A Parallel Approach to Hybrid Range Image Segmentation

Nicholas Giolmas Daniel W. Watson

David M. Chelberg Howard Jay Siegel

Parallel Processing Laboratory, School of Electrical Engineering
Purdue University, West Lafayette, IN 47907-1285 USA

Abstract

Parallel processing methods are an attractive means
to achieve significant speedup of computationally
expensive image understanding algorithms, such as
those applied to range images. Mized-mode parallel
systems are ideally suited to this area because of the
flezibility in using the different modes of parallelism.
The trade-offs of using different parallel modes are
ezamined through the implementation of hybrid range
segmentation operations, characteristic of a broad class
of low level image processing algorithms. Alternative
means of distributing data among the processing
elements that achieve improved performance are
considered. Results comparing different implemen-
tations on e single reconfigurable parallel processor,
PASM, indicate some generally applicable guidelines for
the effective parallelization of vision algorithms.

1. Introduction

Parallel processing methods are a means to achieve
significant speedup of computationally expensive
image understanding algorithms, such as those
applied to range images. Any practical
implementation of these algorithms must deal with
the problems of selecting an appropriate parallel
architecture and mapping the algorithm onto that
particular parallel architecture [9,11]. In this paper,
implementation approaches are presented that are
applicable to many low level image understanding
algorithms on a variety of parallel architectures.
Mixed-mode parallel systems are well suited to the
implementation of low level image understanding
algorithms because of the flexibility in using the

different modes of parallelism. The trade-offs of using
different parallel modes and different data
distribution schemes are examined through the
implementation of a particular range segmentation
algorithm. This algorithm is characteristic of a broad
class of image understanding algorithms.

It is necessary to reduce the information contained
in an image from a collection of range measurements,
one for each image picture element, or pixel, to a

symbolic description of surface types and edges found
in the image. To obtain a symbolic description, pixels
are grouped into regions, connected sets of pixels that

have unifying characteristics determined by a
property of the range image data (e.g., surface
normal). Images that have been partitioned into
non-overlapping regions are called segmented images,
and segmentation is the process of dividing an image
into non-overlapping regions.

Segmentation is a computationally expensive
operation with a high degree of uniformity for the
operations applied to all pixels in an image. Thus, it
is a good candidate for parallelization [9]. Selection of
the parallel architecture that is best suited to the
algorithm is a critical step in the algorithm mapping
process. Furthermore, the optimal implementation for
different portions of an algorithm may require using
different parallel architectures. This work adopts a
phase optimized approach for the entire algorithm,
although this method is not guaranteed to produce
the optimal implementation [4].

The PASM (partitionable SIMD/MIMD) parallel
processing system [13], designed at Purdue, is being
used to study the application of parallel processing to
image processing algorithms. PASM is a
multiprocessor system that is capable of mixed-mode
parallelism, 1.e., it can operate in either the SIMD or

This research was supported by the Naval Ocean Systems Center under the High Performance Computing Block,
ONT, by the Office of Naval Research under grant number N00014-90-J-1937, by the National Science
Foundation under grant number CDA-9015696, and by the Digital Equipment Corporation Incentives for

Excellence Grant.

0-8186-2672-0/92 $03.00 © 1992 IEEE

MIMD meode of parallelism, and can dynamically
switch between modes at instruction level granularity.
A 30-processor small-scale prototype (16 processors in
the computational engine) has been built and is being
used as a testbed for application studies.

Background information about range image
processing and parallel processing issues is included in
Sections 2 and 3, respectively. Section 4 examines the
distribution of data among the PEs. Section 5
compares different parallel implementations and
provides results obtained from the study. A summary
and concluding remarks are given in Section 6.

2. Segmenting range images

The techniques for range image segmentation can
be classified into two categories: region-based and
edge-based. A region-based approach attempts to
group pixels into surface regions based on the
homogeneity or similarity of image properties.
Alternatively, an edge-based approach detects
in depth values and in surface
orientations. The algorithm study in Sections 4 and 5
examines the parallel implementation of a hybrid
approach [15] to the problem of range image
segmentation, which is a combination of region-based
and edge-based approaches.

