

ResQue
User’s Manual

Version 0.1

October 15, 2012

Sudharshan Varadarajan, H. M. N. Dilum Bandara, and Anura P. Jayasumana

Computer Networks Research Laboratory

Department of Electrical and Computer Engineering

Colorado State University

Fort Collins, CO 80523.

www.cnrl.colostate.edu

ii

Contents

1 Introduction .. 1

1.1 Overview .. 1

1.2 Related Publications ... 1

1.3 License .. 1

1.4 Points of Contact ... 2

1.5 Outline .. 2

2. System Summary ... 3

2.1 Multi-Attribute Resource Generation .. 3

2.2 Multi-Attribute Range Query Generation ... 5

3. Getting Started With ResQue .. 8

3.1 Multi-Attribute Resource Generation .. 8

3.2 Query Generation ... 12

4 Attributes in Available Datasets ... 15

5 File Formats... 17

5.1 Input File Formats ... 17

5.1.1 Static Attributes .. 17

5.1.2 Dynamic Attributes .. 17

5.2 Queries .. 18

5.3 Output File Formats .. 19

5.3.1 Resources ... 19

5.3.2 Queries .. 20

6. Appendix ... 21

6.1 Compiling ResQue .. 21

6.2 Error Messages .. 21

1

1 Introduction

1.1 Overview

Multi-attribute Resource and Query (ResQue) generator can be used to generate large

synthetic traces of computing resources and range queries. Such traces are useful in large-scale

performance studies of resource discovery systems, job schedulers, etc., in collaborative peer-to-

peer systems, volunteer computing, and grid and cloud computing. ResQue preserves the statistical

properties of real-world computing resources such as distributions of attributes, complex

correlation between static and/or dynamic attributes, contemporaneous correlation between

dynamic attributes, and popularity of attributes. Users may use the provided datasets or their own

ones as the basis to generate large synthetic traces. Several tools are also provided to simplify the

conversion of other datasets to the format supported by ResQue.

1.2 Related Publications

1. H. M. N. D. Bandara and A. P. Jayasumana, “On characteristics and modeling of P2P

resources with correlated static and dynamic attributes,” In Proc. IEEE Globecom ‘11, Dec.

2011.

2. H. M. N. D. Bandara and A. P. Jayasumana, “On characteristics and generation of multi-

attribute resources and queries with correlated attributes,” In review.

3. H. M. N. D. Bandara and A. P. Jayasumana, “Characteristics of multi-attribute

resource/queries and implications on P2P resource discovery,” In Proc. 9th ACS/IEEE Int’l

Conf. on Computer Systems and Applications (AICCSA ‘11), Dec. 2011.

4. H. M. N. D. Bandara and A. P. Jayasumana, “Evaluation of P2P resource discovery

architectures using real-life multi-attribute resource and query characteristics,” In Proc.

IEEE Consumer Communications and Networking Conf. (CCNC ‘12), Jan. 2012.

5. H. M. N. D. Bandara and A. P. Jayasumana, “Multi-attribute resource and query

characteristics of real-world systems and implications on peer-to-peer-based resource

discovery,” In review.

6. H. M. N. D. Bandara, “Enhancing collaborative peer-to-peer systems using resource

aggregation and caching: A multi-attribute resource and query aware approach,” PhD

Dissertation, Colorado State University, Fall 2012.

7. J. C. Strelen, “Tools for dependent simulation input with copulas,” In Proc. 2nd Int. Conf. on

Simulation Tools and Techniques, Mar. 2009.

1.3 License

Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file

except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0.

http://www.apache.org/licenses/LICENSE-2.0

2

Unless required by applicable law or agreed to in writing, software distributed under the

License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,

either express or implied.

See the License for the specific language governing permissions and limitations under the

License.

1.4 Points of Contact

Reach us at www.cnrl.colostate.edu/pages/contactus.html

Please inform us about any errors, bugs, and feature requests.

1.5 Outline

Section 2 provides a brief overview about the resource and query generation. Step by step

instructions on resource and query generation are presented in Section 3. Section 4 presents the list

of attributes supported by current datasets. Section 5 discusses the syntax of the input and output

file formats and how other datasets can be used with ResQue. Instructions on completing ResQue

and common error messages are given in Section 6.

http://www.cnrl.colostate.edu/pages/contactus.html

3

2. System Summary

2.1 Multi-Attribute Resource Generation

Each resource r is defined as follows:

 ii vavavar ,...,, 2211

Each attribute ai has a corresponding value vi Di that belongs to a given domain Di. Di‘s are

typically bounded and may be continuous or discrete. For example, free CPU (CPUFree) is

continuous and number of CPU cores (NumCores) is discrete. This version of ResQue does not

support categorical attributes such as CPU architectures and operating systems. A multi-attribute

Resource Specification (RS) with such a set of attributes may look like the following:

 MBMemFreeCPUFreeNumCoresGHzCPUSpeedRS 1071 = %, 53 = 2, , 2.4 =

Resource generation module combines the empirical-copula-based static attribute

generation and time-series-library-based dynamic attribute generation (see Fig. 1). Based on the

input dataset, the tool generates synthetic traces of nodes with static and/or dynamic attributes.

