Chapter 3

The design and prototyping of
the PASM reconfigurable parallel
processing system

Howard Jay Siegel, Thomas Schwederski,
Wayne G. Nation, James B. Armstrong,
Lee Wang, James T. Kuehn, Rohit Gupta,
Mark D. Allemang, David G. Meyer and
Daniel W. Watson

3.1 Introduction

sks that need parallel processing to meet the.ir execution time
g)orgngxtstaoﬂen consist ofp numerous subtasks with differing computat:pn:ll
characteristics. It is unreasonable to expect a single machine to be an op! ltmto
match for all of these different computatlongl needs. One may attempthat
maximize performance in such situations by using a reconfigurable S)I;Stergtask
can continually adapt its architecture based on the structure of each su sten;
This is an overview of the PASM reconﬁgural')le.parallel process;n}g sy e
architectural organization and a hardware description of the contro| 1?3“63
of the small-scale proof-of-concept prototype. The prototype was cons 1;3 jcted
to validate design concepts and tﬁ s;erve l:;15 a S.tool for studying issues r
configurable parallel machine:))
to él:fe uts;p:f(:fe paralglel systepm, called an $MD (sipgle instruction s:)reanlt,,
multiple data stream) (Flynn, 1966) machine, consists of N pg(;c&g rl;\s’ode
memories, an interconnection network and a control unit, In tl}e b mode
of parallelism, all enabled processors execute the same instruction at tF same
time, but each on its own data. The control unit broa@castg “llsu.l?ct 10! S
sequence to the N processors that execute these instructions in locks ep.iated
operand data for these instructions are fetched from the memory assggessor
commuicapion, Exarmples of SIMD systems that have been consiructed are
communication. Examples of systems 1589). Iing
atcher, 1982), CLIP4 (Fountain, 1981), DAP (Hunt, ,
ﬁ/Sl(Dgcfl)lk(tﬁght etal., 197)2', Hordl,{k9§2)(,BMtasl}>ar l{/g’;gl) and MP-2 (Blank, 1990),
tcher, 1982) and STA atcher, .
Mfgn(l::SlMD (mul)tiple-SIMD) system can be ;ttlr:clt)\:;;c:) szsd 0;141 gr (E?xlt’te
i D machines of various sizes. R
;%%%gezggnéxisslt?ﬁg Thinking Machines CM-2 (Tucker and Robertson, 1988)

Introduction 79

are examples of MSIMD systems. The Illiac IV was originally designed as an
MSIMD system (Barnes ef al., 1968).

In the MIMD (multiple instruction stream, multiple data stream) (Flynn,
1966) mode of parallelism, each processor has its own instructions and data.
MIMD systems are typically structured like SIMD systems without the control
unit, i.e. N processors, N memories, an interconnection network and multiple
data streams. The BBN Butterfly (Crowther et al., 1985), Caltech Cosmic Cube
(Seitz, 1985), Intel iPSC cube (Nugent, 1988), nCUBE 2 (Hayes and Mudge

MIMD systems that have been constructed.

A mixed-mode system can dynamically switch between the SIMD and
MIMD modes of parallelism at instruction-level granularity with nominal

The prototype Triton/1 (Philippsen et al., 1993) machine is capable of full
mixed-mode parallelism.

A partitionable mixed-mode system can dynamically reconfigure to form
independent or communicating submachines of various sizes, where each
submachine employs mixed-mode parallelism (e.g. TRAC (Lipovski and
Malek, 1987)). PASM is a PArtitionable-SIMD/MIMD system concept being
developed at Purdue University as a design for a large-scale dynamically
reconfigurable parallel processing system based on commodity microproces-
sors (Siegel et al., 1981; Siegel et al., 1987). Each submachine can independently
perform mixed-mode parallelism. PASM uses a flexible multistage intercon-
nection network for interprocessor communication. Thus, PASM is
dynamically reconfigurable along the three dimensions of partitionability,
mode of parallelism and connections among processors.

Originally, PASM was intended as a special-purpose system aimed at image

Casavant and Siegel (1991).

The goal of the PASM research team is to develop a unique dynamically
reconfigurable research tool for studying large-scale SIMD, MIMD and mixed-
mode processing. The PASM concept is a distributed memory machine,
with a computational engine consisting of processor/memory pairs referred
to as PEs (processing elements). It attempts to incorporate the flexibility
needed to investigate the numerous issues related to the design and use of

80 The PASM reconfigurable parallel processing system

reconfigurable parallel processing systems. The number of PEs that can be
included in a PASM system is a function of the technology and funds avail-
able at the time of construction. Based on current technology, the PASM
design concepts could readily support at least 1024 PEs. The small-scale proto-
type built at Purdue University (30 processors, 16 in the computational engine)
supports experimentation with all three of the dimensions of reconfigurability
mentioned above, and has produced insights not attainable from earlier simu-
lations and theoretical studies (e.g. Bronson, Casavant and Jamieson, 1990;
Fineberg et al., 1988; Fineberg, Casavant and Siegel, 1991). PASM can be
reconfigured for fault tolerance, as well as for matching the computational
structures of a problem.

The PASM architectural concepts are overviewed in section 3.2. A detailed
description of the control hierarchy hardware of the prototype is given in
section 3.3. Section 3.4 briefly presents some PASM prototype software issues.
A discussion of some of the lessons that have been learned from the devel-
opment and use of the PASM prototype is given in section 3.5. Reading lists
of PASM-related publications are in Siegel et al (1987) and Armstrong,
Watson and Siegel (1993).

3.2 The PASM design concepts

3.2.1 Overview

As shown in Figure 3.1, the PASM system concept consists of six basic compo-
nents. The System Control Unit is the overall system coordinator and is the
part of PASM with which the user directly interacts. The Micro Controllers
(MCs) serve as the PE control units in SIMD mode and may coordinate the
PEs in MIMD mode. The Parallel Computation Unit contains the N = 2" PEs,
physically addressed 0 to N -1, and the interconnection network used by the
PEs. The Memory Storage System provides secondary storage for the PEs. It
is used to store data files for SIMD mode and both program and data files
for MIMD mode. The Memory Management System controls the transferring

System

Control Unit <>
]
Storage
Micro
Controllers
|
Paraliel
Computation Unit

Figure 3.1 Block diagram of the PASM design concepl.

The PASM design concepts 81

of files between the Memory Storage System and the PEs. Control Storage is
the secondary storage for the MCs and the System Control Unit.

3.2.2 System Control Unit

The tasks to be performed by the System Control Unit include support for
program development, job scheduling, general system coordination, manage-
ment of system configuration and partitioning, assignment of user jobs to
submachines. and connection to the host computer network. The hardware
needed to combine and synchronize the MCs and PEs to form SIMD sub-
machines of various sizes resides in the System Control Unit. It is also res-
ponsible for coordinating the loading of PE memories from the Memory
Storage System with the loading of MC memories from the Control Storage.

Appropriate distribution of tasks between the System Control Unit and the
other system components (e.g. the MCs and the Memory Management System)
keep the System Control Unit from becoming a system bottleneck. In an
N = 1024 system, the System Control Unit may be comprised of several proces-
sors. In the N = 16 prototype, the System Control Unit is a microprocessor,
and program development is performed on the host computer network.

3.2.3 Micro Controllers

The MCs, shown in Figure 3.2, are the muitiple control units required to form
an MSIMD system. There are Q = 29 MCs, physically addressed from 0 to
Q - 1. Each MC controls a fixed group of N/Q PEs in the Parallel Computation

PCU : To System Control Unit
PEs and Conptrol Storage
(! —1
Q _ MC MC mem.0A |—
: proc. 0 _<
-] MCmem.OB |+ §
P
N-Q §
Q2 —_] : ‘ 5
Q+(Q/2) - MC _< MC mem. Q/2 A |— ?;
N—Q+(Q/2)—”‘:‘ proc. Q/2 MC mem. Q/2 B | é’
£
Q-1 —] . g
20Q-1 . MC _< MC mem. Q-1 A
Nt /__ proc. Q-1 MC mem. Q-1 B, [

Figure 32 PASM Micro Controllers (MCs). ‘PCU’ is the Parallel
Computation Unit.

82 The PASM reconfigurable parallel processing system

Unit. An MC and its associated PEs is an MC group. The physical addresses
of all N/Q PEs .connected to an MC have the same low-order g bits (for
reasons discussed in section 3.2.4). The value of these low-order q bits is the
physical address of the MC. In an N = 1024 system, Q may be 32; for the N
= 16 prototype, Q = 4.

Two memory units are provided in each MC so that computation and
memory /O can be overlapped. For example, the MC processor can execute
a job in one memory unit while the next job is preloaded into the other
memory unit from MC secondary storage (the Control Storage). In MIMD
mode, an MC fetches from its memory the instructions and data used to coor-
dinate the operation of its PEs. In SIMD mode, an MC fetches the instructions
and common PE data from its memory units. In general, in SIMD mode
control-flow instructions are executed in the MC, and data processing instruc-
tions are broadcast to the MC’s group of PEs.

Submachines are formed by combining one or more MC groups. A sub-
machine containing R = 2 MC groups (RN/Q PEs), where 0 < r < ¢, is
formed by combining the PEs connected to R MCs whose addresses agree in
their q - r low-order bits. The partitioning rule in PASM is that the addresses
of all PEs in a submachine of size 2” must agree in their n — p low-order bit
positions (for the reasons discussed in section 3.2.4). Thus, the addresses of
all MCs in the submachine will agree in their g — r low-order bits. There is a
maximum of Q submachines, each of size N/Q.

Each submachine can operate as an independent mixed-mode system. PEs
can switch between modes as often as desired; however, all PEs in a sub-
machine must be in the same mode (SIMD or MIMD) at any point in time.

When a submachine is operating in SIMD mode, the R MCs must execute
and broadcast the same instructions, and all PEs in the submachine must be
synchronized. The MCs are given the same instructions simply by loading
the memory units of the R MCs with the same program (a shared memory
alternative is discussed in Siegel et al. (1981)). The PEs are synchronized by
providing a small amount of special circuitry that coordinates instruction broad-
casts among these MCs (described for the prototype in section 3.3.5).

The MCs within a submachine of RN/Q PEs are logically numbered
(addressed) O to R — 1. For R > 1, the logical number of an MC is the high-
order r bits of its physical number. Similarly, the PEs assigned to a submachine
are logically numbered (addressed) 0 to (RN/Q) — 1. The logical number of
a PE is the high-order r + n — g bits of its physical number.

Some advantages of this static PE to MC mapping as compared with a
dynamic MC/PE interconnection (e.g. a crossbar switch (Nutt, 1977)) include
reducing MC/PE interface hardware, eliminating the overhead of maintaining
PE to MC assignments, scheduling only Q MCs instead of N PEs, allowing
the partitioning of the PE interconnection network into independent sub-
networks (section 3.2.4) and supporting the structure of the efficient parallel
primary to secondary memory connections (section 3.2.6). The main dis-
advantage of this approach is that the size of each submachine must be a
power of two, with a minimum of N/Q PEs. However, for PASM’s intended
experimental environment, flexibility at ‘reasonable’ cost is the goal, not
maximum PE utilization.

