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Abstract—It is common practice to design a robot’s kinematics
from the desired properties that are locally specified by a
manipulator Jacobian. For the case of optimality with respect
to fault tolerance, one common definition is that the post-failure
Jacobian possesses the largest possible minimum singular value
over all possible locked-joint failures. This work considers a
Jacobian that has been designed to be optimally fault tolerant
for a simple spatial positioning manipulator. It is shown that
despite the fact that the Jacobian is “unique”, up to column
permutations and multiplications by ±1, there are a large family
of physical manipulators that correspond to the optimal Jacobian.
Two example manipulators are presented and analyzed. It is
shown that there is a large degree of variability in the global
kinematic properties of these designs, despite being generated
from the same Jacobian.

Index Terms—redundant robots, robot kinematics, fault-
tolerant robots.

I. INTRODUCTION1

The design and operation of fault-tolerant manipulators

is critical for applications in remote and/or hazardous en-

vironments where routine maintenance and repair are not

possible. Example applications include space exploration [2],

[3], underwater exploration [4], and nuclear waste remediation

[5], [6] where there has been a great deal of research to

improve manipulator reliability [7], [8], design fault-tolerant

robots [9], [10], and determine mechanisms for analyzing

[11], detecting [12], [13], identifying [14]–[16], and recovering

[17]–[20] from failures. Typical failure modes that have been

considered include locked joint failures [21], where a joint

is immobilized either due to the failure itself or due to the

application of fail-safe brakes, and free-swinging joint failures

[22] where the joint’s associated actuator is no longer able to

generate a force or torque.

A large body of work on fault-tolerant manipulators has

focused on the properties of kinematically redundant robots,

both in serial or parallel form [23]–[27]. These analyses have

been performed both on the local properties associated with the

This work was supported in part by the National Science Foundation
under Contract IIS-0812437.

1Sections I and II are very similar to those in [1], and are included here
to provide the background to make this paper self-contained.

manipulator Jacobian [28]–[31] as well as the global charac-

teristics such as the resulting workspace following a particular

failure [32]–[35]. (Clearly both local and global kinematic

properties are related, e.g., workspace boundaries correspond

to singularities in the Jacobian.) In this work it is assumed that

one is given a set of local performance constraints that require

a manipulator to function in a configuration that is optimal

under normal operation and after an arbitrary single joint fails

and is locked in position. Specifically, the desired Jacobian

matrix must be isotropic, i.e., possess all equal singular values

prior to a failure, and have equal minimum singular values for

every possible single column being removed. However, one can

then use global characteristics to distinguish between multiple

manipulators that meet the local design constraints.

In previous work [1], [36], it was shown that there exist

multiple different physical manipulators that correspond to

the same optimally fault tolerant Jacobian. This is due to

the fact that permutation of the columns of the Jacobian (or

multiplying by ±1) does not affect its fault tolerant properties,

however, it does significantly impact the resulting physical

manipulator. In this work, we consider the Jacobian for an

optimally fault tolerant, spatial positioning manipulator that

possesses four degrees of freedom. For this case, one can also

permute the columns (or multiply by ±1) to identify different

physical implementations, however, we show that there is a

much greater degree of design flexibility. We characterize

entire families of manipulators that correspond to this specific

Jacobian and analyze two examples.

The remainder of this paper is organized in the following

manner. A local definition of failure tolerance centered on

desirable properties of the manipulator Jacobian is mathemat-

ically defined in the next section. In Section III, the set of all

6×4 Jacobian matrices that include an optimally fault tolerant

3× 4 spatial positioning sub-Jacobian are characterized. This

characterization is then used to determine the family of De-

navit and Hartenberg (DH) parameters that represent physical

manipulators with the optimally fault tolerant property. We

then select two example manipulators and analyze their fault

tolerant behavior in Section IV. The conclusions of this work

are then presented in Section V.
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II. BACKGROUND ON OPTIMALLY FAULT-TOLERANT

JACOBIANS1

The dexterity of manipulators is frequently quantified in

terms of the properties of the manipulator Jacobian matrix

that relates end-effector velocities to joint angle velocities.

The Jacobian will be denoted by the m× n matrix J where

m is the dimension of the task space and n is the number of

degrees of freedom (DOFs) of the manipulator. For redundant

manipulators, n > m and the quantity n−m is the degree of

redundancy. The manipulator Jacobian can be written as a

collection of columns

Jm×n =
[

j1 j2 · · · jn
]

(1)

where ji represents the end-effector velocity due to the velocity

of joint i. For an arbitrary single joint failure at joint f ,

assuming that the failed joint can be locked, the resulting m

by n− 1 Jacobian will be missing the f th column, where f

can range from 1 to n. This Jacobian will be denoted by a

preceding superscript so that in general

f Jm×(n−1) =
[

j1 j2 · · · j f−1 j f+1 · · · jn
]

. (2)

The properties of a manipulator Jacobian are frequently

quantified in terms of the singular values, denoted σi, which

are typically ordered so that σ1 ≥ σ2 ≥ ·· · ≥ σm ≥ 0. Most

local dexterity measures can be defined in terms of simple

combinations of these singular values such as their product

(determinant) [37], sum (trace), or ratio (condition number)

[38]–[40]. The most significant of the singular values is σm,

the minimum singular value, because it is by definition the

measure of proximity to a singularity and tends to dominate

the behavior of both the manipulability (determinant) and

the condition number. The minimum singular value is also

a measure of the worst-case dexterity over all possible end-

effector motions.

