Impact

Endowed Chairs and Professorships • Academic Village
Undergraduate Scholarships • Graduate Fellowships
Gifts In Kind • Volunteerism

COLLEGE OF ENGINEERING
Alumni, friends, and family members often ask me why I do what I do. What motivated me to become a director of development? Why engineering? Why Colorado State?

The answer to all of these questions are in the pages of this publication — impact. Donors who give of their time, their talent, and their assets have the ability to dramatically transform our campus. Engineering, because I understand the important role that well-educated engineers play in our society. These engineers ensure that my children will have clean drinking water, reliable and efficient energy, and safe buildings and roads. Colorado State, because I believe in public land-grant education and I believe in our outstanding faculty and students.

The College of Engineering is embarking on an exciting time. I hope to work with you personally, and help you find the area or activity that you would like to influence.

Professorships Bringing the best and brightest faculty to Colorado State has a multiplying effect. These faculty attract bright students, they build robust research programs, and are on the front lines in our classrooms.

Academic Village In Fall 2007, engineering students will have the opportunity to live in this first-of-its-kind living-learning environment.

Scholarships and Fellowships Every dollar means a great deal to students and their families and recognition of a student’s academic accomplishments is invaluable.

Gifts in Kind From one printer to an expensive room-sized piece of equipment, each gift in kind donation is important. These gifts allow us to bring technologies and tools to our students that they might not otherwise experience.

Volunteerism Time is our most valued commodity. Challenging the minds and influencing the careers of future engineers is as fulfilling to the volunteer as it is for our students.

Thank You! Every gift makes a difference to our faculty and students. And, this is the reason I love my job!

Director of Development, College of Engineering
970-491-1312, brickner@engr.colostate.edu

Engineers Transform CSU

College of Engineering alumni make a difference to our students, faculty, and campus. The college is proud that many alumni choose to make gifts to our departments, programs, and initiatives. We believe this deliberate and thoughtful action is indicative of the pride CSU engineers have in their alma mater, the quality of the education we provide, and the commitment to ensure that opportunities are available to future generations.

The funds given by College of Engineering alumni and friends to the University has significant impact even outside of the college. Consistently, engineering alumni support programs in athletics, the arts, and throughout campus. The combined impact of these gifts is tremendous. And, over the past five years, the number of gifts have increased by 12.5%. Engineers truly are changing the world!

Engineering Endowment Fund Balances, Fiscal Year 2006

- **Scholarships/Fellowships**
- **Capital Improvements**
- **Professorships**
- **Other**

Endowed funds provide a foundation for building. Alumni and friends of the College of Engineering have established a number of endowed funds to ensure the college has resources in place to remain competitive. An endowed fund is a gift made to the University and managed by the Colorado State University Foundation, in which the University uses the interest earned from a principal investment to fund operations. Endowed funds last in perpetuity, as the principal is never expended. Currently, more than $20M is invested on behalf of the College of Engineering. The income from these funds provides monies to hire faculty, provide student scholarships, supplement research laboratory operating funds, and more.

www.engr.colostate.edu
Dr. Larry Roesner worked for 31 years as a consultant for Camp Dresser & McKee, Inc. before coming to Colorado State. At CDM, he also started and managed a corporate university to develop and serve employees. Despite this experience, Larry says, “I didn’t think I’d qualify for an academic position, but the Harold H. Short Civil Infrastructure Chair, unlike typical appointments, targeted candidates with industrial experience, allowing me to enter academia.”

When he accepted the chair, he thought the academic pace might be a bit slower than that of his senior vice president position. Now at Colorado State for seven years, Dr. Roesner has been running the civil and environmental senior design program, teaching graduate level courses, managing an active research program in the Harold H. Short Laboratory, and working with and advising as many as nine graduate students at one time. Dr. Roesner, a National Academy of Engineering member, is continually working with about 80-100 engineering students, giving them the benefit of his real world experience.

Along with the chair came the Harold H. Short Laboratory for Urban Water Infrastructure Studies. This lab is dedicated to the study of water use management in urban areas, and research into management and utilization of alternatives that will lead to better water use and reduced infrastructure costs. The lab is a teaching lab, and is typically home base for seven to nine graduate students. Dr. Roesner’s home is also a laboratory of sorts. In cooperation with the city, he and several students have designed and installed an extensive graywater system in his home that now serves as a research station for graduate students working to reduce urban water supply demands through the reuse of sink, shower, dish, and laundry water for residential landscape irrigation.

