Penny Slot Machine

Submitted by: Richard Hopkins and Jen Harmel

Mechatronics and Measurement Systems Colorado State University December 7, 2004

Design Summary

This project is a billiards-themed slot machine (see Figure 1). This slot machine is activated by a penny and then a button or handle. This spins three reels, each of which have eight numbers on them, 1 through 8, in the form of billiard balls. As the reels spin, music is played, accompanied by flashing LED's. If these three reels stop on a winning combination of numbers, then the machine will pay out coins to the user, accompanied by a chime sound for each coin paid out to the winner. During the slot machine operation, messages are displayed on an LCD screen, instructing the user on what to do and what is happening. A video demonstration of the slot machine can be viewed at the following link:

http://www.engr.colostate.edu/~dga/video_demos/mechatronics/PIC_student_projects/PIC_slot_machine.wmv

Other student projects can be viewed at the following link:

http://www.engr.colostate.edu/~dga/video_demos/mechatronics/index.html#PIC_PROJECTS

The heart of this device is the circuit, which controls all of the electrical devices contained inside the slot machine (Figure 5). When plugged in, the slot machine prompts the user to 'insert coin' through a LCD display. Once a coin is inserted, a photo cell will detect it and send a signal to the master microcontroller telling it that a coin was inserted. The LCD will now read 'spin reels' and the user can then activate the stepper motors to spin the reels by either pressing the spin button or by pulling the handle.

Once the button or handle is used the master microcontroller will detect this and tell the three stepper motor microcontrollers to initiate their programs (found in Appendix A), along with starting the music that is output to a speaker, and a sequence of flashing LED lights. The stepper motor microcontrollers each generate a random number between 0 and 7 and use this number to spin their assigned reel from their original positions plus a specific number of positions, determined by the random number, to get to their new position. Each time, all three microcontrollers store their new position into memory to be

used the next time the slot machine is activated. Each microcontroller sends pluses to their individual stepper motor circuit which then rotates the steeper motors (Figure 7). The amount of rotation is determined by the number of pulses sent by the microcontroller. The stepper motors are each directly connected to a reel with eight numbers on them. For visual effects, the reels are spun through multiple rotations before stopping at their new position.

All three microcontrollers then report back to the main microcontroller their new position. If together the three positions produce a winning combination, the main microcontroller then sends pluses to a relay that runs a set of solenoids that pushes out the number of coins that were won, and produces a chiming sound. If 3-8's are produced, the LCD displays 'jackpot' and 10 coins are paid out. For 3 of a kind other than 3-8's 'winner' is displayed on the LCD and three coins are released. For two of a kind, the payout is 1 coin and 'credit' is displayed on the LCD. If any other set of numbers is produced, nothing is paid out and the LCD displays 'Try Again'. In all cases the program now starts over and the LCD displays 'insert coin' and the slot machine is ready to be played again.

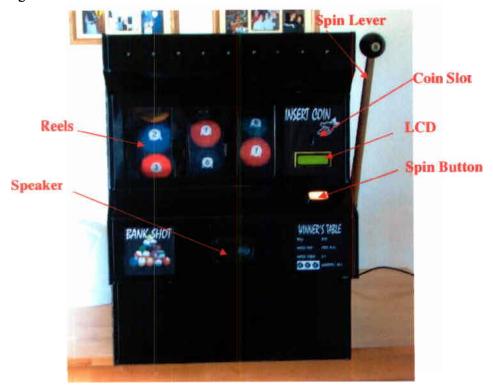


Figure 1: External View of the Slot Machine

Design Details

As indicated in the functional diagram (see Figures 2 and 3), there are two user inputs, the spin button and the spin lever, as well as one automatic sensor input, the photo cell in the coin detector, which input information to the master PIC microcontroller. The master PIC is interfaced with 3 motor PICs, which communicate with the master PIC using both serial and handshake communication, and an LED PIC, which communicates with the master PIC via handshake communication. The master PIC outputs signals to the motor PICs and the LED PIC to start their respective programs, and the master PIC also controls the LCD display and outputs pulses to the solenoid for the payout mechanism. Each motor PIC controls one stepper motor and reel, outputting pulses to the bipolar stepper motor driver to move the reel to its new location, calculated from a random number generator in the PIC software. The B motor PIC also controls the speaker, signaling it to play music as the reels spin. The LED pic controls nine LED's mounted on the top of the slot machine, scrolling with different patterns before and during the spin cycle.