There are several motivations for the choice of this
algorithm. First, the algorithm is characteristic of
many image processing algorithms, so that results for
this study are applicable to a broad class of image
processing algorithms. Additionally, the hybrid
algorithm employs both region-based and edge-based
segmentation methodologies, and the combining
portion of the algorithm is representative of other
kinds of algorithms (e.g., connected-component
labeling, contracting, and expanding algorithms).
Finally, the many different components of the
algorithm make it difficult to map it effectively to a
single architecture, i.e., different portions of the
algorithm call for different parallel methodologies.

In the hybrid algorithm, a local biquadratic surface
fit is employed to approximate object surfaces. This
method and related methods (e.g., linear and cubic fit
methods) are common in range image segmentation.
The computations performed for similar fitting
algorithms, such as [3], which uses low-order bivariate
polynomials, and {14], which employs B-spline surface
fitting, closely resemble the computations performed
for the hybrid algorithm. The overall algorithm can
be considered as representative of a wide range of
image understanding algorithms, because the
computations involved in each stage of the algorithm

discontinuities

335

are common to many segmentation and
processing algorithms.

The algorithm consists of three major stages
(Figure 1). In the first stage, differential geometric
properties of a surface (e.g., surface normal, Gaussian
curvature, and mean curvature) are locally estimated.
Object surfaces are locally approximated using
second-order bivariate polynomials. In the first step,
the six coefficients of the polynomial are determined
by a least square method. Application of differential
geometric concepts in the vicinity of discontinuities
yields inaccurate estimates of geometric properties
because real objects are omly piecewise smooth.
Accurate surface fitting may be achieved in the
neighborhood of a discontinuity by selecting the
window that provides a minimum fitting error,
referred to as E2 error. Thus, the second step in local

image

surface characterization is to compute fitting errors
for each pixel in the image. The next step is to
calculate the best offset for the local neighborhood,
which is the location within the window that has the
minimum fitting error. Once these offsets are
calculated, the fitted image can be computed. From
these fitted polynomials, first and second partial
derivative estimates are obtained and the surface
normal, Gaussian (K), and mean (H) curvatures are
computed from these partial derivatives.

In the second stage, three types of initial
segmentations are computed. A region-based
segmentation is obtained in the form of the surface
type (KH) Surface points are classified
according to the sign of K and H into one of eight
possible surface primitives [3]. To eliminate small
surface regions, that are typically due to noise, the

map.

surface type map is contracted and expanded once.
The resulting map is called a refined KH sign map.

Two edge-based segmentations are performed to
detect jump and roof edges. The jump edge
magnitude is computed as the maximum difference in
depth between the point and its eight neighbors, while
the roofedge magnitude is computed as the
maximum angular difference between adjacent unit
surface normals. Both jump and roof edge magnitudes
are thresholded to produce edge maps.

In the final stage, the three initial segmentation
maps are combined to produce a final region map
where each region is homogeneous in curvature sign
and contains no discontinuities. This refined map can
then be used in higher level image understanding
algorithms.

8. Models of parallelism

A partitionable-SIMD/MIMD machine can operate
as one or more independent or cooperating
submachines, where each submachine may operate in
either the SIMD or MIMD mode of parallelism.
TRAC [10] and PASM [13] are examples of
partitionable-SIMD /MIMD systems that have been
prototyped. Each PASM submachine can switch
modes at instruction level granularity with negligible
overhead, independent of the other submachines. As
previously stated, the use of both modes of parallelism
to implement an algorithm is referred to as mixed-
mode parallelism. Each segment of a parallel
algorithm is examined to determine the mode in
which it should be executed. Consequently, the
programmer of a mixed-mode system must be aware
of the trade-offs between executing in SIMD mode and
MIMD mode.

Rangi Data
Local Surface </ H
Characterization| data

distribution

J

coefficient
calculations

J

EQ

calculations

A

best offset
selection
S ‘
1
smoothing H
fitted surface H
H
1)
a
Initial Segmentation H
N7,) }
surface type roof edge jump edge 4
map map map H
T =T H
1
1]
2
y Final Segmentation H
1] 1
E superimpose maps E
L 1 H

Segmented Image

Figure 1: Range image segmentation algorithm flow
diagram.

