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ABSTRACT

A parametric infiltration model is incorporated with a surface routing model, based upon a kinematic
cascade of planes and channels to constitute a watershed model. Relationships are developed to compute flows
by the kinematic approximation in channels of circular cross-section for routing through storm drains. The
infiltration model is tested on some infiltrometer experiments; model parameters are estimated from measured
data and by comparison to characteristics of soils used in a previous study. Two types of flow resistance
relationships are considered: the Chezy formula and a friction relationmship that is initially laminar and then
becomes turbulent (Chezy) above a transition Reynolds number. The watershed model is used to compute discharge
from: a) a 0.6 acre impervious experimental rainfall-runoff facility, b) a 27 acre experimental agricultural
watershed, and ¢) a 165 acre urban watershed.

A computer program of a general kinematic watershed model is described and documented. This program,
called KINGEN 75 may be used to predict hydrographs of individual storms for small rural and urban watersheds,
based on basin topography and field measurements of infiltration parameters.

FOREWORD

The basic KINGEN program for computing the runoff hydrograph from a complex configuration of impervious
planes and channels was written by D. A. Woolhiser in 1969. The philosophy adopted at that time was to test
the model on successively more complicated systems, beginning with the CSU Experimental Rainfall-Runoff Facility
and progressing to more complicated rural and urban watersheds. As his M.S. Thesis topic E. W. Rovey added an
infiltration subroutine (developed by R. E. Smith) to the model, added a routine to handle unsteady flow in
circular conduits and performed extensive tests using apriori information.

Because the KINGEN program used by E. W. Rovey had evolved over a period of 5 years, it had become quite
unwieldy. Consequently, we decided to completely reprogram the model, making extensive use of subroutines,
and simplifying the input as much as possible. The KINGEN 75 model, presented in the Appendix, is the result
of this effort.

David A. Woolhiser
Research Hydraulic Engineer
USDA-ARS
July 1977
Fort Collins, Colorado

DISCLAIMER

The programs listed herein are furnished with the express understanding that the United States Department
of Agriculture or Coloradoe State University give no warranties, expressed or implied, concerning the accuracy,
completeness, reliability, usability, or suitability for any particular purpose of the information and data
contained in these programs or furnished in connection therewith, and the USDA or Colorado State University
shall be under no liability whatsoever to any person by reason of any use made thereof.

The programs herein belong to the USDA. Therefore, the recipient further agrees not to assert any propri-
etary rights therein or to represent these programs to anyone as other than USDA programs.
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Chapter 1
INTRODUCTION

The increase in world population has resulted in
increased development in natural floodways in both
rural and metropolitan areas. As a consequence of
this development, property values have risen and more
people are exposed to flood danger. The increased
potential for flood losses warrants the development of
more accurate techniques for estimating flood peaks.

Watershed models of various types have been used
to estimate flood peaks. A watershed model may be
defined as a physical or mathematical representation
of the real watershed. Any useful model involves
simplification of the real system and therefore inev-
itably results in distortion. However, the model
developer attempts to minimize distortion of the most
crucial watershed characteristics, and it is assumed
that the most important aspects are accurately por-
trayed.

Mathematical models are usually more useful than
physical models in hydrologic studies. The models
consist of differential or partial differential equa-
tions which may have analytic solutions for only a
few, highly simplified problems. Consequently numer-
ical methods must be used to obtain solutions for
most mathematical models.

There are four important phases in using mathe-
matical models as aids in understanding and predict-
ing hydrologic phenomena. The first phase is to
determine the equations, and appropriate boundary con-
ditions that describe the physical processes being
investigated and to consider possible simplifications.

The second phase is to develop an efficient and ac-
curate computer algorithm to solve the equations and
to handle the logical steps. Methods of parameter
estimation must then be developed using rainfall, run-
off, topographic, and soil data from a variety of
watersheds. The final and most important phase of
modeling comes when the calibrated model is used to
predict the response of a system using only knowledge
of the system and its inputs.

The major objectives of this study are:

1. To develop a flow routing procedure for cir-
cular conduits, based on the kinematic approximations
of unsteady free surface flow equations, and compare
the solutions to those obtained by other methods of
routing,

2. To incorporate an infiltration model with a
surface runoff model, based on the kinematic approx-
imation,

3. To compare observed hydrographs with com-
puted hydrographs from the model for:

a) a small impervious experimental watershed
at Colorado State University,

b) an experimental agricultural watershed at
Edwardsville, Illinois,

c) an experimental urban watershed at
Denver, Colorado,

4. To test the sensitivity of the model para-
meters,

5. To document a computer program for estimat-
ing surface runoff hydrographs from complex watersheds
described as a cascade (logical flow sequence) of
overland flow planes and channels.




Chapter 2
PREVIOUS STUDIES OF KINEMATIC WATERSHED MODELS

2.1 Kinematic Wave Theory

The continuity and momentum equations for grad-
ually varied unsteady flow were developed by De Saint
Venant in 1871 (Yevjevich, 1960). Direct solution of
these equations, even by numerical means, was not pos-
sible before electronic computers were available, ex-
cept for extremely simplified initial and boundary
conditions. Graphical methods were used for approxi-
mate solutions but even these were tedious. Usually,
simplified methods, considering only continuity or
approximations to the momentum equation, were used to
route flows (Yevjevich and Barnes, 1970).

Many investigators have studied gradually varied
unsteady flow and found conditions for which a sim-
plification of the complete momentum equation and the
continuity equation are sufficiently accurate.

Lighthill and Whitham (1955) considered propaga-
tion of flood waves in rivers as mainly kinematic, a
balance of bed slope and friction slope; they also
investigated kinematic shock waves. Wooding (1965)
applied kinematic wave theory to a catchment formed
by two planes in a V-shape, each discharging into a
stream at the center. He concluded that kinematic
theory was applicable to gradually varied unsteady
flow if the Froude number was less than 2. Woolhiser
and Liggett (1967) showed how the use of dimension-
less continuity and momentum equations could reduce
the number of parameters for overland flow on a plane
from five to two. A parameter of the dimensionless
momentum equation was used to measure the applicabil-
ity of kinematic wave theory. The parameter was

SL

R 3

= (2-1)
HF
o0

where S is surface slope; L is length of flow; HO
is normal depth; and k. is the Froude number for

normel flow. Figure 2-1 shows that for K > 10 , the

Variation of Dimensionless Hydrograph with
Kinematic Flow Number (after Woolhiser and
Liggett, 1967)

kinematic wave solution, labeled K = = , is a good
approximation. The kinematic wave parameter is often
several thousand or more for many cases of overland
flow. Foster, et. al. (1968) simulated rainfall on
an erodible fallow plot and found that a kinematic
wave model satisfactorily predicted overland flow.
Observed hydrograph data were analyzed to estimate
retention storage and surface roughness. These re-
sults were used to predict hydrographs. A comparison
was made between a constant Darcy-Weisbach f or
Manning's n and a variable friction factor of the
form

(2-2)

where a and b are constants and Re is the Rey-

nolds number. The constant friction factor gave re-
sults as good as a variable factor, which would indi-
cate the flow was turbulent. Henderson (1963) and
Eagleson (1970) have utilized the kinematic wave
theory, but they limit the kinematic waves to a non-
subsiding state. They do not account for the subsi-
dence property of kinematic shock waves that may
exist. Kinematic shocks result when waves travel
faster and overtake slower waves that originated
downstream. This phenomenon is represented mathemati-
cally by an upstream characteristic intersecting a
characteristic that originated below it; there is a
discontinuity at the intersection (see section on
Kinematie Equations for a Plane for mathematical defi-
nition of a characteristic). Kibler (1968) and Kibler
and Woolhiser (1970) developed dimensionless kinematic
equations for a cascade of planes and developed a para-
meter based upon the widths, slope, and roughness of
adjoining planes to predict occurrence of kinematic
shocks. A method for tracing the shock waves was also
presented.

The kinematic wave models that have been formul-
ated have been solved by a variety of finite difference
methods, some implicit and some explicit. Brakensiek
(1967a) tested three types of finite difference meth-
ods on a kinematic model of flood routing and found
that a four point implicit scheme, which centered on
the two upper points, gave the most satisfactory re-
sults. Kibler and Woolhiser (1970) found that an ex-
plicit finite difference scheme with second order
accuracy was the most satisfactory numerical method
for their studies of overland flow.

Kinematic models have usually been used to simu-
late hydrographs of individual runoff events. Such
simulations require that the surface geometry or mac-
roscale features of the watershed, like length, width
and slope of overland flow areas and channel lengths,
slopes, and cross-sections, be measured from topograph-
ical maps and incorporated into the model geometry.

Although this procedure is subjective, it can be
done with reasonable accuracy. The mesoscale features
of rills and obstructions to flow and the microscale
features of surface roughness cannot be measured as



easily and are generally lumped in a hydraulic rough-
ness parameter or parameters that are often estimated
by optimization techniques.

Several researchers have worked on the problem of
resistance to overland flow. Some of the results of
this work are plotted in Fig. 2-2 for Darcy-Weisbach
f vs. Reynolds number. In this analyses, they as-
sumed that the friction law was of this form. Woo
and Brater (1962) simulated rainfall for conditions
of laminar flow but found that raindrop impact affect-
ed flow resistance. Iwagaki (1955) solved the char-
acteristic equations for kinematic waves in steep
channels and found good agreement between calculated
and observed results. He observed an increase in
discharge momentarily after lateral inflow abruptly
went to zero. Yu and McNown (1964) experimented with
data obtained from Crops of Engineers rainfall exper-
iments on a concrete surface. They could model the
sudden increases of discharge after rainfall ceased
by lowering the friction coefficient when rainfall
stopped. Henderson and Wooding (1964) applied a kin-
ematic wave model to experiments on tarred gravel,
clipped sod, and tarred sand surfaces. They obtained
good agreement between computed and observed hydro-
graphs.

