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Abstract

The problem of using the idle cycles of a number of
high performance workstations, interconnected by a
high speed network, for solving computationally in-
tensive tasks is discussed. The classes of distributed
applications examined require some form of synchro-
nization among the sub-tasks, hence the need for co-
scheduling to guarantee that sub-tasks start at the
same time and execute at the same pace on a group
of workstations. A model of the system is presented
that allows the definition of an objective function to
be maximized. Then a quadratic time and linear
space algorithm is derived for computing the opti-
mal co-scheduling, given the model and the class of
problems addressed.
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1 Introduction

The cost/performance ratio of workstations has
shown a dramatic improvement over the past few
years. This trend will probably continue in the near
future and it is expected that large capacity mem-
ory chips (64-256 Mbits) and more advanced RISC
processors capable of delivering hundreds of MIPS
and/or MFLOPS will be available at a low price.
The peak performance of such workstations is
needed for computationally intensive tasks, but the
computing power offered by a high performance work-
station of the future will considerably exceed the sus-
tained needs for personal computing of an average
user. A large fraction of the machine cycles will gener-
ally be unused by local tasks and many cycles will be
available for other uses. Because high speed networks
(with speed in the 80-100 Mbits/sec range) and high
performance network interfaces are already emerging,
efforts to use efficiently this excess computing capac-
ity are currently being undertaken and commercial
products are emerging [12]. Clearly, sharing of these
resources poses challenging problems in a variety of
areas, such as computer security, network manage-
ment, and resource management in a distributed en-




vironment.

Several papers have presented and analyzed various
distributed computing systems and have addressed
different schemes for scheduling distributed resources
[6], [9]. Some of the systems proposed in the liter-
ature require the users to initiate the allocation of
remote resources; others embed mechanisms to deter-
mine where available resources are located [7]. This
paper focuses on a particular problem of resource
management called “co-scheduling” or “gang schedul-
ing” [1]. This involves dividing a large task into sub-
tasks that are then scheduled to execute concurrently
on a set of workstations [8]. The sub-tasks need to
coordinate their execution, to start at essentially the
same time, and compute at the same pace. Though
there may be other classes of applications that require
co-scheduling, the present discussion is confined to a
particular class of applications, namely solving large
numerical problems using iterative methods that re-
quire some form of synchronization among the sub-
tasks [3].

Various parameters affect the efficiency of the co-
scheduling and the resulting load on the system.
These parameters include the number of workstations
used for the task, the percentage of free cycles of the
workstations in the system (which varies from one
workstation to another), and the possible start-up
time of the task.

It is assumed that the high performance worksta-
tions are interconnected by a high speed network and
share one or more file servers. The goal of this work
is to develop a strategy to allow utilization of the idle
cycles of a set of workstations to solve the type of
computationally intensive tasks mentioned above.

The contributions of this paper are a model of the
system that allows a definition of an objective func-
tion to be maximized, and algorithms for optimal co-
scheduling. The paper is organized in the following
manner. The problem formulation and the model of
the system are described in Section 2. The algorithm
for optimal co-scheduling assuming equal load distri-
bution is introduced and analyzed in Section 3. Sec-
tion 4 extends the results of Section 3 for unequal
load distribution.

2 Problem Formulation

In this section, the parameters to be considered in
Section 3 for the co-scheduling of a large task on a
set of workstations are discussed and quantified. The
problem can be formulated as follows: the user sub-
mits a computationally intensive task, there are Q
workstations in the system, and the system has to
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choose which subset of these workstations to assign
to the user’s task. For example, assume that the user
needs to solve a set of N linear equations with N
unknowns. The user may solve the system of linear
equations using one workstation and the time to solve
the problem will be denoted by T'(1). Assume that
T(1) = 10 hours. If P workstations are available, a
parallel algorithm would allow each workstation to

work on a data sub-domain of size (VNI? X 7’%) and

then the workstations working on neighboring subdo-
mains will exchange boundary values at each iteration
{3].
Let T(P) be the parallel execution time (the time
required to solve the problem) after the task has been
distributed to P workstations, assuming each of these
workstations is entirely dedicated to solving this task
(i.e., it has no other local jobs of its own, a rather
unlikely situation). The ratio S(P) = Fip% will be
called the speedup [11]. Assuming a linear speedup
with T(P) = "'—‘g-)-, and a number of workstations
P = 100, the parallel execution time for the previ-
ous example would be T'(100) == 6 minutes. However,
the use of P workstations may lead to a better than
linear speedup, T'(P) < 1-'531-1, due to the fact that for
large problems one workstation may not have enough
memory to hold the entire data domain of size N x N
in main memory, and the intense paging activity that
may be contributing to a large 7'(1) would be avoided
by using P workstations. For some problems, less
than linear speedup may result due to the overhead
for communication and control of the parallel execu-
tion.