The major components of the slot machine are all housed inside a sheet metal case, supported with an iron frame. The lever is a pool cue and an 8-ball, attached to an emergency break handle from a car to produce the desired ratcheting action. The reels (see Figure 7) are run by bipolar stepper motors, and are cut out of 1 ½ inch thick styrofoam, mounted on an all-thread axle. The payout mechanism (see Fig 6) consists of 1-inch PVC pipe, a solenoid, and an aluminum base. The circuit consists of the following major components:

- (5) 16F84A PIC Microcontrollers
- (3) EDE1204 Bipolar Stepper Motor Controllers
- (3) L293D Dual H-Bridges with Flyback Diodes
- (3) Bipolar Stepper Motors
- Solid State Relay
- Digital Sound Module with Amplified Speaker
- Doorbell (2 solenoids with chime)

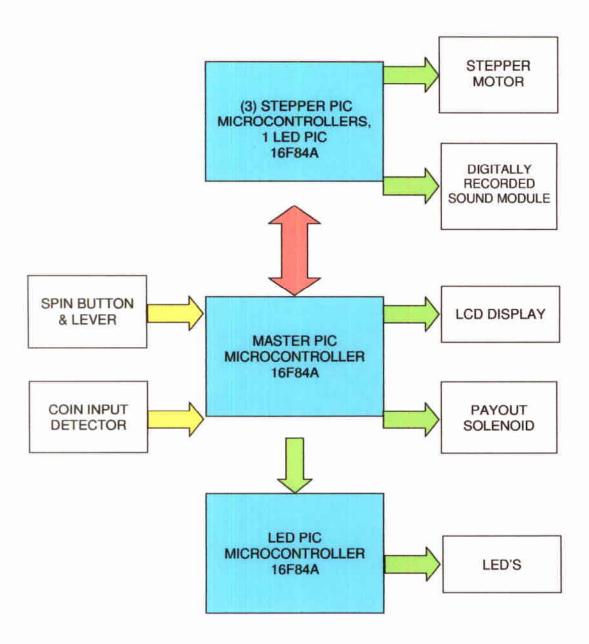


Figure 2: Functional Diagram

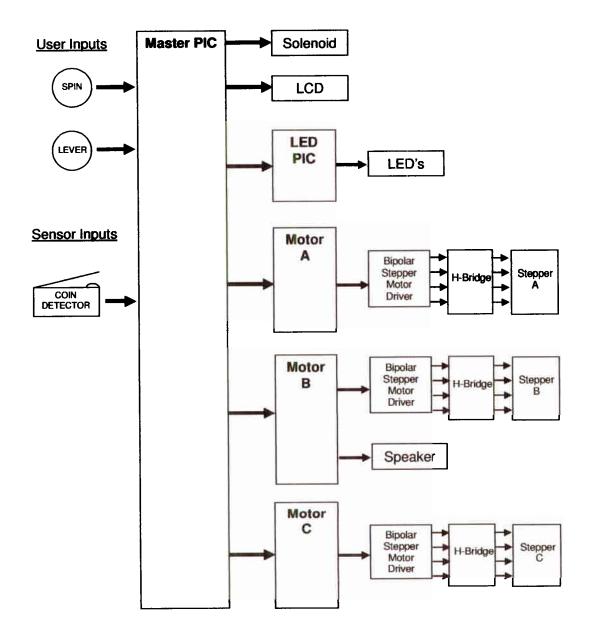


Figure 3: Functional Wiring Diagram

Device Pictures

Figure 4: Internal view of the slot machine

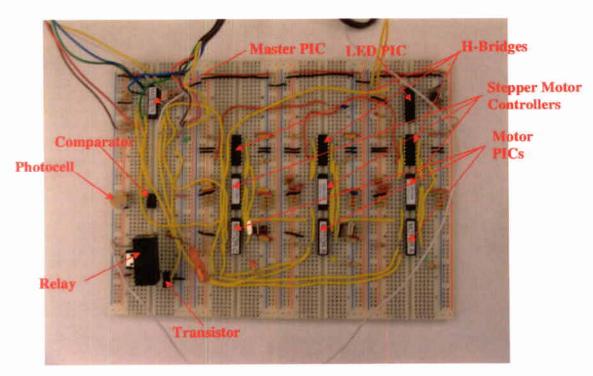


Figure 5: Circuit Board

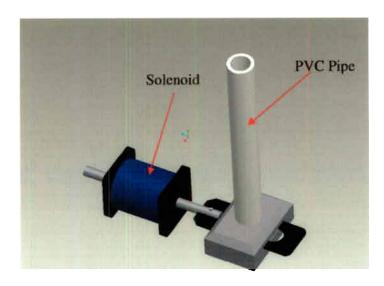


Figure 6: Payout Mechanism

Figure 7: Reel assembly

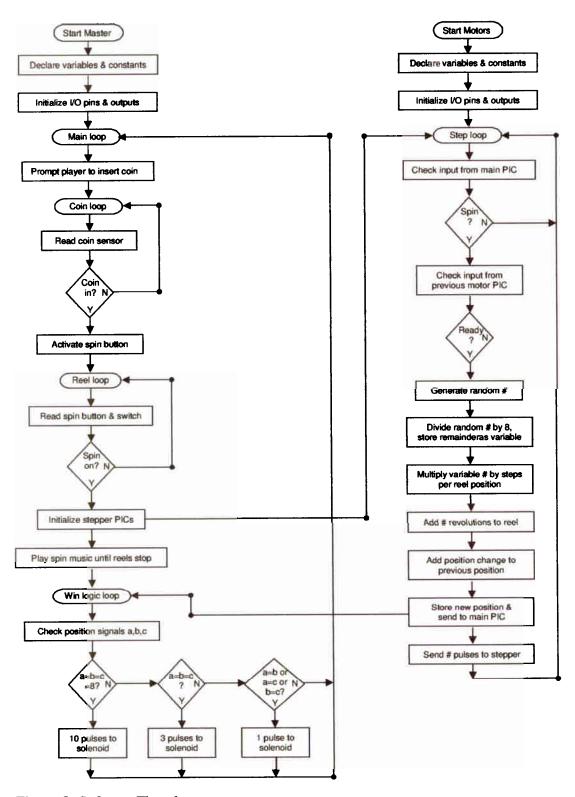


Figure 8: Software Flowchart

Table 1: Itemized Project Cost	Units	Unit Price	Cost	Donation Value	Paid	
Parallel 16x2 LCD Display	1	\$11.85	\$11.85		\$11.85	
Bipolar Stepper Motor	3	\$4.95	\$14.85		\$14.85	
EDE 1204 Bipolar Stepper Motor Driver	3	\$8.30	\$24.90		\$24.90	
Microchip PIC16F84A Microcontroller	5	\$5.00	\$25.00	\$5.00	\$20.00	
H-Bridge with Flyback Diode	3	\$2.00	\$6.00		\$6.00	