The variation in hydraulic resistance is quite
large as shown in Fig. 2-2. Of course, one would
expect the research results to vary when the experi-
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Fig. 2-2 Darcy-Weisbach f vs. Reynolds number

ments were conducted on the different types of sur-
faces or under different conditions. Morgali and
Linsley (1965) simulated some hydrographs with a kin-
ematic model and found laminar flow conditions best
fit discharge over a painted wood surface, while the
best fit for the rising limb of roughened surfaces
was with a turbulent friction factor, n = .017 for
crushed slate, and n = 0.4 - 0.5 for turf. The
friction factor had to be lowered for the recession
hydrograph. Morgali (1970) found the range of the
laminar roughness constant, k , which is the-product
of the friction factor, f , and the Reynolds number
was 14-35 for asphalt, 20-65 for crushed slate, and
5,000 - 14,000 for turf. As Reynolds' number increas-
ed, transition to turbulent flow occurred, and resis-
tance could be modeled by Manning's law. Kibler
(1968) and Kibler and Woolhiser (1970) verified their
work on the Colorado State University experimental
rainfall-runoff facility and their results indicated
that observed hydrographs rose more slowly during the
initial periods of rainfall than did the predicted
hydrographs. Computed peak rates varied both above
and below the observed rates but the timing of the
peaks agreed fairly well and the recession hydrographs
were accurately simulated.

Woolhiser (1969) proposed a portion of a cone at
the upstream end of an area to approximate the con-
vergence of flow on many watersheds. This was com-
bined with two planes and a channel to represent an
entire watershed. He derived the dimensionless equa-
tions for a converging section, tested it on observed
data, and obtained good agreement on the steeply ris-
ing early portion of the hydrograph. Fawkes (1972)
tested several roughness relationships on the Colorado
State University facility and found that a mixed
laminar-turbulent roughness relationship gave the
best results. He found good agreement using "disturb-
ed" laminar conditions during rainfall and '"undisturb-
ed" laminar conditions without rainfall. For both
cases a constant turbulent friction coefficient was
used above a '"transitional" Reynolds number. The
laminar roughness constant was about 25 for butyl
rubber and 100 for rubber roughened with 20 lbs. per
square yard gravel. The transition Reynolds number
was about 400 for the smooth rubber and 80 for the
roughened rubber.

Kinematic wave models have been used to simulate
runoff from agricultural areas and found to give
satisfactory results. Woolhiser, Hanson and Kuhlman
(1970) modeled runoff as beginning under laminar con-
ditions and changing to turbulent flow at a Reynolds
number of 300 for a short-grass, grazed prairie.

The average value of the parameter k was about
7,000. Langford .nd Turner (1973) simulated rain-
fall on a stabilized fallow surface with a friction
relationship in the form of laminar-turbulent Manning's
n that varied with rainfall intensity. The surface
retention showed a hysteresis effect because of chang-
ing hydraulic roughness under conditions of rain and
no rain. Brakensiek (1967b) depicted a mixed-cover,
agricultural watershed in Wisconsin as a distributed
system by utilizing a hypsometric curve and contour
length-elevation curve. He fitted hydrographs by
varying Manning's n and obtained satisfactory re-
sults with values of 0.08 to 0.10 for n . These
values seem low for an agricultural area. Overton
and Brakensiek (1970) also applied the kinematic

wave model for a V-shape configuration. They derived
a lag time based on watershed dimensions, roughness,
and rainfall rate. Their relation between lag time
and rainfall rate agreed well with observed data for
several events on a Hastings, Nebraska, experimental
watershed. A sensitivity analysis showed the solution



more sensitive to errors in rainfall than to errors in
averaging geometry and roughness.

2.2 Urban Hydrology

The development of rural areas into urban commun-
ities has a significant effect on the hydrologic res-
ponse because the impervious area is drastically
changed and conveyance systems for drainage are often
installed. Schulz (1971) summarized the salient fea-
tures of unit hydrographs generally changed by urban-
ization--increase of peak discharges, reduction of
response time, and reduction of hydrograph base length.
Runoff volumes also increase. These changes have been
observed since the Nineteenth Century but were not
quantitatively investigated until the Twentieth Cen-
tury. In urban hydrology there is still a shortage of
accurate rainfall-runoff field data. Considerable em-
phasis has been placed on this problem in the last 5
years (ASCE Urban Hydrology Research Council, 1968).

Horner and Flynt (1936) quantitatively studied
the runoff from two different city blocks in St. Louis,
Missouri. JIzzard (1946) studied flow over paved and
turf surfaces and in gutters from which he developed
some empirical curves to estimate the maximum rate of
runoff. Much of the early work in calculating runoff
from urban areas was based upon the well-known ration-
al formula. Introduction of the unit hydrograph per-
mitted its use in urban hydrology. A survey of cur-
rent practicing engineers indicated they use the rat-
ional method for areas less than 5 square miles, while
larger areas are calculated by the unit hydrograph
method (Committee on Flood Control, 1969).

Several "hydrograph' methods, which permit esti-
mation of runoff, have been developed in particular
regions of the country. Caution must be used if
these methods are applied to conditions that may be
different than the ones under which they were derived.
The Los Angeles Hydrograph Method, developed by Hicks
(1944) for use in southern California, is based upon
a substantial amount of data from that region. The
procedure uses two methods of computing discharges--
the peak-rate method (which is a rational type method)
and summing hydrographs (used when the time of concen-
tration exceeds 60 minutes or a flow retention struc-
ture is part of the system) (Chow, 1964). Tholin and
Keifer (1960) published one of the classic reports on
urban hydrology, the Chicago Hydrograph Method. A
step-by-step design procedure based upon a unit size
of 10 acres was presented. Abstractions from design
rainfalls were calculated. Overland flow was computed
by Izzard's procedure. Routing through all sewers was
done by a time-offset method because of its simplicity.
From the storm sewer hydrographs, it was possible to
develop a series of design charts for peak discharge
based on percent of directly connected impervious area,
type of land use, and travel time. The time-offset
method of routing in storm sewers is often used. This
method seems to give satisfactory results under some
conditions, but its limitations have not been fully
evaluated. Harris (1970) used a progressive average-
lag method for routing in storm sewers. He compared
this technique with the method of characteristics for
the full dynamic equation of motion. He found a sat-
isfactory comparison of the two methods and thus chose
the simplified method; however, this method requires
observed hydrographs (at least three) to evaluate the
routing constants.

Since the mid-1950's, the Johns Hopkins Univer-
sity has conducted extensive research in storm sewer
drainage. An inlet hydrograph method was developed,
based on a rational type formula for peak flows and
an assumed triangular shape. These hydrographs are

summed to obtain the total hydrograph, after each in-
let hydrograph is reduced by a factor based on the
time characteristics of the event (Viessman and Geyer,
1962). Schaake (1970) applied a kinematic wave model
by separating the catchment into segments over which
the model parameters were assumed uniform. He pre-
sented a technique to compute the kinematic parameter,

.based upon geometrical characteristics and assumed
“types of flow for a segment.

The model was tested on
an 0.4-acre experimental catchment in Baltimore, Mary-
land. The University of Cincinnati developed a run-
off model for urban watersheds (1972). Infiltration
on pervious segments was computed by Horton's equation
with surface retention estimated by an exponential re-
lationship recommended by Linsley, Kohler, and Paulus
(1949); average values for impervious and pervious
segments were given if measured data were not avail-
able on the watershed. Overland flow was assumed to
be turbulent and computed by a storage routing pro-
cedure, while gutter flow was computed strictly by
continuity and was assumed to occur over relatively
short lengths. Sewer routing was performed by undis-
torted lagging of the inflow hydrograph. This pro-
cedure results in higher peaks at later times than
more exact methods. The model was applied to a 13-
acre watershed in Chicago with satisfactory agreement
between observed and computed hydrographs, except on
the recession portion.

In 1969, the Denver Regional Council of Govern-
ments published an urban storm drainage criteria man-
ual. This manual outlined design requirements for
urban storm drainage projects in the Denver region.
Rainfall-frequency maps were prepared up to the 100-
year return period. The rational formula was used to
compute runoff in areas which did not contain storm
sewers and were less than 200 acres. The unit hydro-
graph method was used for areas larger than 200 acres
or if storm sewers or channels were present. The
manual outlined procedures to estimate the rainfall
excess and compute runoff by the rational formula
with typical coefficients or from the specified unit
hydrograph method.

2.3 Infiltration

Any watershed model simulating runoff from a par-
tially or totally pervious surface must have a means
of estimating infiltration. The process of infiltra-
tion has remained as one of the most complex problems
faced by the watershed engineer. Many methods have
been developed for estimating infiltration quantita-
tively--some empirical and some based on theoretical
relationships. Horton's (1940) infiltration equation
accounts for the time variability of infiltration.

The equation is

£=f + (fo-fw)e‘°t (2-3)

is infiltration rate at time t ; f_ is

@

where f
the steady-state infiltration rate; fb is the ini-

tial infiltration rate; and c
to the soil cover complex.

is a parameter related

Philip (1969) developed a theory of infiltration
based upon the governing relationship for movement of
a fluid in porous media. An algebraic form of his
relationship for infiltration from a ponded surface is

1/2

£f=1/2 st” + A (2-4)



where s is the "sorptivity" of the soil, a measure
of the influence of capillarity, and A 1is an approx-
imate value of the steady state infiltration rate.
Several empirical methods are merely indices of infil-
tration and assume a constant loss rate throughout the
entire hydrograph. The ¢ Index and W Index are the
best known of this type. These indices are best suit-
ed for major storms occurring on wet soils or storms
when the peak rates and durations occur after infil-
tration can be approximated as a constant.