The class of applications considered here exhibits
coarse grain parallelism. The communication delays
are substantial even in a high speed network, and
computations can be distributed to the set of work-
stations in an effective way only if the ratio of the
computation time to communication delays is suffi-
ciently high. It is further assumed that the expected
speedup for this class of problems is a monotonically
increasing function of the number of workstations as-
signed to the application (at least within some bounds
Plow S p S Phigh)-

Often the solution of a problem in the class dis-
cussed here requires some form of synchronization.
In the example above, all workstations need to com-
plete one iteration and then exchange boundary val-
ues to guarantee the convergence of the solutions. It
follows that the mechanism for resource management
should allow the selection of a subset G of the set of
all workstations {W1,...,Wg}, where |G| =P < Q,
such that the following two conditions hold.

(a) Each workstation W; in the set G has a “duty cy-



cle” n;, which is defined as the ratio of cycles the
workstation commits to local tasks to the num-
ber of cycles available for the compute-intensive
task. The duty cycle is a non-negative real num-
ber. Local tasks are non-CPU-intensive activi-
ties that are generated by a local user, e.g., text
editing, mail processing. These local tasks are
unrelated to the solution of the CPU-intensive
numerical problems. Recall all workstations re-
ceive identically sized sub-tasks (sub-domains)
of the compute-intensive remote task (the “un-
equal” load case is considered in Section 4). If
a workstation W; has a duty cycle 7;, then a re-
mote sub-task that would complete in T} units
of time when it uses all of W;’s cycles, i.e. when
7; = 0, would require T} = (1 + 7;)7T, units of
time when 7; > 0. For example, if 7, = 0.1
then T} = 1.17;. Thus within G, a workstation
with a lower 7; value will complete an iteration
faster than a workstation with a higher 7; value,
because the cycles needed for one iteration are
the same for all workstations in G. Because a
workstation of G that finishes its iteration early
has to wait for the others before communicating
with them and then proceeding to the next it-
eration, the largest 7; is the effective bottleneck
for the group G, which is denoted by n(G) (i.e.,
7(G) = maxw,eg 7). The time taken by the
sub-task is then (1 + maxw,eg 7:)Tr. The effect
of allowing the workstations to have different 7
values is the same as assuming that some of them
are faster than others.

(b) All P workstations should be capable of start-
ing the parallel computation at the same time.
Call Ts(G) the time that elapses from the mo-
ment the request to solve the task is made to
the moment all the workstations of G can start
processing it. Let Ts; be the time that elapses
between the moment the request to solve the task
is made and the moment workstation W; can be-
gin solving it. Then T5(G) = maxw,eq Tsi. It
is assumed that a workstation processes at most
one compute-intensive sub-task at a time. If the
workstation currently has no compute-intensive
sub-task, then Ts; = 0, otherwise T ; is the re-
maining computation time of that workstation’s
current sub-task (i.e., the startup time of the
next possible compute-intensive sub-task).

With these conditions the effective speedup, S.(G),
as seen by the user, is

()

Se(G) = Ts(G) + (1 + n(G))T(IG))
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where T'(|G|) is the execution time with P = |G|
workstations if all workstations were idle prior to the
request, i.e., 7(G) = 0, and immediately available,
ie., Ts(G) = 0. Given a high speed network inter-
connecting @ workstations {Wy,...,Wg}, the task of
locating G workstations that maximize S.(G) subject
to conditions (a) and (b) will be called co-scheduling
or gang-scheduling.

