ECE 452: Computer Organization and Architecture

Concepts:
- Overview of computer organization
- Hardware technology: CMOS, clock, timing
- Microarchitecture design for supporting instructions
- Instruction set architecture (datapath, control path)
- Pipelined processor design
 - Basic solutions for handling data, structural, and control hazards
 - Basic branch prediction techniques
 - Basic exception and interrupt handling techniques
 - Overview of extensions of these concepts in modern superscalar and VLIW processors
- Memory system
 - Memory hierarchy
 - Cache memory design and performance
 - Secondary memory (magnetic disks, Flash/SSD)
 - Virtual memory: paging, swapping
- I/O systems
 - I/O organization
 - On-chip bus and network-on-chip architectures
 - Off-chip bus architectures (e.g., PCI-E)
- Multicore, multiprocessor, and cluster systems
 - Basic concepts of multithreading
 - Basic concepts of GPUs
 - Basic concepts of grid and cluster computing

Applications:
- Case studies of processor core architectures, including multicore CPUs and GPUs

Tools:
- Assembler and runtime simulator for a contemporary instruction set architecture
- Architectural simulator for processor-memory system design and exploration

Logic-level Hardware
- Evaluate logic level hardware characteristics that would affect system performance

Datapaths
- Design simple datapaths for processors

Control Paths
- Design control paths using hardwired logic or microprogramming

Parallelism and Pipelining
- Exploit instruction level parallelism with pipelining to accelerate executions; plus hazard handling and branch prediction techniques

Memory
- Determine effective memory access latencies under a hierarchical memory system
- Architect and analyze cache hierarchies

Network-on-Chip, I/O Systems
- Analyze on-chip networks and I/O system performance
- Design to latency and bandwidth constraints

Multicore/Parallel Computing
- Analyze and exploit core and node level parallelism to improve performance and energy efficiency

IN

Microprocessors
- Understand basic structure of a microprocessor

Addressing Modes
- Understand different addressing modes for operands in instructions

Assembly and C Language
- Program in assembly and C language

Memory and I/O
- Understand basic microprocessor memory and I/O system organization

Pre-requisites
- ECE 251 with a C or higher

OUT

Logic-level Hardware
- Design simple datapaths for processors

Datapaths
- Design control paths using hardwired logic or microprogramming

Control Paths
- Design control paths using hardwired logic or microprogramming

Parallelism and Pipelining
- Exploit instruction level parallelism with pipelining to accelerate executions; plus hazard handling and branch prediction techniques

Memory
- Determine effective memory access latencies under a hierarchical memory system
- Architect and analyze cache hierarchies

Network-on-Chip, I/O Systems
- Analyze on-chip networks and I/O system performance
- Design to latency and bandwidth constraints

Multicore/Parallel Computing
- Analyze and exploit core and node level parallelism to improve performance and energy efficiency