Computer Power Supply	1	\$2.50	\$2.50	\$0.00	\$2.50	
5V DC Relay	1	\$2.00	\$2.00	\$2.00	\$0.00	
Digital Sound Module	1	\$10.00	\$10.00		\$10.00	
LM2903N Comparator	1	\$0.25	\$0.25		\$0.25	
Photocell	1	\$0.89	\$0.89		\$0.89	
LED grab bag	1	\$3.00	\$3.00		\$3.00	
Protoboard	4	\$5.00	\$20.00	\$5.00	\$15.00	
1KΩ Resistor	25	\$0.01	\$0.25	\$0.25	\$0.00	
10Ω Resistor	2	\$0.01	\$0.02	\$0.02	\$0.00	
4.7KΩ Resistor	20	\$0.01	\$0.20	\$0.20	\$0.00	
2KΩ Resistor	1 1	\$0.01	\$0.01	\$0.01	\$0.00	
10KΩ Resistor	5	\$0.01	\$0.05	\$0.05	\$0.00	
22 pF Capacitor	10	\$0.07	\$0.70	\$0.70	\$0.00	
0.1 μF Capacitor	15	\$0.08	\$1.20	\$1.20	\$0.00	
NPN Power Transistor	1	\$0.37	\$0.37		\$0.37	
Slot Machine Spin Button	1	\$1.00	\$1.00		\$1.00	
4 MHz Oscillator Crystal	5	\$0.59	\$2.95	\$0.59	\$2.36	
Aluminum Stock	2	\$5.00	\$10.00	\$10.00	\$0.00	
Cast Iron Pipe	1	\$1.00	\$1.00	\$1.00	\$0.00	
Styrofoam Insulation	1	\$3.25	\$3.25		\$3.25	
Fasteners	20	\$1.00	\$20.00		\$20.00	
8 Ball	1	\$6.00	\$6.00		\$6.00	
Pool Cue	1	\$5.00	\$5.00	\$5.00	\$0.00	
Amplified Computer Speaker	1	\$5.00	\$5.00	\$5.00	\$0.00	
Sheet Metal	1	\$50.00	\$50.00	\$50.00	\$0.00	
Doorbell	1	\$10.00	\$10.00	\$10.00	\$0.00	
Car Emergency Break Handle	1	\$2.00	\$2.00	\$2.00	\$0.00	
All-Thread	1	\$5.00	\$5.00		\$5.00	
Total			\$245.24		\$147.22	

Appendix A-Software

CODE FOR MASTER PIC

