
Gadget Freak
The BeerBot is the Next Generation in Beer Security

Design News
April 26, 2004

To keep his roommates from pilfering his beer reserves, Ryan resolved to build a Fort Knox-like
device to protect his brew. The BeerBot waits for a correct activation code and then pours beer until
a sensor detects that the cup is full. If a wrong code is entered, a speaker sounds an alarm and a
counter is incremented—a combo that would surely prevent all but the most foolhardy from
attempting another break-in. Ryan now sleeps peacefully knowing his beer is safe and sound.

BeerBot parts list
Amt Part Description Allied Part #
1 7-segment LED display 505-5462
1 Green LED 263-1239
1 Red LED 263-0115
1 330-Ohm DIP resistor array 755-4815
1 Piezoelectric speaker 854-6636
1 AND gate (quad 2-input) 263-2778
1 Inverter (hex) 263-0167
1 BCD to 7-segment LED decoder 735-4097
1 4 MHz Crystal 614-0014
1 SPDT Relay 686-0013
1 1N4001 Diode 266-0001
2 2N3904 npn transistor 568-8253
1 Push button (NO momentary) 855-1065
3 Toggle switch (SPST) 683-0048
1 Microswitch 676-4198
1 5V Regulator 568-3101
Additional parts required: Capacitors, resistors, PIC microcontroller, old CD-ROM drive, fluid pump
and tubing, fluid sensor, some brewskis

Description:

The BeerBot requires a code to be entered before it will operate. If the three toggle switches are set
to an incorrect combination and the enter button is pushed, the 7-segment LED increments one and
sounds an alarm. Each additional time an incorrect combination is entered, the display counts up
one and an increasingly annoying alarm is sounded. Once the correct combination is entered, a tray
is ejected and waits for a cup to be placed on it (detected by a micro switch). The tray then retracts
and, as it hits a hinge on its way back into the housing, a fluid detector is lowered into the cup. A
pump then begins to pour hoppy goodness from a reservoir into the cup until either the enter button
is pressed again or the cup is full.

Electrical:

One of the motivations for designing the BeerBot (besides thwarting my
thieving roommates) was to create a project to explore the functionality
of a PIC microcontroller, as well as other basic circuit elements. So, this
is a good beginners’ project to start playing with microcontrollers and
circuits in general. I used a PIC16F84, though there a lot of other PIC
models that would work equally well. The PIC16F84 has only 13 I/Os,
so some additional components were used to aid in the logic. For
example, AND gates and inverters were used to reduce the toggle
combination to a single input and a BCD to 7-segment LED decoder is
used to reduce the 7-segment display outputs from seven to four. (Click for full wiring diagram)

As a first foray into PIC programming, it is extremely advantageous to use a high level programming
language like PicBasic Pro. Assembly language is the main alternative and likely to turn you off from
microcontrollers if you’re a newbie to writing code. Here is my PicBasic code for the BeerBot. Even
if you’ve never seen PicBasic, it is a very readable language and should let you better understand
how the switches, sensors and actuators interact.

The fluid sensor can be purchased from various online vendors or built yourself if you’re feeling
saucy. It is a relatively simple circuit that outputs 5V when two metal leads are both in a fluid.

Mechanical:

Because it’s often tricky to design a device to produce linear motion from scratch, the cup tray is
simply an old CD-ROM drive that was put out to pasture. The pump, which is immersed in the beer
container (which can be housed within the BeerBot), is a cheap bilge pump rated at 12V but will
drizzle out foamy beer at 5V. Rather than have two power supplies, I decided waiting a few more
seconds for beer would only make it taste that much sweeter when the nectar hit my lips.

Possible Improvements:

The possibilities are endless. If your roommates are smarter than mine, you would probably want to
increase the number of input combinations (three toggle switches have only eight possible combos).
A keypad is the logical solution. Also, the 7-segment LED can be upgraded to an LCD to display
more useful information as well as flaunt your electronic savvy.

In my particular project, some of the components are unnecessary (as you can quickly deduce from
the wiring diagram). The logic gates, for example, could be eliminated and replaced with slightly
creative wiring. But more ICs on your board are useful for better impressing your nerdy friends.