A limited mixed-mode machine is OPSILA [1].
OPSILA is an existing system and can switch between

336

the SIMD and SPMD (single program - multiple data
stream) modes of parallelism. SPMD mode is a form
of MIMD mode where all processing elements (PEs)
independently execute the same program. The
mapping of tasks onto OPSILA is presented in [2,7].
Unlike PASM and TRAC, OPSILA is not a
partitionable machine.

There are trade-offs that exist between the SIMD
and MIMD modes of parallelism that explain why
some sequences of instructions are better performed in
one mode than in the other [5]. Some of the
advantages and disadvantages of each mode, as they
apply to image processing algorithms, are discussed
here.

It is possible that the execution time of an
instruction is data dependent, taking a variable
length of time to perform on each PE. Variable-time
instructions execute more efficiently in MIMD mode
than in SIMD mode. In SIMD mode, the control unit
(CU) broadcasts the next instructions to the PEs only
after they have all completed the current instruction.
Therefore, each instruction takes as long as it takes
the PE that executes it most slowly. In MIMD mode,
the PEs are not synchronized and each PE executes
the next instruction independently. More formally,
let T represent the time it takes instruction i to
execute in PE P. Assume that TY in SIMD mode is
equal to TY in MIMD mode. The execution time in
SIMD mode of a sequence of data dependent
instructions can be expressed as Emr?x('l‘f), for all i

in the sequence. The time to perform the same
sequence of instructions in MIMD mode can be
expressed in terms of TY as mlg.x(ZT?) (Figure 2).

1
Because max(3.TF) = Zm}gxx(TiP), the time to
P S -
1
execute the sequence of data dependent instruction in

MIMD mode is less than or equal to the time to
execute the same sequence of instructions in SIMD
mode. Thus, MIMD mode is more appropriate for
sequences of data dependent instructions because of
this “max of sums”’ versus “sum of maxs’ effect [12].
Conditional statements in the synchronous
execution of an SIMD program can introduce
serialization. Consider an if-A-then-B-else-C
statement. Let the conditional test A depend on PE
data. In some PEs, A is true and in others false.
Those PEs where A is false are disabled (masked off)
for the execution of clause B. Once B has executed,
the PEs where A is true are disabled and the PEs
where A is false enabled. C is then executed. This
serializes the execution of B and C. Conversely, in
MIMD mode those PEs where A is true can execute B

while the other PEs execute C. In MIMD mode, the
maximum time to execute the if-then-else statement
in 2 PE is approximately T, + max(Tg,Tc), while in
SIMD mode the time would be approximately
Ta + Tp + T (where the PE is idle for Tg or Tg).
Thus, in general, MIMD mode is more effective for
executing conditional statements.

Another distinction between SIMD mode and
MIMD mode pertains to synchronization overhead. In
SIMD mode, the synchronization of program
execution is implicit, because there is a single thread
of control. However, when synchronization of
program execution is required among PEs in MIMD
mode, explicit synchronization mechanisms, such as
semaphores and barriers, must be employed in the
parallel program. Thus, synchronization costs are
greater for MIMD mode. One benefit of implicit PE
synchronization becomes apparent when inter-PE
data transfers are needed. In SIMD mode, when one
PE sends data to another PE, all enabled PEs send
data. Therefore, the “send” and “receive’” commands
are implicitly synchronized. Because all enabled PEs
are following the same single instruction stream, each
PE knows from which PE the message has been
received and for what use the message is intended.
Conversely, MIMD mode programs are executed
asynchronously among all PEs. As a result, the PEs
must execute explicit synchronization and
identification protocols for each inter-PE transfer.
While the details of the inter-PE transfer protocol in
both SIMD and MIMD mode are implementation
dependent, there is substantially more overhead
associated with MIMD mode inter-PE transfers. Like
the synchronization overhead above, this protocol
overhead is a cost of the flexibility of programming in
MIMD mode.

In SIMD mode, the CU can be used to overlap
operations with PEs. For example, the CU can
perform the increment and compare operations on
loop control variables, while the PEs compute the
contents of the loop. Furthermore, any operations
common to all PEs, such as local array address
calculations, can be performed in the CU while the
PEs are performing other computations. In MIMD
mode, CU/PE overlap does not occur, and the PEs
must perform all of the instructions.