The partial differential equation that governs
one-dimensional flow of water in an unsaturated porous
medium (ignoring air counter-flow) is often referred
to as Richard's equation (Smith and Woolhiser, 1971)

3(S_¢) 3K
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where Sa is relative saturation; ¢ is porosity;

KS is saturated conductivity; Kr is relative con-

ductivity; ¢ 1is soil capillary potential; and z is
distance below the surface. The solution of this non-
linear differential equation requires a knowledge of
the functional relationships among ¢ , S , and Kr

and the values of ¢ and K5 for a particular soil.

Richard's equation can be solved analytically only if
severely simplifying assumptions are introduced. The
usual means of solution is by finite difference meth-
ods. Smith and Woolhiser (1971) used an implicit fin-
ite difference method to solve Eq. (2-5) for a wide
variety of rainfall rates and initial conditions.
These results were summarized by parameteric relations
reported by Smith (1972) (discussed in Chapter 3).

2.4 Sensitivity

Sensitivity is a measure of the effect of change
in a parameter on a response. The role of sensitivity
analysis in hydrologic models is often inherent in
models that utilize optimization techniques to fit
observed data. A sensitive parameter may converge
quickly, while the converse applies to an insensitive
parameter.

McCuen (1973) presented a mathematical framework
for sensitivity analysis. He gave explicit relation-
ships which can be applied to models if the governing
equations can be differentiated. The most common form
of sensitivity analysis is by parameter perturbation.
One parameter is varied, while the others are held
constant and the response to this change is recorded.
The means of estimating a response is usually by an

objective function. The choice of an objective func-
tion is at least partly a subject matter. Ibbitt
(1970) presents a review of some of the common object-
ive functions and the features which they emphasize.
Probably the most common objective function that is
used is the sum of the squared deviations between the
observed and computed response. One reason this for-
mulation is used so extensively is that it has some
statistical significance for linear systems. The sum
of the squared deviations divided by the number of
degrees of freedom is the variance of the deviations
for linear models.

Dawdy (1969) emphasizes the importance of having
model parameters that are physically significant, par-
ticularly on urban watersheds where little observed
rainfall-runoff data exists and the transferability of
a model is essential to usefulness. Lichty, Dawdy,
and Bergmann (1968) presented an objective function
that was the sum of deviations of the logarithms of
observed and computed response with the peak values
weighted twice that of the volume. This objective
function removes some of the emphasis of the extreme
values. The objective function utilized should be re-
lated to the goal of the model, i.e., peak-predicting
models should emphasize the large flows, while a water
quality model needs to predict the total volume as
well as the peak rate.

2.5 Summary

This review has provided a limited summary of
the development of kinematic wave theory as an appro-
priate means of computing some categories of gradually
varied, unsteady flow. Much of the work discussed
referred to laboratory or small scale experiments, but
some work has been conducted on small watersheds, ei-
ther agricultural or urban areas. The extensive re-
search related to kinematic wave theory makes its
application to field problems possible. The variety
of surfaces and cover conditions to which the kinemat-
ic theory has been applied make possible the preselec-
tion of approximate roughness factors for a watershed.
These factors can be varied to give a better fit to
observed data.

There are mathematical watershed models, such as
the Stanford Model, that utilize some aspects of kin-
ematic theory plus other mathematical functions to
simulate the hydrologic processes for a continuous
period of time, generally, for several months or
years. The model that is developed in this study is
designed to have the capability of predicting storm
runoff from agricultural or urban watersheds for dis-
crete periods of time, generally, for several hours
to no more than 1 or 2 days.



Chapter 3
MATHEMATICAL MODEL

The model developed herein is classified as non-
linear, deterministic, and distributed. Input to the
model is: (1) the hyetograph of precipitation as
measured on or near the watershed and is assumed con-
stant over the watershed, (2) the geometry and topo-
graphy as determined from a map of the area, (3) two
parameters, which relate to the surface roughness
characteristics and the regime of flow (laminar or
turbulent) which would be expected to occur, and (4)
infiltration characteristics for pervious areas. The
watershed is segmented into a series of planes cas-
cading onto other planes or connected with other
planes by channels as shown in Fig. 3-1. The planes

Fig. 3-1

Watershed Represented as a Kinematic
Cascade

are either impervious, i.e., streets or parking lots,
or are pervious, i.e., rural open areas or lawn areas.
The channels are assumed to have either a trapezoidal
or circular cross section.

3.1 Surface Water Routing

The governing equations of motion for spatially
varied, unsteady flow over a plane surface are derived
by applying the principles of conservation of mass and
momentum.

Equations of Motion

The one-dimensional continuity equation with lat-
eral inflow is written as

sh , a(uh) _

3T ¥ Tax q (3-1)

where h is the depth of flow; u is the local ave-
rage velocity; q is the lateral inflow; x 1is the

distance from the upstream end; and t is time.

The momentum equation for one-dimensional gradually-

varied, unsteady flow can be written as

dqu,  3h _ S-5

1 3u 2. q.u
g GtV toax £ 3 (3-2)

h

where g is the acceleration due to gravity; S is
the slope of the bed surface; and Se is the fric-

tion slope. These equations for gradually varied,
unsteady flow are based on the following assumptions
(Yevjevich and Barnes, 1970):

i. The slope of the bed surface, S , is small
and is approximately equal to the sine of
the angle of inclination.

ii. The flow is one-dimensional so that the
vertical components of velocity and accel-
eration are negligible.

iii. The pressure in the vertical cross section
is hydrostatic.

iv. Boundary friction and turbulence can be
accounted for by introduction of a resis-
tance term that is the same as at a corres-
ponding uniform flow depth.

v. The velocity distribution in the vertical
cross section is the same as the distribu-
tion in steady flow.

Each term in the momentum equation corresponds to a
component of the energy gradient as

- g?- , the slope due to the velocity variation
g9 with time (acceleration),

1 u %% , the slope due to velocity variation with
& distance in the direction of flow,

%% , the slope of the water surface,

1.2 h d inf

= 5 » the slope due to lateral inflow,

and S and Sf are slopes as defined previously.

Lighthill and Whitham (1955), Henderson (1963},
and Woolhiser and Liggett (1967) have reported on con-
ditions where the gravity and friction components dom-
inate the other terms of the momentum equation. These
two components reach an approximate equilibrium so
that the momentum equation can be reduced to

S=5 (3-3)

f

This simplification is known as the kinematic wave
approximation to the momentum equation.

Kinematic Equations for a Plane
Equation (3-3) can be used to write a parametTic
equation for the local velocity as

(3-4)

where h is the local mean depth, and o and N are
parameters related to surface roughness and geometry.
Chezy's turbulent flow formula is

(3-5)
where R

is the hydraulic radius and C is the Chezy



friction factor of flow resistance. For planes and
wide channels, R = h . This approximation and the
substitution of Eq. (3-3) into Egq. (3-5) results in
Eq. (3-4) with o =C/S, and N = 3/2 .

For laminar flow, the Darcy-Weisbach friction
factor is

k
f= R (3-6)

where k is a dimensionless friction parameter and
Re is the Reynolds number. The Darcy-Weisbach for-

mula
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can be rewritten upon substitution of Eq. (3-3) as

u
£ (3-8)
The Reynolds number is

e v (3-9)

where v is the kinematic viscosity. Substituting
Eq. (3-9) and (3-6) into Eq. (3-8) yields

fR wu
S = 32 (3-10)
8gh
or
8gSh?
u = i—kv (3-11)

Equation (3-11) has the form of Eq. (3-4) with
a = 8gS and N=3.

kv

Equation (3-4) can be substituted into Eq. (3-1)
and yields

sh . o™l - n) |

FT ax =4 (3-12)
3h N-1 3h _
3t + aNh i L B (3-13)
The total differential of h[x,t] is
_ 3h _ 3h
dh = g dt + 55" dx . (3-14)

Equations (3-13) and (3-14) can be solved simultan-

eously. The matrix form of the equations is written
N-Il4r2h
1 aNh = q’l
= (3-15)
dt  dx LS dh
ax

Equating the determinant of the square matrix to zero
defines the path of the characteristic in the x-t
plane

dx _ onp1

& (3-16)

Substituting the column vector of the right hand side
of Eq. (3-15) into the second column of the square
matrix and equating the determinant to zero defines
the rate of change of depth with respect to time al-
ong the characteristic

(3-17)

&5
1
L

Equations (3-16) and (3-17) are the characteristic
equations. Equation (3-17) can be integrated for
constant gq , to find the depth along the character-
istic as

h=h + q(t-t ) (3-18)
where ho is the initial depth at time L The
uniform flow equation can be written

Q = oh® (3-19)

where Q is the discharge rate. Equations (3-16),
(3-18), and (3-19) can be used to compute the entire
outflow hydrograph for a single plane segment from a
constant lateral inflow rate of q . This develop-
ment of dimensional kinematic flow equations for a
single plane is analogous to the equations for a wide
channel and the development for the channels will not
be repeated here. Discussion of the equations for a
wide channel will follow in a later section.

