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Abstract— An important part of a robust automated
assembly process is an accurate and efficient method
for the inspection of finished assemblies. This paper
presents a novel multiscale assembly inspection algo-
rithm that is used to detect errors in an assembled prod-
uct. The algorithm is trained on synthetic images gener-
ated using the CAD model of the different components
of the assembly. The CAD model guides the inspection
algorithm through its training stage by addressing the
different types of variations that occur during manufac-
turing and assembly. Those variations are classified into
those that can affect the functionality of the assembled
product and those that are unrelated to its functionality.
Using synthetic images in the training process adds to
the versatility of the technique by removing the need to
manufacture multiple prototypes and control the light-
ing conditions. Once trained on synthetic images, the
algorithm can detect assembly errors by examining real
images of the assembled product. The effectiveness of
the system is illustrated on a typical mechanical assem-
bly.

I. INTRODUCTION

One important component of intelligent manufac-
turing systems that are capable of producing high qual-
ity products in small batches and with short design cycle
times is a method of on-line automated inspection. This
paper discusses the implementation of a multiscale as-
sembly inspection algorithm that is used to detect and
distinguisi. error-free products from those with assem-
bly errors after being trained on synthetic images of cor-
rectly assembled components. Generating real images of
an assembly in order to train an assembly inspection al-

This work was supported by National Science Foundation
grant number CDR 8803017 to the Engineering Research Center
for Intelligent Manufacturing Systems, National Science Foun-
dation grant number MIP93-00560, an AT&T Bell Laboratories
PhD Scholarship, and the NEC corporation.

1050-4729/94 $03.00 © 1994 IEEE

gorithm is a demanding and time consuming operation.
One must physically create scenarios that could occur
in the workcell where the piece is assembled in order to
generate training images. Those scenarios must address
the different types of variations that could occur in the
workcell. These variations can be of the kind that would
affect the functionality of the assembled piece, e.g., vari-
ations in the dimensions of the different components of
the assembly beyond acceptable tolerance, or of the kind
that would not affect the functionality, like lighting and
material properties. This would require the ability to
generate the components of the assembly at the limit of
their acceptable dimensions. Once the training images
are generated, one must manually inform the inspection
algorithm about any information in the images that is
needed to run the algorithm, e.g., important features in
an image.

In the approach presented here it is shown how
using images that are synthetically generated directly
from CAD models can greatly simplify this training pro-
cess. This is done by using information gleaned from the
CAD model to guide the inspection algorithm through
its training phase. Because CAD models contain ge-
ometric information concerning tolerances and correct
part matings, one can generate an unlimited number
of synthetic images with the precise variations desired.
Relationships among the different components of the
assembly deduced from the CAD model can help in au-
tomating the generation of the information in the train-
ing images that is needed by the inspection algorithm.
This not only greatly facilitates the training of image
processing algorithms used for error detection, but also
provides the algorithm with images much earlier in the
design process. The CAD models are also analyzed
to provide information pertaining to the design of the
workcell such as camera and light placement.

3630



The remainder of this paper is organized as fol-
lows. A short description of the multiscale inspection
algorithm is introduced in section II. Section III de-
scribes the CAD database and its role in guiding the
inspection algorithm. The synthetic image generation
process is then addressed in section IV. Some exper-
imental results are presented in section V followed by
conclusions in section VI.

II. MurTiscaLE OBJECT DETECTION

We approach automated inspection as a problem
in object detection, where we assume the inspection al-
gorithm must make decisions based on a monochrome
image of the object. Our multiscale detection algorithm
is based on a stochastic object model, which is tailored
to a specific object by adjusting the model structure
and changing model parameters. The model generation
and parameter estimation is driven by a CAD model of
the object as described below.

Our inspection algorithm models an object as a
stochastic tree, where the nodes of the tree represent
various components, or subassemblies, of the object.
These subassemblies contain the key features for dis-
crimination and error detection. Nodes near the root
of the tree typically model larger structures that aid in
locating the object while nodes further down “zoom in”
on the critical areas where assembly errors are likely
to occur. We represent the two dimensional position
and orientation of each subassembly as a state vector
S. Since the position of a subassembly varies from im-
age to image and is generally not known, we model it
as a random vector. The state density function for a
node depends only on the state of its parent node in
the object tree and on a set of node specific parameters
#. Thus, the states form a Markov chain along any path
from the root of the object tree to a leaf node.

Fig. 1 shows an object tree, where the superscript
(7) is used to denote quantities specific to node i. The
data y associated with each node is modeled as a set of
random variables with density functions parameterized
by a template 6 that indicates the expected appear-
ance of the subassembly as well as the expected data
variability. The data values will also depend on the po-
sition of the subassembly in an image, so the overall
object model is as shown in the figure, with the arrows
indicating conditional dependence.