Users may generate resources for any subset of the attributes that are present in the input dataset.

Random vectors of static attributes are generated using empirical copulas [7]. Copulas are

functions that couple the multivariate distribution functions to their marginal distributions.

Empirical copulas are useful while analyzing data with complex and/or unknown underlying

distributions. We use empirical copulas to generate vectors of static attributes, as the joint

distribution is unknown and complex. Empirical copulas enable us to use the empirical data directly

while generalizing ResQue to any multivariate dataset regardless of its dependence structure.

First, all the active nodes at a given time instance is sampled for their static attributes. The

instantaneous values of dynamic attributes are also sampled as some performance studies need the

instantaneous values of dynamic attribute not the time series. Second, the marginal distribution of

each attribute is then transformed to a uniform random variable ~U(0, 1), e.g., using Kernel

smoothing density estimation. Third, empirical copula is calculated using the method described in

[7]. Fourth, dependent random numbers are then generated from the multivariate copula. Finally,

random numbers are transformed back to desired marginal distributions using inverse

transformation techniques, e.g., using estimated empirical distribution functions. If the attribute

value is continuous, linear interpolation may be used to generate in-between values while

performing the inverse transformation. Empirical distribution functions can be used for discrete

valued attributes (e.g., NumCores). We use pwlCopula [7] MATLAB tool to generate the static

attributes. See [1-2, 6-7] for additional details.

Time varying dynamic attribute values cannot be drawn randomly from marginal

distributions as the time series of some of the dynamic attributes have a specific structure [1-2, 6].

Moreover, the contemporaneous correlation between two time series needs to be preserved.

Therefore, we build a library of time-series segments by identifying specific temporal patterns

4

exhibited by dynamic attributes. This is sufficient, as our goal is to preserve the temporal variation

of an attribute and its contemporaneous correlation with other attributes. We select free memory

(MemFree) as the attribute based on which to partition the time series due to its distinguishable

pattern and high autocorrelation. We proposed two mechanisms to identify the structural changes

in time series and detailed are provided in [1, 2, 6].

Transform to uniform CDF

Calculate empirical copula

Generate random numbers

Inverse CDF transformation

Build library of time
series

Library of
time series

Select attributes

Node data
C

o
p

u
la

 g
en

er
at

io
n

Draw random
samples

Static & instantaneous
dynamic attributes

Time series of dynamic
attributes

Time series of
dynamic attributes

Random vectors

NumCores

Figure 1 – Flowchart of resource generation.

Once the structural changes in the MemFree time series are identified, time series

corresponding to rest of the dynamic attributes are split at the same breakpoints. Resulting

multivariate time series segments are then collected to form a library. For generating dynamic

attribute values, multivariate time series segments are drawn randomly from the library. Longer

sequences are generated by concatenating one randomly drawn segment to another. Breaking all

the time series of a node at the same point and replaying them together preserve the

contemporaneous correlation among attributes. Randomly mixing time series segments

corresponding to busy and idle periods is acceptable in moderately busy systems such as PlanetLab

and enterprise computing where distribution of attributes tend to be stable over several hours to a

few weeks [6]. However, such random mixing is not suitable in grid and cloud computing where the

entire system or a large fraction of it oscillates between busy and idle periods [2, 6]. In practice, one

may want to build a synthetic trace where the system is busy during given time ranges, moderately

busy in another set of time ranges, and idle in the remaining times. For example, one may want to

build a trace where the system is idle within the first 6 hours, it then remain busy during the next

12 hours (e.g., due to arrival of bag of tasks), and then becomes moderately busy for another 6

hours. Such traces are useful in determining the adaptability of resource discovery solutions. Such

constraints are accomplished by grouping the time-series segments in the library according to a

given attribute. For example, based on the average CPUFree, MemFree, and/or TxRate values time

5

series segments can be labeled as idle or busy (ResQue currently supports only CPUFree. Users may

modify the source code if they want to use other attributes). Depending on the user requirements,

time segments can be randomly drawn from only the subset of segments that are labeled as idle or

busy. Moderate loads can be generated by randomly drawing time series segments marked as idle

or busy (if the number of idle and busy samples is similar, otherwise weights may be adjusted to get

a similar number of samples from each group). ResQue allows such weighted selection of time

series by allowing users to specify thresholds for idle, moderately busy, and busy loads.