This program waits for a coin to be inserted, and then waits for the spin button to be pushed or the lever to be pulled, prompting the user to insert a coin and then to spin the reels. Then, this program sends a signal to the motor PICs to have them determine their new position and report back serially. The program then waits for a signal from motor PIC C that it is done spinning before performing the logic on the reported reel positions to determine whether the result is a winning combination. If a winning combination is reached, the program displays a message on the LCD screen and sends pulses to the solenoid to pay out the winnings. If it is not a winning combination, the program displays a message prompting the user to try again. Then, in either case, the program returns to the beginning.

Include "modedefs.bas" start Var PORTB.7 coin Var PORTB.0 spin Var PORTB.1 solenoid Var PORTB.2 a_motor Var PORTB.4 b_motor Var PORTB.5 c_motor Var PORTB.6 a Var word b Var byte c Var byte

TRISB = %01110011

LOW start: LOW solenoid: LOW PORTB.3

Pause 500

ready: Lcdout \$fe, 1 Lcdout "Insert Coin" While (coin==0) : Wend Goto begin

begin:

Lcdout \$fe, 1 Lcdout "Spin Reels" While (spin==0): Wend

High start

SERIN a_motor,N300, a SERIN b_motor,N300, b SERIN c_motor,N300, c

Low start Goto motor 'include mode definitions
'B7 starts motor pics
'coin input sensor
'spin button/lever input
'solenoid coin payout
'a motor serial in
'b motor serial in
'c motor serial in
'a position
'b position
'c position
'counting variable

'Set B7, B3, B2 as outputs, rest as inputs

'Start outputs low

'Clear LCD screen
'Prompt Player to insert coin
'Wait for coin to be inserted
'Go to begin subroutine

'Clear LCD screen
'Prompt player to spin reels
'Wait for player to spin reels
'Send high signal to motors