The PASM design concepts 83

Masking schemes are used in SIMD mode to enable and disable PEs. The
PASM system uses PE-address masks and data-conditional masks. A PE-
address mask (Siegel, 1990) enables a set of PEs based solely on PE addresses;
it does not depend on local PE data. A PE-address mask has n positions,
where each position contains either a 0, 1, or X (‘don’t care’). A PE is enabled
only if the binary representation of its address matches the mask. For example,
for N = 64, [5{X]{0}] is equivalent to [XXXXXO0] and enables all even-
numbered PEs. A negative PE-address mask enables all PEs whose addresses
do not match the mask. PE-address masks are a convenient notation for
enabling PEs in a large-scale parallel machine.

Data-conditional masks enable PEs based on some condition dependent on
local PE data. Consequently, the resulting data condition may be true in some
PEs and false in other PEs. An example use of data-conditional masking is
the where statement, the SIMD counterpart to the 1f-then-else statement.
When the segment

where <data-~condition> do <where-part>
elsewhere <else-part>

is executed, each PE evaluates the <data-condition>. The PEs where the
condition evaluates true execute the <where-part>, and the PEs where the
condition evaluates false are idle. Next, the PEs where the condition evalu-
ates false execute the <else-part>, and the PEs where the condition
evaluated true are idle. This type of masking is used in many SIMD machines
(e.g. CM-2, DAP, MP-1). The nesting of where statements may be done using
an execution-time control stack (Nation et al., 1990).

Data-conditional and PE-address masks can be used together. A hybrid
masking scheme implementation has been examined (Nation et al, 1990).
Data-conditional masking may be supported in hardware by providing each
PE with a local enable bit stack, which is used to indicate whether the PE is
conditionally enabled or disabled. PE-address masks may be supported in
hardware by providing each MC with an N/Q-bit mask mode specifier and an
N/Q-bit mask vector. The mask mode specifier contains a single mask mode
bit for each PE that indicates whether the PEs’ local enable bits should be
used when determining PE enable status. The mask vector contains a hard-
ware decoded version of the PE-address mask (Siegel et al., 1981). If bit i of
the mask vector is 1, then the ith PE of the MC group is enabled, otherwise
the ith PE of the MC group is disabled. The mask mode bit and bit i of the
mask vector are sent to PE i with each instruction. Hardware in PE i can then
combine bit i of the mask vector, the local enable bit and the mask mode
bit to determine whether PE i is enabled. If the mask mode indicates
unconditional masking, then the PE is enabled if its address matches the PE-
address mask. If the mask mode indicates conditional masking, then the PE
is enabled if its address matches the PE-address mask and its local enable bit
is set to true.

There are situations in which the combined conditional status of all enabled
PEs in an SIMD submachine is needed, e.g. if-none, if-any and if-all.
For example, if the PEs of a submachine are each examining a portion of an

84 The PASM reconfigurable parallel processing system

image to find certain objects, it is necessary to know whether any of the PEs
have found such an object. Machines that support operations of this type
include the CM-2 and MP-1. Because PASM is a partitionable system, oper-
ations such as these require conditional results to be communicated from the
PEs to their MCs and subsequently combined among the MCs comprising an
SIMD submachine. These operations may be efficiently supported by
providing a small amount of special circuitry that combines MC group results
according to the current system partitioning (described for the prototype in
section 3.3.5).

3.2.4 Parallel Computation Unit

The Parallel Computation Unit, shown in Figure 3.3, contains N = 2" PEs and
an interconnection network. Two memory units are used in each PE so that
computation and memory I/O can be overlapped. For example, the PE
processor can execute a job in one memory unit while the next job is preloaded
into the other memory unit from PE secondary storage (the Memory Storage
System). These memory units compose the primary memory of the system. In
SIMD or MIMD mode, each PE can use its own PE address or local data as
a basis for indirect memory addressing. The PE processors may be either
commodity microprocessors or custom designed for parallel processing and/or
a particular application.

The interconnection network allows PEs to communicate with each other.
Two multistage networks were originally considered for PASM: the multistage
cube and the augmented data manipulator (ADM) (Siegel, 1990; Siegel et al.,
1989). They were considered because of their overall flexibility and parti-
tionability (each can be partitioned into independent subnetworks). As
described earlier, the reconfiguration rule in PASM requires that the physical

il y
: Processing element O |
t Mem. 0A Micro- !
g 4 Mem, 08 proc. 0 |l
] ! |
> : Processing element 1 | §
B— Mem. 1A Micro- |8
8 : Mem. 18 proc. 1 | 1§
2 ! o~ : g
§ : Processing element N—1 0 =
= jM Micro- i
{Mem. N-1B] |{Proc- N-1]
|
| rveometon ot 1 [

Figure 3.3 The Parallel Computation Unit.

The PASM design concepts 85

addresses of all PEs in a submachine of 27 PEs agree in their n - p low-order
bit positions. Thus, the p high-order bits of a PE’s physical number form its
logical number within a submachine of 2# PEs. The low-order partitioning rule
was chosen for PASM so that either of these two networks could be used.
However, the multistage cube was selected because of its comparative cost-
effectiveness.

The multistage cube network is representative of the class of networks
that includes the baseline (Wu and Feng, 1980), delta (Patel, 1981), general-
ized cube (Siegel, 1990), indirect binary n-cube (Pease, 1977), multistage
shuffie-exchange (Thanawastien and Nelson, 1981), omega (Lawrie, 1975)
and SW-banyan (S = F = 2) (Lipovski and Malek, 1987) networks. This class
of networks has been used in or proposed for use in many systems including
the Butterfly, Cedar (Kuck et al., 1986), dataflow machines (Dennis, Boughton

21119133;,eung, 1980), RP3, STARAN and NYU Ultracomputer (Gottlieb ez al.,

Input Output

Stage 2 1 0

Straight Exchange Lower Upper

broadcast broadcast

Figure 3.4 The multistage cube topology for N = 8 and valid interchange
box states.

86 The PASM reconfigurable parallel processing system

N
s
-
-y
-
N
I

{7V
(5,
i
(]
e
W
leo

input Output

N
N
N
IS
'S
'S

In

N
[+2]
»
»
]
(3]
Jen

6 3 3 5 5, 6 | 6
7 7 7 7 7 7 | 7
Stage 2 1 0

Figure 3.5 Example permutation for N = 8 for input i to output i+l
mod 8.

The multistage cube network has N input ports, N output ports, and con-
tains n = log,N stages of N/2 2 x 2 interchange boxes. Figure 3.4 shows the
multistage cube network for N = 8. PE i is connected to network input port §
and output port i. The stages are numbered consecutively from n - 1 at the
input stage to 0 at the output stage. The upper box output label is the same
as the upper input, and the lower box output label is the same as the lower
input. The interconnection pattern between stages is such that at stage j the
two links whose labels differ only in bit j are connected to the same inter-
change box. Each interchange box can be set to one of the four states shown
in Figure 3.4. Figure 3.5 shows a permutation connection (input i — output
(i+1) mod 8) for an N = 8 multistage cube network.

One advantage of the multistage cube network is that network control may
be distributed. Each network input device determines its own routing tag, which
is used as a header on messages. A simple and efficient way to construct a rout-
ing tag is to set the message header tag to the n-bit address of the message
destination (Lawrie, 1975). Each interchange box encountered by the message
examines the destination routing tag to determine its own box state. If a mes-
sage destined for output port D =d_, ... d,d,, then at stage i it is routed to
the lower box output if d, is 1 and to the upper box output if d, is 0. Several
benefits result from this routing method: the method is distributed, the routing
tag can be used to verify that the message arrived at the correct destination,
and the generation of tags is simple. The destination tags described can specify
one-to-one and permutation connections, and can be extended to handle broad-
cast connections by adding an n-bit broadcast mask to the tag (Siegel, 1990).

The PASM design concepts 87

A network is partitionable if it can be divided into independent subnet-
works of smaller sizes that have all of the properties of the original network
(Siegel, 1990). In general, a size N multistage cube network can be partitioned
into multiple subnetworks of different sizes, where the size of each subnet-
work is a power of two. For example, Figure 3.6 shows an N = 16 network
partitioned into two subnetworks by setting the interchange boxes in stage 0
to straight. Because stage 0 is straight, even-numbered inputs cannot reach
odd-numbered outputs, and odd inputs cannot reach even outputs. The two
resulting subnetworks are subnetwork A, which contains physical ports
0, 2, ..., 14, and subnetwork B, which contains physical ports 1, 3, ..., 13.
Because each of these subnetworks is an independent multistage cube network
of size N/2 = 8, either or both subnetworks may be further partitioned by
forcing all interchange boxes in stage 1 of the subnetwork to straight.

In summary, the multistage cube network has many advantages. It has the
ability to perform up to N simultaneous transfers, to be partitioned into

0 0 0 0 0 0 0 0
2] A ‘A\ /4 A A 1 i
4] 1 1 1 1 2 2
alB ‘a\\//s B8 B [a 3 3
2| 2 2 4 4 4
10 A |10 W &l A 8] A 5 5
3 3 3 ’ [
1] B8 B |Z 7]l B | Z 4 y4

Input Output
4. | 8 8 8 8 8
12] A 112 121 A A 9 9
A _S/M\x 10 10
13| B |43 13} B8 B {11 11 11

_ﬁ/ /\ \to 12 12 12

14] A 114 Y 14! A |14 14 A 13 13
z] J/ \q 4/\1_\ 14l |1s
15| 8 {15 15| B |18 15| B |15 15

Stage 3 2 1 0

Figure 3.6 N = 16 multistage cube network partitioned into two size eight

subnetworks.

88 The PASM reconfigurable parallel processing system

multiple independent subnetworks of various sizes, and to perform one-to-
one, permutation and broadcast transfers using routing tags. It can support
efficient global as well as local (nearest neighbors) inter-PE communication,
and may be used in both the SIMD and MIMD modes of parallelism. Finally,
there are a variety of network implementation options (e.g. circuit switched
vs. packet switched, 2 x 2 vs. 4 x 4 vs. 8 x 8 interchange boxes).

The multistage cube network, as presented here, has the disadvantage that
only a single path exists for any source-destination pair. Thus, a single fault
in the network makes many source-destination paths unavailable. The Extra
Stage Cube network (Adams and Siegel, 1982; Siegel, 1990) is a single-fault-
tolerant variation of the multistage cube network. There is an extra stage of
interchange boxes at the input. Links whose labels differ in the Oth bit posi-
tion are paired at these extra stage boxes in the same way that they are at
stage 0. The Extra Stage Cube network is partitionable and may be controlled

using routing tags. It is used in the prototype, and is discussed further in
section 3.3.6. :

3.2.5 Memory Storage System

The Memory Storage System is the secondary storage for the Parallel
Computation Unit, storing data files in SIMD mode and both program and
data files in MIMD mode (program storage in SIMD mode is discussed in
section 3.2.7). The Memory Storage System is comprised of N/Q independent
Memory Storage Units (MSUs), numbered from 0 to (N/Q) - 1. Each MSU
contains a mass storage unit and a processor to manage the file system and
to transfer files to and from its associated PE memory units.