With his chair, extensive engineering experience, and ties to industry, Dr. Roesner has built a launching pad for talented graduate students, providing ample funding for their research. Doctoral student Christine Rohrer says, “I don’t think I would have continued on to my Ph.D. if Larry had not encouraged me. I co-wrote a proposal with Larry, and when we won it, that work became the basis for my research in how urban storm water runoff affects the ecology of streams, and ways to lessen the harmful impact to these ecosystems.” She also notes, “When students come to Larry, he always makes time. Students are his priority.”

Dr. Roesner’s activities illustrate the impact that a chair or professorship can have. Couple experience, knowledge, and innovation with an endowed chair and research funding and you get Dr. Larry Roesner, a pacesetter at Colorado State.
Creating a community of engineers. Support for learning. Connecting undergraduate students with faculty and graduate students. Facilitating team design and teamwork. Retaining quality students, especially first-generation learners and under-represented populations. Graduating better prepared professionals. The goals of the Engineering Academic Village are lofty, but we are confident that we are creating an ideal environment to reach our objectives.

Engineering students and faculty at Colorado State are involved in the design and construction of the University’s premier Academic Village, a $42 million project set to open in Fall 2007. The Engineering Academic Village is a partnership between Housing and Dining Services and the College of Engineering. The project is being funded through student fees, university funds, and private gifts.

More than 60 alumni and friends of the college have already made gifts to the project.

New freshman engineering and honors students will have the opportunity to live in this first-of-its-kind residence hall where academic studies and co-curricular activities are incorporated into a modern living-learning environment. In 2008, a large commons building and outdoor plaza will be added to provide opportunities to interact with students from other disciplines.

Not only will students live in an environment created to foster interaction among peers and teachers, but state-of-the-art computing equipment and multimedia classrooms in the Academic Village will enhance the academic experience. Classrooms will be equipped with video conferencing facilities and recessed computers at every desk. Computing facilities in the residence hall also include Sun Microsystems “thin clients.” Thin clients provide portable computing sessions via the Web, so students can go from the Academic Village to anywhere on campus and access all of their files, a session they just ended, or computations they completed elsewhere.

Another advantage of living in the Academic Village is the availability of seminar and project rooms where students can work on classroom
presentations and design projects with other team members without leaving the building. The Engineering Academic Village also includes an advising office and tutoring rooms; around 25 upperclassmen, 225 undergraduate students, three graduate teaching assistants, seven resident assistants, and a faculty member will reside in the Academic Village to aid students in their studies. There are numerous opportunities to name the rooms through gifts to the College of Engineering (see sidebar).

“One of the things we are most excited about is that, by integrating the living-learning communities in this manner, we are creating an environment that improves the students’ ability to succeed,” says Tom Siller, Associate Dean for Academic and Student Affairs. “They will have additional support to help them fulfill the rigorous expectations of an engineering curricula.”

Sun Microsystems has had a long-standing relationship with the College of Engineering and has partnered with the College in providing the computer infrastructure that benefits students and faculty in their classroom, laboratory and student project activities. Most recently, Sun Microsystems gifted the College of Engineering with approximately $165,000 in equipment. The equipment is being used to test the new Academic Village computing environment in the current Engineering living-learning community. Mark Ritschard, Director of Engineering Network Services, says, “Sun’s partnership will enable us to do more for the students in the Academic Village than would have been possible without their generous support.”

Naming Opportunities for the Academic Village

Alumni and friends can support the Academic Village with a gift. Monies donated to the project will support the technology, furniture, and amenities that will create a unique engineering space. With a goal of retaining students, especially first-generation and under-represented populations, the Academic Village is an exciting project to support.

Gifts may be pledged over a period of five years, and will carry the donor’s name for the useful life of the building. To request additional information, please contact Audra Brickner at (970) 491-1312 or brickner@engr.colostate.edu.