As the static and dynamic attributes are correlated, it is essential to establish the

dependency between them. For example, a node with large NumCores typically has higher CPUFree

values [1-3, 5-6]. Therefore, time-series segments in the library are grouped according to the

NumCores of the corresponding node. Consequently, given the NumCores generated from empirical

copula, the dependency between static and dynamic attributes can be established by randomly

drawing time-series segments from the corresponding group. This is sufficient to establish the

correlation as correlation between other static attributes and dynamic attributes is not strong [1-2,

6]. ResQue allows the use of other attributes to establish the correlation, but make sure there are

enough time series segments for the static attribute that you selected. If not, ResQue will print a

warning message.

2.2 Multi-Attribute Range Query Generation

A multi-attribute range query q is defined as follows:

],[,...],,[],,[, 222111 iiiq ulaulaulamq

where, mq specifies the required number of resources and ai [li, ui] specifies the desired

range of attribute values (li and ui are lower and upper bounds, respectively). A query that requests

for five computing nodes with a given CPU speed, free memory, and operating system may look like

the following:

]512,[256 1, GHz], .03,[2.05, MBMBMemFreeNumCoresGHzCPUSpeedmq q

The set of attributes specified in a query may contain only a subset of the attributes that are used to

describe resources. When li = ui, for all the attributes in q it is referred to as a point query. In

practice, attributes in a query may specify a mixture of point and range values. Unspecified

attributes are considered as “don’t care”. q is referred to as a single-attribute query when it specifies

only one attribute and it is referred to as a multi-attribute query when it specifies more than one

attribute.

Multi-attribute range queries are generated using a Probabilistic Finite State Machines

(PFSM). Suppose following three multi-attribute queries are given as the basis to generate synthetic

queries (attribute values are ignored to simplify the discussion):

Q1 = {CPUSpeed}

6

Q2 = {MemFree, 1MinLoad}

Q3 = {MemFree, CPUSpeed, TxRate}

Suppose Q2 appeared twice and Q1 and Q3 each appeared once. We build a PFSM to capture the

popularity of attributes, number of attributes in a query, and occurrences of attribute pairs, triplets,

etc. Attributes are interpreted as a set of states and attribute co-occurrences are interpreted as

state transitions weighted by their frequency of occurrences. However, multi-attribute queries do

not have well defined START and FINISH states. Therefore, we assumed virtual START and FINISH

states, and then interpreted the first attribute specified in a query as a transition from the START

state and the last attribute in the query as a transition into the FINISH state. Fig. 2 depicts the

corresponding PFSM for the above three queries. Following distinct queries can be generated using

this PFSM:

q1 = {CPUSpeed} 1/8

q2 = {CPUSpeed, TxRate} 1/8

q3 = {MemFree, 1MinLoad} 1/2

q4 = {MemFree, CPUSpeed} 1/8

q5 = {MemFree, CPUSpeed, TxRate} 1/8

Their probability of occurrence is indicated on the right. PFSM generates two queries q2 and q4 that

was not among the original queries. There queries are also valid as there is a possibility of

specifying CPUSpeed with TxRate and MemFree. Therefore, by applying a PFSM we can also generate

many queries that are likely to occur in practice. Ranges of attribute values defined in queries can

be represented as a set of sub-states. For example, two queries with CPUSpeed ∈ [1.5, 3.0] and

CPUSpeed ∈ [2.0, MAX] can be defined as two sub-states within the main state CPUSpeed.

START FINISH

CPUSpeed TxRate

MemFree 1MinLoad
3 2

2

1

1

1

1
1

Figure 2 – Probabilistic finite state machine for queries Q1, Q2, and Q3.

Suppose the attributes in the original query Q2 is swapped as Q2 = {1MinLoad, MemFree}. This is

possible as it is not necessary to specific attributes in a particular order. Then the corresponding

PFSM is given in Fig. 3. This PFSM is slightly different from Fig. 2 and produces the following set of

distinct queries:

q1 = {CPUSpeed} 1/8

q2 = {CPUSpeed, TxRate} 1/8

q3 = {MemFree, 1MinLoad} 1/3

q4 = {MemFree, CPUSpeed} 1/24

7

q5 = {MemFree, CPUSpeed, TxRate} 1/24

q6 = {MemFree} 1/6

q7 = {1MinLoad, MemFree, CPUSpeed} 1/12

q8 = {1MinLoad, MemFree, CPUSpeed, TxRate} 1/12

2

1

FINISH

CPUSpeed TxRate

MemFree

1MinLoad

START

1

1

2

2

1

1

1

Figure 3 – Probabilistic finite state machine for queries when attributes in Q2 is swapped.