Each of the N/Q MSUs is connected to the memory modules of Q PEs.
MSU i is connected to and stores files for the Q PEs whose n - ¢ high-order
address bits are equal to i. This high-order mapping is used so that each of

MC3

MC2

MC1
MCo

Q Micro Controllers

——_

I]

NPCU 0j112|3|4(5|6 |7 |89 [10]11]{12] 13|14} 15
PEs :

| | ' | S N | | | I O | ' | R R | | |
MSUo0 MSU1 MSu2 MSuU3
N/Q Memory Storage Units

Figure 3.7 Organization of the Memory Storage System for N = 16 and
Q=4

The PASM design concepts 89 v

the N/Q PEs connected to an MC is connected to a different MSU. Recall
that the low-order g bits of the physical PE number correspond to the number
of the MC to which it is attached (as described in section 3.2.3). An example
for N = 16 and Q = 4 is shown in Figure 3.7.

One benefit of this MSU to PE connection scheme is that the memories of
all N/Q PEs connected to any one MC can be loaded or unloaded in one
parallel block transfer. For example, in Figure 3.7, MC 2's group of PEs (PEs
2, 6, 10 and 14) are loaded by having MSU 0 load PE 2, MSU 1 load PE 6,
MSU 2 load PE 10 and MSU 3 load PE 14. All four of these transfers may
be done in parallel so that only one parallel block transfer is required to load
all of the PEs connected to any one MC. If there are only N/(QD) distinct
MSUs, where 1 < D < N/Q, then this scheme can be scaled so that D parallel
block transfers are required to load or unload the memories of the PEs
connected to any one MC.

Similarly, a submachine formed by combining the (RN)/Q PEs controlied
by R MCs can be loaded or unloaded in R parallel block transfers if there
are N/Q MSUs and RD parallel block transfers if there are N/(QD) distinct
MSUSs. For example, in Figure 3.7, a submachine comprised of the PEs of MC
0 and MC 2 can be loaded in R = 2 parallel block loads as follows: first MC
0’s PEs are loaded in one parallel block transfer, and then MC 2’s PEs are
loaded. Thus, the full bandwidth of the Memory Storage System can be used
when transferring files between the Memory Storage System and the Parallel
Computation Unit.

Data for a logical PE in a submachine is stored in the MSU whose number
is the PE’s n - q high-order logical address bits (which equal its n - g high-
order physical address bits). As a result, no matter which MCs are assigned
to a task, the data will be in the appropriate MSUs. For example, in Figure
3.7, for any submachine of size N/Q = 4, MSU 0 is connected to logical PE
0 (which could be physical PE 0, 1, 2, or 3).

3.2.6 Memory Management System

The Memory Management System supervises file transfers between the N PE
memory modules in the Parallel Computation Unit and the N/Q secondary
storage devices in the Memory Storage System. As described in section 3.2.5,
multiple PEs are connected to a single MSU. The Memory Management
System determines which of the PEs connected to an MSU will be the source
or destination for file transfers.

The Memory Storage System is composed of multiple processors that
perform in a distributed manner the tasks required. The main functions
that must be performed include passing file system requests from the System
Control Unit, MCs, and PEs to the appropriate MSUs; controlling data
transfers between the Memory Storage System and the PEs; super-
vising input/output operations involving peripheral devices; and enforcing
consistent file naming and placement across the multiple Memory Storage
System disks.

90 The PASM reconfigurable parallel processing system

3.2.7 Control Storage

Control Storage is the mass storage for the MCs and the System Control Unit,
holding all code and data used by these processors. It also contains the instruc-
tions to be broadcast to the PEs from the MCs in SIMD mode. It consists of
a secondary storage device and a processor for managing the file system on
the device. The Control Storage processor acts as a file server by responding
to requests from the MCs and the System Control Unit.

3.2.8 Advantages of reconfigurability

As stated earlier, PASM is reconfigurable along three dimensions: partition-
ability, mode of parallelism and variable connectivity among PEs. Advantages
of systems with such reconfigurability include:

1. Multiple simultaneous users: Because there can be multiple simuitaneous
independent submachines, there can be multiple simultaneous users of
the system, each executing a different program.

2. Program development: Rather than trying to debug a new parallel
program on, for example, 1024 PEs, it can be debugged on a smaller size
submachine of 32 PEs, and then extended to 1024 PEs.

3. Variable submachine size for increased utilization: 1f a task requires
only N’ of N available PEs, the other N — N can be used for another
task.

4. Variable submachine size for decreased execution time: There are some
algorithms for which the minimum execution time is obtained when
fewer than N PEs are used (e.g. recursive doubling (Krishnamurti and
Ma, 1988)); thus, it is desirable to create a submachine consisting of the
optimal number of PEs. :

5. Subtask parallelism: Two independent subtasks that are part of the same
job can be executed in parallel, sharing results if necessary, which may
result in improved overall task execution time (Nation, Maciejewski and
Siegel, 1993).

6. Multiple processing modes: An algorithm can be executed by using a
combination of SIMD and MIMD control with the same set of PEs
(mixed-mode parallelism), using the mode that best matches the com-
putations required at each step of a program.

7. Matching inter-PE connectivity to the task: The multistage cube allows
different connection patterns among PEs to be established depending
on the task (as opposed to, for example, having a fixed mesh network).

8. System fault tolerance: If a single PE fails, only those submachines that
include the failed PE are affected.

9. Submachine fault tolerance: If a PE in a submachine fails, it may be
possible to redistribute data and make use of mixed-mode parallelism
(i.e. changing from SIMD to MIMD mode) and the variable connectivity
(i.e. to establish connection patterns that do not include the faulty PE)
so that the job executing on the submachine may continue on that sub-
machine with nominal degradation.

PASM prototype implementation 91

Examples of how the PASM concept can be used to vary machine size for
utilization and speed, exploit subtask parallelism, achieve improved per-
formance through mixed-mode parallelism and establish different types of

inter-PE connection patterns are given in Siegel, Armstrong and Watson
(1992).

3.3 PASM prototype implementation
3.3.1 Overview

This section describes the control hierarchy hardware of the small-scale, proof-
of-concept PASM prototype built at Purdue University. Figure 3.8 shows a
block diagram of the PASM prototype with N = 16 and Q = 4. The proces-
sors are based on the Motorola MC68000 family microprocessor. Because only
commodity components were used, the need for custom VLSI chips was elim-
inated and development time and construction costs were reduced. A total of
28 different types of physical board are used in the prototype, 13 of which

Direct memory access link
"""""" Parallel port link
--= GPIB

"""" - SIMD instruction broadcast bus
Figure 3.8 The PASM parallel processing system prototype.

92 The PASM reconfigurable parallel processing system

Table 3.1 The PASM design parameters for the existing prototype and a
possible future large-scale machine

Feature General Large-scale = PASM
PASM prototype

Number of PEs N 1024 16
Number of network stages

(Extra Stage Cube, if 2 x 2 boxes) log, N +1 11 5
Number of MCs Q 32 4
Number of PEs per MC NIQ 32 4
Number of MSUs NIQ 32 4
Number of Memory Management

System processors Varies =4 4
Smallest size partition NIQ 32 4
Maximum number of partitions Q 32 4

are commercial products. The System Control Unit (SCU), MCs, PEs, Memory
Management System (MMS) processors, I/O Processor (IOP), Control Storage
(CS) and MSU processors, and the PE interconnection network are all imple-
mented by using these boards in different configurations. Table 3.1 summarizes
the PASM design parameters for the existing prototype and a possible future
large-scale machine.

The System Control Unit is an MC68010 microprocessor running UNIX. It
has an Ethernet connection to the Purdue Engineering Computer Network,
a local area network connected to the Internet. A PASM user logs into the
System Control Unit and controls the prototype by issuing commands from
the System Control Unit to initialize the system and to load and execute
programs. The System Control Unit communicates with secondary storage and
MCs through dedicated handshake-driven parallel port connections.

Mass storage for the MCs and PEs is to be provided by the Control Storage
and the MSUs, respectively. The Control Storage and the four MSUs each
contain a 40 Mbyte disk drive. The MSUs are to be managed and controlled
by the Memory Management System, consisting of a directory look-up
processor, a memory scheduling processor, a command distribution processor
and an I/O Processor (IOP). The /O Processor is to be responsible for
handling interactions with external I/O devices and for distributing data to
the MSUs and the Control Storage through highly efficient DMA links with
their memories. ,

The operating system software support for the Memory Management
System, MSUs and Control Storage is still under development. Currently, the
PE and MC memories are loaded from a 40 Mbyte hard disk attached to the
System Control Unit.

Each prototype MC is based on an MVME-110 single-board MC68000
microcomputer on a private VME bus backplane with 2 Mbytes of dynamic
RAM, physically double-buffered as described in section 3.2.3. An MC is
augmented with additional logic to support necessary interfaces to the System
Control Unit, Memory Management System, other MCs and its associated

PASM prototype implementation 93

1

§¥o SERE |
:g_n; U Local MC bus dqqqg !
| oo U ololole| i
E - MC GPIB
5 Fetch Unit interface MC CCL :

'f-.)j‘ w
2 22 |3
ul 23 2 8 3 8
a| o [7,] (0] (&) Q
N N/
IBU PE GPIB PE CCL

: interface
5 ﬁ Tocal PE bus {T

Figure 3.9 Communication and control connections between PEs and MCs.
Of the four PEs connected to each MC, only one is shown. The SIMD Bus,

the SIMD.ACK line and the GPIB are shared among all PEs. All other lines
connect MC and PE on a one-to-one basis.

PEs. The System Control Unit, Memory Management System and remote MC
connections are implemented with simple parallel ports used for passing
control information. The remaining special-purpose connections from the MCs
to the PEs support mixed-mode operation and are overviewed here. These
connections include the mechanism to perform SIMD instruction broadcasts,
the logic to allow the MC to access PE conditional results and a channel for
the PEs to send data to their MCs.

Like an MC, each PE consists of an MVME-110 MC68000 microcomputer
connected via a VME bus backplane to 2 Mbytes of dynamic RAM and logic
to interface the PE with its MC and the prototype interconnection network.
The dynamic RAM is physically double-buffered, as described in section 3.2.4,
with two 1 Mbyte memory modules. The memory modules themselves are
dual-ported with one port connected to the PE VME bus and the other port

94 The PASM reconfigurable parallel processing system

connected to the appropriate MSU with a high-speed DMA link. PEs access
the interconnection network through a set of parallel ports mapped in the /O
space of each PE’s address space.

There are three channels for communication and control between each MC
and its associated PEs. Figure 3.9 shows these channels and their interfaces
to both the PEs and an MC. When the MC group is in SIMD mode, the
instruction broadcast bus (SIMD Bus) carries SIMD instructions from the MC
along with the PE enable signals to the PEs. Enabled PEs receive these instruc-
tions and execute them in lock-step. A General Purpose Interface Bus (GPIB)
link provides bidirectional communication between an MC and its PEs. The
condition code channel (CCV and CCS) is used to send the result of the eval-
uation of a data condition from the PEs to their respective MC. The function
and implementation of these channels are presented in section 3.3.2.

