Fall Industrial Advisory Board Meeting
November 3, 2017
Introduction & Welcome
Agenda

• Department Update
• Lunch and Project Presentation
• Faculty Spotlight
• ECE Department Heads Association
 Nationwide Branding Initiative
• Breakout Session: Reenvisioning ECE –
 Branding at the Local and National Levels
• Report Results of Breakout Session
• Social
Department Update

Prof. Tony Maciejewski
Department Head
Electrical and Computer Engineering
Colorado State University
View Presentation Online

Password:
CSUStadium

URL:
www.engr.colostate.edu/ece/industry/industrial_advisory_board.php
-or-
www.engr.colostate.edu/ece → Industry → Industrial Advisory Board

Presentation Location:

• Related Links → Meeting Presentations → Fall 2017
10 Years of Service – Thank You!

• Jason Gentry

Spring 2010 – College of Engineering Alumni Award Ceremony
ECE Faculty are Leaders in the Field

• 27 faculty

• More than 40% hold IEEE Fellow distinction

• ECE is a **Top Five** Technology Producing Department at CSU
 – More than 50 technologies disclosed to CSU Ventures between 2012 and 2017
 – ECE inventors are on approximately 40% of CSU’s issued patents since 2012
Four ECE Professors are Distinguished Faculty at CSU

UDPs: Menoni, Rocca, and Chandra

UDTS: Notaros
ECE is Home to Three CSU Distinguished Administrative Professionals

Katya Stewart-Sweeney
Melissa Reese
Andrea Leland
Our Latest Fellows

Carmen Menoni
American Association for the Advancement of Science

Branislav Notaros
Applied Computational Electromagnetics Society
Recent Publicity

• ECE’s Work with Nobel-Winning LIGO Team Highlighted on 9News
 • Collaboration led by Menoni

• 9News Featured Sid’s Research to Make Power Grid Stronger

• HPE CEO Praised CSU Engineering

“The top 10% of engineers at Colorado State are just as good as the top 10% of engineers at Stanford”
Recent Publicity (cont’d)

• Engineer in Residence Featured on CBS4

Results of 2017 Best Paper Contest

• Winner is …. Ram the Snow Cam
 o Thanks for your continued support of the contest!
COE Research Expenditures FY17

- CIRA: 34%
- ATS: 18%
- College of Engineering: 46%
- ECE: 12%
- CEE: 21%
- ME: 12%
- CBE: 3%
COE Research Expenditures

<table>
<thead>
<tr>
<th>Year</th>
<th>CBE</th>
<th>ME</th>
<th>ECE</th>
<th>CEE</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>$2,000,000</td>
<td>$4,000,000</td>
<td>$6,000,000</td>
<td>$8,000,000</td>
</tr>
<tr>
<td>2014</td>
<td>$10,000,000</td>
<td>$12,000,000</td>
<td>$14,000,000</td>
<td>$16,000,000</td>
</tr>
<tr>
<td>2015</td>
<td>$12,000,000</td>
<td>$14,000,000</td>
<td>$16,000,000</td>
<td>$18,000,000</td>
</tr>
<tr>
<td>2016</td>
<td>$16,000,000</td>
<td>$18,000,000</td>
<td>$20,000,000</td>
<td>$22,000,000</td>
</tr>
<tr>
<td>2017</td>
<td>$18,000,000</td>
<td>$20,000,000</td>
<td>$22,000,000</td>
<td>$24,000,000</td>
</tr>
</tbody>
</table>

Colorado State University
Department of Electrical and Computer Engineering
ECE Research Expenditures

- 2002: $0
- 2003: $2,000,000
- 2004: $4,000,000
- 2005: $6,000,000
- 2006: $8,000,000
- 2007: $10,000,000
- 2008: $12,000,000
- 2009: $14,000,000
- 2010: $16,000,000
- 2011: $18,000,000
- 2012: $20,000,000
- 2013: $22,000,000
- 2014: $24,000,000
- 2015: $26,000,000
- 2016: $28,000,000
- 2017: $30,000,000

Colorado State University
Department of Electrical and Computer Engineering
Proposal Activity FY17

