CIVE 522 ENGINEERING HYDROLOGY

INSTRUCTOR

Jorge A. Ramírez, Ph.D.
Professor, Civil and Environmental Engineering Department
A222 Engineering Bldg. (970) 491-7621

Office Hours: MWF 1:00 - 2:00 PM – A222 Engineering Bldg.

TEXTBOOKS AND REFERENCES

The following books and references have been placed on reserve at the Morgan Library.

8. Class handouts.

COURSE OBJECTIVES

COURSE EVALUATION

Homework
3 Exams

SCHEDULE

Lecture MWF 10:00 - 10:50 AM – Room B4 Engineering Building

ACADEMIC INTEGRITY AND HONOR PLEDGE

This course will adhere to the Academic Integrity Policy of the Colorado State University General Catalog and the Student Conduct Code. Accordingly, we will use an honor pledge as indicated below.

The honor pledge will be:

“I pledge that I have not given, received, or used any unauthorized assistance.”

“I pledge that I will not give, receive, or use any unauthorized assistance.”
CE 522 ENGINEERING HYDROLOGY

COURSE OUTLINE

TOPIC

Linear System Theory and Rainfall-Runoff Analysis
- Unit hydrograph theory
- Instantaneous unit hydrograph (IUH)
- IUH analysis methods: Harmonic analysis
 - Fourier transforms
 - Laplace transforms
- Linear channel
- Linear reservoir
- Nash model

River and Reservoir Flood Routing
- Flood Routing
- Reservoir flood routing methods:
 - Mass curve method
 - Storage indication method
 - Puls method
 - Goodrich method
 - Coefficient method
 - Woodward method
 - Others
- Linear Muskingum method:
 - Analytical Solution
 - Hydraulic analogy
 - Parameter estimation procedures.
- Multiple reach Muskingum method
- Nonlinear Muskingum method:
 - Muskingum-Cunge method
- Distributed flow routing - Wave motion
 - Kinematic wave and Overland Flow
 - Analytical solution - Overland flow problem
 - Linear and non-linear numerical solutions
 - Overland Flow with spatially variable infiltration
 - Routing of diffusive and dynamic waves

Hydrologic Design
- Design scale
- Design Level
 - Risk Analysis
 - Hydroeconomic Analysis
- First Order Analysis of uncertainty
- Composite Risk Analysis
- Risk Analysis of safety factors and safety margins
- Hydrologic design under natural and parameter uncertainty
 - Bayes risk
 - Opportunity Losses
 - Value of Sample Information
CE 522 ENGINEERING HYDROLOGY

COURSE OUTLINE

TOPIC

Precipitation data analysis.
 Data analysis
 Modeling
 Mean Areal Precipitation: Thiessen polygons - Isohyets - IWD Methods
 Kriging
 Kriging with covariances
 Kriging with semivariograms
 Kriging with generalized covariances
 Co-Kriging
 Orographic Influences and their analysis

Design Storms
 Design precipitation depth
 Point precipitation
 Areal precipitation
 Intensity-Duration-Frequency (IDF) Curves
 Design Hyetographs
 Storm event-based analysis
 IDF-based analysis
 Estimated Limiting Storms
 Frequency analysis