Finite Difference Method of Solution

Equation (3-13), the kinematic flow equation, can
be solved analytically for many initial and boundary
conditions, if shocks are not present. Such solutions
become cumbersome for realistic situations so it is
convenient to use a finite difference method of numer-
ical solution. Kibler and Woolhiser (1970) investi-
gated several different methods of numerical solutions
including: (1) an upstream differencing scheme, (2) a
four-point implicit scheme, and (3) the Lax-Wendroff
explicit scheme. These finite difference schemes were
compared with the method of characteristics for eval-
uation of their performance. The Lax-Wendroff scheme
was found to give the most satisfactory results. The
method has second-order accuracy but because it is
explicit, it requires a limitation of the time step
size to maintain numerical stability. The implicit
scheme is unconditionally stable which permits fewer
time steps than the Lax-Wendroff scheme, but requires
an iterative process for solution which under some
circumstances may negate the time step advantage.
Figure 3-2 shows the notation for the Lax-Wendroff
scheme.

The strategy of solving the kinematic equation
is to find the depth at the advanced time step,
h[x,t+At], in terms of known values. Expand h[x,t+4t]
in a Taylor's series

2

2
hix,t+At] = h[x,t] + % At + %%» + 0(at)°  (3-20)
at
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Fig. 3-2 Lax-Wendroff Finite Difference Scheme

where O[At]3 is the order of the truncation error.
Equation (3-12) can be written as

N

ah _ 3(ah) :

o8 -as (3-21)
then
oh 0 aln) 3 AGhY, %0 (509
at_z- T ax T T at at

Completing the differentiation with respect to t ,
Eq. (3-22) becomes

2
¥hi. .. @ N-1 3h, _ 3q _
—2 = = H [L‘LNh E] + 3t {3 23)
at
Now, substitute Eq. (3-21) into Eq. (3-23), then
2 N
3°h _ 3 N-1 3(ch’) 3q
;;E" % [aNh (——35;-‘ - q)]l + 7t (3-24)

Equations (3-21) and (3-24) can now be substituted in-
to the Taylor's series expansion which results in

N
hix,t+t] = hlx,t] - ﬂt[i(gi—} il
2 N
se? o uN-13GY) aq ]
5 I (oNh T e = ql) 4 5 ] (3-25)
This second order approximation for h[x,t+At] pro-

vides the basis for the Lax-Wendroff finite differ-
ence formulation as follows:
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This finite differencing formulation permits the eval-
vation of depths interior of the upstream and down-
stream boundaries.

The solution for the entire length of flow can
be established when the initial and boundary condi-
tions are established. The initial condition must be
specified as

0
or, for all x
>0

The upstream boundary depth is determined by the posi-
tion of the plane in a cascade. Consider a cascade

of planes where i is the order of the plane in the
cascade (for the uppermost plane, 1 =1), & is

hix,0] (3-27)

the length of a plane, and w is the width. Then,
‘o, ifi=1
h[o,t], = (3-28)
lf{h[l,t}i_l,wi_l,wi), ifi>1

The discharge from an upper plane is assumed to be
modified as the ratio of the upper width to the lower

width. The upstream boundary depth for the ith plane
which receives inflow from the (i-l}th plane is found
by
W, 1/N,
1
— -3 b . (3-29)
i-1 i

h[o,t]; = [(QIe,t]; ) -

Equation (3-29) defines the upstream boundary depth.
The downstream boundary depth cannot be obtained from
the finite difference scheme because of the nature of
the scheme. However, the characteristic equations
can be used to obtain the depth at the downstream
boundary. Equation (3-18) with L 0 , can be sub-

stitutéd into Eq. (3-16) to obtain

dx = ceN(hod-qt)N']' at (3-30)
Integration of this equation yields
X = E(h +qt)N +C (3-31)
q o
where ¢ 1is a constant of integration. At x = Xy

and t = t0 , the initial location and time, the con-

stant can be evaluated as

= e i L
c=x - q{h°+qto) (3-32)
Equation (3-32) can be substituted inte Eq. (3-31)
with the result
x = %+ 2 +qt)) = hsqr VI (3-33)
o q "o o o

but because h = hD + qt and if = 0, Eq. (3-33)
becomes

a-N N

X - X, a{h -hD] (3-34)

and solving Eq. (3-34) for h ,

Defining &x = x - x,

h = (h}gu)” N (3-35)



Figure 3-3 shows the path of the :heracteristic from
the NK-1 node to the downstream boundary, node NK.
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Fig. 3-3 Path of Characteristic at Downstream
Boundary

This section has presented a means of routing a
lateral inflow over a series of cascading planes us-
ing the Lax-Wendroff finite difference scheme for the
interior depths with specified initial and upstream
boundary conditions. The downstream boundary depth
was found by integrating the characteristic equations
of the kinematic equation.

Numerical Stability

A disadvantage of the Lax-Wendroff scheme, when
compared with the implicit scheme that was analyzed
by Kibler and Woolhiser (1970), is that a numerical
stability criterion must be maintained, while the
implicit scheme is unconditionally stable. A numer-
ically stable finite difference scheme is one that
does not allow a small perturbation in the solution
to grow without limit until it destroys the calcula-
tion. The stability criterion for the Lax-Wendroff
finite difference scheme can be derived by an approx-
imate method. For complete details the reader is re-
ferred to Kibler and Woolhiser (1970).

The results of this derivation can be summarized

by noting the numerical solutionm, hd is equal to

k r
the true solution, h(jaAt, kax), plus an error term,
hy , that is

= h(ist, kax) + b . (3-36)

A numerically stable scheme is one in which the ratio
of successive error terms is less than or equal to
unity, i.e.,

~i4l -

W ml <1 . (3-37)
The stability criterion for this finite difference
scheme is

oNh - =<l (3-38)

-

so that for a fixed length increment, At , and the

largest depth on the surface at time t , hmax )
st o< X (3-39)
aNh
max

insures that stability exists at all points on the
surface. This method of deriving the stability cri-
terion is only approximate since it is based upon a
linear analysis. Presently, there is not a general
way of analyzing nonlinear problems for numerical
stability. However, Eq. (3-39) does indicate an
appropriate time step for the Lax-Wendroff scheme.

3.2 Channel Routing

Free surface flow in channels can be computed
using the kinematic approximation to the equations
of unsteady, gradually varied flow. The difference
between routing runoff over planes and through chan-
nels is that upstream inflow to a plame is given in
discharge per foot of width of the plane, while up-
stream inflow to a channel is the total discharge

- from the previous segment. For watershed area com-

putation, a channel is assumed to have negligible
width. Therefore, rainfall does not fall directly
onto the channel. The lateral inflow to a channel
is the discharge per foot of width received from an
adjacent plane.

The two general geometrical shapes that are
considered in this study are a trapezoidal and a
circular cross-section, as shown in Fig. 3-1. The
trapezoidal shape can be used to simulate geometry
from nearly rectangular to very broad swale-like
channels, including triangular, by specifying the
proper geometric parameters. The circular cross-
section can be used to simulate the geometry of ur-
ban storm drains.

Trapezoidal Open Channels

The continuity equation for a channel with lat-
eral flow is

—+—==q (3-40)

where A is the cross-sectional area; Q is the
channel discharge; and q is the lateral inflow per
foot of length. Assuming that Q can be expressed
as a function of A , Eq. (3-40) can be rewritten in
the form

dqQ 3A _
E TS I B =g

A Taylor's series expansion of Eq. (3-41) can be per-
formed analogous to that of Eq. (3-20). (A complete
derivation of the finite difference equation will
not be carried out here.) The result of the expan-
sion is

L a £
L < QJ - QJ_ i * 3
Ai+1 <A - k+1zax ek "'{\[ At 1 Ak
; a | o T
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q) - [ 3 i v - g )Hax +
al v gl (3-42)

P A p———————— S P PER PR T LR B Rt L S S S



which is the Lax-Wendroff finite difference scheme for
a channel with lateral inflow. The kinematic approxi-
mation is entered into the calculation through the dis-
charge relationship. If the Chezy formula is used,
then

QR Lk (3-43)
where a = C/S ; R is the hydraulic radius; A is
the cross-sectional area; and N is 3/2. Hydraulic

radius is A/P where P is the wetted perimeter.
Than Q is related to the cross-sectional area by

r\N

g (3-44)
N-1
P

Q==

The functional relationship of dQ/dA terms in Eq.
(3-42) can be found from the set of geometrical rela-
tionships found in Table 3-1.

The downstream boundary solution is found by a

first-order finite difference scheme based on Eq. (3-40)
: ; j j
. . j+l j Qe - 9
j+l _ .3 q + q NK NK-1
KK = Mg+ - ] (343)

where the subscript NK denotes the downstream boun-
dary node.

Table 3-1 Elements of a Trapezoidal Channel from

Geometry of Fig. 3-1

Geometric or Variable Relationship
Hydraulic Name
Element
Wetted perimeter at P B-CO1 + H-CO2
depch H co1 1/ZL + 1/2R
--- oz T+ 1707+ /1 + 1/IR?
Discharge at N N1
depth H GAF(H)  o(H-COl-(B+H/2)) /(B-CO1+H-CO2Y
Arca at
depth H AFH(H)  H-CO1-(B+11/2)
- HE (H) (H—c01-(Baﬂfz)}""f(s-c01+n-
con®
dq/di DGH(H) o HF(H)-[CO1-(B+H)-N-(B-COl
+ H-C02)-(N-1)-C02- (H-CO1~
(B+H/2))]
Depth at
area A HFA(A) -B+/BZ + (2-A/CO1)
dQ/dA DGA (11) DGH(11) / (CO1 - (B+H))

Cireular Closed Conduits

The problem of routing discharge through circular
conduits is important in the urban environment where
many watersheds contain storm sewers. The problem can
also be extended to those watersheds with combined
sanitary and storm sewers. The limitation of the kin-
ematic approximation is that it camnot account for any
backwater effect. Any user of this model must apply

10

it cautiously and avoid applications where free outfall
conditions do not exist. The conduits are assumed to
maintain free surface conditions at all times. This
assumption may not deviate from many storm sewer de-
signs because the greatest carrying capacity occurs at
about 90 percent of full pipe flow. Fig. 3-4 shows

the hydraulic characteristics of a partially full cir-
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Fig. 3-4 Hydraulic Elements of a Circular Conduit
(after Water Pollution Control Fed., 1969)

cular conduit. Storm sewer inlets are often designed
to intake less than full pipe flow. In many areas the
topography is such that runoff greater than the design
capacity of sewers can be routed through the gutter
system to some lower point on ‘the watershed.