A. East Lobby
B. Welcome and Support Desk
C. Advising Office - already funded
D. Classroom/Seminar Room
E. Collaborative Workrooms (2)
F. Faculty House
G. Computing Design Studios (4)
H. Electronic Classroom
I. Educational Equipment Room
J. Server Room

Other spaces to be named:
Graduate Suites (3)
Study Lounges (7)
Outdoor Bridge Landscaping/Placement
Hall Lounges (3)
Outdoor Walk of Engineering
Main Entrance
Scott Scholar Taps Into Bright Future

Senior Robert Utrup grew up in Alaska, 3,311 road miles from Fort Collins and Colorado State. In Soldotna, Alaska he has worked for six summers to save money for college with jobs in the fishing industry. Robert, determined to be the first in his family to attend a four-year college and determined to pay his own way, worked processing salmon roe, supervising a fillet operation, managing inventory, driving a forklift, and helping with shipments.

Knowing a bit about the great weather and friendliness of Coloradans through relatives in the Denver area, Robert looked for a Colorado school that fit his needs. Colorado State was a match. He applied and was accepted, although distance and cost prevented him from visiting campus prior to his enrollment. He had been admitted to the computer science program, but in his senior year of high school, he worked on a project to build a headphone amplifier, and quickly changed his major to electrical engineering the summer before arriving at Colorado State.

Robert qualified for the WUE (Western Undergraduate Exchange) Program. This program allows first-time freshman undergraduate students from participating states to receive a reduced tuition rate if they demonstrate high academic achievement. He was also the recipient of a Walter Scott, Jr. Scholarship, awarded to engineering students with outstanding scholastic achievement. Robert’s scholarship has been renewed all four years he has been at Colorado State. Thanks to this scholarship, Robert has been able to concentrate on his challenging engineering course load during the academic year.

Now, in his senior year, he is tackling a design project with three other electrical engineering students. They are implementing a programmable metronome with a wireless microcontroller. The end goal is for the controller to be able to capture a tempo that the user is tapping, note a rhythm that is played on a drum pad, and accept a user defined song into memory (capturing information such as tempo changes and time signatures).

Robert’s job search has begun, but he wishes to pursue graduate study at some point in the future. The Scott Scholarship has meant a great deal to Robert in reaching his immediate goals and allowing him to envision and set goals for the future.

www.engr.colostate.edu/development/support_engineering/scholarships_fellowships.shtml

Walter Scott Jr.: Creating Educational Opportunities

Few people have led a business empire after having worked for that same company as a 16-year-old doing odd jobs. But then, few people have the insight and work ethic that have made Walter Scott, Jr., a successful businessman. In addition to his success as an entrepreneur, Walter Scott Jr. and his wife Suzanne seek out ways to provide opportunities for others and to support higher education.

Walter Scott graduated from Colorado State in 1953 with a bachelor’s degree in civil engineering. He went to work for the construction company where his father worked, Peter Kiewit Sons’. Through hard work and determination, Scott was named vice president and elected to Kiewit’s board of directors in 1964. He became president of the company in 1979 and was named chairman of the board after Peter Kiewit’s death. Under Scott’s leadership, Kiewit expanded to include operations in mining, construction materials, packaging operations, communications, and energy. Scott semi-retired from Kiewit in 1998 but remains director and chairman emeritus while also serving as chairman of the board at Level 3 Communications, a firm created by the separation of the two operating divisions of Peter Kiewit Sons’ Inc.

In 1982, Scott established the Walter Scott, Jr. Scholarship Endowment at Colorado State to provide a means for highly motivated young people to pursue engineering degrees. To date, the endowment has funded hundreds of scholarships for undergraduate students seeking engineering degrees and the endowment supports approximately 18 students each year.

Scott advises young people to develop the habit of setting goals. “You should always have an objective you are trying to reach,” he says. “Peter Kiewit used to say he was pleased, but not satisfied. I like the idea in that statement. Being pleased means you’ve done a good job, being satisfied means you don’t have to do anything more. I’m never completely satisfied.”
Riehl Award Keeps Innovative Fires Burning

A pressing challenge today is the attempt to restore ecosystems to their “natural” state. This is difficult due to continued human activity, but also because we are not sure what the original, natural state of an environment was. Gavin McMeeking, an atmospheric science Ph.D. student at Colorado State University is confronting such a problem in his research. Gavin was a recent recipient of the Herbert Riehl Memorial Award, which is granted to a current atmospheric science graduate student who submits the best technical manuscript for publication in refereed literature. Gavin’s paper investigated the optical properties of smoke particles in the air, in order to determine how much of the smoke and pollution that inhibits visibility in our national parks is caused by humans, and how much is natural.