3.3.2 SIMD instruction broadcasting

An MC in SIMD mode broadcasts an instruction stream to its PEs, which
execute it in lock-step at the instruction level. Because commodity micro-
processors are being used, the instruction words broadcast to the PEs are
MC68000 machine instructions, not machine control words, as in the MPP, the
Illiac IV and the CM-2, for example. When a PE CPU requests an SIMD
instruction, the PE’s Instruction Broadcast Unit (IBU) forwards an SIMD
instruction request to the MC by asserting SIMD.RQ. The MC receives the
SIMD instruction requests from the PEs through its Fetch Unit.

Once all PEs in an MC group have requested an instruction, the Fetch Unit
asserts its group request line G.RQ, which is sent to the System Control Unit.
When all MCs in a submachine have asserted their G.RQ lines, the System
Control Unit triggers the broadcast of the next SIMD instruction by asserting
the group acknowledge line G.ACK (this is discussed further in section 3.3.5).
Upon the assertion of G.ACK, all Fetch Units of the submachine broadcast
the next SIMD instruction word by placing the instruction word on the SIMD
Bus, setting the PE enable bits, and asserting the SIMD instruction acknowl-
edge line SIMD.ACK. The PE enable bits determine which PEs are to execute
that particular instruction. The IBUs of the PEs receive the instruction and
allow the enabled PEs to execute the instruction. If a PE is denied an SIMD
instruction, that PE is said to be disabled for that instruction and does not
execute it.

Fetch Unit

In SIMD mode, the MCs send instructions to their associated PEs by means
of a Fetch Unit. In Figure 3.10, the basic components of an MC, with emphasis
on the Fetch Unit, are illustrated. The MC CPU executes control instructions
(e.g. loop counting and branch control), which it reads from the MC memory.
Whenever the MC broadcasts an SIMD instruction to its PEs, it must first set
the PE enable bits so that only the appropriate PEs execute the instruction.
After setting the Mask Register, the MC instructs the Fetch Unit Controller
to move the SIMD instruction from the Fetch Unit Memory into the SIMD
instruction FIFO. Other machines, e.g. MPP and CM-2, also use a FIFO to

PASM prototype implementation 95

MC Memory { | Fetch Unit Fetch Unit
+ | Controlier Memory ;
MC CPU p | Mask i
; Register ;
FIFO
{ Fetch Unit g
To PEs

Figure 3.10 = Simplified block diagram of an MC with emphasis on the Fetch
Unit structure.

decouple control unit execution from PE execution. This permits control
unit/PE overlap, the concurrent execution of control flow and global common
data computations on the MC with PE-local data computation on the PEs
(Kim, Nichols and Siegel, 1991). However, the Fetch Unit FIFO also appears
to the MC CPU as a memory-mapped 1I/O location, which permits the MC
CPU to write directly to the FIFO. This capability is shown by the line
connecting the MC CPU and FIFO in Figure 3.10. The FIFO contains 64 16-
bit words.

Because the SIMD instructions are MC68000 machine instructions, each can
consist of several instruction words. Frequently, several SIMD instructions are
executed with the same set of enable bits. Therefore, the Mask Register in
Figure 3.10 needs to be set only when the enable bits are changed. Every time
an instruction word is enqueued, the enable bits currently in the Mask Register
are enqueued as well. The Fetch Unit Controller can be instructed to move
a block of instructions to the FIFO, thereby reducing the number of control
instructions required to broadcast the SIMD instruction stream. Clearly, the
enable bits for all instruction words in the block must be identical. When all

PEs of a submachine have requested an instruction word, and one is avail-

able in the FIFQ, an instruction word and the associated enable bits are
dequeued and broadcast to the PEs. Each PE receives its own enable bit and
a copy of the instruction. This way, PEs, Fetch Unit and MC can proceed
concurrently.

The operation of the Fetch Unit can be described in detail by discussing
the actions required to broadcast SIMD instructions to the PEs. Figure 3.11

- shows a block diagram of the Fetch Unit. Before the SIMD program starts,

96 The PASM reconfigurable parallel processing system

ToMC To CS

. Fetch Unit
Fetch Unit Controller —
Memory
<
— | [O 1 5
intarface
A1-8 :E[ﬁ'll MAQ-15
- Address) MDO-7
N J e — > MD8-15
=
MC Bus Adder v
interface
— Base
Reg.
<>
D0-~7 [—] N CPU —f = Control paths
T | pata =
D8-15 [— v Reg. F—
Data/Address paths
<> z
Mask
Register
U (9.4 \}
GRAl Quove FIFO | Mask SIMD
G.ACK L__Control control FIFO instruction FIFO
SIMD.ACK SIMD.RQ PE enable SIMD Bus
bits

Figure 3.11 Block diagram of the PASM prototype Fetch Unit.

the Control Storage loads the SIMD instructions into the Fetch Unit Memory.
The Fetch Unit Memory has 32 Kbytes of storage. All SIMD programs are
assembled as if they are always loaded into the Fetch Unit Memory starting
at location 0, and the control instructions sent to the Fetch Unit assume this
loading. Because loading at starting location 0 is not always desirable (e.g. a
new program might be loaded while the old one is still running to support
the double-buffering discussed in section 3.2.3), a Base Register is provided
that permits relocation of the SIMD instructions in the Fetch Unit Memory.

Assume that the instructions of an SIMD program are loaded into the Fetch
Unit Memory beginning at memory location B, where B is a binary number
with the lower eight bit positions zero. The remapping is accomplished by
the Control Storage, which can directly access the Fetch Unit Memory. The
Fetch Unit Controller arbitrates conflicts between accesses from the Control
Storage and internal accesses. Before the MC begins execution of the SIMD
control program, it sets the Base Register to the value B via the MC Bus
Interface.

Now assume that during the execution of the SIMD program a block of
SIMD instructions is to be executed by the same set of PEs (designated by

PASM prototype implementation 97

the enable bits E), and that the address of the first instruction in the block
would be A if the instructions had been loaded starting at address 0. Because
B is the actual load starting address, the memory address of the first instruc-
tion word in the block is A+B. The following sequence of six events is then
performed. i

1. The MC CPU writes the enable bits E to the Mask Register. Each MC
in the prototype has four PEs associated with it, therefore, the Mask
Register is four bits wide.

2. The MC CPU specifies the starting address of the instruction block to
the Fetch Unit Controller and the number of instructions to be broad-
cast. This information can be encoded by a single write instruction. The
upper 16 bits of the MC address bus are decoded by the MC Bus
Interface to determine whether an instruction block is to be enqueued.
Then, under hardware control, the lower eight bits of the MC data bus
(DO0-7) are written to the lower eight bits of the Address Register, the
higher eight bits (D8-15) are written to the 8-bit Adder and the MC
address bits A1-8 are written to the Count Register.

3. The 8-bit Adder calculates the sum of the Base Register value and the
value on the higher eight data bus lines, and strobes the result into the
higher eight bits of the Address Register. The Address Register now
contains the value A+B, i.e. the physical start address of the SIMD
instruction word block.

4. The Fetch Unit Controller detects a non-zero value in the Count
Register, It first disables any further MC accesses to the Fetch Unit,
thereby ensuring that the movement of the instruction word block is not
disrupted. The controller then starts to move instructions from the Fetch
Unit Memory into the SIMD instruction FIFO. The Fetch Unit
Controller monitors the FIFO and waits until there is room in the FIFO.
When the FIFO is not full, it places the value of the Address Register
on the memory address bus (MAO0-15), reads the value of the memory
location and strobes the value into the SIMD instruction FIFO.
Simultaneously, it enqueues the contents of the Mask Register into the
Mask FIFO. It then increments the Address Register and decrements
the Count Register. The controller repeats this fetch-enqueue cycle until
the last item has been enqueued, indicated by a zero value in the Count
Register. After the last item has been enqueued, the Fetch Unit
Controller re-enables MC accesses.

5. Independent from the enqueuing process, the PEs dequeue instructions.
When all PEs in the MC group have requested an instruction by asserting
their SIMD.RQ lines, the Queue Output Control forwards a group
request signal G.RQ to the System Control Unit where it is combined
with the G.RQ signals of the other MCs in the current submachine. As
soon as the Queue Output Control receives the combined acknowledge
G.ACK, it dequeues an SIMD instruction and the associated enable bits,
and asserts the SIMD acknowledge line SIMD.ACK. When the PEs
detect the asserted SIMD.ACK signal, they read and (if enabled) execute
the instruction.

98 The PASM reconfigurable parallel processing system

6. There is also the capability for the MC to enqueue instructions directly
word by word.

The capability of PASM to switch dynamically between SIMD and MIMD
modes merits special attention. Assume that the PEs are executing an SIMD
program, then switch to MIMD mode, and later return to SIMD mode. The
MC’s actions consist of broadcasting data-processing SIMD instructions, then
sending a jump instruction that causes the PEs to start execution of the MIMD
program, and finally resuming the broadcast of SIMD instructions.

Instruction Broadcast Unit

Normally, a PE CPU fetches instructions by placing its program counter value
on the address bus and latching the data placed on the data bus by the memory
device holding that instruction word. However, SIMD instructions are not
physically located in the memory of the PEs.

A PE fetches SIMD instructions by reading an instruction word from the
SIMD instruction space of the PE’s memory. This is a logical address space
~ no physical memory is provided. Figure 3.12 illustrates the address space of
a PE, showing the SIMD instruction space, physical RAM and I/O space.
Logic in the PE detects read-accesses to the SIMD instruction space, and any
such access is interpreted as an SIMD instruction request. In the PASM proto-
type, the SIMD instruction space is determined by the values of the two highest
order bits of the 24-bit program counter. The remaining 22 bits of the program
counter value placed on the address bus during SIMD instruction fetches are
ignored. Because the program counter is automatically incremented after
each instruction fetch, it is possible for the program counter value to incre-
ment out of the SIMD instruction space during a very long SIMD program.
This problem is eliminated by allowing the MC CPU to write occasionally

MC PE
E RAM MIMD
e program
: counter
Fech | | SIMD SIMD 5
. : instr. | CP
Unit 1 instr. H SIMD
: : space program
g counter
§ P o

Figure 3.12 Logical PE address space in the PASM prototype.

PASM prototype implementation 99

into the SIMD instruction FIFO an instruction forcing the PEs to jump to the
beginning of the SIMD instruction space. Because the SIMD instruction space
is large (4 Mbytes), the frequency with which this is required is very small.