It produces three new queries q6 to q8 in addition to the ones generated by the PFSM in Fig. 2. This

is a consequence of not having well defined START and FINISH states in queries. Therefore,

resulting PFSM is sensitive to how the states are coded. While this could result in generation of

queries with invalid combinations of attributes, it also offers the opportunity to generate different

mixtures of queries by using different coding conventions. For example, in addition to coding

attributes based on the order they appear in queries, attributes in a query may be shuffled

randomly or sorted in the ascending or descending order before building the PFSM. The problem of

generating invalid queries can be handled by either ignoring those queries ones they are generated

or modifying the PFSM to prevent the generation of such queries. In practice, modifying a large

PFSM without reducing the possibility of generating other potential queries is not straight forward.

Therefore, we recommend discarding invalid queries after they are generated.

8

3. Getting Started With ResQue

The latest version of ResQue can be downloaded from

http://www.cnrl.colostate.edu/Projects/CP2P/. You need to also download at least one of the

datasets or create your own one. Some of the utilities provided will be useful in converting your

data to the format supported by ResQue. You need to have access to GUI version of MATLAB to run

ResQue (ResQue is developed using MATLAB version 2012a). If you have access to the MATLAB

compiler, you may compile ResQue using the instructions given in Section 6.1. Otherwise it can be

run from the source. Following instructions are based on the Dummy dataset.

Step 1 Double click on the ResQue.fig file to start ResQue. This will open up the ResQue form

(see Fig. 4).

Step 2 Pick one of the following options depending on what you want to generate:

 Generate Resources – Generates synthetic resources by combining the static and/or

dynamic attributes of the nodes.

 Generate Queries – Generates synthetic queries based on the probabilistic finite state

machine.

Figure 4 – ResQue startup form.

3.1 Multi-Attribute Resource Generation

Step 1 Click on the Generate Resources button on the ResQue form. This will open up the

resource generation form (ResGen) in Fig. 5.

http://www.cnrl.colostate.edu/Projects/CP2P/

9

Figure 5 – Resource generator.

Step 2 Select the static attribute dataset as the basis to generate static attributes. Table 1 lists

the description of each of the available options. If you do not want to generate static

attribute you may skip to Step 5.

 For this example, we will use the Dymmy_Static.txt file (included in the Data folder) by

clicking on the Browse… button. Depending on the number of entries in the input file

and speed of your machine it may take few seconds to a few minutes.

 Once the file is properly read, Dataset status label will show the number of attributes

and resources in the file. You will be informed of any errors. List of common error

messages is given in Section 6.2.

Step 3 Select the static attributes that you want to generate from the Static attributes list box.

To select multiple entries press Control button while selecting.

 Each attribute that you select will be added to the Establish correlation with static

attributes using the list box. One of these attributes can be used to establish the

correlation with dynamic attributes. You may ignore them if you do not want to

generate dynamic attributes or do not want to explicitly define the correlation between

static and dynamic attributes.

10

Table 1 – List of options available while generating resources.

Label Description Valid Inputs

Static attribute dataset File with static attributes of nodes to use as the
basis to generate data

Properly formatted file (see
Section 5.1.1)

Dynamic attribute
dataset

Time series library file with dynamic attributes
to use as the basis to generate data

Properly formatted file (see
Section 5.1.2)

Static attributes Static attributes to generate Pick from list
All attributes If selected, all attributes in the original data will

be used while generating data using empirical
copula

Dynamic attributes Dynamic attributes to generate Pick from list
No. of resources How many resources/nodes to generate ≥ 1 (integer)
Sampling interval (Sec.) Sampling interval for dynamic attribute. Apply

only to dynamic attributes. Values in seconds
Integer multiply of sampling
interval in time-series library

Duration (Sec.) Up to what time data to be generated. Apply only
to dynamic attributes. Values in seconds

≥ 1 (integer)

Random seed Random seed to use while generating data 1-128 (integer)
Accuracy Used by pwlCopula to determine the granularity.

Accuracy increase with larger numbers
≥ 1 (integer). Must be ≤
number of resources in static
attribute dataset

Establish correlation
with static attributes
using

Attribute to use to establish the correlation with
static attributes. Make sure selected attribute is
actually available in time series library

Busy (B), Moderate (M),
& Idle (I) periods

Optional. Specify when to generate busy,
moderately busy, & idle periods. Use the format
shown in Fig. 5

<B/I/M, time (integer)>

Sharp change Optional. Suddenly change from one state to
another. Otherwise, the change will be gradual

Busy/Idle thresholds
(B/M/I)

Thresholds used to specify busy (B), moderately
busy (M), & idle (I) samples

3 values between 1-100
separated by a comma

Step 4 Fill the No. of resources, Random seed, and Accuracy textboxes with the appropriate

values. If you are also generating dynamic attributes also fill the Sampling interval

(Sec.) and Duration (Sec.) textboxes.

Step 5 Next, select the dynamic attribute dataset as the basis to generate time series of

dynamic attributes. If you do not want to generate dynamic attributes you may skip this.