The “max of sums”/*“sum of maxs” property is not
limited to single instructions. In mixed mode, an
entire block of instructions whose execution time
varies on different PEs due to data conditional
statements and/or variable execution time
instructions may exhibit the same performance
characteristics on a macro level if synchronization is

337

required after the block [5] (e.g., MIMD instructions
in an SIMD loop).

From the discussion above it is evident that there
are many trade-offs between operating in SIMD mode
and operating in MIMD mode. Although it is often
clear in which mode a sequence of instructions should
be implemented, this is not the case when
counteracting trade-offs are involved. For example, a
data-conditional statement may contain instructions
that perform network transfers. Choosing the mode
of operation is not straightforward; i.e., conditional
statements should be performed in MIMD mode while
network transfers should be performed in SIMD
mode, In such cases, the programmer may choose to

code more than one version of the algorithm to
determine the optimal approach.

SIMD MIMD
[II’]]EO PE1 PE2... PE0O PE1 PE2..
N\
. N
N 4
- N N
N \] N\]
NNN IF NN R
N N N N N
N N N 7 7
YN Y T 4N
s N 7z g
\

NNAN
=

Figure 2: Execution of variable-time instructions in
SIMD and MIMD mode.

4. Data distribution

The overall segmentation algorithm can be divided
into stages, with each stage having its own optimal
mapping on a parallel machine. A common parallel
implementation issue among all the stages is the
distribution of the range data to the processors. The
way data is distributed among the PEs dictates the
number of inter-PE transfers performed, and the
source/destination pairs for each transfer. If
establishing a new communication path between PEs
is more costly than continuing to use the current
setting, then a distribution method that promotes few

such path creations (network settings) should be
considered. System performance is determined in
part by the amount of data transferred during each
network setting. For some algorithms (e.g., range
data segmentation), the distribution method dictates
the number of calculations performed on each PE.
The method conventionally used in parallel
implementations of image processing algorithms
distributes a square subimage to each PE. This
minimizes the number of inter-PE transfers. For
some algorithms, minimizing transfers is not as
advantageous as minimizing the number of
calculations required between transfers. In this
section, an alternative method is presented, based on
distributing consecutive rows rather than square
subimages of data to the PEs, that minimizes the
number of calculations.

SREE SENNR SEER GEEDS
SEEE AGEER EEENR EEER
BEE00 COOO00 O0O0CO OOEE
EE00 DOOO0 OoO0O0 OOoee
ERO0 DODDOO DOOO oOomee
EEOO0 OOoOoo oooo ooes
BEE0D O00O00 0000 OOESs
EED0 ODOD OO00O0 oOoee
AEO0 OOO0O OOO00 OoOsEe
EED0 0OOQOO0 Ooono0 oosee
SR00 000N 0000 QOESs
SE00 0OOOO0 COOO cOER
SRO0 0OOODO0 DOO0O0 gOes
ERO0D ODOOO0 D0OOO DOEe
HEEN EDNEE NENE EERAN
SEER EREE EEEE REEN
8 - border pixel
Figure 8: Square distribution example, M==16,

N=16, w==5.

Many calculations in segmentation algorithms
involve w x w windows of data (e.g., convolutions,
local minimum). For some of the pixels in the image,
specifically those located on the perimeter, window
calculations need not be performed because they lack
the necessary data over the entire wx w window.
These border pixels play an important role in the
selection of the distribution method. The proposed
horizontal stripe method allows window algorithms to
take advantage of the fact that no calculations need
be performed for the border pixels, thereby decreasing
the overall number of required calculations.

Let the original image be of size M x M, the number
of PEs on the target machine be N, and the window

338

size for the calculations be w x w. In the following
discussion, it is assumed that M = N, and typically
N = 64, M = 128, and w > 3. For simplicity it is
also assumed that M is a multiple of N, although the
obtained results can be adapted to cases where this
restriction does not apply. The first two stages of the
algorithm, the coefficient and E? calculations, and the
subsequent data transfers, are chosen as an example of
a general processing scenario in which a sequence of
calculations followed by data transfers are performed.

aM/VN

4 pixels Pilxlels L4 pixels
v
2M/ \/§2> PEJ 2M/\/’1\-]-
pixels pixels
=
4 pixels| 2M/V N |4 pixels
pixels

Figure 4: Pixel transfers for w = 5.