<table>
<thead>
<tr>
<th>25 ECE Faculty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proposals submitted</td>
</tr>
<tr>
<td>Total amount of proposals</td>
</tr>
<tr>
<td>Highest proposal amount w/ECE as lead</td>
</tr>
<tr>
<td>Highest proposal amount w/ECE as collaborator</td>
</tr>
<tr>
<td>Lowest proposal amount</td>
</tr>
<tr>
<td>Primary funding agencies</td>
</tr>
<tr>
<td>Collaborators</td>
</tr>
</tbody>
</table>
COE Student Credit Hours (‘16-’17)

- ECE: 19%
- ATS: 4%
- CEE: 27%
- CBE: 11%
- ME: 38%
- Intra-College: 1%

Color Legend:
- ECE
- ATS
- CEE
- CBE
- ME
- Intra-College
National Enrollments by Discipline (‘06–’16)

Information retrieved from ASEE Engineering by the Numbers

* Data excludes 50 colleges that no longer participate in ASEE survey. Lower totals reflect current data from participating schools.
ECE Freshman Enrollment: Colorado Institutions

Number of students

- University of Denver
- University of Colorado Denver
- Colorado School of Mines
- University of Colorado Boulder
- University of Colorado Colorado Springs
- Colorado State University

Drop may be due to inconsistencies in reported data (CS not included in 2016)
National Persistence in Engineering

Persisted to 2nd year
Degree within 6 years
Degree within 4 years
ECE Freshman Retention to 2nd Fall

Cohort Size of First-Year ECE Students

Persistence Rates of First-Year ECE Students Through 2nd Fall

Persistence Rates Within Department by Cohort Department and Cohort Term
ECE Freshman Retention to 6th Fall

Cohort Size of First-Year ECE Students

Persistence Rates of First-Year ECE Students through the 6th Fall

Persistence Rates Within Department by Cohort Department and Cohort Term
Bachelor’s Degrees Awarded to Women in Engineering (2016)

- Up from 19.9% in 2015
Bachelor’s Degrees Awarded to Women in Engineering (2016)

- Bio & Environmental disciplines have largest share of women
Bachelor’s Degrees Awarded to Women in Engineering (2016)

- Mechanical, electrical, and computer still unacceptably low.
Women in Engineering (FA17)

Undergraduate
- ECE, 8%
- CBE, 15%
- Intra-College (includes BME), 35%
- CEE, 29%
- ME, 15%

Graduate
- AS, 17%
- ECE, 20%
- BME, 8%
- CEE, 34%
- ME, 8%

CBE, 5%
Women in ECE at CSU

<table>
<thead>
<tr>
<th>Year</th>
<th>Number UG Women</th>
<th>Percent UG Women</th>
<th>Number GR Women</th>
<th>Percent GR Women</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA13</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA16</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FA17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Nontraditional Undergrads in ECE

Does not include Biomed dual majors
First-Generation Undergrads in ECE

Number of Students

FA12 FA13 FA14 FA15 FA16 FA17

First-Generation

*Does not include Biomed dual majors
Percent of International Degrees Awarded

Ph.D. MS Online ME in ECE Total

Full Year
Career Outlook for ECE Majors

• Among the top 10 majors in demand for B.S., M.S., and Ph.D. degrees

• Hottest employment field in 2017

• Average starting salaries:
 - Electrical engineering – $75,000
 - College average – $58,441
 - CSU average - $47,948

*National Association of Colleges and Employers Annual Job Outlook Reports
**IEEE Spectrum – Employment Outlook, July 2017
***CSU First Destination Study, 2016
Early Results of NSF RED Project

- Anecdotally, LSMs and KIs well received by many students
- Number of students receiving Ds, Fs, or withdrawals in technical core has been cut in half (FA16 vs. FA15)
- Engineer in Residence a success
- Increased interest in student projects throughout curriculum
- Departmental Action Teams project gaining momentum
Virtual Internships Launched in FA17

- Partnership with University of Wisconsin-Madison enhances professional formation and creativity threads
- NSF-funded virtual internships simulate engineering workplace through design projects
Update on Spring Action Items

• **Action item:** Ask incoming teams to document current status of multiyear projects and goals for expanding the project.
 – **Status:** Olivera now requires teams to submit a document that outlines the previous team’s accomplishments and goals for the coming year.

• **Action item:** Multiyear projects should be clearly delineated to external audiences; current team’s contributions should be evident.
 – **Status:** Students are being asked to include this in external communications, e.g., presentations and E-Days posters.
Update on Spring Action Items

Action item: For mega projects, ensure all students are being challenged and afforded the opportunity to be creative.

