ECE 312: Linear Systems II

Time and Frequency (ECE 311)
- Understands linearity, causality, stability, and time-invariance.
- Understands interplay between time and frequency domain analysis of LTI systems.
 • Impulse response and convolution
 • Complex frequency response and sinusoidal response
 • Bandwidth and time constant

ODEs and Transfer Functions (ECE 311)
- Understands connection between transfer functions, poles and zeroes, impulse response, complex frequency response, and ODE.

Block Diagrams (ECE 311)
- Can determine transfer function of a system built of other interconnected linear systems.

Fourier Analysis (ECE 311)
- Can analyze spectral components of inputs and outputs of systems.
- Can compute transforms and series for standard signals.

Simulation (ECE 311)
- Can analyze systems in time and frequency domain using MATLAB and/or Simulink tools.

Pre-requisites:
- ECE311

* = Optional

As of 12/9/08

Concepts:
- Laplace transform and its use in analyzing continuous-time LTI systems.
- Discrete time test signals, including impulses, steps, exponentials, and sinusoids.
- Properties of LTI systems (causality, stability, time-invariance, etc.).
- Representation of discrete LTI systems in terms of difference equations, convolution sum, and system response.
- Definition and use of Z-transform for discrete time signals and systems and its connection with DTFT.
- Connection between transfer functions, poles and zeroes, units pulse response, complex frequency response, ordinary difference equations, and solutions.
- Introduction to FIR and IIR digital filter design.
- Definition and use of Discrete Fourier Transform.
- Sampling and aliasing
 • Sampling theorems in time and frequency.
 • Nyquist band
- Computation of energy/power spectral density.
* Correlation.

Applications:
- Communications
- Filtering and signal processing
- Computer based control systems
- Image processing.

Tools:
- MATLAB

ODE and Transfer Functions
- From an ordinary difference equation for an LTI discrete-time system can compute:
 • Transfer function
 • Poles and zeroes
 • Complex frequency response
 • Unit pulse response
- Understands connection between ODE, transfer function, unit pulse response, and complex frequency response.

Sampling and Aliasing
- Understands time and frequency domain sampling.
- Can specify anti-aliasing filter and sampling rate for alias-free A/D conversion.
- Understands the Nyquist band.

Z-Transform and DTFT
- Can compute Z and inverse Z transforms.
- Can use Z-Transform to analyze discrete-time systems.
- Can use Z transform to solve ordinary difference equations.
- Can compute and interpret discrete-time Fourier-transform (DTFT).

Digital Filters
- Can design simple digital filters to meet specifications.

DFT and FFT
- Can use Discrete Fourier Transform to analyze frequency content of discrete time signals and to analyze frequency response of systems.
* Understands sub-sampling theorem in time and frequency.
- Understands Fast Fourier Transform and its practical applications in discrete time filtering and signal processing.
- Understands connection between DFT products and circular convolutions.

ODE and Programmed Logic
* Can write assembly code for a programmable DSP from an ordinary difference equation.