Conventionally, image processing algorithms that
rely heavily on inter-PE transfers have used the
square subimage distribution method as shown in
Figure 3. This method distributes a unique square
portion of size (M/ \/_N_) x{M/VN) from the
original image to every PE. The method succeeds in
minimizing the number of data transfers by using
subimages with a square perimeter. For the stages
under consideration, each PE must transfer
4w/l xM/ \/N—) + 4(lw/2])? floating point
data elements (Figure 4). Each PE must share data
with a maximum of eight neighboring PEs. A
minimum of four network settings are required to
perform a transfer operation using this method (e-g-,
in Figure 4, the data elements to be sent from PEs
catercorner to PE J can be sent through the PEs to
the left and right of PE J).

The square subimage method does not take
advantage of the fact that border pixel calculations
can be omitted because the border pixels are
distributed unevenly among the PEs. Some PEs will
receive no border pixels and consequently perform the
maximum number of pixel operations, given by
(M/VN)x(M/VN) or M?/N. These PEs
dictate the amount of time required to complete the
parallel calculation task.

Using the proposed horizontal stripe method shown
in Figure 5, each PE initially receives M/N rows of
data. Each PE transfers data to its neighboring PEs.
The direction of the transfers varies depending on the
chosen implementation, but the total amount of data
transferred is 2| w/2 | rows (i.e., 2| w/2 | x M pixels).
The number of data elements transferred is increased
due to the wider perimeter. Although the number of
data elements transferred is increased, the number of
network settings is decreased to a maximum of two.
The border pixels located on the left and right side of
the image are uniformly distributed over all PEs, and
operations on border pixels for each PE are not
performed. When the transfers are complete, each PE
will calculate the six coefficient values and the E?
value for at most (M/N)x(M-—2|w/2]) or
(M? /N) — 2| w/2] x (M / N) pixels.

M

EANEERGANEREREERR
NRESEEREDERERRAEER
HE00000DO00N0OO0eR
S8000000O00OOO0cOeR

M PEO
N

S000000OO0D0O0O00AR
BEe0000O0pDOoOOoOoOOOem
S8000000DO00O0O0O00GR
8000000000 000ER

M PE 1
N

S80000D0RO0O0O0O0O0eR
EE000000C00CC0O00ER
RR000D000000CO00ORA
REE0O000DDO0COOOO0OGe

PE 2

z|Z

000000000000 R
8800000000000 0ORR
EBEGEERAEESGERDER
ORNEDERRREEERARER

PE 3

z|g

8 - border pixel

Striped distribution
N=4, w=5.

Figure 5: example, M=16,

Let T, denote the time required to transfer one
data element, and T, denote the time required to
perform an operation, which may consist of many
calculations, for one pixel. The
operation transfer ratio, is defined as p=T, /T,.
Experimental results on PASM have shown that
p = 2,500 for these segmentation operations, (i.e.,
calculating the six coefficient values and E? value for
each pixel).

The time penalty, T, for processing the extra
2| w/2 | x (M / N) pixels using the square method is

339

T, =2l I x (J)x T,

If network setups are time consuming, the time
required by the square method for the extra two
setups should be included in T,. The time penalty,
Ty, for performing the extra transfers by using the
horizontal stripe method versus the square method is

T, = [2lIM - a3 x D — 5P|«

Let Texira = Ty — Ty, or the extra time required by
the square method to complete this stage of the
algorithm.

The value of p depends on the particular algorithm.
For a given image size, window size, and number of
PEs, p will uniquely determine the optimal
distribution method for the algorithm under
consideration. Let py eareven designate the value of p
such that if p > pyreakevens then the striped
distribution method should be chosen over the square
distribution method. Figure 6 shows the value of p as
a function of the number of PEs (N) for which the
stripe method should be chosen, given an image size of
1024 and window size of 5. Consider a target system
with 256 PEs and an image size of 1024. If p is
greater than 223, then the stripe distribution method
should be used to implement this algorithm.