Each memory access made by the PE CPU is monitored by the IBU. When
its PE CPU accesses the SIMD instruction space, the IBU forwards an SIMD
instruction request (asserts SIMD.RQ) to the Fetch Unit of its MC, which
supplies the instruction to all PEs. ‘

When an SIMD instruction word is broadcast by the assertion of
SIMD.ACK, the value of a particular PE’s enable bit PE.ENABLE deter-
mines whether that PE is to execute that instruction. If the PE enable bit is
set for a particular PE when the asserted SIMD.ACK is received by that PE’s
IBU, that IBU places the instruction word on its local bus. It then forwards
an acknowledge signal to the PE CPU, which latches and executes the instruc-
tion. Otherwise, the IBU does not forward an acknowledge signal to its PE
CPU. In this case, the instruction word is not latched and executed by that
PE. Because the PE CPU did not receive the broadcast acknowledge signal,
its SIMD instruction request remains pending until its IBU receives an instruc-
tion for which its PE enable bit is set.

Because the MC places SIMD instructions in a queue, they are, in a sense,
prefetched for the PE processor. This means, in general, that no RAM access
penalty is paid for SIMD instruction accesses. This allows SIMD instruction
accesses in the prototype to be one processor cycle (125 ns) faster than PE
RAM accesses. There is, however, a penalty paid for SIMD instruction accesses
when the SIMD instruction broadcast is synchronized across MC groups. It
will be seen in section 3.3.5 that with this added penalty SIMD instruction
access is ‘still less than a PE RAM access time. Additionally, PE processors
prefetch instruction words wherever possible and thus sometimes hide the
latency of instruction fetches in either SIMD or MIMD modes.

Another advantage of this instruction broadcast scheme is the ease of
switching between MIMD and SIMD modes. A PE is forced into SIMD mode
by executing a jump to the SIMD instruction space. A PE can switch from
SIMD mode to an MIMD program located at some address A by receiving a
‘jump to subroutine at A’ instruction in SIMD mode. When the MIMD subrou-
tine is completed, executing a ‘return from subroutine’ instruction restores the
program counter to the SIMD instruction space. Then the PE CPU requests
an SIMD instruction. However, the SIMD instruction is issued only after all
the PEs of a submachine have requested the instruction. Thus, all the PEs of
the submachine are synchronized when an SIMD instruction is broadcast. Such
flexibility in mode switching allows mixed-mode programs to be written that
change modes at instruction-level granularity with nominal overhead. The
SIMD instruction fetch mechanism can also be used to support a form of
MIMD barrier synchronization (Dietz et al., 1989).

3.3.3 MC-PE communications

The GPIB connects each MC to its associated PEs. The GPIB (IEEE 488 bus)
has a data path width of eight bits. It was chosen because of its ease of
implementation. Only five chips are required for each MC GPIB interface,

100 The PASM reconfigurable parallel processing system

and four for each PE GPIB interface. In SIMD mode, the GPIB is used
to transmit data from a PE to an MC and if a PE needs to alert an MC to
an error condition, e.g. a divide-by-zero or an error in network transmission.
In MIMD mode, the MCs use the GPIB to coordinate the activities of the
PEs.

The MC's interface configures the MC as a talker/listener and controller
of the GPIB. Each PE is connected as a GPIB talker/listener. A GPIB
talker/listener can send or receive data from other devices on the GPIB. The

GPIB contreller coordinates all GPIB activities (e.g. arbitrates access to the

GPIB).

Transfers are initiated when a talker/listener receives bus ownership from
the controller and addresses another talker/listener. The CPU originating the
transfer then writes the message data to its GPIB interface, which sends the
data to the GPIB. The addressed GPIB interface interrupts its CPU, which
reads the incoming data from its own GPIB interface. Once the source device
has finished sending the message, the GPIB is relinquished.

3.3.4 Conditional operations

In SIMD mode, the MCs can perform data-conditional operations that depend
on PE results (discussed in section 3.2.3). To support this, Condition Code
Logic (CCL) is provided that enables MCs to request conditional information
from the PEs. The System Control Unit CCL can be used to combine data
conditions among MCs. Figure 3.9 shows the connections between PE CCL
and MC CCL, and also shows connections to the System Control Unit CCL,
which is discussed in detail in section 3.3.5. The function of the System Control
Unit CCL is similar to the SUM-OR tree in the MPP and the GLOBAL line
in the CM-2, which are used to find global results.

Consider how an MC receives conditional information from its PEs. The
MC first broadcasts instructions to the PEs specifying which conditional test
is to be performed (e.g. equal or negative), which causes the PEs to set appro-
priate hardware registers in the PE CCL. The MC then instructs the PEs to
write a one-bit conditional result to the Condition Code Value (CCV) line,
The PEs perform all SIMD instructions simultaneously. However, due to the
SIMD instruction FIFO delay, the MC does not know when the PEs have
actually written their conditional result to the CCV line. For this reason, a
Condition Code Synchronization (CCS) signal is provided. After writing the
condition code, each PE sets its CCS line, and the MC CCL combines these
signals. The MC CPU monitors the combined signal, and reads the individual
PE condition codes as soon as it detects that all PEs have set the CCS line.
The MC can now use the conditions it has read from the PEs. As an example,
consider a division operation. Before the division is executed, the divisor
should be tested for a zero value. After the appropriate conditional test is
performed, the MC can use the conditional result as PE enable bits, and thus
enable only those PEs that do not have a zero divisor, thereby avoiding divide-
by-zero faults.

To improve functionality, the hybrid masking scheme (described in section
3.2.3) may be incorporated into the prototype hardware in the future.

PASM prototype implementation 10|

i | Parition | Local SCU bus i
; Control ") i
: Logic ;
: 3 :
' MUX control :
i | st scu ccL Paralel 4 L
: port :
.. S5z 3||%
§ 8 8 8 8 8 § o= ® e »
oo olo|s|a o §.
ToMCs To MCs To MCs

Figure 3.13 Communications and control connections between System
Control Unit and MCs. Of the four MCs connected to the System Control

Unit, only one is shown. All links connect System Control Unit and MC on
a one-to-one basis.

Currently, the MC combines the information from PE-address masks and data-
conditional masks in software to load the Mask Register. The decision to have
the PEs report their condition codes to the MC rather than maintaining their
own local enable bit stack (as described in section 3.2.3) was made to simplify
the prototype hardware.

3.3.5 MCs and System Control Unit interactions

Interactions between the System Control Unit and MCs are required for data
transfer and partition control. For data transfers, the System Control Unit
contains four separate parallel port links, one for each MC. Figure 3.13 shows
one of the four links. MCs as well as the System Control Unit can initiate
data transfers. The link carries control information and interactive I/O data.
Examples of control information are task control information (e.g. task sched-
uling and termination), error messages originating from the MCs or PEs, and
MC file requests that the System Control Unit forwards to the Control Storage.
During interactive programs, data must be passed between the user and the
user’s program executing on the PEs. Because the user session is handled by
the System Control Unit, the System Control Unit must forward user input
to the appropriate MCs (which in turn forward the data to the PEs), and must
accept data from the MCs (which originated from the PEs).

102 The PASM reconfigurable parallel processing system

Because the System Control Unit is responsible for allocating par.titions to
user programs (among other duties), it must also control .the machine parti-
tioning. Recall that the partitioning rule in PASM requires that PEs in a
submachine agree in their low-order bit positions (section 3.2.3). Therefore,
in the prototype, the only submachines that are possible are the MC groups
working individually, MC groups 0 and 2 combined, MC groups 1 anq 3
combined, and all four MC groups combined. In SIMD mode, the follov&{mg
hardware is required to combine multiple MC groups into a single submachine:
the Instruction Broadcast Synchronization Logic (IBSL), the System Contrpl
Unit Condition Code Logic (SCU CCL), and the Partition Control Logic,
which controls both the IBSL and SCU CCL through an MUX Control bus.
Figure 3.13 shows these components and one of the parallel. ports.

When multiple MC groups are combined into a submachine, anc} t}le PEs
run an SIMD program, all PEs in the submachine must execute their instruc-
tions in lock-step. This is accomplished in the following manner. The PEs. of
an MC group request an SIMD instruction from the Fetch Unit by asserting
their SIMD.RQ signal (Figure 3.9). When all PEs have requested an instruc-
tion, the Fetch Unit forwards a group request signal G.RQ to the IBSL, and
the IBSL combines all G.RQ signals of a submachine. When all MC groups
of a submachine have asserted G.RQ, the IBSL sends a group acknowlege
G.ACK to all Fetch Units in the submachine. Only then will the Fetch Units
assert their SIMD.ACK, and all PEs in the submachine receive the instr!.lc-
tion simultaneously. Figure 3.14 shows the logic used in the.IBSL to combine
the G.RQ signals. Due to the restrictions placed on which MCs may be
combined, an AND-tree with three 2-input gates is sufficient to generate all
required combined signals. Depending on the current partitiorging, the Syr_»t;m
Control Unit sets four 3-input data selectors (3:1 MUXs) via the Part'mon
Control Logic to select the appropriate combining signal. For example, if all
four MCs are combined into a single submachine, the leftmost input of the

s s
| mignn

3:1 MUX 3:1 Mux.] 3:1 Mux..| 3:1 MUX-] -

control

MCoO MC2 MC 1 MC3

Figure 3.14 Combination logic for SIMD instruction broadcast synchroniza-
tion and condition code combination.

PASM prototype implementation 103

data selectors will be routed to the output. The IBSL delays the SIMD instruc-
tion broadcast by no more than 25 ns. This is small when compared with the
MC68000 memory cycle of 400 ns (SIMD instruction broadcast delays were
discussed in section 3.3.2).

As described in section 3.3.4, the MC CCL enables each MC to receive
conditional information from its PEs. Because multiple MC groups can be

. combined to form a single submachine, that logic alone is not sufficient because

it may be necessary to know if-any or if-all of the PEs meet a certain
condition, as was discussed in section 3.2.3. For this reason, the SCU CCL is
provided. Figures 3.9 and 3.13 show the connections between SCU CCL and
MC CCL. To find a global condition value, the MCs first find a combined
condition for all their PEs, and then write this value to the group condition
code value input (G.CCVI). Because the MCs do this asynchronously, each
MC asserts the group condition code synchronization input (G.CCSI), and
monitors the group condition code synchronization output (G.CCSO), which
is asserted only after all MCs in the submachine have asserted the G.CCSL
When an MC detects an asserted G.CCSO, it reads the combined condition
value from the group condition code value output (G.CCVO).

This logic, shown in Figure 3.14, is also used to combine the group condi-
tion code signals. The AND-tree in the combination of condition code values
can be used to detect if-any as well as if-all conditions. When the if-
any condition is desired, the MCs write a logical 0 to their G.CCVI line if
the condition holds for one or more of their PEs. The output of the AND-
tree is a logical 0 if one or more inputs are 0. A logical 0 on the G.CCVO
line therefore means that the if-any condition is true. Similarly, an if-all
condition can be detected by writing a logical 1 to the G.CCVI line if the

condition is met, and only if every input to the AND-tree shows a logical 1
will the result be a logical 1.