The definition of failure tolerance used in this work is based

on the worst-case dexterity following an arbitrary locked joint

failure. Because f σm denotes the minimum singular value of
f J, f σm is a measure of the worst-case dexterity if joint f fails.

If all joints are equally likely to fail, then a measure of the

worst-case failure tolerance is given by

K =
n

min
f=1

( f σm). (3)

To insure that manipulator performance is optimal prior to

a failure, an optimally failure tolerant Jacobian is further

defined as having all equal singular values due to the desirable

properties of isotropic manipulator configurations [38]–[40].

Under these conditions, to guarantee that the minimum f σm is

as large as possible they should all be equal. It is easy to show

that the worst-case dexterity of an isotropic manipulator that

experiences a single joint failure is governed by the inequality

n

min
f=1

( f σm) ≤ σ

√

n−m

n
(4)

where σ denotes the norm of the original Jacobian. The best

case of equality occurs if the manipulator is in an optimally

failure tolerant configuration. The above inequality makes

sense from a physical point of view because it represents the

ratio of the degree of redundancy to the original number of

degrees of freedom.

Using the above definition of an optimally failure tolerant

configuration one can identify the structure of the Jacobian

required to obtain this property [41]. In particular, one can

show that the optimally failure tolerant criteria requires that

each joint contributes equally to the null space of the Jacobian

transformation [30]. Physically, this means that the redundancy

of the robot is uniformly distributed among all the joints so

that a failure at any joint can be compensated for by the

remaining joints. Therefore, in this work an optimally failure

tolerant Jacobian is defined as being isotropic, i.e., σi = σ for

all i, and having a maximum worst-case dexterity following

a failure, i.e., one for which f σm = σ
√

n−m
n

for all f . The

second condition is equivalent to the columns of the Jacobian

having equal norms.

For the case of a spatial positioning manipulator with four

joints, an optimally failure tolerant configuration is given by:

Jv =
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(5)

where Jv represents the linear velocity portion of a manipu-

lator Jacobian. The null space at this configuration is given

by 1
2
[1 1 1 1]T which illustrates that each joint contributes

equally to the null space motion, thus distributing the redun-

dancy proportionally to all degrees of freedom. If the four

possible joint failures are considered, one can show that

f σ3 =
1

2
(6)

for f = 1 to 4, which satisfies the optimally failure tolerant

criterion. The next section will illustrate how to characterize

the set of all 6 × 4 Jacobian matrices that have the linear

velocity portion given by Jv in (5). Once we have all these

possible 6×4 Jacobians, we will be able to determine the DH

parameters for the physical robots.

III. CHARACTERIZING FAULT TOLERANT FOUR DOF

SPATIAL POSITIONING MANIPULATORS

Our goal in this section is to determine all possible Jaco-

bians of the form

J6×4 =

[

Jv

Jω

]

. (7)

The orientational velocity portion, Jω , is somewhat arbitrary

because it does not affect the positional fault tolerance prop-

erties. However, one must consider the constraint that each

column of Jω is orthogonal to the corresponding column of

Jv. The ith column of J in (7) can be written as

ji =

[

vi

ωi

]

, (8)
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where vi and ωi are three-dimensional vectors that describe

the linear and angular velocities respectively. By applying the

constraints that ωi is of unit norm and orthogonal to vi, one

can characterize all valid ωis by a circle centered at the origin,

and parameterized by a function of an angle that we denote

βi.

To illustrate this, consider the first column of J6×4. Let ω1 =
[

ω11 ω21 ω31

]T
. Because ω1 and v1 are orthogonal,

ωT
1 v1 =

[

ω11 ω21 ω31

]







−
√

3
4

0

0






= 0, (9)

so that ω11 = 0. Because ω1 is a normalized vector, ω2
21 +

ω2
31 = 1, it follows that ω1 can be written as

ω1 =





0

cos(β1)
sin(β1)



 , (10)

where β1 can be any value between 0 and 360◦.
Similarly, one can find that ω2 is described by the following

equation:

ω2 =







ω12

ω22

ω32
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, (11)

where |ω12| ≤ 2
√

2
3

. One can write (11) as a function of β2 so

that

ω2 =







2
√

2
3
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1
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. (12)

Likewise, ω3 and ω4 can be written as a functions of β3 and

β4 respectively as

ω3 =
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and

ω4 =











2
√

2
3

sin(β4)

−
(√

3
2

cos(β4)+ 1
6

sin(β4)
)