Receiving the Riehl Award has a two-fold benefit to the recipients. The financial aspect of the award is always appreciated, but the recognition also inspires people to continue to excel and be innovative. For Gavin the award came at just the right time. “As a student, every dollar is useful, and this award came at a time when I was in need,” says Gavin. He adds, “It is nice that the Riehl Award focuses on masters level work and shows that at the masters level, students can make significant contributions through research. Of course, none of the research being done at Colorado State would be possible without Herb Riehl, our department’s founder.”

Now, pursuing his Ph.D., Gavin is working with Dr. Sonia Kreidenweis and the atmospheric chemistry research group. He has been focused on field work in Rocky Mountain National Park with a mobile laboratory, and conducting research at the United State Forest Service Fire Sciences Laboratory in Montana.

Aside from his studies, Gavin has also held a mass media fellowship at KUNC, the public radio station in Greeley, covering science and environmental issues. He feels that this has been a great opportunity for him to not only use his science knowledge, but also to break out of student mode and talk with other Colorado scientists. “It is refreshing to work on something different, but related to your field of study,” Gavin says. Working for the radio station has allowed Gavin, an Illinois native transplanted to California and then to Colorado, to become even more aware of the environmental issues in the region.

Endowments such as the Herbert Riehl Memorial Award not only benefit those who receive them, but ultimately can impact us all. Supporting and recognizing timely and important research helps to spur innovation and excellence.

chem.atmos.colostate.edu/

Gavin McMeeking and Dr. Amy Sullivan, postdoc in atmospheric chemistry, with the mobile air quality laboratory.
Students Cut Into Global Issue

In the time it takes to read this story, 10 people will die from air pollution caused by cooking in their homes. In spite of our technologically advanced world, almost half the population, or approximately 3 billion people, burn biomass with inefficient stoves. In the developing world, indoor air pollution from fuels such as wood and dung is the leading cause of death for children under five and the fourth leading cause of premature death for women.

Last summer, mechanical engineering student Elisa Guzman saw the circumstances first-hand. Staying at a hostel in Peru, she met the hostel’s young cook and her three-year-old baby. Their stove was little more than an open fire, their walls were covered with soot, and the air was heavy with smoke. Elisa had sworn that she would leave behind “stove stuff” from her job at CSU’s Global Innovation Center while on this church mission trip, but she soon found herself building two stoves—one for the cook and her son and one for another family with small children.

Now, Elisa and her senior design team are working on an efficient, low-cost, clean wood-burning cookstove to be manufactured at 10,000-20,000 units per month in Guatemala. “There are good cookstoves out there, but the problem is the expense,” Elisa explains. The team’s goal is to produce stoves that meet the needs of the Guatemalans and are affordable for families whose average income is about $3 per day.

The senior design team has been using a high-tech waterjet cutter as a key piece of equipment for their project. Flow International donated this cutter, housed at the Engines and Energy Conversion Lab. The cutter utilizes an ultra high pressure stream of water mixed with an abrasive material to cut through materials. A CAD program is used to layout the shapes to be cut. The process produces very little waste other than water and abrasive (usually garnet), and results in an accurately cut edge. The cutter not only lowers cutting time, but reduces or eliminates the need to clean and polish edges, and significantly lowers material waste and cost.

Using the waterjet cutter for prototype development has made a great difference to the team. They are now planning onsite production in Guatemala and may use the cutter for steel molds in actual production use. It’s also in use for many projects at the Engines and Energy Conversion Lab and quite large. “When middle school and high school students tour the lab, the cutter is their favorite part. It’s just such an amazing and powerful machine. We’ve gotten great hands-on opportunities with this equipment,” says Elisa.

www.eecl.colostate.edu

Flow International’s Equipment Gift to Colorado State

Flow International Corporation, the inventor of abrasive waterjet technology, is the world leader in the development and manufacture of ultra high-pressure waterjet systems. The system is used to cut things ranging from the mirrors in the Hubble Space telescope to airplane wings to stone counter tops.