3.3.6 Inter-PE communication

The PASM prototype interconnection network is an Extra Stage Cube, as
mentioned in section 3.2.4. To simplify the hardware, circuit switching
(as opposed to packet switching) is used. To transfer data between a network
source—destination pair, a physical path must first be made connecting the
pair. The source PE establishes the path by writing the appropriate routing
tag to its memory-mapped network interface logic and is informed when the
virtual circuit through the network is complete. Once the path is established,
data transfers can proceed. The source PE writes the individual words of the
message to the network interface (parallel ports), which automatically trans-
fers the data to the network interface of the destination PE. The destination
PE reads the message word by word. At the conclusion of transmission, the
source PE relinquishes the path by writing a control word to its network inter-
face.

The PASM prototype network is constructed from commodity TTL SSI/MSI
components and implements a 16-bit wide data path plus two parity bits,
The use of standard TTL components in the prototype network yields an in-
expensive network that does not limit throughput on established paths. Each

104 The PASM reconfigurable parallel processing system

E CPU communicates with the network through parallel ports. Due to the
, iI:nplementation of the network, the operati.ng. gpeed of thg PE CPI.J .andhthc
parallel ports’ communication rates are the lm_ntlng factors in determining h c(l)w
fast the network can transfer data. Hardware in the getwork interface provi les
correct destination verification on each path established and performs parity

i all transmitted data. ')

Chi:;ll?r%ﬁ?lg no conflicts, the time required to establish a path is approximately
2 ps. Once a path is established, the network hardwz}re should support z;
transfer rate of 24 Mbits/s, but is limited to a sustained transfer rate o
3.8 Mbits/s due to the processing rate of the PE CPU. The goal_ of the ;f)rotol;
type construction was to implement a topl for studying the attributes ot s;uce
a reconfigurable architecture, not to maximize the raw speeq of tl_le proto ypcl
hardware. The prototype network supports all of the functionality discusse
in section 3.2.4.

3.3.7 Advantages of the prototype

i in section 3.4, the PASM prototype is supporting experimenta-
:i\c?ndl::iltlliset‘ljl; tlslree dimensions of reconﬁgurabjlity listed in section 3.1:
partitionability, mode of parallelism and connections among th'e PEs. Alllsci
mentioned in section 3.4 is that the prototype is being used in a pa;a ile;i
programming course at Purdue. The goal fox.' the prototype effort'was to bu
a robust, small-scale, proof-of-concept machlr}e for the l?ASM design con}cl:eptz
This goal was achieved, and the prototype is supporting both research an
education.

3.4 Using the PASM prototype

3.4.1 Overview

ioned previously, the primary goal of the PASM prototype is to
31;1;2::‘ texperixlt)lentationy with reconfigurable parallel processing systen‘;s.
Because the PASM prototype supports SIMD, MIMD and rr_uxed-mobe
parallelism, accurate comparisons of different modes of parallelism can be
m?ﬂeéddition to the research being conducted wit_h the prototype, a graduaule-
level course on programming parallel machines using the prototype is currently
being offered at the Purdue University School of ‘Electrlcal Engmeerlﬁgi
Students have the opportunity to learn about basic concepts pf para e.
programming. They have access to three cla'sses of parallel processing systerrzi
SIMD machines, MIMD machines and mixed-mode machines, repn:lsl«;.ntert
respectively by the MasPar MP-1, nCUBE-2 and t.he PASM prototype, all pa
of the School of Electrical and Computer Engineering ‘Parallel Proces:;glgl
Laboratory. By programming SIMD, MIMD' :fmd mixed-mode gar (;_
processing systems, students learn the characteristics of each mode (:h para
lelism and the trade-offs among different modes. Moreover, they test the ease
of use, interfaces and various languages of the parallel processing systems.

Using the PASM prototype 105

The focus of this chapter is the conceptual organization of PASM and a
description of the prototype control hierarchy hardware. To show how the
prototype is being used, sections 3.4.2-3.4.4 briefly overview some of the soft-
ware and applications that have been implemented on the PASM prototype
(a detailed presentation of these topics is beyond the scope of this chapter).

Section 3.4.2 discusses CAPS, a system designed to aid in software devel-
opment for the PASM prototype. ELP, a parallel language with modes of
parallelism explicitly specified by the user, is described in section 3.4.3. Section

3.4.4 lists examples of applications research conducted with the PASM proto-
type.

3.4.2 CAPS

The Coding Aid for the PASM System (CAPS) is designed to assist in the
development and evaluation of application and system software for the PASM
prototype (Lumpp et al., 1991). A primary goal in the design of CAPS was
to provide users with the ability to execute and monitor their programs with
maximum flexibility and minimum intrusion given the existing system hard-
ware, while providing information on a wide range of program attributes.
CAPS integrates hardware support and software tools to provide a remote
execution and program debugging/monitoring environment for the PASM
prototype. The prototype can be accessed over the Internet through CAPS.

CAPS consists of a set of dedicated I/O channels and associated hardware
and software that facilitate bidirectional information flow between the indi-
vidual processors of PASM and a workstation providing the user interface.
The information is specified by source-level statements, added to the user’s
program, which transmit messages through dedicated /O channels. Once the
messages are sent from the processors, they are combined into a single stream
and sent through a Local Area Network (LAN) to a workstation where they
are used to debug and analyze the execution of the program.

CAPS allows the programmer to use some sophisticated features of a
graphics workstation to process I/0 coming from the parallel system. The
workstation’s windowing capability allows textual debugging information to
be displayed from any PASM processor at an interactive virtual terminal,
represented by a window. Multiple windows can be displayed to monitor
different processors simultaneously. One possible future extension is to
generate graphic displays summarizing collected data.

Thus, CAPS is a simple but useful programming tool for the PASM proto-
type. It provides remote access to PASM for multiple users, and integrates
system features such as downloading code, code development, interactive

/O and run-time monitoring of programs with sophisticated workstation
windowing capabilities.

3.4.3 ELP

The Explicit Language for Parallelism (ELP) is a language designed for
programming mixed-mode parallel machines (Nichols, Siegel and Dietz, 1993).
The user is able to indicate explicitly the parallelism to be employed. ELP

106 The PASM reconfigurable parallel processing system

provides constructs for both SIMD and MIMD vparallelism and an ELP appli-
cation program can perform computations that use these parallelism modes
in an interleaved fashion for mixed-mode operation.

The syntax of ELP is based on C, extended with parallel constructs and
specifiers. The SIMD and SPMD modes of parallelism are supported by a full
native-code compiler, targeted to PASM, that permits these modes to be
switched dynamically at instruction-level granularity. ELP is being extended
to include full MIMD capability. The goal is for ELP to be uniform with
respect to the SIMD and SPMD modes of parallelism, where all of the
language’s constructs, operations, statements, etc. have interpretations within
both of these modes that are identical in both syntax and semantics.

In ELP, each variable has a variable class associated with it. A variable
defined to be of class mono always has a single value with respect to all PEs,
independent of the execution mode. A variable defined to be of class poly
can have one or more values in different PEs, independent of the execution
mode. Each mono variable has storage allocated for it on the MC and all PEs.
If a mono variable is referenced while in SIMD mode, its MC storage is active.
This permits the specification of the SIMD control unit/PE overlap discussed
in section 3.3.2. If a mono variable is referenced while in SPMD mode, its PE
storage is active and all PE copies of the mono variable will have the same
value spatially (guaranteed by the compiler). For variables defined to be poly,
each PE has its own copy with its own value. Because the PASM machine is
partitionable into submachines, a poly variable declaration invokes a variable
on each PE within the submachine upon which an ELP program is to execute.
Currently, this submachine determination is made by the user at load-time.

An ELP program can use both SIMD mode and SPMD mode and may
switch between the two modes one or more times at instruction-level granu-
larity. SIMD/SPMD execution mode specification is statically scoped and uses
the keywords simd and spmd. Specification can be done on a per-block basis
or on a per-function basis. Execution mode specifiers can be nested and are
tracked with a compile-time stack. All PEs in a submachine must be in the
same mode at a given point in time and all function declarations must include
an execution mode specifier.

ELP supports both data-dependent and PE-address dependent control flows.
The data-dependent control-flow constructs, such as ifs, whiles, dos and fors
are given different parallel interpretations depending on the variable class
of the conditional expression. The selector statement provides PE-address-
dependent control flow. It specifies which PEs will be selected for the scope
of the following block of one or more statements and is independent of the
execution mode in which it is called. Selector statements are based on the
PE-address masks defined in section 3.2.2. As with data-dependent masks, PE-
address mask scopes can be nested and a PE is selected only if it is selected
by all PE-address masks in the nesting. When both data-dependent masks and
PE-address dependent masks are used, a PE is active only if it is selected by
both masking schemes.

ELP provides users with the ability to explicitly control different facets of
mixed-mode parallel processing systems and simplifies mixed-mode program-
ming by employing a single program model for both modes of parallelism.

Experiences with PASM: lessons learned 107

Furtherxpore, it serves as a foundation for the design of a compiler that
automaglf:ally determines and specifies the best mode for code segments,
and facilitates the use of reconfiguration for fault tolerance. In general, an
explicitly parallel language, such as ELP, provides a vehicle for the explora’tion
of and experimentation with mixed-mode parallelism.

3.4.4 Algorithm studies

Algorithm research activities are exploring ways to exploit the fiexibility of a
reconfigurable Rarallel processing system. The flexibility of such a system
makes the efficient execution of a wide range of applications possible.
However, the software challenges for partitionable mixed-mode systems
are a superset of those for SIMD and MIMD single-mode systems. Con-
sequently,.PASM-related algorithm studies are an active area of research
and have included theoretical analyses, simulations and experiments on the
PASM prototype (Siegel, Armstrong and Watson, 1992). These studies have
exaxpmed issues such as mapping tasks onto reconfigurable parallel pro-
cessing systems, trade-offs among the SIMD, MIMD and mixed-mode classes
9f pargllelism, MC/PE computational overlap in SIMD mode, impact of
increasing the number of PEs used and partitioning for improved performance.
Applications qonsidered include bitonic sorting, edge-guided thresholding
FFTs, global histograming, image correlation, image smoothing, matrix multi:

plication and range-image segmentation (references are given in A
Watson and Siegel (1993)). (given in Armstrong,

3.5 Experiences with PASM: lessons learned

Tk.le PASM prototype became operational in 1987 and is still running in 1995
with over 36 000 hours of execution time logged. A photograph of the proto:
type is in Bell (1992, p. 73). The system was built with a very limited personnel
budget and approximately $150,000 for equipment. This had two major
consequences: extensive use of student projects and a need to make conserva-
tive design decisions.

Student per?cts, typically lasting one academic semester, have the advan-
tage of provu?lng highly-motivated personnel at low cost. To use student
projects effectively, careful supervision and planning were needed to get the

‘right subsystems running at the right point in time. The most serious draw-

back to this approach was the potential for failure at each stage. Delays due
to design flaws in the completion of one subsystem can have a dramatic impact
on the-w'ork for successive projects. Fortunately, the effect of this type of delay
was minimal during the PASM prototype construction.

A conservative design decision policy was adopted, which implied modifi-
cations to th.e original plans if necessary, the use of mature technology, and
the exploitation of commodity components and subsystems wherever fea;ible.
Thl.-oughout the project, the primary goal was to build a robust system on
whlc}'l the architectural concepts of PASM could be studied and on which
applications could be programmed.