- **Status:** Team roles are carefully outlined; students participate in self- and peer-evaluations that hold them accountable as team members.

Action item: Knowledge transfer should be a component of every project; customer and project requirements should be documented.

- **Status:** Already a requirement of senior design course.

Action item: Provide a list to the IAB of potential senior design projects to sponsor, mentor, or serve as a customer.

- **Status:** A list of projects will be distributed each year.
Economic and Demographic Trends Facing Higher Education
Universities Facing a Continuing Evolving Future

• State fiscal position suggests no new state aid for higher education

• Household financial strength is more affected by student loan debt than ever before

• Shifting demographics will affect the pool of prospective students
State Aid

What will the state fiscal position mean for the future of higher education funding?
Share of Appropriations from Public Support on Declining Trend

Public Support for Higher Education (GF and Federal Funds) as a Share of Total Higher Ed Appropriations

Fiscal Year

Largest General Funds Command
Greater Share of Budget

Big Three Share of General Fund Spending: Projection to 2035

Three largest depts share of total | K-12 Share of total | HCPF share of total | Corrections share of total

Color Legend:
- FY 16-17
- FY 17-18
- FY 18-19
- FY 19-20
- FY 20-21
- FY 21-22
- FY 22-23
- FY 23-24
- FY 24-25
- FY 25-26
- FY 26-27
- FY 27-28
- FY 28-29
- FY 29-30
- FY 30-31
- FY 31-32
- FY 32-33
- FY 33-34
- FY 34-35
Can CO Institutions Remain Competitive with Cost Advantage Eroding?

Tuition and Fees at Four Year Public Institutions

- CO
- US

$3,000

$4,000

$5,000

$6,000

$7,000

$8,000

$9,000
Student Loan Debt

In the face of limits on public support, what will household financial position mean for higher education?
Student Loan Debt More Than Deleveraging of Other Debts

Total household debt (excluding mortgage debt)
Colorado’s 4-Year Public Institutions Continue to Compare Favorably on Debt

Percent of Students with Debt at Four Year Public Institutions

Per Capita Debt of Graduates at Four Year Public Institutions
Tuition and Fees at 4-Year Institutions

<table>
<thead>
<tr>
<th>Year</th>
<th>CO</th>
<th>US</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003-04</td>
<td>$3,000</td>
<td>$3,000</td>
</tr>
<tr>
<td>2004-05</td>
<td>$4,000</td>
<td>$4,000</td>
</tr>
<tr>
<td>2005-06</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>2006-07</td>
<td>$6,000</td>
<td>$6,000</td>
</tr>
<tr>
<td>2007-08</td>
<td>$7,000</td>
<td>$7,000</td>
</tr>
<tr>
<td>2008-09</td>
<td>$8,000</td>
<td>$8,000</td>
</tr>
<tr>
<td>2009-10</td>
<td>$9,000</td>
<td>$9,000</td>
</tr>
<tr>
<td>2010-11</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>2011-12</td>
<td>$11,000</td>
<td>$11,000</td>
</tr>
<tr>
<td>2012-13</td>
<td>$12,000</td>
<td>$12,000</td>
</tr>
<tr>
<td>2013-14</td>
<td>$13,000</td>
<td>$13,000</td>
</tr>
</tbody>
</table>
Can Colorado Continue to Compare Favorably on Debt Load?

Tuition and fees growing on average 3X the rate of per-capita personal income.

10-Yr (2005-2014) Compound Annual Growth Rate in Tuition and Fees vs Personal Income

Annual Growth in Tuition and Fees (4-Yr Publics) vs Per Capita Personal Income

- Growth in Tuition and Fees (4 Year Publics)
- Growth in Per Capita PI
Demographics

How will changes to Colorado’s age, income, and ethnic profile affect higher education?
Colorado is Forecast to Grow, Future Students Growing More Slowly

Population by Age Cohort, Colorado

Population Share by Age Cohort, Colorado

0-16 17-25 26-64 65-100

0 1,000,000 2,000,000 3,000,000 4,000,000 5,000,000 6,000,000 7,000,000 8,000,000 9,000,000

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

0 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

0-16 17-25 26-64 65-100
A Closer Look at Future Students

Population and Growth Rates of 17 and 18 Year-Olds

Population and Growth Rates in the 17-25 Year-Old Cohort

[Graphs showing population and growth rates over time for 17 and 18 year-olds and the 17-25 year-old cohort.]
Future Students will be Increasingly and Ultimately Majority Hispanic
Historically, Less Economic Capacity for Hispanic Families

Note: Median household income data are not available prior to 1967. Implementation of 2010 Census population controls began in 2010. For information on recessions, see Appendix A.