Flow’s President and CEO Stephen Light is a Colorado State 1968 graduate in mechanical engineering. He was instrumental in building a relationship with mechanical engineering Department Head Allan Kirkpatrick, and Professors Bryan Willson and Don Radford. After several visits by key Flow personnel to Colorado State as well as visits by CSU faculty to the Kent, Washington, based company, a waterjet cutter was gifted to the University.

“Flow is delighted to support CSU by providing this state-of-the-art waterjet cutting machine. We hope this donation will serve the University and students for many years by exposing students to one of the most modern and versatile manufacturing technologies, while enabling the school to advance it’s work on low cost, high efficiency wood burning stoves for developing countries,” says Stephen Light.

Mac McGoldrick, program manager at the Engines and Energy Conversion Laboratory, says, “The waterjet cutter, while invaluable to our stoves research project, has also been of great value to the overall work at the lab. We have used the cutter to fabricate complicated machine parts, as well as delicate work in student design research. In fact, we’ve also worked with faculty and students from CSU’s art department to cut a wide range of materials for their projects. We are very proud of what we’ve been able to accomplish with this tool, and are excited about future projects.”

A Small Sampling of Recent Gift-in-Kind Donations

Stewart Environmental Consultants, Inc., high-volume air sampling device
Sun Microsystems, Inc., 14 Sun Fire servers, a Sun StorEdge array, and Sun rack
Wisconsin Precision Casting Corporation, casting parts for student project
S & S Cycle, Inc., used motorcycle engine and components
Caterpillar, 2100 hp, natural gas engine
Kevin W. Gingery, B.S. 1982 and M.S. 1996 Civil, water current meter
D & K Engineering, eight grinding wheels

Elisa in Peru with stove beneficiary.
Other Connection Points

Colorado State is making great strides in ensuring that more students pursue careers in engineering and science. Students of all ages are introduced to engineering and science at numerous events:

- The Optics Workshop exposes high school students to a state-of-the-art laser laboratory where classroom knowledge can be applied to real-world light and wave experiments.
- Engineering Exploration Day gives high school students and parents an inside look at the fields of engineering through seminars, panel discussions, and exposure to fun and exciting student projects.
- The Snow Sled Design Contest introduces 4th through 6th grade girls to engineering, showing them how to use tools to design and build their own sleds.
- Engineering Days showcases individual and team projects developed by CSU undergraduate students.
- Microbiology’s capstone service-learning class brings K-12 students together with undergraduates who love science.
- The Little Shop of Physics is a hands-on outreach program where students share exciting projects with K-12 students.

Faculty and Student Volunteers Connect Girls and Engineering

National academies and higher education leaders place a high priority on recruiting, retaining, and graduating more women in the science, technology, engineering and math professions. Expanding this workforce base is vital to the future development of new technology, medical discoveries, scientific breakthroughs, and engineering achievements.

Research shows that girls tend to lose interest in math and science programs during their middle-school years. Having female mentors is considered important during all stages of development, and a single-sex environment helps develop a girl’s confidence.

A dedicated group of female undergraduate and graduate students at Colorado State is working with faculty members to show young women that science, engineering, and math can be fun! The Saturday Morning Engineering Club provides opportunities for 4th, 5th and 6th grade girls to expand their knowledge and express their creativity while doing experiments in Colorado State’s high-tech laboratories.

“I think that is the great thing about this program,” says Dr. Erica Suchman, instructor of the “Body Microbes” session and associate professor of microbiology. “It provides role models for young girls, and shows them that science is something women can and do participate in. They were having so much fun, and having done these types of activities before, I was surprised how much more interactive they were without boys.”

Sponsored by the Women & Minorities in Engineering Program (WMEP), the activity runs for eight Saturdays during the fall semester. Funding from Xcel Energy Foundation enables the University to offer the program for free to students in 70 elementary schools in Fort Collins and surrounding communities. The students work collaboratively on design ideas and fabrication, learning communication and teamwork skills. For the past six years, the middle-school students have explored science and engineering principles through hands-on activities such as cleaning up oil spills, building bridges, developing cosmetics, or learning about lasers, robotics, astronautics, and polymers – experiences that capture their imaginations and open their eyes to the possibilities ahead.