PicBASIC Code:
 ' ** define variables ** '
RED var PORTA.0 'RED LED output
CUP var PORTA.1 'CUP input
CODE var PORTA.2 'CODE input
ENTER var PORTA.3 'ENTER input

SENSOR var PORTA.4 'SENSOR input
ALARM var PORTB.0 'ALARM output
PUMP var PORTB.1 'PUMP output
RVS var PORTB.2 'output for motor in reverse direction
FWD var PORTB.3 'output for motor in forward direction

pins var byte[11] '11 element array for pin settings
song1 var byte[12] 'array for song notes
i var byte 'for designating pin
j var byte 'counting variable
ms var byte 'for alarm counter
tone var byte 'tone of buzzer (1 -> 127)
increment var byte 'add/subtract increment from tone
alarm_time var byte 'length of time to sound alarm (in 12 ms)
motor_time var byte 'length of time to push cup (in ms)
auto_off var byte 'max length of time to keep pump on (safety feature)
reset_time var byte 'max length of time until program is reset (safety feature)
bring_back var byte 'max length of time to wait, after cup is full, until plate is
 'brought back in

 ' ** START ** '
CLEAR 'clear registries

 ' ** define port settings ** '
TRISA = %11111110 'PORTA.0 is LED output, rest are inputs
TRISB = %00000000 'ALL PORTB pins are outputs

 ' ** define which pins display what ** '
'pins[i] = %ABCD0000 'first 4 pins are Qa,Qb,Qc,Qd; last 4 are low
 'PORTSB.0,1,2,3 (ALARM,PUMP,RVS,FWD) are off
 'PORTSB.4,5,6,7 (Qd,Qc,Qb,Qa) depend on i
pins[0] = %00000000 'diplay 0 (0000)
pins[1] = %10000000 'diplay 1 (1000)
pins[2] = %01000000 'diplay 2 (0100)
pins[3] = %11000000 'diplay 3 (1100)
pins[4] = %00100000 'diplay 4 (0010)
pins[5] = %10100000 'diplay 5 (1010)
pins[6] = %01100000 'diplay 6 (0110)
pins[7] = %11100000 'diplay 7 (1110)
pins[8] = %00010000 'diplay 8 (0001)
pins[9] = %10010000 'diplay 9 (1001)
pins[10] = %11110000 'diplay ? (1111)

 ' ** song array ** '
song1[0] = 65
song1[1] = 69
song1[2] = 73
song1[3] = 77
song1[4] = 82
song1[5] = 87
song1[6] = 92
song1[7] = 97
song1[8] = 103
song1[9] = 110
song1[10] = 116
song1[11] = 123

 ' ** initialize ** '

motor_time = 75 '0.6 seconds (12*.075)
alarm_time = 250 '3 seconds (12*.250)
auto_off = 833 '10 seconds (12*.833)
reset_time = 25000 '300 seconds (12*2.500)
bring_back = 833 '10 seconds (12*.833)
increment = 1
i = 0 'reset counter to zero
LOW FWD 'make sure motor (in fwd direction) is off
LOW RVS 'make sure motor (in rev direction) is off
LOW RED 'make sure red LED is off
PORTB = pins[0] 'display zero on the 7-seg display
SOUND ALARM,[50,25] 'beep alarm to signal that power has been turned
on
LOW ALARM 'turn alarm off
PORTB = pins[10] 'display nothing on the 7-seg display
PAUSE 50 'wait 50 ms
PORTB = pins[0] 'display zero on the 7-seg display
SOUND ALARM,[50,25] 'again, signal that power has turned on
LOW ALARM 'turn alarm off

 ' ** MAIN ** '
MYLOOP:
 LOW RED 'turn red LED off
 IF ((CODE=1) AND (ENTER=1)) THEN 'if the code is correct, then
 i = 0 'reset counter to zero
 PORTB = pins[i] 'change display
 HIGH FWD 'forward motor
 PAUSE motor_time 'pause for motor_time
 LOW FWD 'turn off motor
 GOSUB _NOTIFY 'beep alarm to signal that user needs to do
something
 GOSUB _CUPIN 'wait for cup to be placed on plate
 ENDIF
 IF ((CODE=0) AND (ENTER=1)) THEN 'if the code is incorrect, then
 i = i+1 'increment counter
 IF (i>9) THEN 'if counter is at 10, then
 i = 0 'reset to 0
 ENDIF
 PORTB = pins[i] 'change display
 HIGH RED 'turn red LED on
 GOSUB _ALARM 'sound alarm
 ENDIF
 PAUSE 50 'small debounce
GOTO MYLOOP