What Will be Impact of Less Homogeneous Colorado Population?

Share of Colorado Population Growth from Migration (30 out of 46 years greater than 50%)

Share of Growth From Domestic Migration Among Growing States with Positive Domestic Migration (2015)

- Share of Colorado Population Growth from Migration:
- Share of Growth From Domestic Migration:

- Maine
- Oregon
- South Carolina
- Montana
- Nevada
- Idaho
- Florida
- Colorado
- Tennessee
- Arizona
- North Carolina
- Washington
- New Hampshire
- Delaware
- Georgia
- Utah
- Texas
- District of Columbia
- South Dakota
- Arkansas
Shifting Demographics

Strategic Enrollment Management: What to expect in the future and what we can learn from the past.
Colorado Total Public & Private H.S. Grads, 2000-01 to 2031-32

The line graph shows the total public and private high school graduates from 2001 to 2034. The graph indicates a steady increase in graduates from 2001, peaking around 2020-21, and then a slight decline by 2034. The projected numbers for 2025 are 62,700 and 55,600 for public and private graduates, respectively. The projections begin in the SY2011-12 school year.
Fall Enrollment at CSU

• The last 10 years
• New freshmen
Freshman Applications

Applications increased by about 60%

<table>
<thead>
<tr>
<th>Year</th>
<th>Applications</th>
</tr>
</thead>
<tbody>
<tr>
<td>FA2008</td>
<td>14,293</td>
</tr>
<tr>
<td>FA2009</td>
<td>16,000</td>
</tr>
<tr>
<td>FA2010</td>
<td>18,000</td>
</tr>
<tr>
<td>FA2011</td>
<td>20,000</td>
</tr>
<tr>
<td>FA2012</td>
<td>22,000</td>
</tr>
<tr>
<td>FA2013</td>
<td>23,066</td>
</tr>
<tr>
<td>FA2014</td>
<td>24,000</td>
</tr>
<tr>
<td>FA2015</td>
<td>24,000</td>
</tr>
<tr>
<td>FA2016</td>
<td>24,000</td>
</tr>
<tr>
<td>FA2017</td>
<td>24,000</td>
</tr>
</tbody>
</table>

Colorado State University
Department of Electrical and Computer Engineering
Freshman Applications: Resident vs Nonresidents

- Resident applications increased by 25%
- Nonresident applications increased by 101%
Freshman Admits

FA2017: 23,066
FA2016: 19,029
FA2015: 16,997
FA2014: 14,747
FA2013: 12,597
FA2012: 10,447
FA2011: 8,347
FA2010: 6,247
FA2009: 4,147
FA2008: 2,047
Freshman Enrollment

• Enrollment increased in 10 years by about 14%
Yield

- Despite the increase in applications, yield has been on a steady decline
Challenges Ahead

• Declining yield
• Common application
• Increased competition – more out of state schools are placing recruiters in CO to recruit students away
• Growth in H.S. graduates in population that is less mobile with lower college-going rates
• Survey of students who declined offer of admission at CSU cite cost of attendance as one of the main reasons
Faculty Spotlight

Jesse Wilson
ECE Assistant Professor
Break
Prepare for Breakout Session: Reenvisioning ECE

Tony Maciejewski
Background on Strategic Shaping of ECE

Taken from Dan Stancil’s SECEDHA Branding Update
Project Goal: Make ECE Cool Again

• Focus on perception of general public
 – Secondary target: prospective students and people who influence prospective students

• Identify common denominator about the potential and excitement of ECE as a career
Considerations

• Diversity of potential audiences
 – General public
 – Companies that hire our students
 – Prospective students
 – People who influence prospective students

• Diversity of ECEDHA institutions
 – Public/private
 – Large/small
 – Research/undergrad focused
 – Focus on under-served/represented populations
Branding Project Deliverables

• Recommendations for the overarching positioning and major messaging themes for ECE as a discipline

• Promotional implementation plan
Timeline

ECEDHA 2017 Pre-work and Kickoff

ECE Climate Audit

Primary & Secondary Research
• Virtual workshops, focus groups
• Phone interviews
• Online Surveys

ECEDHA Member Research

Positioning/Concept Development

Promotional Implementation Plan

Where we are in the process
Initial Message Directions Based on Research

- Tech Magicians/Magic Makers
- Powering Possibility
Magic Makers

ECE is filled with people who dare.