“I know they didn’t all walk out of the room remembering every tidbit of science we had covered,” says Dr. Sue James, director of the biomedical engineering program and associate professor of mechanical engineering. “However, I do know they all left having seen a room full of cool female engineering role models and having discovered that engineering is fun and involves many aspects of the world and our daily lives they had not realized.”

Volunteerism

Open and clear.

Directed towards the core.

No error detected.
Donor Honor Roll

Special Recognition of gifts $200 or more, January 1, 2006 - December 31, 2006

1930-1939
Frank J. and Hazel B. Gray
John M. Toliver
Roy W. Vorhees
Vance E. Vorhees

1940-1949
Frank M. and Astrid L. Brown
Jack E. Cermak
Allen C. Gates
Harold M. and Margaret A. Itab
Wilbur E. and Erma E. Ingalbus
Vincent D. and Pearl D. Leone
Everett V. and Billie K. Richardson
Harold H. Short
Vincent E. and Marlene Shryack
Leonard P. and Betty J. Zick

1950-1959
David D. Akers
Robert L. Aspinwall
Robert C. and Thelma K. Baker
Melvin R. and Mary Lou K. Black
Ronald K. and Alvena Blatchley
Theodore R. and Mary L. Blevis
Donald W. Brown
Edward A. and Beth K. Cecil
Eugene C. and Donna G. Diedrich
Edward N. and Nan R. Earle
Ruben J. and Jacqueline Feichtner
Robert D. and Mary S. Gibbons
Virginia R. Glendenning
Charles J. and Marilyn Green
Robert K. and Georgian K. Hoshide
Orval E. and Pauline A. Jones
Keith P. Lautenbach
H. Edward and Marije P. Lecuyer
Calvin E. and Beverly J. Lewis
Robert A. Longenbaugh
Ted E. Loughe
Ralph D. and Eiffa M. Marker
William L. McCarty
Eugene A. and Phyllis F. Miller
F. Gordon Noble
William J. O'Donnell
Robert H. and Roberta A. Olp
Gilbert A. Reesor

James F. and Waltha S. Ruff
Lloyd J. and Julia H. Spafford
Parker S. Stafford
Charles A. and Geraldine M. Stevens
Ben and Georgianna Stillman
Donald H. Tormhollen
Donald A. and Donna J. Willis
John M. Zasadzinski

1960-1969
Steven A. Atkinson
Janusz F. Bajzarowicz
Leslie E. and Betty J. Bees
James K. Brownrigg
Lynn R. and Mary C. Carpenter
Chris J. Christopher
Jeri A. Danielson
Max R. and J. Rene Davis
Glen E. and Carolee DeWitt
David J. and Ruth M. Dingman
Philip T. Gibson
Harry L. and Merlene E. Goff
Walter K. and Susan R. Green
Neil S. and Margaret B. Grigg
James W. Hunt
John S. and Coralie O. Hunter
Thomas L. Huntzinger
William A. and Jean G. Hurt
Marvin E. and Doris A. Jensen
Glen E. and Doris R. Kirk
Allen E. and Patricia L. Lewis
Joseph P. and Carolyn P. Marcus
John P. and Carol A. Mari
Frederic R. Mathis
James A. and Marilyn Michaud
Bardwell C. Moss
William G. and Becky E. Parzybok
Raman K. Patel
Jon A. and Pamela J. Peterka
Richard L. and Sandra J. Remick
David S. Renne and Paulette Middleton
John W. and Rosemary P. Riggen
Larry A. and Kathleen A. Roesner
Lyman V. Root
Richard A. and Annabelle Rutherford
Donald C. Signor
Paul S. Stephens
Shih-Tun and Vicky S. Su
George O. and Sharyl J. Thomas
Y. G. Tsuei
Barnabas R. and Irena K. Urbonas
Dennis K. Wacker
Thomas G. Willis
Darrell D. and Suzanne C. Zimbelman