108 The PASM reconfigurable parallel processing system

iginal system hardware concept was modified in pnly the very few
argew?lgi cost)e,md the difficulty of hardware implementation were not ofézgf
by the benefits for a prototype system. As one exa'mple of a sy;tselm m;) i
cation, a reconfigurable bus connectin_g the MCs (Siegel et al., 3) ‘?cl:tions
implemented because of the costly high-speed components and conn
ve been needed. '

tha’It'h:r(:auiSag iever an attempt to push the state-qf-the-art in terms of é:omp;;
tational power, because budget limitations ct;rtamly would have. m:n e ‘s;:3 T
an attempt a failure and might have jeqpardlzed the overall. projec asnems:
Conservative design meant the exclusive use of commodity cloxqpo ents,
particularly the microprocessors in the PEs. The concept .of emp l?ylmgstems
dardized microprocessors was prevalent among comr_nerc:a} paralle syrt s
when PASM was being designed, although these machines did not supgg.t he
SIMD mode of computation (e.g. Intel iPSC, BBN Butterfly). The .vzi\ i alr leel
this approach is still borne out today .because even more comm%cll;\ g aralle]
systems are based on commodity microprocessors (e.g. Cray o X onver
SPP-1 (Astfalk, 1992), Thinking Machines CM-5, IBM SP1 (IBM Corpo ,
19’913'1’1)21‘@ are no custom integrated circuits in the system, and clock freque]?;
cies are comparatively low. Because only 16 MC68000 CPUs welrc:,j to rilslsaue
up the Parallel Computation Unit, performance was not an overn 1r:lgle safe'
Thus, design decisions were always ma?fe suchct:at timing was on

i if that caused sacrifices in performance. .
SldSel’lsl‘),g?tilng SIMD mode using the MC§8000 CPUs was‘chﬂxtate;(.i by t;i:
fact that the MC68000 CPUs had no on-chip cacpes and thel‘r instruc 131n c;ytal
time (typically four processor cycles) was approxunatel‘y equxval;nt to o :s :nd
memory access time of a VME bus memory cgrd (mcludesh us ;:}311 s and
DRAM accesses). Therefore it was po?lblq totbmi(i:loz:l s:;grrr:l :vtoe:ﬁe per (I;)cessor

r-bound, i.e. providing instruc
ﬁa;;f;e\;’gslggcg:s&lMD mode fouldbbe zllccon;(plished such that the processor
ime was still the performance bottleneck.)
cyi-lli)\gregzr, foday’s micfoprocessors havg on-chip instruction cacheshgnd chc;l;
times that are nearly an order of magnitude f:j\ster than DRAM g_tlpsr.n ew
challenges exist in supporting SIMD mode with current cor.nr'nlo i yuestin
processors. The PASM prototype relied on the MC68000 ex.p11c1th y rteq ues ug
every instruction on the microprocessor’s exten:nal bl:ls. Using t 1; _ e% ve;lin
with today’s microprocessors would yielfi a very inefficient sy§t<lem. 1scssors irg)
new ways to execute identical instructn;ln lftrearr;f1 (g:i sn;ﬂct;p e proce
ck-step represents a new challenge rea.

(alg;:;ﬁ? (:lcc:nsiderlzztiorllJ was given to each component in the prototypsz l:ﬁ

decide whether to use commodity subsystems or to construct ﬁusltom sol

tions. As a result, CPU boards, disk controlle_rs and VME bus backp ;I:ﬁfamo

all commercial designs, while the Fetcl‘l Units, ne_twork boarc:ls and t Thrz

boards were custom-designed and fabricated qumﬁcally for t }e; prOJec(;ss he

use of selected commercial comp:r;entshprogeg 1n\;z:ll§atbe1:t t(c;y (t;1 eeS pfl:;g::rucial

ject because it eliminated lengthy debug) r
?liicfiigchor the specialized subsystems sucp as the Fetch Unlts ath tge gll:;:
connection network, no alternative to special purpose design existed. \

Experiences with PASM: lessons learned 109

the use of conservative TTL technology in the specialized boards greatly eased
the design and debug phase.

Due to low funds, automated design support was limited to computer-aided
drawing of printed circuit board layout and circuit diagrams. No circuit simu-
lation tools were available and no back-annotation of printed circuit boards
was possible. Even with this handicap, although small modifications were
required on most boards, there was no complete redesign of any board. The
low-cost CAD systems available today would speed up many of the design
tasks.

Great care was taken in the robustness and compact mechanical layout of
the system, as well as cooling. The system is air-cooled, and in the event that
a cooling failure is detected by sensors in the machine cabinets, an automatic
shutdown procedure is initiated. This proved essential for the reliability and
long life of the system.

During the initial boot of the system, software support was a serious
handicap. The PE CPU boards were low-cost VME bus 68000 systems, with
only an EPROM-based low-level monitoring system. Thus, all programming,
especially for the device drivers, had to be done in assembly language, which
was error-prone and slow. The availability of a C compiler at a later stage
improved the situation significantly,

Once the prototype was operational, several aspects of the system that
previously had not been major considerations became more prominent.
One of the first items that became apparent was the need for a programming
and monitoring environment that would allow PASM users to access indi-
vidual support and Parallel Computation Unit processors, and that would
facilitate the loading, execution and debugging of applications on the proto-
type. For this reason, CAPS, described in section 3.4.2, was developed.

For a future system, it would be advisable and possible (due to advances
in integration) to have an operating system kernel in each PE, with a LAN
connection such as an Ethernet link for code distribution and debugging access,
This would ameliorate many of the challenges associated with the EPROM.-
based low-level monitor system and the coding and debugging environment.

Through application studies using the prototype, various characteristics of
mixed-mode processing have become evident. As one example, the ability to
switch between SIMD and MIMD modes at the individual instruction level is
more important than was originally thought (e.g. Fineberg, Casavant and
Siegel, 1991). Another significant characteristic of the system is that MC/PE
overlap can theoretically improve SIMD performance by 50%. Several
studies have looked at the impact of MC/PE overlap and how to optimize it
(Armstrong et al., 1991; Kim, Nichols and Siegel, 1991). However, some of
the burden of optimizing MC/PE overlap may be removed from the compiler
if the MC processor is faster than that of the PEs. Then, perhaps, all serial

computation common to all PEs can be done on the MC. Experimental studies
are needed to determine the efficacy of such a strategy, given the PE and MC
processor type and speed. In addition, the SIMD instruction synchronization
mechanism proved to be an inexpensive and effective MIMD global barrier
synchronization operation. This hardware support is a strong advantage
compared with doing synchronization in software.

110 The PASM reconfigurable parallel processing system

Perhaps the most important lesson learned from the construction of the
PASM prototype is the value of the conservative use of technology in a proof-
of-concept design. Much of the prototype was constructed with commodity
chips and boards. The use of readily available technology (e.g. two-sided
printed circuit boards and standard mechanical design) for the remainder of
the system helped the team maintain a careful budget compared with tradi-
tional parallel system prototypes. The conservative use of technology also
allowed the prototype to be built on a rigid schedule. At the time the small-
scale prototype became operational in 1987, it did not have an impressive
megaflop rating. However, its balanced, characterizable design and inherent
reliability have supported years of algorithm studies. Now, after several years
of operation, the absolute performance of the prototype is not an issue.
With the rapid progress of technology, any extra money and effort spent to
incorporate faster technology would not have improved its usefulness as a
prototype and conceptual research tool, nor would it have increased its
lifespan.

As stated in section 3.3.7, the goal for the prototype effort was to build a
robust, small-scale, proof-of-concept machine for experimenting with the three

dimensions of reconfigurability that the PASM design concept involved: parti- -

tionability, mode of parallelism and connections among the PEs. This goal was
accomplished, and the prototype is supporting both research and education.

3.6 Summary

In this chapter, the PASM parallel processing system design concepts were
overviewed and the control hierarchy as implemented in the prototype was
described in detail. Salient features of PASM are its ability to operate in both
the SIMD and the MIMD modes of parallelism and to switch dynamically
between modes (mixed-mode), to be configured into one or more indepen-
dent or cooperating submachines and to vary inter-PE connectivity. Hence
PASM is dynamically reconfigurable along three dimensions: mode of paral-
lelism, partitionability and communication among processors. The flexibility
of this design permits the effective implementation of a wide range of appli-
cations. To aid in realizing the performance benefits, an explicitly parallel
language (ELP) compiler and a tool for debugging and performance moni-
toring (CAPS) have been developed. The prototype serves as a testbed for
evaluating the usefulness of the PASM design concepts and enhancements. A
large group of faculty and students use the prototype to study reconfigurable
parallel systems and their application to real computing problems.

Current projects associated with the PASM prototype include extending
ELP (Nichols, Siegel and Dietz, 1993), examining the trade-offs involved with
mixed-mode parallelism (e.g. Fineberg, Casavant and Siegel (1991)), automatic
mode selection (Watson ef al., 1994), performing application experiments on
the prototype and extrapolating to larger machines (e.g. Bronson, Casavant
and Jamieson (1990)), optimizing SIMD control unit/PE execution over-
lap (Armstrong et al, 1991), exploring ways to use partitioning (Nation,
Maciejewski and Siegel, 1993), mapping tasks onto reconfigurable parallel

References |11

machines (Siegel, Armstrong and Watson, 1992), enhancin;

et al.,. 1291), exploiting visualization for undgrstanding sygﬁnl: Sb(el{lgezgf
investigating an automatic reconfiguration system for improving performancé
fmd fault tolerance (Chu et al, 1989) and researching hardware design
improvements (e.g. Nation et al. (1990)). The PASM prototype is a constantly

evolving tool for studyi i ; .
system 5 or studying the programming and design of parallel processing

Acknowledgements

. A large number of people have made significant contribution: i
and development of the PASM concept agrrlld prototype. These spct;())}:lt;ea?:siﬁlel
coauthors of the publications in the PASM reading lists in Siegel ef al. (1987)
and Armstrong, Watson and Siegel (1993). Numerous agencies have supported
aspects of PASM-related research: Air Force Office of Scientific Research
Army Research Office, Ballistic Missile Defense Agency, Defense Mappiné
Agency, Naval chan Systems Center, Naval Research Laboratory, National
Sc1er}ce Foundation, Office of Naval Research and Rome Labora;ory. IBM
provided a grant for much of the prototype equipment. Donations for various
parts for the prototype were provided by Amphenol Products, Augat Inc
Belt!en, I_/Iotorola and Power One. The Purdue University School of Electrica.i
Englneemg Head (Professor Schwartz) and past Heads (Professors Coates
and 'Hoefﬂmger) hi_we been very supportive of the PASM endeavor. Section
3.2 includes me}tenal from ‘The organization of the PASM reconfigurable
paralle] processing system’, by H.J. Siegel, W.G. Nation and M.D. Allemang
in the proceedings of the 1990 Parallel Computing Workshop, sponsored b);
the. Coxpputer and Information Science Department at The Ohio State
Uqursxty, March. 1990, pp. 1-12. Section 3.3 includes material from ‘Design
and 1mplen-1entat10n of the PASM prototype control hierarchy’, by T
Schwederski, W.G. Nation, H.J. Siegel and D.G. Meyer, in the procee’dings 01.’
thq 2nd International Conference on Supercomputing, May 1987, pp. 418-27
This work was supported by the National Science Foundation under grani
number CDA-9015696 and by NASA under grant number NGT-50961. The

authors thank Janet M. Siegel, Gene Saghi and Pierr i
1 . s e Pero f
on this TAnvseript gh or their comments