The equation of continuity for a closed conduit
is

(3-46)

This differs from the open channel equation because
lateral inflow is zero for a closed conduit. The in-
put to the channel is at the upstream end either in
the form of an outflow hydrograph from a previous
channel or conduit or the inlet hydrograph from over-
land flow. Table 3-2 gives the relationship of sev-
eral geometric parameters to the diameter of a pipe
and the interior angle to the water surface for a
circular cross-section as shown in Fig. 3-1. The
kinematic assumption of bed slope being equal to the
friction slope is entered into the calculation by the
parametric relationship for discharge. The most gen-
eral discharge relationship and the one often used
for flow in pipes is the Darcy-Weisbach formula

f u2

= ol 3-47
5¢ = @R 2g ( )
where f is the Darcy-Weisbach friction factor. The

kinematic assumption allows substitution of § for
S. into Eq. (3-47) and by solving for velocity, Eq.
(£-47) is rewritten as



Table 3-2 Geometric Elements of a Partially Full
Circular Conduit from Geometry of Fig. 3-1

Element Relationship
Depth, H D(1 - cos(8/2))/2
Area, A %0 - sing)/8

Hydraulic Radius, R D(1 - sin®/6)/4

Wetted Perimeter, P D(8)/2

- sinB

Hydraulic Depth, HD D(Egiﬁa?z )/8

(3-48)

Discharge is computed using Eq.
sectional area by

(3-48) and the cross-

(3-49)

where o is %5 S and N = 3/2 .

is the same as Eq. (3-44) for trapezoidal channels,
except for o and geometrical relationships for A
and P .

Equation (3-49)

Equation (3-46) can be rewritten as

(3-50)

This equation is nonlinear, as were the kinematic eq-
uations for overland flow and flow in trapezoidal
channels. Equation (3-50) is solved by a finite-
difference scheme that is different from the Lax-
Wendroff explicit scheme previously used. The general
form of the numerical stability criterion for explicit
finite difference methods is

[e]
blb
®|e

<1

(3-51)

where ¢ is the wave celerity. Equation (3-51) is
known as the Courant condition. Because the velocit-
ies in storm drains can be rather high, the time step
required for a specified length increment may be quite
small so that stability be maintained. The finite
difference scheme used for the evaluation of Eq.
(3-47) is a four-point implicit scheme with the form

j*1 i j+1 i j+1 j+
G 'A'k)‘“'kl"'k] s1 Al gl
- -1 dgj 3

24t % “‘{d..\ . (_‘—""nk MAk l}}

i ad_
+a-a {%-(ﬁ%n -0, (3-52)

where w 1is a weighting factor for the space deriva-
tive at the current and the past time step. The pos-
sible range of values for w and the importance of
it will be investigated in Chapter 5. A property of
this implicit scheme is that the value of the unknown,
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Ai*l , must be solved by an iterative technique, like
Newton's method of finding roots of an equation. Also,
a means of evaluating the terms dQ/dA must be est-
ablished before Eq. (3-52) can be solved. The func-
tional relationship between Q and A depends upon
the discharge formula which is used, i.e., Chezy,
Darcy-Weisbach, or Manning's equation. It is apparent
from Table 3-2 that any relationship between Q and
A will involve trigonometric functions. Trigonomet-
ric functions are evaluated by a series approximation
on a computer, and if evaluated many times, the compu-
tational time for a simulation is large. An alterna-
tive to this procedure is to create a table of A wvs.
Q wvalues at the beginning of computations for each
circular conduit. For any value of A computed, lin-
ear interpolation can be used to find the correspond-
ing Q wvalue. This procedure is used to evaluate
dQ/dA .

A method for routing flows through free surface
channels has been developed in the past two sections.
To apply this method to a specific channel, we need to
know the length, slope cross-sectional geometry, and
a roughness coefficient for the conduit. With this
information, we can compute the outflow hydrograph from
a channel for a specified inflow hydrograph.

3.3 Infiltration

Smith (1972) reported on extensive numerical ex-
periments based on Richard's equation for a range of
soils from fine clay with swelling properties to a
moderately uniform sand. The infiltration model as
shown in Fig. 3-5 resulted from analysis of simulation

\
'\
\
\
\
\
'
\

Infiltration Rate

g

Fig. 3-5 General Infiltration Response Curve (after
Smith, 1972)

using a uniform rainfall rate for six soils. Initial-
ly, the infiltration rate is limited by the rainfall
rate, i . Then, soil surface capillary potential
goes to zero and surface runoff begins at the time
denoted t_ in Fig. 3-5. This time marks the begin-

ning of the infiltration decay-type function that has
the form:

f=£ + A(t-to]'“ (3-53)



where f is the infiltration rate; fW is the steady-

state infiltration rate; t is the ver-

is time; to
tical asymptote of infiltration decay function; and
A and o are parameters unique to a soil, initial
moisture, and rainfall rate.

For instantaneous ponding at t = 0 , Eq. (3-53)
also applies, since this condition represents the case
where 1 + = , and consequently t0 =0 . Smith found

that use of dimensionless variables would result in a
single normalized infiltration equation; the dimension-
less variables are defined as

i i ; . .
le=5> dimensionless rainfall

3 . . . s .
f, = F » dimensionless infiltration
-]
t . . .
t, = T dimensionless time
o
where f , f°° , 1, t are defined previously, and

TE is designated as a normalizing time.

The normalizing time is defined as

T
J ° AsT%s = £T (3-54)

(o]

where s is the time variable of integration. For
sudden ponding, this normalizing time is the time at
which one-half of the total accumulated infiltration
is due to the constant infiltration rate, f_, and

one-half of the accumulated infiltration is due to the
variable infiltration rate. The solution of Eq. (3-54)
is

/a (3-55)

_ A 1
To = ]
A graphical presentation of To , as defined by Eq.

(3-54) for a ponded initial condition, is shown in
Fie. 3-6. Equation (3-53) which can be normalized

b
10
Mool Ji- fqui <
/ <wt. Approximate

Asymptote to Slope
of Upper Curve

Accumulated Infiltration

 foo To

r
To
Time

Fig. 3-6 Normalizing Time, T, (after Smith, 1972)
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by using the above dimensionless variables for infil-
tration and time, results in

£,=1+ (1-a) (t,-to*)_a (3-56)

where A has been incorporated into T0 by utilizing
Eq. (3-55).

The value of the non-dimensionalization procedure
is that parameter TB is much more nearly a constant

This
is demonstrated in the experimental results of Smith
(1972) reproduced in Fig's. 3-7 and 3-8. Clearly the

wider variations of A are significantly reduced by
using Eq. (3-56) with T0 from Eq. (3-55).

for a wide range of i, than is parameter A .

Figure 3-7 shows the variation of T0 with rain-
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Fig. 3-7

*

Variation of T0 With Rainfall Rate, i
(after Smith, 1972)

fall rate for the six soils that Smith tested. There
was very little variation of To with i, greater

than 5 for any soil. The loams and clays showed lit-
tle variation of To at any rainfall rate. Figure

3-8 shows the variation of A and o for the soils
tested for a range of rainfall rates under constant
initial moisture conditions, and indicates that the
value of a approaches a constant at higher rates of
i

*®

Use of Eq. (3-56) to describe rainfall infiltra-
tion implies determination of four parameters; £, .
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a, To,and tox -

values for f , A, o, and ty - Appendix A illus-

Alternately, Eq. (3-53) requires

trates the estimation of the four dimensioned para-
meters from infiltrometer data. The term £ is

considered a basic soil parameter. Clearly, To may
be calculated by Eq. (3-55), once A and a« are
found. L

Parameter t, is related to time of ponding,
tp , which is an important value needed in rainfall

infiltration simulation. Clearly, one point on the
infiltration curve in Fig. 3-5 is (i, tp) . Thus,
from Eq. (3-53),

A .l/a
= = 5
s 1:p [l‘fmi (3-57)
or, in dimensionless terms, from Eq. (3-56),
_ l-a ;1/a i
to* = tp* - {i*-ll (3 53)

Time of ponding has been studied extemsively in
various approximations and numerical solutions to the
basic soil water flow equations (Eq. (2-5)). Smith
(1972) demonstrated that an excellent approximation
for tp, under a wide range of patterns of 1i,(t) ,

t < t_ , could be obtained by predicting accumulated
infiltration at ponding, Fp . For uniform i, , Fp*
is i*tp* , but for gny pattern, numerical simulation
indicates (Smith and Chery, 1973)
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: 1-8
For = Y51 (3-59)

Parameters y and B may be found by logarithmic
plotting of Fp vs. ip*-l , as shown in Fig. 3-9.
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Fig. 3-9 Relation of Infiltrated Volume at Ponding,

Fp , to Dimensionless Rainfall Rate i,

Experiments are required to determine values for v
and B for a particular soil; however, B was found
to be very close to 2.0 for six selected soils
(Parlange and Smith, 1976). Then, one infiltrometer
Tun cguld provide data for estimating vy from Eq.
(3-59).