We are the masters of power and energy and light and platforms and systems.

We engage and envision, conjure and create – things that are everywhere, all the time, in the palm of your hand and beyond the grasp of imagination.

We develop elegant devices and mind-bending systems that transform your day, everyday – changing how we work, play, connect and evolve.

We turn science fiction into living, breathing science – it’s almost magic. But magic doesn’t change the world – and changing the world is what we do, every single day.

We’d love to show you how we do it.
Powering Possibility

ECE is powering possibility.

We are the bright minds that create the big, bold ideas to advance the technology of change.

We connect, empower and link people, technologies and industries together.

With elegant devices and intricate platforms – tiny components that fit in the palm of your hand and colossal systems beyond imagination.

The work we do changes the way we live today and the way we embrace each tomorrow.

We are the spark, the energy, and the catalyst – the generators of ideas and the fuel for change.

We dream big, bet big, and see it through.

Let us show you the power of possibility.
Message Testing Results (H.S. Students)

<table>
<thead>
<tr>
<th></th>
<th>Phrases that worked</th>
<th>Phrases that didn’t work</th>
<th>Comparing statements</th>
</tr>
</thead>
</table>
| **Magic Makers** | • “Dare”
• “Conjure and Create”
• “We turn science-fiction into living, breathing science” | • “Masters”
• “Mind-Bending” | • Most Inspiring |
| **Powering Possibility** | • “Power of Possibility”
• “Dream big”/”Big, bold ideas”
• “The work we do changes the way we live today and the way we embrace each tomorrow.” | • “Bet”
• “Colossal Systems/Intricate Platforms” | • Better helps me understand ECE
• Makes ECE sound impactful
• Makes it seem like I do really cool projects if I choose ECE |
Message Testing Results (ECE Students)

<table>
<thead>
<tr>
<th></th>
<th>Phrases that worked</th>
<th>Phrases that didn’t work</th>
<th>Comparing statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magic Makers</td>
<td>• “Daring”</td>
<td>• “Masters of power”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• “Conjure and Create”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• “Science fiction into living, breathing science”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powering Possibility</td>
<td>• “Dream big”/”Big, bold ideas”</td>
<td>• “Bet big”</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• “the spark, the catalyst”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• “Generators of ideas and fuel for change”</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• “Powering possibility”</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Most inspiring
- Better helps me understand ECE
- Makes ECE sound impactful
- Makes it seem like I do really cool projects if I choose ECE
<table>
<thead>
<tr>
<th></th>
<th>Phrases that worked</th>
<th>Phrases that didn’t work</th>
<th>Comparing statements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magic Makers</td>
<td>• “Science-fiction into living, breathing science”</td>
<td>• “Masters”</td>
<td>• Makes ECE sound impactful</td>
</tr>
<tr>
<td></td>
<td>• “conjure and create”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Powering Possibility</td>
<td>• "Spark, the energy, the catalyst”</td>
<td>None</td>
<td>• Most inspiring</td>
</tr>
<tr>
<td></td>
<td>• “Link people”</td>
<td></td>
<td>• Better helps me understand ECE</td>
</tr>
<tr>
<td></td>
<td>• “Big, bold ideas”</td>
<td></td>
<td>• Makes it seem like I do really cool projects if I choose ECE</td>
</tr>
</tbody>
</table>

Statement Preferences

High School Students
• Powering Possibility (62%)

ECE Students
• Powering Possibility (80%)

Undeclared Majors
• Powering Possibility (71%)
You may think that ECE is magic — and it kind of is.

Because ECE is filled with daring visionaries and bright minds who engage, imagine and invent.

We are the masters of power and energy and light and systems that can turn science fiction into living, breathing science (that can change our day and alter our lives).

We are the force that connects people and technologies with elegant devices that fit in the palm of your hand and colossal systems that are beyond imagination.