The actual architecture and the organization of the
software necessary to support the distributed appli-
cation described above are beyond the scope of this
paper. The focus of this paper is a high level model of
the system that reveals the main agents involved and
the flow of information among them to allow opti-
mal decision making. The following classes of agents
can be identified: application managers, agents that
coordinate the execution of an application, decision
making agents, involved in establishing resource al-
location policies, and scheduling agents, that enforce
resource allocation policies. An application manager
requests resources on behalf of an application from a
decision making agent that, in cooperation with other
decision making agents, locates available resources. A
decision making agent, called in the following a bro-
ker, requests bids from other brokers and then selects
a subset of workstations that maximizes an objective
function. For the particular application discussed in
this paper, a bid consists of the pair start-up time and
duty cycle, and the objective function is the effective
speedup. As soon as a decision is made, all agents
involved share their knowledge with local schedulers.
It is assumed that all schedulers perform some form
of multi-queue scheduling to support at least two
classes of tasks, e.g., non CPU-intensive local tasks
and compute-intensive remote tasks. A scheduler ac-
cepts from a local broker requests to allocate to the
class of compute-intensive tasks a certain fraction of
the CPU cycles available, and maintains statistical
data concerning the actual allocation of cycles among
different classes of tasks executing on that particular
workstation.

As stated above, a parallel application is coordi-
nated by an application manager. Consider the func-
tions that the application manager must perform.

(a) It requests from the system a subset, G, of the Q
workstations, where |G| =P and P is in the range
Piow £ P < Phigh. The values of Proy and Phign
are computed from the following considerations.
To compute P,y the deadline by which the re-
sults are needed, Tycqdtine, as well as a start up
time Ts5(G) = 0, are used. Let the constant gy,
be the assumed average value of the the duty cy-
cle throughout the system. The value of P, is



the minimum number of processors for which the
equation below still holds.

Taeadtine < (1+ Navg))T(Prow)

The value of Phigh is determined by the following
equation:

Prigh = min{Q, R}

where Q is the number of workstations in the sys-
tem and R is the maximum number of worksta-
tions that can be included while still maintain-
ing a monotonically increasing speedup. Using
the information supplied by the application man-
ager, a decision making agent determines Gop:,
the optimal subset of workstations that leads to
the largest speedup, as well as the common start-
up time Ts(Gopt)-

(b) The application manager decomposes the data
domain into P,p; =| Gop: | sub-domains and then
maps the data sub-domains to the P,y avail-
able workstations. Then it distributes the ex-
ecutable code to each workstation. It is assumed
that the load assigned to each workstation is
the same. Indeed, existing mathematical soft-
ware packages attempt to distribute the compu-
tational load uniformly, by partitioning the data
domain into equal sub-domains [3]. Of course,
for some classes of numerical applications a par-
tition of the data domain into sub-domains of
unequal size is entirely feasible. This approach
could lead to a higher speedup in a heteroge-
neous system or when the resources available, the
CPU cycles in particular, differ from one work-
station to another and it is considered in Sec-
tion 4. For simplicity in Section 3, it is assumed
that all workstations use the same family of pro-
cessors, sub-domains are of equal size, and the
executable code is the same. It is also assumed
that all workstations have access to the file server
containing the data.

(c) Lastly, the application manager gathers the final
sub-task results from the Py, workstations and
presents them to the end user.

The problem as formulated raises a number of sub-
tle issues. The first issue is how to select the set
G of workstations that will ensure the highest effec-
tive speedup and how to reach consensus among a
group of P = |G| workstations upon a start-up time
Ts(G). Clearly, the larger P, the size of the group
requested, the larger the start-up time may be, but
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the shorter will be the actual parallel execution time
T(P). If the execution time for a problem is data-
independent, then algorithm analysis techniques can
be used to derive T'(P). However, in general, estima-
tion of T(P) for a given P is a non-trivial problem
in itself. If the execution time is data dependent, as
it is in most cases, statistical data from previous ex-
ecutions or information supplied by the user as part
of the problem description is necessary to properly
estimate T(P). If the serial execution time, T'(1), is
known then the parallel execution time can be ap-
proximated by T(P) = w if the overhead due to
communication and control can be neglected.