We use the multiresolution Haar transform of each
image as our data and use a corresponding multireso-
lution template at each node of the object tree. This
allows us to model each node at resolutions appropriate
to the important features in the subassembly. It also
permits us to search for the subassemblies via a fast
multiscale search technique. We use recent results from
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Fig. 1. An example of an object tree that identifies the signifi-
cant locations within a training image as well as their relationship
to each other.

the theory of multiscale random processes to aid in the
analysis and construction of the model [1, 2].

We will search for the most likely position S of a
subassembly by starting at a coarse resolution and pro-
gressing to finer resolutions. For a given resolution and
candidate state we use the image data and templates at
that and coarser resolutions to compute the log likeli-
hood ratio between the hypothesis that the subassem-
bly is present and the hypothesis that it is not. The
states with the largest log likelihood ratio are investi-
gated at the next finer resolution. The search continues
in this fashion until the largest log likelihood ratio ex-
ceeds a predefined decision threshold 3, at which point
the search returns the associated state as the position
of the subassembly. The search will terminate in a “no
match” condition if it reaches a point where all remain-
ing candidate states have log likelihood ratios less than a
rejection threshold «. Thus, the search takes the form
of a sequential likelihood ratio test, where the search
progresses in scale rather than time. A more detailed
discussion of the algorithm can be found in [3].

The inspection algorithm searches for the object in
an image by using this fast multiscale search technique
at each node of the object tree. The search traverses
the object tree from the root to the leaves, perform-
ing a sequential MAP (SMAP) estimate of the state
at each node [2] and passing this estimated state to
the child nodes. The object passes inspection only if
all subassemblies are located and found to match the
model.

This procedure hinges on our ability to compute a
log likelihood ratio at each state and resolution, which
in turn relies upon a knowledge of the parameters
and ¢ for each node. These parameters, as well as the
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structure of the object tree, are determined using the
CAD model of the object.

We first use the CAD model to identify the impor-
tant subassemblies and generate the object tree. The
CAD model then generates a series of training images,
each of which contains a properly assembled object,
with all subassemblies and viewing conditions within
their allowed tolerances. The object tree is “overlaid”
on one of the training images, identifying the location
and orientation of each subassembly in that image. This
information is used to initialize the model parameters,
which are then determined from the full set of train-
ing images via the iterative expectation maximization
(EM) algorithm [2, 4].

III. CAD DATABASE ANALYSIS

As discussed in the preceding section, data ob-
tained from an analysis of the CAD model of the as-
sembly is used to guide the inspection algorithm in the
training process by addressing the different variations
possible and identifying an appropriate object tree in
the training images. Variations that would affect func-
tionality are addressed in this section while variation
that would not affect functionality are considered in sec-
tion IV,

To be able to produce a large number of synthetic
images with the required variations, a suitable CAD
model has to be generated for the desired assembly and
its components. The relationship among the different
components of the assembly must be known to provide
the inspection algorithm with any needed data about
an image.

For the purposes of illustration, the pattern wheel
assembly pictured in Fig. 2 was used as a simple ex-
ample of a realistic assembly used in a small batch
manufacturing environment. This wheel assembly was
used in Archimedes, a prototype system for automating
mechanical assembly [5]. For each component of the
pattern wheel assembly, a CAD model was created us-
ing the TWIN Solid Modeling Package [6]. TWIN is a
boundary representation solid modeler but also accepts
Constructive Solid Geometry (CSG) models as input.
Therefore, components are created in the CSG format
and then converted to boundary representation for in-
ternal calculations.

Three CSG models were created for every compo-
nent from the part’s machine drawings to account for
variations that naturally occur in a manufacturing en-
vironment. One represents the component at its max-
imum tolerance limit while another represents it at its
minimum tolerance limit. Both models are created by
using the maximum and minimum allowed dimensions
for the component in its machine drawings. These are
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Fig. 2. A video image of a pattern wheel assembly that is used
as a representative example of a typical mechanical assembly for
which the inspection algorithm was implemented.

the Maximum Material Condition (MMC) and Least
Material Condition (LMC) [7] of the object. Creating
a CAD model of the object that lies within these lim-
its generates a component that is within the allowed
tolerance. The third CSG model represents the compo-
nent at its optimal dimensions which can then be used,
along with the other two CSG models, for generating
a distribution of random components that are within
tolerance [8]. Currently, a random object is generated
by selecting from a uniform distribution of its geometric
parameters within the object’s LMC and MMC.