References

Adams III, G.B. and Siegel, H.J. (1982) The extra : - i
connection network for supersygtems? IEEE ”anitagz':;feé-glfzi(lgl)t ﬁl;—l’Sar nter

Armstrong, J.B., Nlchols,. M.A_, Siegel, H.J. et al. (1991) Examining the effects of .CU/PE
overlap and synchronization overhead when using the Complete Sums Approach to
image correlation, in Third IEEE Symp. Parallel and Distributed Processing, IEEE
Computer Society Press, Los Alamitos CA, pp. 224-32. ,

Armstrong, J.B., Watson, D.W. and Siegel, H.J. (1993) Software issues for the PASM

parallel processing system, in Software for Parallel C i i
and L. Grandinetti), Springer, Berlin, pg. 134—48.e ompuation (eds 3. Kowalik

112 The PASM reconfigurable parallel processing system

Astfalk, G. (1992) Convex’s view on TFLOPS computing, in Parallel Computing and
Transputer Applications (eds M. Valero, E. Onate, M. Jane, JL. Larriba and B.
Suarez), 10S Press/CIMNE, Barcelona, pp. 51-61.

Barnes, G.H., Brown, R., Kato, M. et al. (1968) The Illiac IV computer. IEEE Trans.
Comp., C-17 (8) 746-57.

Batcher, K.E. (1976) The flip network in STARAN, in 1976 Int. Conf Parallel
Processing, IEEE, New York, pp. 65-71.

Batcher, K.E. (1982) Bit serial parallel processing systems. [EEE Trans. Comp., C-31
(5) 377-84.

Bell, T.E. (1992) Beyond today’s supercomputers. /[EEE Spectrum, 29 (9), 72-5.

Blank, T. (1990) The MasPar MP-1 architecture. IEEE Compcon, ZH.

Bouknight, W.J., Denenberg, S.A., McIntyre, D.E. et al. (1972) The Illiac IV system.
Proc. IEEE, 60 (4) 369-88. R o
Bronson, E.C., Casavant, T.L. and Jamieson, L.H. (1990) Expenm_ental application-
driven architecture analysis of an SIMD/MIMD parallel processing system. IEEE

Trans. Parallel Distrib. Syst., 1 (2) 195-205.))

Chu, C.H.,, Delp, E.J, Jamieson, L.H. et al (1989) A model for an intelligent oper-
ating system for executing image understanding tasks on a reconfigurable parallel
architecture. J. Parallel Distrib. Comp., 6 (3) 598-622.

Crowther, W., Goodhue, J., Thomas, R. et al. (1985) Performance measurements on a
128-node butterfly parallel processor, in 1985 Int. Conf Parallel Processing, IEEE
Computer Society Press, Washington DC, pp. 531-40.)

Darema, F,, George, D.A., Norton, V.A. et al. (1988) A single-program-multiple-data
computational model for EPEX/FORTRAN, Parallel Co_mg., 7 (1) 11-24.

Dennis, J.B., Boughton, G.A. and Leung, C.K.C. (1980) Building blocks for data flow
prototypes, in 7th Ann. Symp. Computer Architecture, IEEE, New Y‘ork', pp- 1-8.
Dietz, H.G., Schwederski, T., O’Keefe, M.T. et al. (1989) Static synchronization beyond

VLIW, in Supercomputing 89, ACM, New York, pp. 416-25.)

Duclos, P, Boer?i, E, Aﬂguinf M. et al. (1988) Image processing on SIMD/SPMD archi-
tecture: OPSILA, in 9th Int. Conf Pattern Recognition, IEEE Computer Society
Press, Washington DC, pp. 430-3. S

Fineberg, S.A., Casavant, TL., Schwederski, T. et al. (1988) Non-deterministic instruc-
tion time experiments on the PASM system prototype, in 1988 Int. Conf. Pa(allel
Processing, Pennsylvania State University Press, pp. 444-51.))

Fineberg, S.A., Casavant, T.L. and Siegel, H.J. (1991) Exp.enmental analysx.s of a mixed-
mode parallel architecture using bitonic sequence sorting. J. Parallel Distrib. Comp.,
11 (3) 239-51.

Flynn, M.1. (1966) Very high-speed computing systems. Proc. IEEE: 54 (12) 1901-9.

Fountain, T.J. (1981) CLIP4: progress report, in Languages and Architectures for Image
Processing (eds M.JB. Duff and S. Levialdi), Academic Press, London, pp. 281-91.

Gottlieb, A., Grishman, R., Kruskal, C.P. et al. (1983) The NYU Ultracomputer —
designing an MIMD shared-memory parallel computer. I[EEE Trans. Comp., C-32

: 2) 175-89.

' Ha(ygs, JP. and Mudge, T. (1989) Hypercube supercomputers. Proc. IEEE, T1 (12)

29-41.

Hillliss, W.D. and Tucker, L.W. (1993) The CM-5 Connection Machine: a scalable super-
computer. Commun. ACM, 36 (11) 30-40.]

Hord, RM. (1982) The llliac IV, the First Supercomputer, Computer Science Press,
Rockville MD.)))

Hunt, D.J. (1989) AMT DAP - a processor array in a workstation environment. Comp.
Syst. Sci. Eng., 4 (2) 107-14.)
IBM Corporation (1993) IBM 9076 Scalable POWERparallel 1, IBM Corporation
GH26-7219-0, Armonk NY.))
Kim, S.D., Nichols, M.A. and Siegel, H.J. (1991) Modeling ovcrlapped operation

between the control unit and processing elements in an SIMD machine. J. Parallel

References 1|13

Distrib. Comp., 12 (4), 329-42,

Krishnamurti, R. and Ma, E. (1988) The processor partitioning problem in special-
purpose partitionable systems, in 1988 Int. Conf Parallel Processing, Pennsylvania
State University Press, pp. 434-43.

Kuck, D.I, Davidson, E.S., Lawrie, D.H. et al. (1986) Parallel supercomputing today
and the Cedar approach. Science, 231 967-74.

Lawrie, D.H. (1975) Access and alignment of data in an array processor. [EEE Trans.
Comp., C-24 (12) 1145-55.

Lipovski, G.J. and Malek, M. (1987) Parallel Computing: Theory and Comparisons,
John Wiley & Sons, New York NY.

Lumpp, Jr, JE., Fineberg, S.A., Nation, W.G. er al. (1991) CAPS: a coding aid for
PASM. Commun. ACM, 34 (11) 104-17.

Nation, W.G., Fineberg, S.A., Allemang, M.D. et al. (1990) Efficient masking techniques
for large-scale SIMD architectures, in Frontiers '90: The 3rd Symp. Frontiers of
Massively Farallel Computation, IEEE Computer Society Press, Los Alamitos CA,
pp. 259-64.

Nation, W.G., Maciejewski, A.A. and Siegel, H.J. (1993) A methodology for exploiting
concurrency among independent tasks in partitionable parallel processing systems.
J. Parallel Distrib. Comp., 16 (3) 271-8.

Nichols, M.A., Siegel, H.J. and Dietz, H.G. (1993) Data management and control-flow
aspects of an SIMD/SPMD paraliel language/compiler. IEEE Trans. Parallel Distrib.
Syst., 4 (2) 222-34.

Nugent, S.F. (1988) The iPSC/2 direct-connect communications technology, in 3rd Conf.
Hypercube Computers and Applications, ACM, New York, pp. 51-60.

Nutt, G.J. (1977) Microprocessor implementation of a parallel processor, in 4th Ann.
Symp. Computer Architecture, IEEE, New York, pp. 147-52.

Patel, JH. (1981) Performance of processor-memory interconnections for multi-
processors. IEEE Trans. Comp., C-30 (10) 771-80.

Pease III, M.C. (1977) The indirect binary n-cube microprocessor array. IEEE Trans,
Comp., C-26 (5) 458-73.

Pfister, G.F,, Brantley, W.C., George, D.A. et al. (1985) The IBM Research Parallel
Processor Prototype (RP3): introduction and architecture, in 7985 Int. Conf Parallel
Processing, IEEE Computer Society Press, Washington DC, pp. 764-71.

Philippsen, M., Warschko, T., Tichy, W. et al. (1993) Project Triton: towards improved
programmability of parallel machines, in 26th Hawaii Int. Conf System Sciences,
IEEE Computer Society Press, Los Alamitos CA, pp. 192-201.

Seitz, C.L. (1985) The Cosmic Cube. Comm. ACM, 28 (1) 22-33.

Siegel, HJ, Armstrong, JB. and Watson, D.W. (1992) Mapping computer-vision-
related tasks onto reconfigurable parallel-processing systems. IEEE Comp., 25)
54-63.

Siegel, H.J. (1990) Interconnection Netwarks for Large-Scale Parallel Processing: Theory
and Case Studies, 2nd edn, McGraw-Hill, New York NY,

Siegel, H.J, Nation, W.G., Kruskal, C.P. et al. (1989) Using the multistage cube network
topology in parallel supercomputers. Proc. IEEE, 77 (12) 1932-53.

Siegel, H.J., Siegel, LJ., Kemmerer, F.C. et al. (1981) PASM: a partitionable SIMD/
MIMD system for image processing and pattern recognition. /[EEE Trans. Comp.,
C-30 (12) 934-47.

Siegel, H.J.,, Schwederski, T., Kuehn, J.T. et al. (1987) An overview of the PASM parallel
processing system, in Computer Architecture (eds D.D. Gajski, V.M. Milutinovic,
HL.J Siegel and B.P. Furht), IEEE Computer Society Press, Washington DC, PP-
387-407.

Thanawastien, S. and Nelson, V.P. (1981) Interference analysis of shuffle/exchange
networks. IEEE Trans. Comp., C-30 (8) 545-56.

Tucker, L.W. and Robertson, G.G. (1988) Architecture and applications of the
Connection Machine. IEEE Comp., 21 (8) 26-38.

{14 The PASM reconfigurable parallel processing system

Watson, D.W,, Siegel, H.J., Antonio, LK. ef al. (1994) A blocked-based mode selection
model for SIMD/SPMD parallel environments. J. Parallel Distrib. Comp., 21 (3)
271-88.

Wu, C-L. and Feng, T-Y. (1980) On a class of muitistage interconnection networks.

IEEE Trans. Comp., C-29 (8) 694-702.
Zorpette, G. (1992) The power of parallelism. /[EEE Spectrum, 29 (9) 28-33.

|

Part Two
Theory and models