Assume that T(1) = 10 hours, T(P) = lg-l, there
are two groups G’ and G, 7(G") = 5(G") = 0,
Ts(G') = 5 minutes, Ts(G") = 14 minutes, |G'| = 60,
and |G"| = 100. Then

n_ 600 _
S(@)=5im0 = Y
o 600
Se(G =Tat6 - 30

Hence it is better to use a group of 60 workstations
capable of starting earlier, than to wait for 100 work-
stations with a later start-up time. If the duty cycle
of the first group is, say, 7(G’) = 0.2 while the duty
cycle of the second group is higher, say n(G") = 0.7,
then choosing the first group is even more beneficial,
because

n 600 600 _
5.(¢) = 5+10x12 ~ 170 =353
600 600
" — Y = = .
Se(G)_l4+6x1.7 24.2 248

Consider the case where the duty cycle of the first
group is, say, n(G') = 0.6, while the duty cycle of the
second group is much lower, say n(G"”) = 0.1. Such
a circumstance could occur if G” is disjoint from G',
and G is a set of workstations busy with another
sub-task until Ts(G"). Then the situation is reversed
from the one above, because

600 600

! I eme———— T ee— .
Se(G)‘5+ 10 x 1.6 21.0 205
o 600 _ 600 _
5.(G") = 14+6x1.1 ~ 20.6‘20‘9

Another issue is how to ensure “fairness,” and to
avoid “starvation”, i.e., how to guarantee that a re-
quest will eventually be granted. A related issue
is processor fragmentation. Processor fragmentation
will occur when all the processor groups that can be
located are of a smaller size than the size of the groups
needed to solve current problems. A more general



issue is how local concerns, e.g., the desire to ob-
tain optimal effective speedups for individual paral-
lel applications, could be reconciled with the goal of
minimizing the number of idle cycles of all worksta-
tions. Equally difficult are the issues related to error
recovery. When a processor allocated to a problem
fails, the other members of the group must be able
to complete the parallel computation with a minimal
amount of cycles lost. These are challenging issues
but beyond the scope of this paper, which is focused
on finding co-scheduling algorithms that ensure max-
imal speedups.

3 Algorithms for Optimal Co-
Scheduling

3.1 Basic Assumptions

The goal of a co-scheduling algorithm is to determine
G, the group of workstations assigned to a parallel
computation, the duty cycle n(G) for the group, and
the start-up time T's(G) for the group, such that P =
|G| is in the range Py, < P < Phign and S.(G) is
maximized. A co-schedule is optimal if it maximizes
the effective speedup, S.(G).
The following assumptions are made

1. There are  workstations, W;, ..., Wg.

2. Each workstation W; can supply to a decision
making agent the tuple (n;,Ts;) containing its
duty cycle and earliest start-up time.

3. The load assigned to each workstation is the
same. This assumption is not a fundamental lim-
itation of this method, but it reflects the fact that
the numerical problems considered are typically
harder to partition into unequal pieces than into
equal ones. But this assumption is not essential
to the analysis presented, and in fact this co-
scheduling scheme works for other load-sharing
methods as well (this is discussed later, in Sec-
tion 4).

4. The decision making agent receives from the
application manager the following information:
T(1), the serial execution time of the applica-
tion, Tyegdiine, the deadline for obtaining the
results, and an estimate of the overhead for
inter-workstation communication and control as
a function of P. Based on this data the decision
making agent can compute an estimate of T'(P),
the parallel execution time with P workstations,
for any P, and can also estimate the values of
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Phigh and Pigy . If T,.( P) is the time for commu-
nication and control for a parallel execution with
P workstations, and if T;(P) is the time to send
and load the code and data, as well as gather
the final sub-task results and present them to
the user, then the parallel execution time with
P workstations whose duty cycles and startup
times are all zero, is

T(1

—I(’l + Tee(P) + Ti(P).

5. The parallel execution time is a monotonically
decreasing function of P, T(P + k) < T(P) for
Pw <P< Ph;y;.and0<k$Phigh—P-

T(P) =

Observe that if all 1; values were equal to one
another, then for a given fixed value of |G|, the
optimal G consists of the |G| workstations having
the |G| smallest Ts; values, which easily implies an
O(Qlog Q) time algorithm (e.g., sort the worksta-
tions by their T ; values and then for each possible
value of |G| check in constant time its corresponding
effective speedup). A similar algorithm could be used
if all Ts; values were equal to one another and the 7
values were not. Then the sorting would be done by
the 7; values.