In conclusion, distribution of image data should
not always be done in squares, as is usually the case.
In general, the horizontal stripe method performs
faster whenever calculations on border pixels are not
to be performed, and transfers are relatively fast
compared to calculations. When network setups are
time consuming there is further gain to using the
stripe method.

8004
600 -
Pbreakeven

400

2004

" 64 256
Number of PEs (log, scale)

16 1024

Figure 6: pycareven V8. N for M=1024.

5. Parallel implementation

The serial algorithms that compute the stages of
the overall segmentation algorithm were mapped onto
the target parallel machine. Theoretical analysis and
experimental results were used to determine the best
mapping for each stage. The ability of PASM to
switch between parallel modes can be exploited to
obtain the optimal mode selection in a single-mode
implementation or the best combination of parallel
modes in a mixed-mode implementation. Examples of
implementation studies on the PASM prototype
include [4,6,8].

In determining the optimal parallel mode of
execution for each stage of the segmentation
algorithm, four basic trade-offs were considered
(described in Section 3):

(a)
(b)

Variable instruction execution times.

Non-uniform program flow

tf —then—else statements).
CU/PE overlap.

Synchronization advantage.

(includes

()
(d)

While (c) and (d) favor SIMD mode, (a) and (b)
favor MIMD mode. Most of the calculations in the
segmentation algorithm involve floating point data
that may require data dependent instruction
execution times, as is the case for the PASM
prototype. Conversely, many of the calculations are
required for every pixel in the image, rendering the
algorithms that perform them highly iterative. The
CU/PE overlap (c) ability of SIMD or mixed-mode
can be utilized by letting the CU execute the loop
iterations while the PEs are calculating the desired
result. These counteracting trade-offs must be
quantified.

Table 1 lists the various stages of the segmentation
algorithm in the required order of execution along
with their optimal parallel mapping mode,
determined through experimentation. The underlying
reasons behind the mode choice are also listed. To
further illustrate the mode selection, detailed
experimental results are presented in Figures 7, 8, and
9 for the coefficient calculation, surface smoothing
and selection, and contraction stages, respectively,
using 16 PEs and a 64 x 64 image. Processing time
for all but the expansion stage is primarily input
image independent.

The coefficient calculation involves convolution
operations between six predetermined 5 x 5 operators
and the window of range data centered at each
pixel(z,y). The floating point data calculations

340

introduce variable instruction execution times on
different PEs (a) and thus MIMD is chosen as the
optimal mode (Figure 7). Although the operation is
iterative, the penalty for synchronizing the PEs after
each iteration to overlap the loop operation on the CU
becomes significant as the macro “sum of maxs” rule
dictates.

Stage Optimal Mode | Reason

Coefficient calculation MIMD a
EZ calculation MIMD a
Inter-PE data transfers SIMD d
Best offset selection MIMD b
Smoothing & type selection MIMD a,b
Inter-PE data transfers SIMD d
Contraction of surface map mixed-mode b,c
Expansion of surface map MIMD b
Boundary pixel selection mixed-mode b,c
Roof & jump edge selection/ MIMD a,b
map superimposing

Table 1: Optimal parallel mode selection for each

stage of the segmentation algorithm.

The surface smoothing and type selection algorithm
is also iterative and includes both floating point
calculations and conditional statements. Four
implementations were considered. In the first, the
entire algorithm was mapped to MIMD mode. In the
second implementation (labeled ‘‘mixed-mode-Loop”
in Figure 8) the outer loop was performed in SIMD on
the CU and the contents of the loop were performed
on the PEs in MIMD mode. In the third
implementation (labeled “‘mixed-mode-Cond in the
Figure 8) the outer loop was performed in SIMD mode
on the CU and floating point calculations were also
performed in SIMD on the PEs. Only the conditional
statements were performed in MIMD on the PEs.
These attempts to overlap the PE execution with the
CU loop operations in SIMD failed to produce faster
execution times than the pure MIMD version. This is
once again due to the macro ‘“‘sum of maxs” effect.
The pure SIMD version suffered from both inefficient
conditional statement execution and the ‘“sum of
maxs’’ effect on the data dependent execution times.

prrizizuzizizzzzzAal .03

SIMD ZZZzzzzz2227222222ZA 1 .10

mixed-mode

Figure 7: Normalized execution times for coefficient
calculation.

