two M/2 length se-
quences an algorithm which transfers ‘each data
point to the location equal to the bit reversed
value of its current location. Pease [18] has
shown that the indirect binary n-cube network can
do a bit reversal in two passes. Using this in-
formation in conjunction with the equivalence and
partitioning results presented in [27]1, it can be
shown that PASM's ADM network can do the two M/2
point bit reversals in a total of two passes (plus
one Pass to set up the two M/2 point bit-reversed
sequences).

The algorithm presented can perform M-point FFT
calculations using logzM transfers and the bit-

reversal using three data transfers. The algo-
rithm performs U(logZM) parallel arithmetic opera-

tions. In a system such as PASM, the FFT atgo-
rithm would be a system function, callable as a
library routine from a user's program.

The two-dimensional discrete Fourier transform
of an L by M array of elements S(L,m) is defined
as

L-1 M- .
FGL = £ % stLm wﬂl W
(=0 m=0

for 0<j<L,0<k<M The two-dimensional
transform can Ze decomposed in such a way as to
reduce its computation to the execution of a num-
ber of one-dimensional DFTs. Performing the DFT
on each row of the array yields

M-1 km
G,k = ¥ sd,m Wy
m=0

for0< Ll <L, 0 <k <M, The DFT of the array
can then be obtained by taking the DFT of each
column of G:

L=1 "
FGLK = X0 6Lk w
(=0 L

for 0<j<L,0 <k <M, Thus, the two-
dimensional transform can be obtained by computing
L one-dimensional M-point transforms on the L rows
of the S array, then computing M one-dimensional
L-point transforms on the M columns of the G array
resulting from the row transforms £151. If L and
M are powers of 2, the one~dimensional FFT algo-
rithm can be used, and the special case where L =
M is considered below. Serial implementation

would require leogzM multiplications.

The DFT is to be performed on an M by M array
S. For example, assume that M = 512, and the ar-
ray represents a 512 by 512 point picture. The
actual one-dimensional FFT computation, without
the bit reversal, needs only M/2 PEs for an M-
point FFT, so the computation of the M-point FFTs
on the M rows (columns) will be performed in M/2
steps, where at each step two one-dimensional FFTs
are computed in parallel. S will denote the ad-
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PE: 0 1 2 3
A(0,0)  A(0,1)  A(0,2)  A(0,3)
A(1,3) A(1,0) A(1,1) A(1,2)
A(2,2) A(2,3) A(2,0) A(2,1)
A(3,1) A(3,2) A(3,3) A(3,0)

Figure 11: M by M array A stored in M PEs in
skewed format, for M = 4,

dress in each PE of the first element of the por=
tion of the original array that is stored in that
PE; G will denote the address of the first element
of the portion of the array representing the DFT
on the rows of S. b will denote the number of
bytes of storage needed for each element of the
array. It is assumed that the original picture
array is stored in row major order, i.e., element
§{i,j) is stored in location S+i*b of PE j. G and
F will be stored in skewed format [351. This is
shown for M=4 in Figure 11. G and F are stored in
skewed format since this allows parallel access to
both rows and columns. The atgorithm to perform
the two dimensional DFT is presented in Figure 12,
where a virtual machine with M PEs is used. Like
the one-dimensional FFT algorithm, it would be a
system function callable from a user's program.

The algorithm requires M logZM + 10M data

transfers and M logzn parallel complex multiplica-

tions to perform the two-dimensional FFT on an M
by M array. For M = 512, a total of 9728
transfers and 4608 parallel complex multiptica-
tions would be executed. Serial implementation of

the FFT computation would require M2 logzM complex

multiplications, which for M = 512 would be
2,359,296, Thus, there is an improvement of ap-
proximately two orders of magnitude.

VI. CONCLUSIONS

PASM, a large scale partitionable SIMD/MIMD
multimicroprocessor system for 4image processing
and pattern recognition, has been presented. The
functions which PASM's operating system will have
to perform to support the execution of a variety
of image processing tasks have been outlined. The
way in which PASM can realize significant computa—
tional improvements over conventionat systems has
been demonstrated by the parallel formulations of
smoothing, histogram, and two-dimensional FFT al-
gorithms.