 ' ** subroutine for sounding alarm ** '
_ALARM:
 tone = 1 'start alarm's tone at low frequency
 FOR ms=0 to alarm_time 'for alarm_time
 IF ((CODE=1) AND (ENTER=1)) THEN 'if correct code is entered, then
 GOTO MYLOOP 'go back to MYLOOP
 ENDIF
 IF (ENTER=1) THEN 'if ENTER is pressed, then
 HIGH RED 'turn the red LED on
 ELSE 'otherwise
 LOW RED 'keep the red LED off
 ENDIF

 SOUND ALARM,[tone,1] 'sound alarm for 12ms
 tone = tone + increment*2*i 'increment tone
 IF ((tone>127) OR (tone<2)) THEN'if the tone is at its boundaries, then
 increment = -i 'switch the sign (+/-) of increment
 ENDIF
 next ms 'go back thru the loop
GOTO MYLOOP 'go back to MYLOOP

 ' ** subroutine for bringing cup in ** '
_CUPIN:
 IF (CUP=1) THEN 'if the cup button is triggered, then
 PAUSE 20 'wait for 10*.020 seconds and
 IF (CUP=1) THEN 'check it again to make sure a cup is on the plate
 HIGH RVS 'reverse motor
 PAUSE motor_time 'for motor_time seconds
 LOW RVS 'turn off motor
 IF (CUP=1) THEN 'if there is still a cup on the plate, then
 PAUSE 100
 HIGH PUMP 'turn on the pump
 GOSUB _FULL 'until the cup is full
 ELSE 'otherwise
 HIGH FWD 'push the cup back out
 PAUSE motor_time 'for motor_time seconds
 LOW FWD 'turn off motor
 ENDIF
 ENDIF
 ENDIF
GOSUB _CUPIN

 ' ** subroutine for checking to see if the cup is full ** '
_FULL:
 IF (CUP=1) THEN 'as long as there is a cup on the plate, then
 IF (SENSOR=1) THEN 'if the sensor is tripped, then
 PAUSE 10 'pause for .01 sec
 IF (SENSOR=1) THEN 'check it again to make sure, then
 GOSUB _CUPOUT 'push the cup out
 ENDIF
 ENDIF
 PAUSE 10 'wait .01 sec
 ELSE 'if the cup is ever lifted from the plate, then
 GOSUB _CUPOUT 'push the cup back out
 ENDIF
GOSUB _FULL 'if the cup hasn't been filled after auto_off time, then
 'push it out anyway (to prevent the pump from running
indefinitely)

 ' ** subroutine for pushing the cup back out ** '
_CUPOUT:
 i=0 'reset counter to zero
 PORTB = pins[i] 'change display
 LOW PUMP 'turn off the pump
 PAUSE 500 'wait for 1/2 second to let pump bilge rest of liquid
 HIGH FWD 'push the cup out
 PAUSE motor_time 'for motor_time seconds

 LOW FWD 'turn off motor
 GOSUB _NOTIFY 'beep alarm to signal that user needs to do
something
 GOSUB _CUPBACKIN

_CUPBACKIN:
 IF (CUP=0) THEN 'if the cup is removed, then
 HIGH RVS 'reverse motor
 PAUSE motor_time 'for motor_time seconds
 LOW RVS 'turn off motor
 GOTO MYLOOP 'go back to MYLOOP
 ENDIF
GOSUB _CUPBACKIN 'go back to CUPBACKIN

 ' ** subroutine for beeping alarm to signal that user needs to do something ** '
_NOTIFY:
 FOR ms=0 TO 11
 PORTB = pins[ms]
 SOUND ALARM,[song1[ms],5]
 PAUSE 8
 NEXT ms
 PORTB = pins[i]
 RETURN

Other graphics:

See It In Action:

The BeerBot can be viewed in all its glory at
http://www.engr.colostate.edu/~dga/video_demos/mechatronics/index.html#PIC_PROJECTS.

CAD drawings and other information can be found at
http://www.engr.colostate.edu/~ryanf/beerbot.htm

http://www.engr.colostate.edu/%7Edga/video_demos/mechatronics/index.html
http://www.engr.colostate.edu/~ryanf/beerbot.htm