1970-1979
Melvin R. Baer
Richard O. and Karin C. Bailey
Terry J. Barber and Sandie A. Winslow-Barber
Joe A. and Carol D. Baxter
John C. and Betty L. Becker
Charles W. Binger
John W. Briggs
Robert L. Brungraber
Robert L. and Anne L. Cardenas
Mongkol Chotisatitorn
George K. Cotton
Melvin C. Crane
William B. and Dea B. Danly
Thomas H. Dent
Deanna S. Durnford
Lloyd J. Gronning
Steven S. and Catherine H. Glick
Lloyd J. Gronning
David V. and Mona Harmann
Charles L. Hatch*
Gary A. Hayes
Keith D. and Kara L. Hjemstad
Huakuo Hwang
Gerald C. and Nancy L. Issacson
Raju Jairam
Vernon N. and Joan L. Johnson
Donald W. Kimball
Brian J. Kurtz
Wayne C. Kuse
Daniel L. and Renee R. Law
Donald J. and Susan C. Law
Jim C. Loftis
Robert D. Looper
Michael K. and Deborah Mack
Charles A. McKnight
James W. Mehring
Jerry L. Mills
Philip M. Myers
Duong Nguyen
James R. Noblett and Connie H. King
Jeffrey C. and Donalu P. O’Neil
Chris M. Parsons
Ralph R. Peters
Charles D. and Debra K. Pittman
Douglas S. Reese
J. Owen Rhea
Eugene J. and Carol J. Riordan
Delbert E. and Marie J. Seaver
David R. Sebils
Loren E. Snyder
Thomas and Sandra L. Steinruck
David R. and Mary F. Stewart
George R. and Patricia V. Stoll
John F. and Drew B. Stull
Gary K. Sutherland
Robert W. Thresher
Samuel E. Vanzant
Jonathan H. and Jane A. Votel
Joseph S. Wakefield
Michael H. Walker
Eric R. and Dawn S. West
Thomas W. Williams and Candace Merritt-Williams
Raymond B. Wright
Frank and Jill L. Yellico

1980-1989
Thomas J. and Kristina M. Aberle
Brett B. and Danette S. Anderson
Mark J. and Sally C. Anderson
Russet M. Arakaki
Tim A. Bartholome
Michael A. and Maureen K. Beaty
Kris A. Berglund and Dianne K. Holman
Anthony L. Blank and Stephanie K. Bauer
Laura P. Bohn
Charles E. Brady
Douglas E. and Caroline C. Carlisle
Michael S. Coleman
Scott E. Crail
Kacey Cutler
Andrew M. and Roberta L. Denenberg
Richard J. and Michelle H. Detry
Michael G. Doremus
Charles J. Dury
Harry A. and Erica Eaton
Omnia I. El Hakim
Dennis M. and Lori L. Elliott
Gregory J. and Mary C. Estey
Alex V. and Rosanne Evonitz
John A. Falk
David K. and Ellen F. Ferguson
Thomas H. and Jeanne Z. Fielding
Darrell G. Fontane
Ernest J. Frey and Lorna M. Hess-Frey
Eric M. and Phyllis A. Freyer
Theodore H. and Laura W. Fugler
John W. Gallagher
Roger C. Gehring
Fred T. Hansen
Mark A. Hartwell
Thomas A. and Paula K. Herzog
David R. and Tamara J. Homan
Michael J. Hutter and Sandra L. Hoefs
Merritte W. Ireland
Douglas J. Jobe
Ravindranath S. Joshi
Christie K. Kallenbach
Kirk A. and Debbie Kindsfater
Roy W. Koch
Wal R. and Elizabeth K. Krause
Jacob S. and Barbara V. Langthorn
Carl P. Lathan
Wayne R. Ledford
Ronald R. and Tonya L. LePlatt
Kenneth A. Lovelace
Gregory P. and Beth A. Lynch
David W. Mayer
James D. McMillan
David S. Melberg
Louis L. and Debora J. Miller
Marion M. Morgan
Martin R. Neunertz
David S. Newman
Curtis L. Palma
Mary E. Peery
Kenneth J. Peters
Edward C. Pino
Simmon R. and Heather K. Prakash
Jack D. Price and Duan Rong
John W. Ratz
Blooom and Patricia A. Redding
Desi D. and Lisa A. Rhoden
Jeffrey P. Riley
Joseph M. Rizzo
Jorge J. Rocca and Carmen S. Menoni Rocca
Steven M. and LeeAnn K. Rogowski
Peter H. Rude
Terry A. and Leslie A. Ruhl
Matthew J. Russo
David C. Sadighi
Keith A. Schlagel
Douglas M. and Theresa L. Segura
Mary C. Servais
Susan B. Shember
Richard A. Shoemaker
Daniel E. Siegfried and Katherine M. Kohnen
Kumaraswamy Sivakumar

10
Donor Honor Roll

Every effort has been made to ensure the accuracy of this donor honor roll. We sincerely apologize for inadvertently misspelling or omitting names(s). We appreciate the opportunity to correct our records. Please advise us of any errors by calling (970) 491-3110 or e-mail SupportEngineering@colostate.edu.

