ECE 331: Electronics Principles I

IN

- **Differential and Integral Calculus**
 - Integrate and differentiate sinusoidal, exponential and logarithmic functions
 - Compute terms of a series expansion
 - Evaluate functions at limiting values

- **Phasors, Impedance**
 - Convert complex numbers from Cartesian-to-polar coordinates
 - Convert linear, time-invariant system from differential

- **Kirchhoff’s Law**
 - Analyze circuits with reactive and resistive elements
 - Use mesh and node analysis to analyze circuits with independent and dependent sources

- **Thevenin and Norton Equivalent Circuits**
 - Transform sources and impedances to equivalent forms to analyze circuit behavior

- **Intro Lab and Measurement Procedures**
 - Use instruments
 - Measure voltage, current and frequency response in RLC circuits
 - Maintain a lab notebook

- **Bode Plot Nomenclature and Conventions**
 - Express transfer functions of single and multiple time constant circuits in Bode format

- **Pre-requisites**
 - ECE 202 with a C or higher; MATH 340 with a C or higher; ECE 311, may be taken concurrently; ECE 341, may be taken concurrently or ECE 451, may be taken concurrently

CONCEPTS:
- Basic semiconductor physics concepts for transistor operations
- Asymmetric, non-linear devices are modeled in terms of region of operation, and parasitic properties:
 - pn junction diodes
 - Zener diodes
 - MOSFETs
- Bipolar junction transistors
- Region of operation and bias for best performance
- Transfer functions
- Equivalent circuits
- Single transistor circuit configurations

APPLICATIONS:
- Voltage, current and power supply design
- Large-signal processing (clamps, logic inverters)
- Linear signal processing (linear amplifiers, filters)

TOOLS:
- SPICE
- Electronic circuit editor
- Cadence schematic and simulation tools

OUT

- **Analysis and Design Using Models**
 - Express diode, MOSFET and BJT regions of operation

- **Device Behavior in Circuits**
 - Determine region of operation, bias points
 - Determine equivalent circuits for any region

- **Linear Signal Amplification, Transfer Functions**
 - Depict common gate, drain, and source configurations
 - Analyze circuits for transfer functions of voltage, current and transconductance

- **Parasitic and Secondary Effects on Signal Processing**
 - Derive full expression for single-transistor circuit configurations frequency response
 - Show relationship to open-circuit time constant and Miller

- **SPICE Simulation**
 - Analyze systems in time and frequency domain using MATLAB and/or Simulink tools

- **Laboratory Procedures: Measurement, Analysis, and Reporting**
 - Connect devices and evaluate bias circuits and time-varying behavior
 - Analyze measurements and display results in Bode plots for transfer functions
 - Extract device properties (e.g. threshold voltage) from measured data
 - Use LabView to derive I-V characteristics of devices and customize Vi’s for processing laboratory information

Revised 4/2019