We are the spark, the energy, and the catalyst — the generators of ideas, champions of possibility and the fuel for change.

We dream big, bet big, and see it through, because we know it’s our job to help shape a better world for all.

Is that magic? Almost. And we’d love to show you how it works.
Message Methodology

- Review target audiences and find where they intersect with key benefits (magic, daring, bright, broad, connective, impactful, passionate, powerful)
Flexible Messaging & Creative Concepts

• The messaging extensions show how core, overarching statement has flexibility; nuances can be tailored for each audience

• Creative concepts are referred to as ‘ad-like objects,’ which means the following apply:
 – Imagery is directional and not necessarily the end-user image
 – Variety of concepts are presented to determine where we need go from here
 – If concept direction is selected, Tailfin will estimate actual creative execution as needed
The Power of Possible

REFUSING TO BELIEVE IT CAN’T BE DONE.
ECE: Unleashing the Power of Possible

WE TURN SCIENCE FICTION INTO SCIENCE NON-FICTION.

WE MAKE VIRTUAL REALITY AN ACTUAL REALITY.

As soon as we hear that "it can’t be done," we set out to prove those people wrong. That special mix of unbridled curiosity and relentless effort is why the men and women in Electrical and Computer Engineering continue to create the products and technologies that are changing the world every day. Some call it innovation; we call it the power of possible.
Building Blocks

THE SECRET WEAPON INSIDE YOUR FAVORITE TECH.
Even if You Don’t See Them, They’re There.

Even if You Don’t See Them, They’re There.

They’re the ideas and technologies developed by the men and women in Electrical and Computer Engineering. From phones and satellites to medical devices and energy grids, our field creates the building blocks of the products and systems you use every single day. Learn more about ECE at www.UIL.com.

Colorado State University
Department of Electrical and Computer Engineering
It’s What We Do

BLOWING MINDS IS JUST PART OF THE JOB.
It’s What We Do

“HOW DO THEY EVEN COME UP WITH THIS STUFF?”

It’s what we do.

You know those tech advances that seem like something out of science fiction? Well, in Electrical and Computer Engineering, those are things we work on every single day. We’re creating the products and technologies that are changing the world, and if we happen to blow your mind along the way, that’s nice, too.

“HOW CAN THE INTERNET FIT ON MY WRIST?”

It’s what we do.

You know those tech advances that seem like something out of science fiction? Well, in Electrical and Computer Engineering, those are things we work on every single day. We’re creating the products and technologies that are changing the world, and if we happen to blow your mind along the way, that’s nice, too.
Nerds

WE’LL TAKE THAT AS A COMPLIMENT.
We Are ECE

IF BY NERD
YOU MEAN SOMEONE WHO’S CREATING TECHNOLOGIES THAT ARE CHANGING THE WORLD IN WAYS THAT USED TO SEEM LIKE SCIENCE FICTION, THEN YEAH, I’M A NERD.

IF BY CIRCUIT NERD, YOU MEAN THE PERSON SMART ENOUGH TO COMBINE OVER 300 TECHNOLOGIES INTO A SYSTEM THAT WILL LET YOUR CAR DRIVE ITSELF, THEN YEAH, I’M A CIRCUIT NERD.
Brought to You by ECE

IMPACTING THE WAY WE LIVE.
It’s What We Do

The long-distance bedtime story.
- Brought to you by ECE.

A tour of the old stomping grounds.
- Brought to you by ECE.

A Sunday afternoon mission to space.
- Brought to you by ECE.

For the men and women in Electrical and Computer engineering, it’s not about awards or hype or attention. It’s about creating the technologies and products that change the world in ways both big and small. Learn about the incredible ways ECE is connecting people and improving lives at www.URL.com.
Breakout Session

Facilitators:
Art Lizotte and Jeannine Looney
Breakout Considerations

• What are your thoughts on the message directions and creative concepts? Which is your favorite, and why?

• In your opinion, what makes ECE at CSU unique?

❖ What is your elevator pitch when asked about the ECE department at CSU?

• How can you help change the conversation and create more accurate and positive perceptions about ECE at CSU?
Report Results of Breakout Session

Facilitators: Art Lizotte and Jeannine Looney
Closing Remarks
Social to Follow

Spring Meeting/E-Days: THURSDAY
April 12, 2018

Tony Maciejewski