3.2 A General Algorithm for Optimal
Co-Scheduling
Consider now the general case when the duty cycle
and start-up times of any pair of workstations may
be different. In this case, the effective speedup at-
tainable with a group G of P = |G| workstations is
T(1)
maxw,ec Ts,i + (1 + maxw,ec )T (P)

Se(G) =

An algorithm leading to an optimal co-scheduling for
the general case follows.

Let A be the set of subsets (i.e., the power set)
of {W1,...,Wg}. An O(Q?) time and O(Q) space
algorithm for computing the quantity minpe 4 g(B)
is given, where

9(B) = max Ts;: + (1+ max 0;)T(|Bl).

This algorithm also determines the set B € A (call
it B) for which g(B) is minimized. Without loss of
generality, it is assumed that P, = 1, Prigh = Q,
and that i # j implies Ts; # Ts; and 7 # n; (the
algorithm can easily be modified for the general case).

Let 7 be a permutation of {1,...,Q} such that
Mr(1) < M) < ... < 7Nr(qQ)- Of course 7 can be



obtained in O(Q log Q) time, and henceforth it is as-
sumed that it is available.

Definition 1 Let A; denote the subset of A such
that B € Ay if and only if maxw,epTsi = Tsi,
for a fized k, 1 < k < Q. Lel Besty denote
mingea, 9(B), and let By be the B at which this min-
imum is achieved.

Now, observe that minge 4 ¢(B) = ming Besty, be-
cause A = UgAg. For the same reason, if k' is the in-
dex for which minpe 4 g(B) = Besty, then B = By,
Therefore, to show that B and g(B) can be computed
in 0(Q?) time and O(Q) space, it suffices to give an
0O(Q) time and space algorithm for computing Bestg
and B for a particular value of k. This is what it is
done next (so in what follows k is fixed).

Definition 2 Let Ag p denole the set of elements
of Ay that have cardinality P for a fized P, 1 <
P < Q. That is, B € Arp if and only if: (i)
maxw,ep Tsi = Tsk, and (ii) |B| = P. Let Besty p
denote mingea, » 9(B), and let By,,p be the B at
which this minimum is achieved.

Now, observe that Best; minp Besty p, be-
cause A; = UpAy p. For the same reason, if P is
the index for which Besty = Besty p/, then By =
Bk'p:. Therefore it suffices to compute, in O(Q)
time and space, Best; p and Bk,p for all indices
P € {1,2,...,Q}. The description of each such Bi.p
that is computed must be implicit and must take O(1)
space, because the elements of each Bk,p cannot be
listed explicitly (otherwise the algorithm would use
quadratic space because Y p | By, p| is proportional to
Q?, and if the space used is quadratic then clearly lin-
ear time is impossible).

The computation is based on the following lemma.

Lemma 1 Let Ly be the sorted list containing the set
{ni:Tsi<Tsk, 1 <i<Q}, and assume that |Ly| >
P —1. Let the first (i.e., smallest) P — 1 elements of
Ly be 03, Mgy Mip_, (listed in increasing order).
Then the set By p = {W;,,Wi,, ..., Win_,, Wi}

Proof. Let B € Ay p. Then (by definition) B con-
tains W and is such that maxw,epTs,i = Tsk. In
addition to Wy, B contains P — 1 other workstations
whose 7;s appear in Ly; among these P — 1 1; values,
the largest cannot be smaller than #;,,_,. Therefore

9(B) > Ts . + (1 + max{m, mi_, NT(P)

g({W’,-,,VV,-,, . '~yVVip..1)Wk}))
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which completes the proof. O

The above lemma implies an algorithm for comput-
ing, in O(Q) time and space, Best; p and (an implicit
description of) ék,p for all indices P € {1,2,...,Q}.
To see that this is so, first observe that the sorted
list L can easily be obtained in O(Q) time from the
permutation 7. Each element of the sorted sequence
fr(1)s - -+ »In(Q) 18 considered in turn, and when con-
sidering (say) 7x(i), simply test whether Tj y(;) is
smaller than Ts . If the answer to the test is “yes,”
then 7y (;) is included in Lg. The lemma implies that
Ly itself is an implicit description of B, p for all in-
dices P € {1,2,...,Q}, because By p is described by
the first P — 1 elements of L; (together with Wy,
which by definition is always part of Bz p). Each
value Besty p is easily obtained in constant time from
Ly. Let m;,_, denote the (P — 1)st smallest value in
Li (as in the lemma), and then

Besty,p = Ts,k + (1 + max{m, 5,_, HT(P).