The contraction routine requires a conditional
statement to determine the contraction status of each
pixel. This is best performed in MIMD (b). The rest
of the instructions have constant execution times.
Mixed-mode performs better than MIMD in this case
(Figure 9) because the CU can execute the loop
operations and some required array index calculations
in overlapped fashion with the PEs. The PEs execute
the constant time instructions in SIMD, then switch
to MIMD to perform the conditional statement (then
or else depending on local data) and return to SIMD
mode for the rest of the loop instructions. The
mixed-mode implementation is better than pure SIMD
due to the inefficient execution of conditional
statements (as discussed in Section 3) in the later
mode.

MIMD

mixed-mode-Loop

2741

71 - 35

mixed-mode-Cond P7ZZZZZZZZA41.45
SIMD 77ZZzzzzZZZZZZZA 1 -51

Figure 8: Normalized execution times for surface
smoothing and type selection algorithm.

Between the E? calculation and best offset selection
stages of the segmentation algorithm, data must be
transferred between neighboring PEs. The optimal
mode for data transfers (as discussed in Section 3) is
SIMD. However, an advantage of using MIMD
transfers here is that the PEs are not forced to
synchronize at the end of the E? calculation stage and
may proceed with the best offset selection without
paying the synchronization cost of switching from
MIMD to SIMD mode. Although this cost may make
the phase optimized approach unsuitable for some
algorithms [4,5], experimental results have shown that
the variability in completion times among PEs after
the E? calculation is not large. Thus, the
synchronization cost of switching to SIMD mode is

341

minimal, and the benefit of performing the transfers
in SIMD is more significant.

SIMD P77z
MIMD 77224 .51
mixed-mode YZ2ZZZZZ41

2.10

Figure 9: Normalized execution times for

contraction algorithm.

The execution time for this portion of the algorithm
{coefficient and E? calculations plus transfers) is 6%
faster than the pure MIMD version when executed on
a 64 x 64 image with 16 PEs, as shown in Figure 10.
The same is true for the second data transfer phase
and the two mixed-mode stages in the segmentation
algorithm. Thus, the entire algorithm is implemented
using the phase optimization approach. Figure 11
shows the obtained speed-up from executing the
segmentation algorithm on the PASM prototype,
using the phase optimized parallel implementation,
for various numbers of processors and an image of size
128 x 128.

SIMD pzzzzzzzzzz77z777777Z4 1
MIMD Pzzzzzzzzz7zzz2722271 .06

Figure 10: Normalized execution times for
coefficient and E? calculations plus data
transfers.

With the recent inclusion of pipelined arithmetic
units in microprocessors, data dependent instruction
execution times are becoming less prevalent. A
mixed-mode parallel machine that incorporates such
processors can benefit from this fact that eliminates
(2) and thus limits the MIMD advantages in SPMD
implementations to (b). Stages that benefit from (a)
can now benefit from (c) and stages that incorporate
(a) (e.g., surface smoothing and type selection in the
segmentation algorithm) can be implemented in
mixed-mode to also benefit from (c).

6. Summary

Parallel processing methods are an attractive
means to achieve significant speedup of

16

L--- ideal o
— 128 x 128
8
Speedup
(logg scale)
4]
2 T

s

8 16
Number of PEs (log; scale)

Figure 11: Obtained speedup for segmentation
algorithm (M=128).

computationally expensive image understanding

algorithms. Through the study of a characteristic

range image segmentation algorithm the trade-offs of
different modes of parallelism were examined. An
alternative method for distributing data among PEs
that achieves a reduction in execution time was
presented. The use of mixed-mode parallelism has a
distinct advantage over static architectures in the
implementation of parallel image understanding
algorithms. Given equivalent processing power, a
mixed-mode system is capable of achieving greater
performance when the tasks to be performed benefit
from the use of more than one mode of parallelism.
The study of a hybrid segmentation algorithm showed
that a variety of different parallel modes would be
chosen if each computational task to be performed is
considered in isolation. Given a mixed-mode system,
these tasks can be implemented in their preferred
mode, in contrast to a static architecture that would
be less effective at performing some of these tasks.