A second method to estimate Fp may be taken

from Parlange and Smith (1976), who devised a method
to predict t_, with only one parameter, which is

related by theory directly to soil physical properties.
Figure 3-10 indicates a proportionality between
In(i,/i,-1) and Fp This figure uses the same data
(Parlange and Smith, 1976) as Fig. 3-9. In equation
form, Fp = 1n(i,/i,-1) . Having determined T, and
f_ , we may also write, in dimensionless terms,

i

*
Fou = By InGG—p) . (3-60)

Bp , the dimensionless slope of each line in Fig. 3-10,

becomes the dimensionless ponding coefficient, one of
the basic infiltration model parameters.

Either Eq. (3-59) or (3-60) may be used to deter-
mine t_ for a rainfall pattern composed of rain rate

pulses. A simple accounting procedure is used, where-

by at the end of the kth rain pulse, the accumulated
infiltration is:

k
F, = Bt i, (3-61)
j

oo
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s 5
Demonstrated for Six Soils

Ponding occurs when F = Fp(ik} , which may be in the
Thus, if F_; < F (i ;) but
Fk > Fp(1k] , we find At = tp -t such that

middle of a pulse.

k-1

i, At i
k k s .
F*k-l + %:'I: = Bp ln(]_;_—f&)— FP (lk) (3-62)

For t > t_ , infiltration decay proceeds as for

uniform rainfall rate, as long as 1 > f_ . Having

may be determined from Eq.

determined tp* s Tox

(3-58).

The procedure discussed above permits calculation
of infiltration based upon dimensionless Eq. (3-56),
under conditions of constant, uniform, initial soil
water. To be applicable to most field problems of
infiltration, the procedure should have the capability
of handling variable initial soil water conditions as
well.

Results of numerical experiments, using a wide

range of initial relative saturation, Si , show a

nearly linear relationship with the normalizing time,
T0 , except for swelling soils, as shown in Fig. 3-11

(Smith, 1972).

occurs very close to the maximum relative saturation,
S0 , which was 0.90 to 0.95 for the soil data used.

The data indicate the S, intercept

Using the linear relationship of Fig. 3-11, T0 can
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Fig. 3-11 Variation of T0 with Initial Soil Water
Content, Si , (after Smith, 1972)
be described as a parameter for a given soil by the
equation:
T, = C,(5,-5,) (3-63)

where C1

mined for each soil. Figure 3-12 illustrates the varia-
tion of t_, with initial relative saturation for all

is a constant, to be experimentally deter-

soils tested and indicates that a good first approxi-
mation for non-swelling soils is to consider dimension-
less ponding time, tp* » to be independent of S, .

This results from the variation of T0 with Si R

which scales tp to account for variations in Si F

Finally, simulation of infiltration for soils,
where the total available pore volume has been reduced
by large rocks in the soil (Smith, unpublished) has
shown that the basic scaling parameter, Tb , is pro-

portionally reduced by an increasing proportion of
rock volume. If we define relative rock content, v,

as volume of rock per unit volume, we may expand Eq.
(3-63) on the basis of numerical simulation with Eq.
(2-5), to

TD = CI(SO-Si){l-vr] (3-64)
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3.4 Computer Program KINGEN

KINGEN is a computer program based upon the math-
ematical model developed in this chapter. The model
can compute flow for the following geometrical segments:
overland flow over a rectangular impervious surface,
overland flow over a rectangular pervious surface with
an infiltration component to compute rainfall excess,
open channel flow in a trapezoidal-shaped channel, and
free surface flow in a circular conduit. Watershed
geometry is represented by combinations of the segments
just mentioned. Computer model parameters are estimated
from available information about the watershed. This
information may be obtained from topographic maps,
aerial photographs, soil surveys, property development
records, watershed reconnaissance, or any other source
that may contain hydrologic information. Input data:
are utilized by the computer model to sequentially
compute the outflow hydrograph from each segment. The
computation begins on the segment at the highest eleva-
tion of the watershed and continues down slope to the
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lowest point on the watershed.

Figure 3-13 is a flow

chart of KINGEN and provides a brief outline of the
computational logic utilized in the model.
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Chapter 4
EXPERIMENTAL DATA

The data used in this investigation are from three
watersheds: a) the Rainfall-Runoff Experimental Facil-
ity at Colorado State University, hereafter called
RREF, b) an experimental agricultural watershed at
Idwardsville, Illinois, and c¢) an urban area near
hMenver, Colorado, that has been selected as an experi-

mental watershed by the United States Geological Survey.

These watersheds represent a variety of conditions.
The geometry of RREF is simple and the surface is im-
pervious. The agricultural watershed geometry is more
complex than the geometry of RREF but although the
surface is still relatively uniform, the area is per-
vious. The geometry of the urban watershed is quite
complex and there is a mixture of impervious and per-
vious area.

4.1 Colorado State University Rainfall-Runoff
Experimental Facility

Dickinson, Holland, and Smith (1967) described
the original concepts and initial experiments with an
experimental watershed composed of two planes contri-
buting laterally to a triangular-shaped channel with
a segment of a cone at the upstream end of the channel.
Fawkes (1972) gives details of the watershed as it has
evolved as shown in Fig. 4-1. The one-half acre water-
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Fig. 4-1 Colorado State University Rainfall-Runoff
Experimental Facility (after Fawkes, 1972)

shed is designed to be large enough to avoid the prob-
lem of scaling in laboratory hydrologic models but the
size is not so large that good control of the input

and output cannot be maintained. The simulated rain-
fall is supplied by a grid of lawn sprinklers support-

16

ed 10 ft above the surface and centrally controlled
for simultaneous operation. The input rate can be
varied as 0.5, 1, 2, and 4 in/hr. Since these rates
are only approximate, the exact input is calculated by
allowing an event to run until an equilibrium dis-
charge is reached. This equilibrium rate is the input
rate for a set of partial equilibrium events.

Discharge is gaged by two H-flumes equipped with
FWl water stage recorders. The FWl recorders have
been modified to give a time resolution of 5 sec per
smallest chart division. The stage is converted to
discharge by the rating curve for the appropriate
size flume. Runoff from the watershed can be gaged
at two points; discharge from the converging section
is measured before it flows into the channel, and the
total discharge is measured at the lowest point on
the watershed.

The watershed is impervious butyl rubber laid
over sand that has been graded to a constant slope of
5% on the converging section, 5% on the planes and 3%
on the channel. Experiments have been conducted with
the rubber surface or with additional material placed
on top of the rubber to increase the resistance. to
flow. Gravel spread at 0.75 in. uniformly over the
surface is the most commonly used material for increas-
ing the surface roughness. Varying densities of gravel
as well as different spatial distribution of the gravel
on the watershed surface have been used.

4.2 Edwardsville, Illinois, Watershed

From 1940 to 1943, extensive hydrologic field
investigations were conducted on several small agri-
cultural watersheds near Edwardsville, Illinois
(Holtan and Minshall, 1968) (see Fig. 4-2). These
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Fig. 4-2 Experimental Watersheds Near Edwardsville,
Illinois



watersheds had previously been equipped with rain gages
and weirs for recording rainfall and runoff. The in-
vestigations recorded information about soil moisture,
soil temperature, soil structure, vegetative cover,

and infiltration characteristics of test plots. This
study is confined to the smallest watershed which is
designated W-I, a 27.2-acre fan-shaped area.

Deseription of the Watershed

Watershed W-I is a cultivated area with a range
in elevation of about 20 ft and nearly two-thirds of
the area having slope of about 1%, except near the
waterways where the slope may be near 10%. There are
about 1600 ft of waterways on the watershed, as shown
in Fig. 4-3, with average channel slope of about 2%.
From 1940 to 1943, the watershed cover was 100% alfal-
fa (Minshall, 1962). The soils on this watershed are
Alma and Bogota silt loams, which are of loessial ori-
gin and overlie glacial till with a claypan layer at
depths of 10 to 20 in. When these soils are dry and
protected with a good vegetative cover, they take in
precipitation rapidly until the surface is saturated.
After surface saturation, additional precipitation re-
sults in a high percentage of runoff. The mean annual
precipitation in the area is about 40 in. distributed
throughout the year. April, May and June have slightly
higher amounts of rainfall than other months. The type
of precipitation varies from snow and sleet in winter
to short-duration convective thunderstorms in summer.
Figure 4-3 also shows a schematic representation of a
kinematic cascade model for Watershed W-I.

Infiltration and Rainfall-Runoff Data

The infiltration surveys were conducted using a
type "F" infiltrometer on 6- by 12-ft rectangular
plots at representative locations over the watershed.
Soil moisture samples were taken before each experi-
ment. The simulated rainfall rate was calibrated by
measuring the runoff rate from the plot; the infiltra-
tion was computed as the difference between the rain-
fall and runoff rates. This procedure, which neglects
the surface storage lag, can lead to errors in comput-
ed infiltration rate (Smith, 1976). These infiltra-
tion experiments were used to aid in calibrating the
infiltration component of the watershed model.

Precipitation was measured with a recording rain
and snow gage capable of a time resolution of 30 sec.
Runoff from the watershed was measured at the outlet
by a 30-in. broad-crested, concrete, weir with a 2:1
side slope continuously monitored with a water stage
recorder.

4.3 Urban Watershed near Denver, Colorado

Early in 1968, the U. 5. Geological Survey began
a cooperative study with the Denver Regional Council
of Governments and the Urban Drainage and Flood Control
District to collect and analyze rainfall-runoff data
from small drainage basins in the Denver metropolitan
area. By 1972, 30 urban stations had recorded rain-
fall-runoff data. These watersheds were selected to
provide a wide range of values in drainage area, per-
centage of impervious cover, slope and length of main
channel. This present study is restricted to a single,
arbitrarily chosen watershed in Northglenn, a suburb
of Denver. Figure 4-4 shows the relative location of
iiillerest Drain, USGS Station No. 06720300. Figure
4-5 is a map of the Hillcrest Drain watershed.