The location of all components within the assembly
are specified by homogeneous transformation matrices
so that the relationship between any two parts can be
found by querying the modeler. The identification of
the bounding faces between any parts that are mated is
used to form a graph in which the nodes represent the
different parts of the assembly and the lines between
the nodes represent liaisons between the parts, as con-
nections or as contacts. This graph is called the liai-
son diagram [9, 10] and it shows the interaction among
the different components of the assembly. This process
is demonstrated using Fig. 3 which shows an exploded
view of the pattern wheel assembly. This figure illus-
trates the order of operations required to complete the
assembly and highlights the single common axis of in-
sertion for the pins and the shaft. Using this informa-
tion along with the correct final state of the assembly
the system determines which surfaces will be in contact.
For example, the single cylinder pins (the high density
and the unlatch pins) are inserted only into wheel-al
and wheel-a2 and therefore form a close relationship
with the wheels through their side surfaces. The shaft
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Fig. 3. An exploded view of the pattern wheel assembly gen-
erated from the information in the CAD model. This view illus-
trates the order of assembly as well as the single common insertion
axis for all of the pins. Individual surface contacts between dif-
ferent components are used to create the liaison diagram shown
in Fig.4.

is only inserted into the center hole of the gear. The
multi-cylinder pins (the alignment pins), however, are
in contact with the holes in the gear, the locking ring,
and the wheels and functionally are required to main-
tain a precise separation between the two wheels as well
as between wheel-al and the locking ring which rests
on the gear. This last piece of information can not be
clearly deduced from the exploded view but is clear in
the resulting liaison diagram shown in Fig. 4 which is
formed from the contact information explained above.
Each circle in the diagram represents all surfaces of an
individual component with the arrows indicating a con-
tact between surfaces of different components.

A perspective view of the assembly can be gener-
ated from the CAD model described above using stan-
dard computer graphics techniques. The CAD model
is used to automatically generate suitable view vectors.
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Fig. 4. A liaison diagram for the pattern wheel assembly showing
the contact relationships among the different components. Each
circle represents the structure of a particular component. The
double arrows indicate a contact between some surfaces within

two components.

The field of view for an image is chosen such that the
assembly is guaranteed to be within the screen limits.
If any particular component is identified as a possible
source of error, then the location of the visible portions
of that component can be easily “boxed in” in the gen-
erated training image. As a result, the different states
shown in Fig. 1 that are used for training are obtained
for any object node. By tracing the liaison diagram,
one can also identify what other components are going
to be affected by that error and how close that effect is.
This generates an error tree for a particular part. For
example, Fig. b shows the error tree of one of the pins
(the high density pin). The circles represent different
surfaces within each object. It shows that the wheels
are in direct contact with the high density pin which
identifies the possibility of a close effect. The align-
ment pins, however, are connected to the wheels which
identifies a more remote effect. The gear and the lock-
ing ring are in contact with the alignment pins which
show yet a more remote possible effect. The shaft be-
ing at the bottom level of the tree represents the least
likely affected component. This error tree along with
the error trees of other components of interest are used
in generating the object tree required by the inspection
algorithm that was shown in Fig. 1.

All relevant information needed by the inspection
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Fig. 5. The error tree for the High Density Pin that is generated
from the liaison diagram. This tree illustrates the possible prop-
agation of misaligned surfaces within the assembly. The circles
represent different surfaces of an object. (For simplicity the three
alignment pins are considered together and the unlatch pin is not
shown. )

algorithm concerning the training images is now avail-
able. The remaining step in the training process is the
actual creation of realistic images that include the dif-
ferent environmental variations that may occur in the
actual assembly workcell. This is the topic of the next
section.

IV. SYNTHETIC IMAGE GENERATION

To create the most realistic synthetic images of an
assembly, computer graphics raytracing rendering tech-
niques are used. The program Rayshade is used to
create these ray-traced images by translating the CAD
model of the assembly into Rayshade objects. The CAD
system described above sets the limits on the viewing
parameters for Rayshade. Other parameters that can
also be varied include the characteristics of the lighting
conditions, material properties, and various textures for
the image backgrounds. Different kinds of materials can
be used by choosing the right surface attributes [11]. A
number of images are then selected to train the inspec-
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tion algorithm. This number can vary depending on the
case study and is automatically chosen such that the
space of varying parameters is adequately represented.

V. AN EXAMPLE

This section illustrates the implementation of the
entire assembly error inspection system for the simple
example of the pattern wheel presented in Fig. 2. First,
the CAD model of the assembly is used to create in-
stances of the different components that have simple
variations within their allowed tolerances. This is re-
quired in order to produce training images that include
acceptable levels of variations. Next, as explained in
section III, the liaison diagram, shown in Fig. 4, of
the pattern wheel assembly is generated automatically
from surface contact information. The exploded view of
Fig. 3 suggests that the pattern wheel assembly can be
completely assembled with only a single common axis
of insertion. This identifies the pins as potential sources
of errors that can occur due to misalignment. From the
liaison diagram the system automatically generates the
error trees of the pins. These error trees, like the ex-
ample in Fig. 5, are used as the object trees, shown in
Fig. 1, which identify the important locations in the im-
ages for various types of assembly errors. The number
of levels included in the tree is determined by the vis-
ibility of the root node, i.e., if the single view used by
the inspection algorithm results in the root node being
partially occluded then evidence of misassembly should
be corroborated by its child nodes to which the error
may be propagated.