 For this example, we will use the Dymmy_Dyanmic.txt file by clicking on the Browse…

button. Depending on the no of entries in the input file and speed of your machine it

may take few seconds to tens of minutes. Once the file is successfully read, Dataset

status will show the number of static and dynamic attributes in the file as well as

sampling interval and number of samples (i.e., time series segments).

Step 6 Select the dynamic attributes that you want to generate from the Dynamic attributes

list box. To select multiple entries press Control button while selecting.

11

Step 7 If you are generating both the static and dynamic attributes and would like to establish

correlation between them select one of the attributes in the Establish correlation with

static attributes using the list box.

Step 8 Optional. The default state is moderately busy. Therefore, while generating dynamic

attributes time series segments are randomly selected from the time series library. You

may generate idle and busy periods (for the entire system) by selecting a subset of the

time series segments based on their average CPUFree values. Otherwise skip to Step 10.

Such periods can be specified using the Busy (B), Moderate (M), & Idle (I) periods

textbox. Add each entry in a separate line using the following format:

 B/M/I, time

 Following examples shows how to define the periods. Suppose we want the first 6 hours

to be idle, next 12 to be busy, and another 6 hours to be moderately busy. Then the

periods can be defined as follows:

 I, 21600

 B, 64800

 M, 86400

If you do not explicitly specify the end time, remaining time is considered to be

moderately loaded. If you want time series to rapidly change from one state to another

select the Sharp change checkbox.

Step 9 Specify thresholds to classify time series segments as busy (B), moderately busy (M), &

idle (I). Enter 3 values in the range 1-100 separated by a comma. Each value should be

larger than the previous value. For example, one may specify

 5, 40, 100

Step 10 Enter the name of the file to save the generated data in the Output file textbox. You may

also use the Browse… button to navigate to a different folder.

Step 11 Double-check all the entries. Then click the Generate button to generate data.

Then ResQue will be asked how to convert the static attributes back to the original

marginal distributions (see Fig. 6). If the attribute value is continuous, linear

interpolation may be used to generate in-between values while performing the inverse

transformation (e.g., CPUSpeed and DiskSize). Empirical distribution functions may be

used for discrete valued attributes such as NumCores.

12

Figure 6 – Inverse transformation of generated attributes.

Depending on the number of resources to generate, sampling interval, duration, and

speed of your machine it may take from a few seconds to several hours to generate the

data. Status label indicates the current status of data generation. You may check the

progress of the generated file using a command like tail in Linux or by opening it in the

read only mode.

Note Once the data are generated you are encouraged to validate those using simple

statistical tests such as mean, standard deviation, and by plotting cumulative

distributions. Depending on the attributes you may also use a Kolmogorov–Smirnov

(KS) test to validate the data. Some of the methods we used to validate the data are

given in [1, 5-6].

3.2 Query Generation

Step 1 Click on the Generate Queries button on the ResQue form. This will open up the

resource generation form (QueryGen) in Fig. 7.

Step 2 Select the query dataset (with the list of state transitions and their frequencies) as the

basis to generate queries.

 For this example, we will use the Dymmy_Queries.txt file (included in the Data folder)

by clicking on the Browse… button. Depending on the no of entries in the input file and

the speed of your machine it may take few seconds to a few minutes.

 Once the file is read, Status label will indicate the number of attributes in the file. If the

file already has the CDF of the number of resources requested by a query, it will be

indicated as well. List of common error messages is given in Section 6.2.

Step 3 Specify the No of queries to generate. Table 2 lists the description of each of the

available options.

Step 4 Then select one of the No of resources per query radio buttons to specify the number

of resources requested by a query. See Table 2 for available options.

13

Step 5 Select the attributes to use while generating queries using the Attributes to use list

box. To select multiple entries press Control button while selecting.

Figure 7 – Query generator.

Step 6 Set the Random seed and name of the file to save the generated data in the Output file

textbox. You may also use the Browse… button to navigate to a different folder.

Step 7 Double-check all the entries. Then click the Generate button to generate the queries.

Depending on the number of queries to generate, selected attributes, and speed of your

machine it may take from few seconds to hours to generate the queries. The Status label

indicates the current stats of query generation.

Note Once the queries are generated you are encouraged to validate those using the

approaches described in [5-6].

14

Table 2 – List of options available while generating queries.