If |Lx| < P —1 then of course A p = {} and hence
By p = {} and Besty,p is taken to be arbitrarily bad
(ie., equal to 00).

3.3

Consider the following example as an illustration of
the algorithm. In this example, a network with only
five workstations is considered.

The five workstations are characterized by the fol-
lowing values of (Tsi,%):

Example

Wi : (Ts = 6,7 = 6)
Wa:(Ts=17,n=.5)
Ws:(Ts =4,n=.7)
Wy:(Ts =12,np=3)
Ws: (Ts=0,7=.1)

The workstation values are first sorted on 7; to form
w. In this example, 7 = 5,4,2,1,3.

For every value of k, 1 < k < @, the following steps
are performed. The list L; is formed by considering
each element 7 in 7 in order and including the element
in Ly if Ts; < Ts k. For the purposes of the example,
let k = 2. Then L, = (0.1,0.6,0.7). L; implicitly
represents the best subset of Ay p for any P. These
subsets Bk, p are listed here for clarity.

BZ,! = {Wg}
By = {Ws, Wa}.
Bz,a b {Ws,Wth}-



BZ,‘i = {W5a Wl ’ W3’ W2}~

Bys = {}.

Subsets such as {W3, W,} are not considered be-
cause it is known that the max 5 of this subset is
greater than the max n of By ; = {W;, Ws}.

The values of Besty p are now compared to find
Best;., where

Beste,p = Ts e + (1 + max{me, ni,_, })T(P).

Recall that the value of 7;p_, is found in constant
time by indexing to the (P—1)st element of L, . These
values are as follows for the example, in which linear
speedup is assumed in order to approximate T(P).
This approximation is not part of the algorithm; it is
used here to simplify the example.

Besty = Ts 2+ (1+ 5)T(1) = Ts 5 + (15)T(1).

T(1
Besty g = Tsa2+(1+ .5)T(2) =Ts2+ (1.5)—(—)

2

=Ts,2+ (.75)T(1).

Besty s = Tsz + (14 6)T(3) = Ts,p + (1.6).Tg_1)
=Ts,2 + (B3)T(1).

()

Best2,4 = TS,Z + (1 + 7)T(4) = Ts’z + (17)—4—
= Ts,z + (.425)T(1).

Besty 5 = +o00.

The minimum value is that for 32‘4. Because
Best;, = minp Besty,p, in this case

Bestz = B€8t2,4 =7 -+ (425)T(1)

These steps would be repeated for all other values of
k while keeping the minimumA Besty, value found so
far and its corresponding set By,.

4 Extension to Unequal Load
Distribution

The above analysis assumed equal distribution of
computational load among the chosen workstations.
When the load can be partitioned unequally among
the chosen workstations, it is obviously better to send
more work to the faster workstations (those with a
low 7;) in such a way that all the workstations ter-
minate at the same time (so that none of them has
to wait for the others to terminate). The method
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known as “scattered decomposition” [3], can be used
to allocate unequal load to the set of workstations.

An analysis of the effective speedup function within
this framework of unequal loads is presented below.
Although this function will differ substantially from
that for the equal load case, it will turn out that
essentially the same algorithm as for the equal load
case can solve the problem in that case as well.

First note that when the loads are unequal, the
communication time becomes a function of the set
of chosen workstations and of the load distribution,
rather than a function of the number of chosen work-
stations. However, for compute-intensive tasks, the
communication time can either be neglected or ap-
proximated by assuming that it depends only on the
number of chosen workstations (in which case we
could use the same T..(P) + T;(P) term as in the
case of equal load distribution, keeping in mind that
it is small compared to computation time). In other
words, if G is the set of chosen workstations, with
P = |G|, then the total amount of work performed by
G is approximately the same as in the previous case
of equal load distribution, namely P - T(P), where
T(P) is as defined in the previous section. Let T;(G)
be the time needed for workstation W; € G to com-
plete its sub-task if 75 = 0. Then, because the same
total amount of work must be done

Y T(G) = P-T(P).
W.eG
The goal is to have all W; € G complete their sub-
tasks simultaneously. Therefore, it is required that
(14 m)T:(G) = K,
for all W; € G, and the constant K, the common
execution time. Thus,
L(G) = K(1+m)™.
Substituting into the above summation gives
K=P-T(P)( Y (1+n)"Y) .
WieG
Hence,
T(G) = P-T(P)(1+m)7' (Y (1+m)™)
W.eG

