ECE 251: Introduction to Microprocessors

IN

Number Systems
- Understand number systems
- Understand 2’s complement representation and manipulation

Combinational and Sequential Logic
- Understand Boolean algebra
- Understand gate level design
- Understand finite state machines

Memory
- Has basic understanding of structure and behavior of ROM and RAM devices

Pre-requisites
- ECE 102 with a C or higher

OUT

Microprocessor Systems
- Understand major components of a microprocessor system

Instruction Sets and Assembly Programs
- Knows microprocessor instruction set and addressing modes
- Write programs to perform computational and I/O tasks

Interfaces
- Write interrupt handlers and perform interrupt I/O

Interrupts and I/O
- Understand basics of random signals and noise
- Analyze signal to noise ratio of an analog-modulated communication system

Clocks. A/D. Serial I/O
- Program and use internal I/O devices (e.g. real-time clock, timers, A/D converters, serial I/O)

Concepts:
- Unsigned and signed number and character representations
 - Components of a microcontroller
 - CPU, register model
 - I/O subsystems
 - Memory subsystems
- Instruction Set and Assembly Language programs
 - Math, logical, and bit instructions
 - Data transfer instructions
 - Programming techniques, flowcharting
 - Using subroutines and stacks
- I/O Capabilities
 - Parallel and serial I/O
 - Memory mapped I/O, I/O programming
 - Interfacing simple devices: pullup resistors, LED biasing, 7-segment display circuitry
 - Interrupt I/O: hardware and interrupt software
 - Memory interfacing: logic, timing, and physical

Applications:
- Use of Microprocessors for computational and I/O tasks in stand-alone and embedded systems

Tools:
- Assemblers
- Debuggers

Number Systems
- Understand number systems
- Understand 2’s complement representation and manipulation

Combinational and Sequential Logic
- Understand Boolean algebra
- Understand gate level design
- Understand finite state machines

Memory
- Has basic understanding of structure and behavior of ROM and RAM devices

Pre-requisites
- ECE 102 with a C or higher

Microprocessor Systems
- Understand major components of a microprocessor system

Instruction Sets and Assembly Programs
- Knows microprocessor instruction set and addressing modes
- Write programs to perform computational and I/O tasks

Interfaces
- Write interrupt handlers and perform interrupt I/O

Interrupts and I/O
- Understand basics of random signals and noise
- Analyze signal to noise ratio of an analog-modulated communication system

Clocks. A/D. Serial I/O
- Program and use internal I/O devices (e.g. real-time clock, timers, A/D converters, serial I/O)

Concepts:
- Unsigned and signed number and character representations
 - Components of a microcontroller
 - CPU, register model
 - I/O subsystems
 - Memory subsystems
- Instruction Set and Assembly Language programs
 - Math, logical, and bit instructions
 - Data transfer instructions
 - Programming techniques, flowcharting
 - Using subroutines and stacks
- I/O Capabilities
 - Parallel and serial I/O
 - Memory mapped I/O, I/O programming
 - Interfacing simple devices: pullup resistors, LED biasing, 7-segment display circuitry
 - Interrupt I/O: hardware and interrupt software
 - Memory interfacing: logic, timing, and physical

Applications:
- Use of Microprocessors for computational and I/O tasks in stand-alone and embedded systems

Tools:
- Assemblers
- Debuggers

Number Systems
- Understand number systems
- Understand 2’s complement representation and manipulation

Combinational and Sequential Logic
- Understand Boolean algebra
- Understand gate level design
- Understand finite state machines

Memory
- Has basic understanding of structure and behavior of ROM and RAM devices

Pre-requisites
- ECE 102 with a C or higher

Microprocessor Systems
- Understand major components of a microprocessor system

Instruction Sets and Assembly Programs
- Knows microprocessor instruction set and addressing modes
- Write programs to perform computational and I/O tasks

Interfaces
- Write interrupt handlers and perform interrupt I/O

Interrupts and I/O
- Understand basics of random signals and noise
- Analyze signal to noise ratio of an analog-modulated communication system

Clocks. A/D. Serial I/O
- Program and use internal I/O devices (e.g. real-time clock, timers, A/D converters, serial I/O)