'Read position of reel A, store as a 'Read position of reel B, store as b 'Read position of reel C, store as c

'Go to motor subroutine

motor:

End

```
While (spin == 0): Wend
                                                                 'Wait for signal from motor to start win loop
If (a==b) AND (b==c) AND (c==8) Then
                                                                 'If 3 8's, then jackpot...
         Pause 500
         LCDOUT $fe, 1
         LCDOUT "Jackpot"
         For i=1 TO 10
                                                                 'Pay out 10 coins
                  HIGH solenoid
                   Pause 500
                   LOW solenoid
                   Pause 500
         NEXT i
         Pause 1000
         Goto ready
                                                                 'Go back to start of program
Else
         If (a==b) and (b==c) Then
                                                                 'If 3 of a kind, then winner...
         Pause 500
         LCDOUT $fe, 1
         LCDOUT "Winner"
         For i=1 TO 3
                                                                 'Payout is 3 coins
                   HIGH solenoid
                   Pause 500
                   LOW solenoid
                   Pause 500
         NEXT i
         Pause 5000
         Goto ready
                                                                 'Go back to start of program
         Else
                   If (a==b) or (a==c) or (b==c) Then
                                                                 'If 2 of a kind, then credit...
                   Pause 500
                   LCDOUT $fe, 1
                   LCDOUT "Credit"
                   HIGH solenoid
                                                                  'Payout is 1 coin
                   Pause 500
                   LOW solenoid
                   Else
                                                                  'If not a winner, try again
Pause 500
                   LCDOUT $fe, 1
                   LCDOUT "Try Again"
                   Pause 5000
                   goto ready
Endif: Endif: Endif
goto ready
                                                                  'Go back to start of program
```

PIC CODE FOR STEPPER A

This program waits for a signal from the master PIC to run its reel. When it receives a high signal from the master PIC, the program turns on the enable on the bipolar stepper motor driver, and then performs mathematical operations to determine how far to spin the reel. These operations include the generation of a random number, followed by division by 8, using the remainder value to determine how many reel positions the motor needs to move. The program then determines what the reel's new position will be by taking the original stored position and adding the change in position. Then, the program will report this position back to the master PIC and send pulses to the stepper motor controller in order to move the reel 12 revolutions plus the change in position.

```
Include "modedefs.bas"
                                                                               Include mode definitions
bser Var PORTA.2
                                                                               port A2 to b motor pic
motor Var PORTB.0
                                                                               port B0 to motor
switch Var PORTB.1
                                                                               port B1 from main PIC
pic Var PORTB.3
                                                                               port B3 to main PIC
LED Var PORTB.4
                                                                               port B4 to LED
current Var PORTB.6
                                                                               port B6 to motor enable
num Var word
                                                                               'seed number
i Var word
                                                                               'counting variable
steps Var word
                                                                               'number of steps to move
move Var word
                                                                               'change in position on reel
original Var word
                                                                               'reel position prior to move
pos Var word
                                                                               'current reel position
num=23
                                                                               'seed number is 23
DATA @5, 8
                                                                               'store original pos (8) in EEPROM at pos
TRISB = %00001010
                                                                               'set B1 and B3 as inputs, rest as outputs
LOW motor: LOW pic: LOW LED: LOW current: LOW PORTB.7
                                                                               'start outputs low
loop:
While (switch == 0): Wend
                                                                               'if high signal from pic
         HIGH current
                                                                               turn on enable for more torque
          Random num
                                                                               'generate a random #
         move = num // 8
                                                                               'divide by 8, move remainder positions
          steps = (move * 25) + 2400
                                                                               'move 12 revs plus remainder positions
         READ 5, original
                                                                               'read current position from EEPROM
         If ((original + move) >=8) Then
                                                                               'determine new reel position
                   pos = ((original + move) - 8)
         Else
                   pos = (original + move)
          Endif
         SEROUT pic, N300, [#pos]
                                                                               report new position to master PIC
         HIGH bser : HIGH LED
                                                                               'Signal b stepper to serout to main PIC
          Pause 50
         LOW bser
         WRITE 5, pos
                                                                               write position on EEPROM
          For i=1 TO steps
                                                                               'send pulses to move desired steps
                   HIGH motor
                   pause 1
                   LOW motor
                   pause 1
         NEXT i
         Pause 100
                                                                               'pause .1 sec
         LOW current
                                                                               'turn off enable to decrease current
Fnd
```