In this case the effective speedup function S.(G)
differs from the equal-load case in that its denom-
inator no longer contains the additive term (1 +
maxw,eg 7)T(P), as that term would instead be re-
placed by P T(P)(Ly.cq (1+ m)"1)~1. Thus the
effective speedup is now:

(1)

S5.(G) =

maxw,e¢ Ts,i + P - T(PYLw,ee (1 +m)~1)~1



It is not hard to see that the algorithm sketched in
the previous section still works in this case as well,
because for a given A and a given P, it is best to
choose the P — 1 elements of L; having smallest #;
values. The time is still quadratic if, in addition to
each Ly, the array L), whose jth entry (1 <j < |Lil)
is the sum

j
Z(1+ Le()7!

is also computed (of course L}, is computed from L
in linear time).

5 Examples of Other Uses of
Co-Scheduling

The model and algorithm presented here can be ap-
plied to other situations by adjusting the interpre-
tation of 7;. Two examples are considered in this
section.

The first example involves scheduling resources in
a reconfigurable large-scale parallel processing sys-
tem, with homogeneous processors, when faults can
occur. A high-level overall model for automatically
and dynamically allocating resources among concur-
rent sub-tasks to minimize the total task execution
time is presented in [2]. In that approach, fixed-
size groups of fault-free processor/memory pairs (call
them PE-groups) are the resources scheduled (e.g.,
PASM [10]). Sets of PE groups are dynamically as-
signed to sub-tasks (see [2] for details). In terms of
the co-scheduling model, each PE-group  has its own
Ts,i, and 7; is always zero when a PE-group is avail-
able to be scheduled (i.e., there are no background
jobs and only one sub-task uses a PE-group at a
time). A value of 7; > 0 can be used to present per-
formance degradation of a PE-group due to faculty
components in that PE-group, with the magnitude of
7; proportional to the degradation. The co-scheduling
algorithm can then be adapted for use in the auto-
matic reconfiguration system.

As a second example, consider the application of
co-scheduling to the problem of “distributed hetero-
geneous supercomputing” [4], [5]. In this situation,
a suite of heterogeneous computing devices (e.g., a
vector, a MIMD, and a SIMD machine) are available
to jointly execute a task, where each machine is used
for those code segments that execute most quickly on
that type of architecture. Current work in this area
has concentrated on the selection of a suite of ma-
chines to purchase given one or more classes of tasks
(4], [5]. Given a heterogeneous suite of supercomput-
ers and a sequence of tasks to execute, each with its
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own mix of code types, an algorithm for optimal pro-
cessor assignment has not yet been addressed. The
co-scheduling approach can be used in the develop-
ment of a solution to this problem. It is desired to
have all resources available concurrently, code seg-
ments from only one task will be executed on a pro-
cessor at a time, a set of processors must be chosen
based on available start times (T’ ;s) and processing
capabilities (1;s), and effective speedup is to be max-
imized. In this case, the n; for each machine is a 7-
tuple, where there are r distinct code types and the
value of the 7; T-tuple reflects how effectively that
processor can execute each of the code types. This
information, in conjunction with the percentages of
each code type in the task, can be used to choose the
optimal set of machines to execute the task by ex-
tending the co-scheduling algorithm for workstations.
Details are under development.

6 Summary

A distributed computing environment is discussed in
which a set of high performance workstations are in-
terconnected by a high speed network. It is assumed
that the sustained needs for local non-intensive com-
puting (e.g., text editing) are far below the peak
performance of the computing engines. Methods of
using the idle cycles of the workstations are investi-
gated. The main focus is the study of co-scheduling,
a form of resource management required by appli-
cations with sub-tasks that need to communicate
and synchronize during execution. Co-scheduling im-
plies that resources are allocated and deallocated in
groups. The size of a group depends upon the needs of
the application and upon the availability of resources.
For the parallel applications discussed, the effective
speedup provides an objective function to be max-
imized. A high level model of the system and an
0(Q?) time and O(Q) space algorithm for the op-
timal co-scheduling of @ workstations are presented
and analyzed.
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