17

Edwardsville, Illinois
Watershed W-I
NWL—NWZL Sec.20 TSN
R7W of 3" Prime Meridian

e ______7 e Recording Raingage
Area=27.22 Acres

IBI8S @ 108 200 300 400 feer
Ladlal | 1 I j

Scole

Schematic Representation
of Watershed

Note: Drawing not to scale

Channel Cross-Sections

-—._______________,..._#Tﬁ-

seg. 5,8,10,15

Fig. 4-3 Watershed W-I and Possible Schematization
for Input to Program KINGEN

Rainfall-Runoff Data

Detailed records of rainfall and water stage are
collected at each station by simultaneous operation of
two digital recorders that code data on a 16-channel
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Colorado

paper tape at 5-min. intervals. A single timer pro-
vides synchronous actuation of both recorders, which
eliminates timing discrepancies that may occur when
separate timing mechanisms are utilized for two re-

because the flow is controlled by the resistance in
the reach of channel downstream from the gage.

The rainfall-runoff data through 1971 from the
Colorado small basins were published by Ducret and
Hodges (1972). Rainfall is printed as interval depths
for time increments of 5 min. or more. The tabulation
of precipitation intervals does not begin until the
precipitation in a 5-min. interval exceeds 0.015 in.
The runoff data are printed as stage height in feet
with 10 ft. representing the bottom of the gage; this
stage height has been converted to discharge (in cubic
feet per second).

Watershed Characteristics

The Denver area has a mean annual precipitation
of about 13 in. unevenly distributed throughout the
year. Winter precipitation is snow; there is a pro-
nounced rainy season between April and September when
most of the rainfall results from short-duration,
high-intensity thunderstorms.

The Hillcrest Drain area was rural before 1955.

Early development began slowly but during the 1960's,
urbanization occurred very rapidly. Figure 4-6 shows
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Fig. 4-6 Urbanization of Hillcrest Drain Watershed

the sequential urbanization of the area as measured
by the percent of impervious cover on the watershed.
The watershed is comprised of single-family dwellings,
one school and adjacent grounds plus the playground
of another school, and a small area of businesses at
the northern edge of the watershed.

The soils on this watershed are Fort Collins clay
and clay loam with a moderate to heavy texture. These
soils developed from alluvial material carried from
the mountains to the west and deposited on top sand-
stone and shale formations (Harper, et. al., 1932).
The soil is well developed and infiltrates water mod-
erately if the surface is protected by a vegetative
cover and not compacted. Most of the pervious area
is covered with thick bluegrass that is maintained as
well watered lawns.

The land surface slopes gradually to the north-
east at a 1 to 2% grade. The surface geometry and
storm sewer information was obtained from drawings
and specifications filed with the city of Northglenn
by the developers of the area; the watershed was field-
checked to verify the physiographic features.

4.4 Data Evaluation and Limitations

The analysis of data used in this investigation

corders. The stage-discharge relationship at Hillcrest
is difficult because each of the three groups of data

Drain has been determined by the step-backwater method
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has been observed and recorded in a different manner.
The two natural watersheds, Edwardsville and Hillcrest
Drain, have a common problem that results from observ-
ing, or at least reporting the continuous processes of
rainfall and runoff by a series of discrete points of
time and rate. Use of the RREF minimizes this problem
by designing the experiments so that rainfall occurs
in discrete pulses.

The timing and variability of natural rainfall is
a feature that is difficult to precisely define but is
important when a watershed model is used for predicting
the runoff: Use of the RREF eliminates some of these
problems because the control system is designed so that
the beginning and ending of the rainfall or a change in
the rate occurs with negligible delay from the system
command. The spatial variability of rainfall on the
RREF is minimized by having the sprinkler grid properly
located and adjusted. The RREF data have been correct-
ed for small discrepancies that may result when the
computed rainfall volume is compared with the observed
runoff volume. The beginning of rainfall on a natural
watershed is often subjectively defined, as is the case
of the Hillcrest Drain urban area. The start of rain-
fall is defined as at least 0.015 in. in a 5-min. per-
iod. For example, if a rainfall event begins very
slowly, e.g., 0.02 in. in a 10-min. period, this would
not be recorded as the beginning of the event, because
it is less than the minimum specified amount; however,
this 0.02 in. could have a significant effect on infil-
tration and detention storage in the watershed. If a
significant rain pulse begins after the 10-min. inter-
val, the rain gage records this as the beginning of
rainfall, instead of the actual beginning 10-min. ear-
lier. The problem of defining the rainfall beginning
is not so clear on the Edwardsville watershed because
no minimum criterion is stated for the start. Gener-
ally, the start is defined by an observer who scans
the rainfall record until a response is perceived; this
may introduce a bias by the-observer. The problem of
defining the time rainfall begins can be minimized by
selecting a period when most rainfall events begin
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very quickly with high intensities. This is generally
true of convective storms during the summer in both
the Edwardsville, Illinois, and Denver, Colorado,
areas.

The spatial variability of rainfall over a natur-
al watershed is another problem that can cause diffi-
culties in interpretation. Often, a watershed has no
more than one precipitation gage on or near the area.
This single point rainfall is sometimes assumed to
occur uniformly over the area, whereas, actually, the
storm can be moving or changing intensities different-
ly throughout the watershed. Even if more than one
precipitation gage is available, it is difficult to
determine the area of the watershed that a raingage
represents. One means of alleviating the spatial var-
iability problem is to restrict the analysis to small
watersheds where the assumption of uniform rainfall
is justified. All of the watersheds in this study are
less than 180 acres in size.

Discharge measurements can be another possible
source of errors for any of the three watersheds in
the investigations. However, the RREF and Edwards-
ville watershed are equipped with a flume or weir that
has been laboratory tested and isbelieved to be accurate
within a few percent. The step-backwater rating at
Hillcrest Drain may be susceptible to significant
errors if good control is not maintained in the meas-
ured section. The largest source of error may result
from the data being discretized, as is done at Hill-
crest Drain for 5-min. intervals. There can be a
significant variation of discharge during a 5-min.
period.

In the previous section, problems that may exist
in the observed data used in this study have been dis-
cussed. These possible errors must be considered
whenever one attempts to draw conclusions from results
that utilize observed data for input to the model,
e.g., rainfall, or for comparison to computed results,
e.g., outflow hydrograph.



Chapter 5
RESULTS

5.1 Flow Routing in Circular Conduits

The mathematical equations to route flows in an
open channel of circular cross section with no lateral
inflow were presented in the section on Circular
Closed Conduits. The parametric equation for discharge
was based on the Darcy-Weisbach formula. Many engi-
neers are accumstomed to using Manning's discharge for-
mula for flows in storm sewers. A large portion of
published data concerning storm sewers gives Manning's
n as the resistance factor. These facts warrant the
use of Manning's n for flow resistance in storm
sewers in this study. The relationship of f and n
is given by

g %8 m
(1.49%) RrY3

(5-1)

Equation (5-1) indicates f varies according to the

hydraulic radius for a constant n . Figure 3-4 shows
how the ratio of £ divided by the full pipe f var-
jes as a function of depth for circular cross sections.

Initial numerical experiments were conducted
utilizing a second order Lax-Wendroff finite difference
scheme similar to that developed for the trapezoidal
channel with the appropriate changes made for circular
geometry. The time step for computation was based
upon an approximation of Eq. (3-51) and is

Ax

B < qoTaR (5-2)

The experiments indicated that small time steps were
required to maintain stability for gradually varied
flow of small magnitude. Large flows would have re-
quired very small time increments and made the compu-
tational cost of calculating flows too high for prac-
tical use. The decision was made to test an implicit
finite difference scheme so that the problem of small
time steps could be eliminated. The four point impli-
cit scheme was presented in the section on Circular
Closed Conduits and is illustrated in Fig. 5-1. The

o Known
X Unknown

j+
-
N\

t ——
D
| -

J

K=

Fig., 5-1 Implicit Finite Difference Grid

figure shows the point at which the value for cross
sectional area is unknown. The dashed arrows show
the pairs of nodal points that are used when computing
derivatives in the time and space directions.
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The kinematic wave-routing technique was tested
on data published by Harris (1970). Harris developed
a computer program to route flows through storm drains
using the method of characteristics to solve the com-
plete equations of continuity and momentum. This pro-
gram was verified utilizing data from tests conducted
at Colorado State University on a 3-ft. diameter pipe,
824 ft. long. The program accurately reproduced the
measured flows. The shortcomings of the method of
characteristics is the relatively large computational
time and computer storage required. Harris needed a
method to route flows in real time, i.e. while the
event was still occurring, on a small computer. He
concluded that the method of characteristics did not
meet his requirements. However, the method of char-
acteristics did provide an accurate method with which
Harris could verify simplified methods. In this study,
the results of the method of characteristics as devel-
oped by Harris also serves as the criterion to eval-
vate the performance of the kinematic flood routing
model. Harris conducted some numerical experiments
with a circular conduit with the following character-
istics:

Pipe diameter = 6 ft.
Length = 14,000 ft.
Slope = 0.001%
Manning's n = 0.012

The variable w of Eq. (3-52) was defined as a weight-
ing factor for the space derivatives and acts as a
damping coefficient. It can theoretically have a range
of values from 0 to 1. However, for w < 1/2 the
scheme is unstable. When w = 1/2 equal weight is
given to the space derivatives at time levels j and

j +1 . This value of - w corresponds to no damping
being introduced from the finite difference scheme;
however, some artificial damping may be beneficial when
using a finite difference scheme. Figure 5-2 illus-

1 : I i T T
® Peak Discharge Rate
& Time to Peak
15 —115
L]
1
o
x 10— —10
I<3_l o
[N l=] o
<2 o
= i
S5 15
O — O -“-————
0 —
] | ] | | 2
0.5 06 - 07 0.8 0.9 1.0
w
Fig. 5-2 Variation of Peak Discharge and Timing with

Weighting Factor, w

trates the effect of a variable w on peak discharge
and the timing of the peaks. The computed peak dis-
charge and time to peak are denoted Qp and TIJ ’



respectively, and the observed peak discharge and time
to peak are denoted Q and T , respectively. The
minimum value of the deviation in discharge is about

w = 0.9, but within the range 0.7 <w < 1.0 the
deviation is very small and not sensitive to the value
of w . As w approaches 0.5, the deviation increases
rapidly. The artificial damping effect of w can
often be used beneficially to suppress the minor per-
turbations that may be introduced into the computation
due to the numerical scheme. Precaution must be ob-
served when w is allowed to approach the value of 1,
because the resulting damping may be sufficient to ob-
scure a feature of the model that could be important
in the calculated flows. Figure 5-2 shows that the
deviation in timing of the peak is not affected by
variation of w . This relationship of timing and w
is the condition that is expected because w influ-
ences only the space derivative and not the time der-
ivative.