In the design of PASM, various image processing
tasks have been and will be considered. The phi-
losophy of examining the problem and then design-
ing the machine which can best solve the problem,
under certain economic and technologicat con-
straints, will be used. It is felt that this will
lead to a multimicroprocessor system that will be
a valuable tool for image processing and pattern
recognition.




/* perform FFT on each row of § */

for i + 0 to M/2-1 do

T 7% FFT on rows i and i + M/2 */
/* Transfer row i data to PEs 0 to M/2-1,
row i + M/2 data to PEs M/2 to M-1%/

MASKLOX®] DTRin « § + (i+M/2) * b;

MASKL1X%1 DTRin « S + i * b;
SET ICN to Cube ; TRANSFER;

/*Within each partition of M/2 PEs, load A re-
gisters with §(j,0) to S(j,M/2-1) and B regis-
ters with S(j,M/2) to S(j,M-1), where j=i in one
partition and i+M/2 in the otherx/

MASKCOX®1 A + S + i * b; B « DTRout;

MASKL1X®] A « DTRout; B « § + (i+M/2) * b;
call FFT in PEs 0 to M/2-1 and
call FFT in PEs M/2 to M-1 in parallel;
call BIT REVERSE on X & Y data in PEs 0 to
Mm/2-1, placing resulting sequence in A
registers of PEs 0 to M-1
call BIT REVERSE on X & Y data in PEs M/2 to
M-1, placing resulting sequence in B
registers of PEs 0 to M-1;
DTRin + A; SET ICN to PE+i; /*Store rows i */
TRANSFER; G+i*b « DTRout; /*and i+M/2 of G */
DTRin « B; SET ICN to PE+i+M/2; /*in skewed */
TRANSFER; G+(i+M/2)*b « DTRout; /*format . %/
/*x perform FFT on each column of G */
for i « 0 to M/2-1 do
T 7% FFT on columns™ 1 and i+M/2 */
/* unskew column § */
DTRin « G + ((ADDRESS - i) mod M) * b;
SET ICN to PE-i; TRANSFER; X « DTRout;
/* unskew column i+M/2 */
DTRin « G + ((ADDRESS-i+M/2) mod M) * b;
SET ICN to PE~(i+M/2); TRANSFER; Y « DTRout;
/*Transfer column i data to PEs 0 to M/2-1,
column i+M/2 data to PEs M/2 to M-1*/

MASKLOXZ1 DTRin « Y;

MASKL1X?] DTRin « X;
SET ICN to Cubez; TRANSFER;

/*Within each partition of M/2 PEs, load the A
registers with 6(0,j) to 6(M/2-1,j) and the B
registers with G(M/2,j) to 6(M-1,j) where j=i in
one partition and i+M/2 in the otherx/

MASKLOX®] A « X; B « DTRout;

MASKL1X%] A « DTRout; B « Y;
call FFT in PEs 0 to M/2-1 and
call FFT in PEs M/2 to M-1 in parallel;
call BIT REVERSE on X & Y data in PEs O to
M/2-1, placing resulting sequence in A
registers of PEs 0 to M-1;
call BIT REVERSE on X & Y data in PEs M/2 to
M-1, placing resulting sequence in B
registers of PEs 0 to M-1;
/*Store columns i and i+M/2 of ¢
corresponding G array
storage)*/
DTRin&—A; SET ICN to PE+i; TRANSFER;
G+((ADDRESS=1) mod M) * b e—~DTRout;
DTRin&=B; SET ICN to PE+i+M/2; TRANSFER;
G + ((ADDRESS-i+M/2) mod M) =* be—~DTRout

in
elements

place of
(skewed

Figure 12: Two-dimensional FFT algorithm.
M by M array, using M PEs.

FFT on
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