Thus, the results of this study are useful for both
image processing and parallel processing researchers.
It demonstrated and quantified the usefulness of the
striped data distribution technique and showed how
mixed-mode parallelism can be exploited for this type
of image processing task.

Acknowledgment: The authors wish
acknowledge Juneho Yi for his useful comments.

to

References

[1] M. Auguin and F. Boeri, “The OPSILA computer,” in
Parallel Languages and Architectures, M. Consard,
ed., Elsevier Science, Holland, 1986, pp. 143-153.

342

[2]

[3]

(4]

(5]

(6]

[7]

(8]

(9]

(10]

[11]

(12]

13

[14]

(18]

M. Auguin and F. Boeri, “Experiments on a parallel
SIMD/SPMD architecture and its programming,”
France-Japan Artificial Intelligence and Computer
Science Symp. 87, November 1987, pp. 385-411.

P. Besl and R. C. Jain, ‘““Segmentation through
variable-order surface fitting,”” IEEE Trans. Pattern
Analysis and Machine Intelligence, Vol. PAMI-11,
No. 2, Mar. 1988, pp. 167-192.

T. B. Berg, S. D. Kim, and H. J. Siegel, ‘“Limitations
imposed on mixed-mode performance of optimized
phases due to temporal juxtaposition,” J. Parallel and
Distributed Computing, Vol. 13, No. 2, Oct. 1991, pp.
154-169.

T. B. Berg, and H. J. Siegel, ‘“‘Instruction execution
trade-offs for SIMD vs. MIMD vs. mixed-mode
parallelism,” 5% It Parallel Processing Symp., May
1991, pp. 301-308.

E. C. Bronson, T. L. Casavant, and L. H. Jamieson,
“Experimental application-driven architecture
analysis of an SIMD/MIMD parallel processing
system,” IEEE Trans. Perallel and Distributed
Systems, Vol. 1, No. 2, Apr. 1990, pp. 195-205.

P. Dulcos, F. Boeri, M. Auguin, and G. Giraudon,
“Image processing on a SIMD/SPMD architecture:
OPSILA,” 9% Int’l Conf. on Pattern Recognition,
Nov. 1988, pp. 430-433.

S. A. Fineberg, T. L. Casavant, and H. J. Siegel,
“Experimental analysis of a mixed-mode parallel
architecture using bitonic sequence sorting,” J.
Paralle! and Distributed Computing, Vol. 11, No. 3,
Mar. 1991, pp. 239-251.

L. H. Jamieson, ‘‘Characterizing parallel algorithms,”
in The Characteristics of Parallel Algorithms, L. H.
Jamieson, D. B. Gannon, and R. J. Douglass, eds.,
MIT Press, Cambridge, MA, 1987, pp. 65-100.

G. J. Lipovski, M. Malek, ‘“Parallel Computing:
Theory and Comparisons,” John Wiley & Sons, New
York, NY, 1987.

C. Reinhart and R. Nevatia, “Efficient parallel
processing in high level vision,”” DARPA Image
Understanding Workshop, Sept. 1990, pp. 829-839.

H. J. Siegel, J. B. Armstrong, and D. W. Watson,
“Mapping computer vision related tasks onto
reconfigurable parallel processing systems,”’ to appear
in Computer, Feb. 1992.

H. J. Siegel, T. Schwederski, J. T. Kuehn, and N. J.
Davis IV, “An overview of the PASM parallel
processing system,”” in Computer Architecture, D. D.
Gajski, V. M. Milutinovic, H. J. Siegel, and B. P.
Furht, eds., IEEE Computer Society Press,
Washington, DC, 1987, pp. 387-407.

H. S. Yang and A. C. Kak, “Determination of the
identity and position and orientation of the topmost
object in a pile,” Computer Vision, Graphics, and
Image Processing, Vol. 36, Dec. 1986, pp. 229-255.

N. Yokoya and M. D. Levine, ‘“Range image
segmentation based on differential geometry: a hybrid
approach,” IEEE Trans. on Pattern Analysis and
Machire Intelligence, Vol. PAMI-11, No. 6, June
1989, pp. 643-649.