Label Description Valid Inputs

Query dataset Dataset to be used as the basis to generate range queries One of the given query files
or user generated ones

No of queries Number of queries to generate ≥ 1

No of resources
per query

No of resources requested by each query. This is the mq
defined in Section 2.2. One the following options may be
selected

 Empirical CDF – Use the data from empirical CDF, if
given in the input data file

 Empirical CDF interpolate – Use the data from
empirical CDF if given in the input data file while
interpolating to generate in between values

 Fixed – Use a constant values

 Uniform (min, max) – Generate mq based on the
given uniform distribution. Define the range of
values using the minimum and maximum. Real
values will be rounded to integers

 Gaussian(mean, std) – Generate mq based on the
given Gaussian distribution. Define mean and
standard deviation. Real values will be rounded to
integers

 Exponential(mean) – Generate mq based on the given
exponential distribution. Define mean. Real values
will be rounded to integers

 Fixed – ≥ 1

 Uniform

o min ≥ 1

o max ≥ min

 Gaussian

o mean ≥ 0

o std > 0

 Exponential

o mean ≥ 0

Attributes to use Subset of the attributes to use. Pick at least 1

Seed Random seed 1-128 (integer)

Output file Where to save the generated queries

15

4 Attributes in Available Datasets

Tables 3 to 6 lists the names of attributes used to characterize resources, their data types,

and units. Attribute names are abbreviated to reduce the file size of both input and output data. You

may use other attributes as far they represent an integer or floating point value that is not a

category or a type.

Table 3 – Attributes of PlanetLab nodes.

Attribute Description Data Type Units

1mLd 1 minute average of CPU load Float -

5mLd 5 minute average of CPU load Float -

15mLd 15 minute average of CPU load Float -

CFree Free CPU Float %

CSp CPU speed Float GHz

DFree Free disk space Float GB

DSize Disk size/capacity Float GB

MFree Free memory Float %

MSize Memory size Float GB

NCore No of CPU cores Integer -

Rx Data receiver rate Float Bps

Tx Data transmission rate Float Bps

Table 4 – Attributes of SETI@home nodes.

Attribute Description Data Type Units

Cache Cache size of CPU Float MB

CSp CPU speed Float GHz

DFree Free disk space Float GB

DSize Disk size/capacity Float GB

MSize Memory size Float GB

NCore No of CPU cores Integer -

PIops CPU performance based on Dhrystone (integer) benchmark Float -

PFpops CPU performance based on Whetstone (floating-point) benchmark Float -

Rx Data receiver rate Float bps

Swap Size of swap memory Float GB

Tx Data transmission rate Float bps

16

Table 5 – Attributes of GCO nodes.

Attribute Description Data Type Units

1mLd 1 minute average of CPU load Float -

5mLd 5 minute average of CPU load Float -

15mLd 15 minute average of CPU load Float -

CSp CPU speed Float GHz

CFree Free CPU Float %

DFree Free disk space Float GB

DSize Disk size/capacity Float GB

MFree Free memory Float GB

MSize Memory size Float GB

NCore No of CPU cores Integer -

Rx Data receiver rate Float bps

Tx Data transmission rate Float bps

Table 6 – Attributes of CSU nodes.

Attribute Description Data Type Units

1mLd 1 minute average of CPU load (Linux only) Float -

5mLd 5 minute average of CPU load (Linux only) Float -

15mLd 15 minute average of CPU load (Linux only) Float -

CSp CPU speed Float GHz

CFree Free CPU Float %

DFree Free disk space Float GB

DSize Disk size/capacity Float GB

MFree Memory size Float GB

MSize Free memory Float GB

NCore No of CPU cores Integer -

17

5 File Formats

5.1 Input File Formats

Any line starting with hash symbols “#” is a comment.

5.1.1 Static Attributes

First list the attribute names. Start with ATTNAMES command then list the attribute names

in the same sequence as data separated by a tab. For example:

ATTNAMES<tab>CSp<tab>NCore<tab>MSize

Then use the DATA command to indicate that we are providing data. Next, enter attributes of

nodes, each in a separate line, following the same order given in ATTNAMES. For example:

DATA

2.1<tab>2<tab>3.2

1.9<tab>1<tab>1.0

3.2<tab>1<tab>2.0

5.1.2 Dynamic Attributes

First specify the number of static attributes used while grouping time series segments. Use

the command NUM_STATIC to indicate the number of static attributes. Separate the command and

value using a tab. For example:

NUM_STATIC 2

Then specify the number of dynamic attributes using NUM_DYNAMIC command. Add a tab between

the command and value. For example:

NUM_DYNAMIC 3

Next, specify the sampling interval for attribute values using the SAMPLE_INTERVAL command.