PIC CODE FOR STEPPER B

This program waits for a signal from the master PIC to run its reel. When it receives a high signal from the master PIC, the program then waits for a signal from motor PIC A, and then turns on the enable on the bipolar stepper motor driver, and turns on the speaker to play music as the reels spin. Then, the porgram performs mathematical operations to determine how far to spin the reel. These operations include the generation of a random number, followed by division by 8, using the remainder value to determine how many reel positions the motor needs to move. The program then determines what the reel's new position will be by taking the original stored position and adding the change in position. Then, the program will report this position back to the master PIC and send pulses to the stepper motor controller in order to move the reel 12 revolutions plus the change in position.

```
include "modedefs.bas"
                                                                               'Include mode definitions
bser Var PORTA.1
                                                                               'Port A1 from A stepper
cser Var PORTA.2
                                                                               'Port A2 to C stepper
motor Var PORTB.0
                                                                               'Port B0 to motor
switch Var PORTB.1
                                                                               'Port B1 input from main pic
pic Var PORTB.3
                                                                               'Port B3 output to main pic
music Var PORTB.4
                                                                               'Port B4 to speaker
LED Var PORTB.5
                                                                               'Port B5 to LED
current Var PORTB.6
                                                                               'Port B6 to motor enable
num Var word
                                                                               'Seed number
i Var word
                                                                               'Counting variable
steps Var word
                                                                               'Number of steps to move
move Var word
                                                                               'Change in reel position
original Var word
                                                                               'Reel position prior to move
pos Var word
                                                                               'Current reel position
num=312
                                                                               'Seed number is 312
DATA @5, 8
                                                                               'Store original pos(8) in EEPROM at pos5
TRISB = %00001010
                                                                               'Make pins B1 and B3 inputs, rest outputs
LOW motor: LOW pic: HIGH music: HIGH LED: LOW current: LOW PORTB.7
                                                                               'Start outputs off
While (switch == 0): Wend
                                                                               "Wait for high signal from master PIC
          While (bser == 0): Wend
                                                                               Wait for high signal from a stepper PIC
          HIGH current
                                                                               'Enable the motor for more torque
          HIGH music
                                                                               Turn on the spin music
          Random num
                                                                               'Generate a random number
          move = num // 8
                                                                               'Divide by 8, move remainder positions
          steps = (move * 25) + 2200
                                                                               'Move 11 revs plus remainder positions
          READ 5, original
                                                                               'Read original position from EEPROM
          If ((original + move) >=8) Then
                                                                               'Calculate the new reel position
                   pos = ((original + move) - 8)
          Else
                   pos = (original + move)
          Endif
          SEROUT pic, N300, [#pos]
                                                                               'Report new position to master PIC
          HIGH cser: HIGH LED
                                                                               'Signal c stepper to serout to main PIC
          Pause 50
          LOW cser
          WRITE 5, pos
                                                                               'Store new position in EEPROM
          For i=1 to steps
                                                                               'Send pulses to move desired # steps
                   HIGH motor
                    pause 1
                    LOW motor
                   pause 1
          NEXT i
          LOW current: HIGH music
                                                                               Turn off enable to decrease current.
music off
End
```

