ECE 332: Electronics Principles

In:
- Analysis and design procedures using models
 - Can express diode, MOSFET and BJT regions of operation by function and bias
- Device behavior in circuit configurations
 - Can determine region of operation, bias points
 - Can determine equivalent circuits
- Linear Signal amplification, transfer functions, frequency response
 - Can depict common gate, drain, & source configs
 - Can analyze configurations for transfer functions of voltage, current and transconductance
- Parasitic and secondary effects on signal processing
 - Can derive full expression for CS or CE configuration frequency response
 - Can show relationship to open-circuit time constant and Miller effect approximation
- SPICE simulation
 - Can simulate circuits
 - Can use simulation to confirm hand calculations for single stage amplifiers
 - Able to edit SPICE models so that models match measurements
- Laboratory procedures
 - Can connect devices and evaluate bias circuits and time-varying behavior
 - Can analyze measurements and display results in Bode plots for transfer functions
 - Can extract device properties (e.g. threshold voltage) from measured data
 - Can use LabView to derive I-V characteristics of devices and customize VI’s
- Pre-requisites:
 - ECE 331

Out:
- Linear Amplifier Operation and Design
 - Can design bias circuits in single and multi-stage amplifiers using active loads for achieving operational specifications
 - Can analyze and optimize design for achieving fundamental specifications such as gain, bandwidth, and output swing
 - Can calculate and articulate tradeoffs in amplifier configurations relative to performance
 - Can show first-order effects and sources of parasitic elements as related to performance of linear amplifiers
- Feedback in Linear and Non-Linear Circuits
 - Can identify and describe the basic topologies for feedback in linear amplifications
 - Can determine loop gain and understand the effect on stability described in terms of effects on poles for the circuit and phase margin
 - Can employ Bode plots to illustrate behavior
- Noise and Perturbations on Signal Integrity
 - Can describe the common sources and characteristics of noise in linear and non-linear systems
 - Can use first-order models of circuits
- Waveform Generation and Shaping
 - Can analyze common topologies for sinusoid, pulse and triangular waveform generation
 - Can design waveform generators to basic, first order specifications
- Engineering Procedures and Tools
 - Display lab notebook that meets industrial needs for documentation and intellectual property instantiation
 - Can employ SPICE as a routine tool to further understand calculations and measurements
 - Can extract parameters from measurements to modify model parameters for better matching of simulation to experiment
 - Can use LabView for data acquisition and analysis and extract parameters using math functions

Concepts:
- MOS transistors are used as linear devices for signal amplification and conditioning
- MOS transistors are used as non-linear devices for power amplification.
- Design tradeoffs among gain, bandwidth, output swing, stability, and noise are provided.
- Feedback allows another degree of freedom to achieve design goals.
- Design requires drawing from model information, making compromises and analyzing results relative to desired specifications

Applications:
- Single stage linear amplifiers
- Multi-stage linear amplifiers
- Class A, Class B, and Class AB amplifiers

Tools:
- Cadence schematic and simulation tools.

As of 12/9/08