Rayshade is then used to generate a group of syn-
thetic images from the assembly CAD model. Three
images were used to run this particular example. Input
parameters to Rayshade are set such that the mate-
rial type of the different pattern wheel assembly com-
ponents are matched as close as possible. Light and
camera placements are automatically evaluated to pro-
vide suggestions for workcell designs. The synthetic im-
ages along with the information from the object trees
are then passed to the multiscale inspection algorithm
for training. Fig. 6 illustrates one such synthetic image
where one path down the right side of the high density
pin error tree is shown superimposed onto the image.
The object tree consists of the “boxed in” areas. The
upper left corners of the nodes are connected to one an-
other to indicate the connectivity of the tree, and the
number of boxes around each node indicates that node’s
level in the tree. Note that no real images of the assem-
bly are required so that this system can also be used
to evaluate prospective designs for their inspectability
without even building a prototype.

Once the system has been trained it is ready to



Fig. 6. A synthetic image of the pattern wheel assembly with
one path down the high density pin error tree denoted by the con-
nected boxes. The path shown is the rightmost path illustrated
in Fig.5 starting from the high density pin and ending with the
shaft. This tree is used as the object tree required by the inspec-
tion algorithm to guide its analysis of the image. The number of
boxes around each object represents the object’s level in the tree.
The boxes are automatically generated by calculating the visible
portions of the components in the error tree with the first level
box including the entire assembly.

perform its function of inspecting real assemblies. The
system was tested on numerous real video images of
correctly assembled pattern wheels, which can be safely
assumed to comprise the vast majority of manufactured
pieces, in various positions, orientations, and lighting
conditions uniformly distributed in the range specified
by the training set. In all cases the inspection algorithm
produced no false negatives, despite the large variations
in the resulting image, thus illustrating the robustness
of the technique. The algorithm consumed an average
cpu-time of 12 seconds on a Sun Sparc-10 workstation
to identify a correct assembly. Next the system was
tested with real assemblies that were misassembled due
to missing or misaligned pins. Fig. 7 shows an example
of a video image of one such defective assembly in which
the high density pin is missing. The performance of the
algorithm is graphically illustrated in the figure by the
boxes that are superimposed on the image. The algo-
rithm first identifies the gross location of the assembly
within the image. The box around the entire assembly
indicates where the algorithm located the part. Note
that the tilt of the box indicates that the algorithm was
able to adapt to the different orientation of the part
in the real image as compared to the training images,

Fig. 7. A real video image of a defective assembly with the error
correctly identified by the inspection algorithm. The “X” in the
box identifies the location in the image in which a mismatch with
the training images was found thus indicating the missing high
density pin. Note that the slightly different position, orientation,
and scale of the real image as opposed to the synthetic training
images as indicated by the large bounding box does not adversely
affect the robustness of the algorithm.

once again illustrating its robustness. The algorithm
then “zooms in” to look for the pin, guided by the in-
formation in the error trees. At this point it detects a
mismatch which is indicated in the image by an “X” in
the area where it expected to find the pin.

Fig. 8 shows an example of a more subtle error re-
sulting from wheel-a2 being misplaced on the pins. Note
that the error can not be detected from just considering
wheel-a2. However, once the algorithm descends to the
second level of the wheel-a2 error tree, which includes
all the pins (see Fig. 4), it detects an error in the node
associated with one of the alignment pins. This is again
indicated in the image by an “X” in the area where a
problem was detected.

V1. CONCLUSIONS

This paper has discussed the implementation of an
assembly inspection system that uses a multiscale algo-
rithm to detect errors in assemblies after being trained
on images of correctly assembled products. It has been
shown that synthetic images generated by using the
CAD models of the assembly and computer graphics
raytracing rendering techniques can be effectively used
to train the algorithm. The use of synthetic images
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Fig. 8. A real video image of a defective assembly resulting from
misplacing the top wheel (wheel-a2). The algorithm detected no
errors in trying to locate the assembly and the first level of the
wheel-a2 error tree as indicated by the single and double line
squares. A defective assembly was identified when the inspection
algorithm descended to the second level of the error tree. Note
that the variation in specular reflection (see Fig.7) due to a differ-
ent light position did not affect the performance of the algorithm.

has the advantages of simplifying the training process
and automating the image selection and the object tree
allocation procedure. In addition, the problem of ad-
dressing the different variations that can occur in the
assembly workcell is simplified. The use of synthetic
images generated directly from CAD models also al-
lows the fine tunning of the inspection algorithm early
in the design process thus allowing the assembly and
inspection processes to be designed concurrently.
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