PIC CODE FOR STEPPER C

This program weits for a signal from the master PIC to run its reel. When it receives a high signal from the master PIC, the program then waits for a signal from motor PIC A, and then turns on the enable on the bipolar stepper motor driver, and turns on the speaker to play music as the reels spin. Then, the porgram performs mathematical operations to determine how far to spin the reel. These operations include the generation of a random number, followed by division by 8, using the remainder value to determine how many reel positions the motor needs to move. The program then determines what the reel's new position will be by taking the original stored position and adding the change in position. Then, the program will report this position back to the master PIC and send pulses to the stepper motor controller in order to move the reel 12 revolutions plus the change in position.

```
Include "modedefs.bas"
                                                                              Include mode definitions
cser Var PORTA.1
                                                                              'Port A1 from stepper B
                                                                              'Port A2 to master PIC
win time Var PORTA.2
switch Var PORTB.1
                                                                              'Port B1 from master PIC
                                                                              'Port B3 to master PIC
pic Var PORTB.3
LED Var PORTB.4
                                                                              'Port B4 to LED
current Var PORTB.6
                                                                              'Port B6 to motor enable
num Var word
                                                                              'Seed number
i Var word
                                                                              'Counting variable
                                                                              'Number of steps to move
steps Var word
                                                                              'Change in reel position
move Var word
                                                                              'Reel position prior to move
original Var word
                                                                              'Current reel position
pos Var word
num=187
                                                                              'Seed number is 187
DATA @5, 8
                                                                              'Store original pos in EEPROM at pos 5
TRISB = %00001010
                                                                              'Set B1 and B3 as inputs, rest as outputs
LOW motor: LOW pic: LOW LED: LOW current: LOW win_time
                                                                              'Start outputs low
loop:
While (switch == 0): Wend
                                                                              'Wait for high signal from master PIC
         HIGH current
                                                                              Turn on enable for more torque
                                                                              'Generate a random #
         Random num
                                                                              'Divide by 8, move remainder steps
         move = num // 8
         steps = (move * 25) + 2400
                                                                              'Move 12 revs plus remainder positions
         READ 5, original
                                                                              'Read original position from EEPROM
                                                                              'Determine new reel position
         If ((original + move) >= 8) Then
                   pos = ((original + move) - 8)
         Else
                   pos = (original + move)
                   original = pos
         Endif
         SEROUT pic, N300, [#pos]
                                                                              'Report new position to main pic
         HIGH LED
                                                                               Write current position on EEPROM
         WRITE 5, pos
         For i=1 TO steps
                                                                               'Send pulses to move desired steps
                   HIGH motor
                   pause 1
                   LOW motor
                   pause 1
         NEXT i
         HIGH win time
          Pause 100
         LOW win_time: LOW current: LOW LED
                                                                     Turn off enable to decrease current, LED off
          goto loop
End
```

PIC CODE FOR LED BLINK PIC

This program blinks the LED's in a walking pattern while the reels are not spinning. When the program recieves a signal that the reels are going to spin, the program then blinks all of the LED's simultaneously.

Spin Var PORTA.2 'Port A2 from main PIC to signal spin Red Var PORTB.3 'Red LEDs on Port B3 'Green Var PORTB.4 'Green LEDs on Port B4 'Yellow Var PORTB.5 'Yellow LEDs on Port B5 'Yellow LEDs on Port B5 'Start with LEDs off (wired to be reverse)

Loop:

While (spin=0)
LOW Red
Pause 300
HIGH Red
LOW Yellow
Pause 300
HIGH Yellow
LOW Green
Pause 300
HIGH Green

Wend

LOW Red LOW Yellow LOW Green Pause 300 HIGH Red HIGH Yellow HIGH Green Goto loop

Goto loop

End

"If not spinning, then...
Turn on red LEDs
"Wait 0.3 sec
Turn off red LEDs
Turn on yellow LEDs
"Wait 0.3 sec
Turn off yellow LEDs
"Turn on green LEDs
"Wait 0.3 sec
"Turn off green LEDs
"Repeat forever

"If reels are spinning, then...
Turn on red LEDs
Turn on yellow LEDs
Turn on green LEDs
'Wait 0.3 sec
Turn off red LEDs
Turn off green LEDs
Turn off green LEDs
'Repeat forever