Sampling interval should be in seconds. For example:

SAMPLE_INTERVAL 300

Total number of time series samples are indicated next using the NUM_SAMPLES command. For

example:

NUM_SAMPLES 4

To speed up the processing of the input file, we also explicitly specify the length of the longest time-

series segment using the MAX_SAMPLE_LEN command. For example, if the longest segment has 5

samples it is specified as follows:

MAX_SAMPLE_LEN 5

18

Then list the attribute names using ATTNAMES command. First list the static attribute names and

then the dynamic attribute names. Order of attributes names should be same as the order of actual

data. For example:

ATTNAMES CSp NCore CFree MFree Tx

Finally, indicate the start of data using the DATA command. Data has the following format:

StaticAtt_Val1<tab>StaticAtt_Val2<tab>…<tab>ave_DynamicAtt1<tab>ave_DynamicAtt2<ta

b>…<tab>ave_DynamicAttN<tab>NoTimeSamples<tab>DynamicAtt1_Val1<tab>DynamicAtt

1_Val2<tab>…<tab>DynamicAtt1_ValN<tab>DynamicAtt2_Val1<tab>DynamicAtt2_Val2<ta

b>…<tab>Att2ValN<tab>Att3Val1…

ave_DynamicAtti is the average of all the samples in the given segment. NoTimeSamples is the length

of each time series segment. Consider the following example from Dummy_Dynamic.txt file.

DATA

3.2 2 2 1.67 6.0 3 1 2 3 1 2 2 9 7 2

2.4 1 2.25 2.67 6.5 4 4 2 2 1 4 4 1 1.7 8 7 6 5

2.2 2 2.8 2.8 7.0 5 5 2 2 1 4 4 1 7 1 1 9 8 5 4 9

2.8 4 2.3 4.05 2.25 4 4 2.1 2.1 1 4.1 4 1 7.1 1 2 3 3

5.2 Queries

Queries specify the empirical CDF of number of resources requested by a query (mq), set of

states, state transitions, and their frequencies. The empirical CDF of mq is specified after the ECDF

command. Then each subsequent line indicates mq and the corresponding cumulative probability

separated by a tab. For example:

ECDF

1 0.41

2 0.46

3 0.48

5 0.64

6 0.73

7 0.86

8 0.96

10 1.0

Then the STATES command is used to indicate the state transitions. Attribute value ranges in a

state (i.e., attribute) are specified as follows:

State_Min_Max

where MIN is the lower bound and Max is the upper bound. A state transition is indicated as
follows:

State1_Min1_Max1<tab>State2_Min2_Max2<tab>frequency

Following examples shows a set of state transitions:

STATES

START CSp_2.0_2.8 2

19

CSp_2.0_2.8 FINISH 2

START CSp_2.0_3.2 1

CSp_2.0_3.2 Tx_0.0_1500.0 1

Tx_0.0_1500.0 FINISH 1

START CFree_50.0_100.0 5

CFree_50.0_100.0 FINISH 3

CFree_50.0_100.0 MSize_2.0_32.0 2

MSize_2.0_32.0 FINISH 2

5.3 Output File Formats

5.3.1 Resources

Each line in generated resources has the following format:

Node_ID<tab>Time<tab>StaticAtt_Val1<tab>StaticAtt_Val2<tab>…<tab>DynamicAtt1<tab>

DynamicAtt1<tab>…

Attributes are same as the order in Static attributes and Dynamic attributes list boxes.

See following example where 5,000 nodes are generated with a sampling interval of 1,800 Sec.:

1 0 2.324 8 15.674 0 10.2742 0.3 549.52

2 0 2.324 8 15.674 0 10.1282 0.1 837.27

3 0 2.324 8 14.6336 0 9.98333 0.1 752.98

4 0 2.324 8 15.674 0.3 9.0725 1.8 1250.24

5 0 2.324 8 15.674 0 10.0207 0.1 21898.8

….

4996 0 2.324 8 15.674 0 9.99 0.1 734.552

4997 0 2.324 8 15.674 0 10.09 0.1 483.62

4998 0 2.324 8 15.674 3.6 11.9245 3.4 12503.7

4999 0 2.324 8 15.674 0 10.02 0.6 430638

5000 0 2.324 24 15.674 32.8 17.29 16.4 92193.5

1 1800 2.324 8 15.674 0 10.028 5.8 400.22

2 1800 2.324 8 15.674 0 10.25 7 430.226

3 1800 2.324 8 14.6336 0 9.8425 7.8 444.58

4 1800 2.324 8 15.674 0 9.22483 1.2 7721.9

5 1800 2.324 8 15.674 0 10.31 1.3 8727.83

….

4996 1800 2.324 8 15.674 5.2 9.2 10.1 1113.42

4997 1800 2.324 8 15.674 0 10.11 0.1 413.45

4998 1800 2.324 8 15.674 11.9 9.05 0.9 915.1

4999 1800 2.324 8 15.674 0 9.7075 4.4 559.67

5000 1800 2.324 24 15.674 32.2 16.96 8.3 44398.9

1 3600 2.324 8 15.674 0 10.1433 5.8 1358.37

2 3600 2.324 8 15.674 0 10.1233 7 781.203

3 3600 2.324 8 14.6336 0 10.0773 7.7 610

4 3600 2.324 8 15.674 0 10.577 1.1 689.95

5 3600 2.324 8 15.674 0 10.01 3.6 447

20

5.3.2 Queries

Each query specifies the require number of resources and range of attribute values and has