−
(

− 1
2

cos(β4)+
√

3
6

sin(β4)
)











(14)

Now that the set of possible ωis has been characterized,

our next step is to determine the DH parameters for the corre-

sponding robots as functions of the βi’s. The link parameters

of twist (αi) and length (ai) for link i are determined from the

i and i+ 1 coordinate frames. Therefore, they are affected by

the βi and βi+1 parameters, i.e.,

αi = fαi
(βi,βi+1) (15)

ai = fai
(βi,βi+1). (16)

For example, Figs. 1 and 2 show how the joint twist and length

parameters of joint 1, α1 and a1, vary as a function of β1 and

β2. Note that there is considerable flexibility in selecting these

two joint parameters, i.e., the twist angle can be set anywhere

from 0◦ to 180◦ and the length can be anywhere from 0 to√
3. Because the tool, i.e., 5th, coordinate frame is arbitrary,

we assume it to be in the same orientation as the 4th so that

α4 = 0 (17)

a4 =
√

3/2. (18)

The joint parameters of rotation angle (θi) and offset (di)

for joint i are determined from the i−1, i, and i+1 coordinate

frames; so they are influenced by the βi−1, βi, and βi+1

parameters, i.e.,

θi = f
θi
(βi−1,βi,βi+1) (19)

di = f
di
(βi−1,βi,βi+1). (20)

For the first coordinate frame, θ1 and d1 are arbitrary so they

can be assumed to be zero because we can select the orientation
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of the 0th coordinate frame. At the 4th coordinate frame, the

joint parameters are not functions of the 5th coordinate frame,

i.e.,

θ4 = f
θ4

(β3,β4) (21)

d4 = f
d4

(β3,β4) (22)

because it is selected to be aligned with the 4th.

The exact values of the DH parameters for a given set of βi’s

can be computed using the algorithm that is presented in [36].

Clearly, there is an infinite family of robots that correspond to

(5). The next section will discuss two different examples and

discuss their global failure tolerance properties.

IV. EXAMPLES OF FAULT TOLERANT FOUR DOF SPATIAL

POSITIONING MANIPULATORS

Table I presents two different potential robots (in terms of

their DH parameters) that result from two different combina-

tions of (β1 , β2 , β3 , β4). While both robots have the same

desired optimal local fault tolerant design point, they are quite

different in terms of their global properties. Not only is the size

of the workspace quite different, but more importantly, if one is

concerned with fault tolerance, there is considerable difference

in how the value of the fault tolerance measure varies away

from the design point.

To determine how the fault tolerance measure K varies

as a robot moves away from the configuration that has the

optimal Jacobian, the optimal value of K can be computed

for a trajectory within the robots workspace. To do this, one

needs to compute the maximum value of K over all possible

robot configurations at each point along the trajectory. An

example of this for robot 1 is shown in Fig. 3. There are

several interesting features in this figure. First, note that all of

the singular values are symmetric about the y = 0 midpoint

of this trajectory. Second, the maximum value of K along

this trajectory occurs away from the design point because the

constraint of an isotropic Jacobian is not imposed away from

the design point. Finally, note that the value of K goes to zero

at the workspace boundary, due to the entire Jacobian being

singular, however, it also goes to zero at y = 0 even though

the Jacobian is nonsingular.

Clearly the value of K varies significantly across any end-

effector trajectory. One can compute the configuration with

the maximum value of K for any point within the workspace

volume. However, because such a three-dimensional value is

difficult to visualize, in Fig. 4 (subplots (a), (b), and (c))

we show three orthogonal cross sections through the optimal

design point of both robots. The boundaries in these plots show

the area in which K ≥ 90% of 1/2, i.e., its optimal value at

the design point. (The optimal fault tolerant configuration of

the robot at the design point is shown in (d).) Clearly, robot

2 has a much larger workspace volume where K ≥ 0.45, i.e.,

90% of 1/2, than robot 1.

To summarize, even though robots 1 and 2 have the same Jv

at their locally optimal fault tolerant point, there is considerable

difference in how the value of K varies away from the design

point. It is not obvious exactly how to design a robot to obtain
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Fig. 3: The independent axis shows all possible end-effector

positions for a trajectory that passes through the point

(0,
√

3/2,
√

3/2) along the y direction. The value of σ3 for

all possible failures, as well as the maximum value of the

fault tolerance measure K for robot 1 is shown for each point

along this trajectory.

a desired fault tolerant volume based on its βi parameterization.

It is also unknown what particular value for the βi’s will result

in a maximum volume.

V. CONCLUSIONS

This work has shown that one can parameterize the infinite

family of four-DOF spatial positioning manipulators that corre-

spond to an optimally failure tolerant Jacobian. However, even

though these manipulators all have the same local properties,

their global properties can differ significantly, both in terms

of pre-failure kinematics as well as post-failure performance.

This can provide robot system designers with a great deal of

flexibility when considering the different constraints that arise

from different applications.
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