Donors making a gift of $200 or more are listed in alphabetical order according to year of graduation. A list of all College of Engineering donors in the last calendar year is available at www.engr.colostate.edu.

Every effort has been made to ensure the accuracy of this donor honor roll. We sincerely apologize for inadvertently misspelling or omitting names(s). We appreciate the opportunity to correct our records. Please advise us of any errors by calling (970) 491-3110 or e-mail SupportEngineering@colostate.edu.

Donors making a gift of $200 or more are listed in alphabetical order according to year of graduation. A list of all College of Engineering donors in the last calendar year is available at www.engr.colostate.edu.

Every effort has been made to ensure the accuracy of this donor honor roll. We sincerely apologize for inadvertently misspelling or omitting names(s). We appreciate the opportunity to correct our records. Please advise us of any errors by calling (970) 491-3110 or e-mail SupportEngineering@colostate.edu.

Donors making a gift of $200 or more are listed in alphabetical order according to year of graduation. A list of all College of Engineering donors in the last calendar year is available at www.engr.colostate.edu.

Every effort has been made to ensure the accuracy of this donor honor roll. We sincerely apologize for inadvertently misspelling or omitting names(s). We appreciate the opportunity to correct our records. Please advise us of any errors by calling (970) 491-3110 or e-mail SupportEngineering@colostate.edu.

Donors making a gift of $200 or more are listed in alphabetical order according to year of graduation. A list of all College of Engineering donors in the last calendar year is available at www.engr.colostate.edu.

Every effort has been made to ensure the accuracy of this donor honor roll. We sincerely apologize for inadvertently misspelling or omitting names(s). We appreciate the opportunity to correct our records. Please advise us of any errors by calling (970) 491-3110 or e-mail SupportEngineering@colostate.edu.

Donors making a gift of $200 or more are listed in alphabetical order according to year of graduation. A list of all College of Engineering donors in the last calendar year is available at www.engr.colostate.edu.

Every effort has been made to ensure the accuracy of this donor honor roll. We sincerely apologize for inadvertently misspelling or omitting names(s). We appreciate the opportunity to correct our records. Please advise us of any errors by calling (970) 491-3110 or e-mail SupportEngineering@colostate.edu.

Donors making a gift of $200 or more are listed in alphabetical order according to year of graduation. A list of all College of Engineering donors in the last calendar year is available at www.engr.colostate.edu.

Every effort has been made to ensure the accuracy of this donor honor roll. We sincerely apologize for inadvertently misspelling or omitting names(s). We appreciate the opportunity to correct our records. Please advise us of any errors by calling (970) 491-3110 or e-mail SupportEngineering@colostate.edu.

Donors making a gift of $200 or more are listed in alphabetical order according to year of graduation. A list of all College of Engineering donors in the last calendar year is available at www.engr.colostate.edu.

Every effort has been made to ensure the accuracy of this donor honor roll. We sincerely apologize for inadvertently misspelling or omitting names(s). We appreciate the opportunity to correct our records. Please advise us of any errors by calling (970) 491-3110 or e-mail SupportEngineering@colostate.edu.

Donors making a gift of $200 or more are listed in alphabetical order according to year of graduation. A list of all College of Engineering donors in the last calendar year is available at www.engr.colostate.edu.

Every effort has been made to ensure the accuracy of this donor honor roll. We sincerely apologize for inadvertently misspelling or omitting names(s). We appreciate the opportunity to correct our records. Please advise us of any errors by calling (970) 491-3110 or e-mail SupportEngineering@colostate.edu.

Donors making a gift of $200 or more are listed in alphabetical order according to year of graduation. A list of all College of Engineering donors in the last calendar year is available at www.engr.colostate.edu.
Join Us . . .

for an Engineering Innovation Breakfast
featuring updates on technological trends and innovative research projects and academic programs. If you or a colleague would like to learn more about engineering at Colorado State, call (970) 491-3110 for details about these events.