the following format:

m<tab>mq<tab>AttName1<tab>Min1<tab>Max1<tab>AttName2<tab>Min2<tab>Max2…

For example:

m 1 Late 0.0 30.0 1mLd 0.0 2.0

m 2 DFree 100.0 400.0 MFree 1.0 4.0

m 5 Loc 10.0 10.0

m 1 1mLd 0.0 4.0

m 4 DFree 0.0 10000.0 Late 0.0 30.0 1mLd 0.0 2.0

21

6. Appendix

6.1 Compiling ResQue

MATLAB c compiler (mcc) is needed to compile ResQue. Download latest version of ResQue

from http://www.cnrl.colostate.edu/Projects/CP2P/. Extract the folder and then set the Current

Folder in MATLAB to where the extracted files are copied.

Step 1 In the MATLAB shell type deploytool. This will open up a dialog box.

Step 2 Set the project name to ResQue.prj. Also set the Location to save the project. Suppose

we want to create a Windows Standalone Application. Therefore, set the application

Type to Windows Standalone Application. Then click Ok button. This will open up the

Windows Standalone Application pane.

Step 3 On the Build tab click on the Add Main File Link and then select ResQue.m.

Step 4 To enable running ResQue without MATLAB we need to add MCR file to the installation

program. Click on the Package tab and click on Add MCR link.

Step 5 Click on the Package button to generate the package or if you wish to use it on the same

machine you may use the Build button. This may take a few minutes.

You may also compile each of the .fig files using mcc command which has the following format:

 mcc [-options] mfile1 [mfile2 … mfileN]

Example:

 mcc –m ResQue.m

6.2 Error Messages

 Error in attribute names (ATTNAMES).
o Error in list of attribute names. Check line starting with ATTNAMES

 No of attributes in the list of names & data don't match.
o No of attributes in DTAT tag is not same as no of attributes given in ATTNAMES tag

 Unknown tag in static attribute file.
o File has an unknown tag(s) or file is miss formatted

 Error in no of static attributes (NUM_STATIC).
o Make sure correct no of static attributes is given

 Error in no of dynamic attributes (NUM_DYNAMIC).
o Make sure correct no of dynamic attributes is given

 Error in sampling interval (SAMPLE_INTERVAL).
o Make sure valid sampling interval is given

 Error in number of samples (NUM_SAMPLES).
o Make sure correct no of time series samples is given

http://www.cnrl.colostate.edu/Projects/CP2P/

22

 Error in MAX sample length (MAX_SAMPLE_LEN).
o Make sure the length of the longest series sample(s) is given correctly. Length is

specified based on time per attribute. Not the number of columns in a line.

 No of attributes in ATTNAMES & DATA don't match.
o Make sure number of attributes given in with ATTNAMES command is same as what is

given under DATA.

 No of samples in time series not correct.
o No of columns in each line under DATA should be equal to NUM_STATIC + 1 +

numTSSamples * NUM_DYNAMIC. numTSSamples is the values specified in column
NUM_STATIC + 1.

 No of time series samples != #
o Actual no of samples given under DATA is not equal to NUM_SAMPLES

 Cannot correlate with more than 1 static attribute
o Correlation between static and dynamic attributes can be established using only 1

attribute. Multiple attributes can be used by modifying the source code.

 Static attribute selected for correlation not in time-series library
o Static attribute selected to establish correlation with dynamic attributes in in time

series library file. Make sure static and dynamic attribute datasets belong to the same
dataset such as PlanetLab.

 Static attribute selected to establish correlation must be selected as one of the static
attributes to include in generated data.
o Attributes to generate (once that will be saved in output file) must include the attribute

selected to establish correlation with dynamic attributes.

 Error in ECDF data. No of columns != 2.
o Error in empirical CDF data for number of resources specified in a query. Accepted

format: <no_resources><tab><CDF value>

 Error in STATES data. No of columns != 3.
o Error in state transition data. Accepted format:

<state1><tab><state2><tab><no_of_transitions>

 Unknown tag in query state file.
o File has an unknown tag(s) or file is miss formatted

	1 Introduction
	1.1 Overview
	1.2 Related Publications
	1.3 License
	1.4 Points of Contact
	1.5 Outline

	2. System Summary
	2.1 Multi-Attribute Resource Generation
	2.2 Multi-Attribute Range Query Generation

	3. Getting Started With ResQue
	3.1 Multi-Attribute Resource Generation
	3.2 Query Generation

	4 Attributes in Available Datasets
	5 File Formats
	5.1 Input File Formats
	5.1.1 Static Attributes
	5.1.2 Dynamic Attributes

	5.2 Queries
	5.3 Output File Formats
	5.3.1 Resources
	5.3.2 Queries

	6. Appendix
	6.1 Compiling ResQue
	6.2 Error Messages