Figure 5-3 shows the results of sensitivity tests
of the time increment, AT , and the length increment,
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Fig. 5-3 Variation of Peak Discharge with Length and
Time Increments

AX . Because the finite difference scheme is implicit,
the AT is specified and not changed through the flow
computation. The results indicate that for AT/T ,
where T is the total duration of the event, in the
range of values 0.01 to 0.05, the peak discharge is
not very sensitive. However, for values of AT/T
greater than 0.05, the peak response is sensitive to
the time increment. Choice of a AT increment should
be related to the time characteristics of the system
response. If the inflow hydrograph varies significant-
1y during a period of time, the model time increment
must be capable of accounting for the variations. The
results of tests on the length increment indicate that
it is not necessary to choose very small AX incre-
ments; in fact, the smallest 4AX tested resulted in
the largest error.

Hydrographs computed with the kinematic routing
technique were compared with Harris' numerical exper-
iments. Figures 5-4a, b and ¢ show the results of
routing three inflow hydrographs through the circular
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conduit previously described in this section. The
kinematic hydrographs fit the hydrographs computed by
the method of characteristics very well. It is shown
that kinematic routing consistently overpredicts the
peak discharge by a small amount and slightly under-
predicts the recession hydrograph. Harris' simplified
routing technique, called progressive-average lag, is
also plotted in Fig. 5-4a, b, and c. This technique
uses a group of averages of the inflow hydrograph to
offset and reduce the upstream input. The kinematic
routing and progressive-average lag technique compare
very closely at most points on the hydrograph. The
advantage the kinematic technique has over the lag
technique is the kinematic routing, based upon the
hydraulics of the flow, while the lag routing requires
at least three observed hydrographs to calibrate rout-
ing constants.

In this section, a kinematic routing procedure
for flows in circular conduits has been analyzed. The
technique was shown to give good results as compared
with a routing technique using the method of character-
istics to solve the complete equations of continuity
and momentum. The kinematic routing procedure has the
advantage over a simplified lagging technique in that
kinematic routing can be used for design studies in
areas without data because no historical hydrographs
are required to evaluate any routing constants as is
required for the lagging technique.

5.2 Incorporation of Infiltration Component

Smith's (1972) infiltration model was presented
in Section 3.3. A computer subroutine, called XPLINF,
based upon the mathematics of that section was devel-
oped by Smith, modified, and incorporated with the
kinematic surface runoff model, KINGEN. Infiltration
rate is computed in the XPLINF algorithm, with rain-
fall assumed to be constant over the time interval.
Rainfd1l excess, the difference between precipitation
and infiltration, is provided interactively to each
node of the surface runoff component. A few modifica-
tions have been made to the original infiltration mod-
el to reduce computation time.

The original method of finding the time to pond-
ing was to iterate through the rainfall hyetograph by
some small time step until the accumulated rainfall
volume equalled or exceeded the infiltration volume,
predicted by Eq. (3-61). A modification to the sub-
routine was made so that Eq. (3-62) is now used to
solve for the time to ponding. If Atk exceeds the

length of the kth rainfall increment, the infiltrat-
ed volume is increased by the amount of accumulated

FainEall £or the kD (3-62) is

solved for the (k+1)th increment. These steps are
repeated until the time to ponding is found.

increment and Eq.

The infiltration subroutine was also modified so
that it would not be necessary to compute infiltra-
tion at each time interval required to maintain numer-
ical stability for surface routing. Figure 3-5 shows
how the infiltration rate changes rapidly just after
time tp but then the rate of change of the infiltra-

tion rate decreases and ultimately approaches zero as
the steady-state infiltration rate, f_, is approach-

ed.
tion should occur just after t

The shortest time intervals to compute infiltra-
with the time inter-

vals increased as f_ is approached. However, the

time interval computed by the surface runoff component
has the opposite proportionate size as required for the
infiltration component. At tp , runoff begins but the

22

Discharge & Infiltration Rate (iph)

depth on the surface is quite small and, consequently,
a rather large time-interval is calculated. As the
infiltration rate decreases, the lateral inflow in-
creases, resulting in an increase of the depth. This
increase results in a smaller time interval being re-
quired to maintain numerical stability. The dilemma
of the conflicting time intervals for the surface and
infiltration components is solved by developing an
empirical time interval as defined by

f
At = CF(IT-TI, 5) ) (5-3)

where CF 1is a coefficient greater than unity; TI

is the time at the beginning of a rainfall increment;

f is the infiltration rate for the past time interval;
and f_ is the steady-state infiltration rate. Equa-

tion (5-3) defines a time increment that is small when
f 1is large in comparison with f_ but as f approach-

es fW , the time increment increases. The range of

values of the coefficient CF that have been used in
this study are from 1.25 to 3.0. The lower value cor-
responds to studies on one or two planes, while the
higher value corresponds to complex geometry of a cas-
cade of multiple planes and channels. Figure 5-5 shows
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Fig. 5-5 Infiltration and Runoff from a Pervious

Plane

an example of pulsed rainfall input onto a cascade of
three infiltrating planes, the infiltration function
and the resulting outflow hydrograph from the rainfall
excess. Besides the continuous infiltration function,
Fig. 5-5 shows the step-like function of infiltration
that results when the subroutine XPLINF is called once
for each time interval as defined by Eq. (5-3). Two
outflow hydrographs are shown where one is the response
to the rainfall excess routed over a smooth surface



with a Chezy coefficient of friction, C = 15.6 . The
other hydrograph is the response to the rainfall ex-
cess routed over a roughened surface with a Chezy C =
8.5 . These two hydrographs demonstrate how the res-
ponse is related to the surface characteristics and
also the infiltration characteristics.

Testing the Infiltration Model

The infiltration component was tested on some
infiltrometer experiments from the Edwardsville, I1li-
nois, watershed described in Section 4.2. Recorded
data from the infiltrometer experiments along with a
soil survey of the watershed were used to estimate
the model parameters. The Alma and Bogota silt loams
of the watershed corresponded closely with the Colby
silt loam (constant ¢) with which Smith (1972) con-
ducted experiments. Table 5-1 lists the values of the

Table 5-1 Infiltration Parameters of Edwardsville
Infiltrometer Tests
Parameter Value of
Parameter

a 0.58
Y 0.90
5o 0.95
c* Estimated from
i infiltrometer experiment
5. do.
1
L do.

*this constant is related to the normalizing time by Eq.(3-633

model parameters as estimated from Smith's work. The
normalizing time for each infiltrometer test was esti-
mated by the technique illustrated in Fig. 3-6 of plot-
ting the accumulated infiltration vs. time. The nor-
malizing time is then estimated from the plot to be
that time at which half of the total infiltration vol-
ume is due to f_ and half to the variable infiltra-

and f_

directly for each infiltrometer experiment. Figures
5-6 to 5-8 show the computed and observed results of
the infiltrometer tests. The infiltrometer tests show
a wide range of infiltration responses. The slope of
these plots varies from 11% to less than 1% and seems
to affect infiltration rates. Plots 1 and 2 have the
highest slope and the lowest minimum infiltration rates.
It would have been possible to obtain a much better fit
of the observed hydrograph for individual experiments
by adjusting for hydrograph lag or by optimizing the
infiltration parameters. However, the primary object-
ive was to test the infiltration component of the model
using only a priori information that was obtained from
soil characteristics and field tests.

tion rate. The parameters Si were measured

Infiltration Sensitivity

The sensitivity of the infiltration component was
analyzed by a series of tests utilizing parameter per-
turbation. So that errors in the data did not influ-
ence the tests, the "observed" response was generated
by the model for a selected set of parameters. The
parameters were then varied about the original set.

The "observed" parameters are given in Table 5-2. The
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value of S0 has been held constant at 0.95 through-

out this
analysis

analysis. The results of the sensitivity
are presented in Figs. 5-9 and 5-10.

The objective function for the sensitivity anal-
ysis is
F-F 2
0.F. = “?91) (5-4)
where F 1is the total "observed" accumulated infil-

This
objective function was compared to the sum of devia-
tions for a set of points along the entire infiltra-
tion curve. The distribution is similar, except the
magnitude is different. Therefore, the simpler ob-
jective function is used. The "0" subscripted para-
meters in Figs. 5-9 and 5-10 refer to those values

tration and Fp is the predicted infiltration.
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Table 5-2 'Observed" Infiltration Parameters for
Sensitivity Tests

Paramcter Value of
Parameter

a 0.58

Y 1.35

C1 873

Si 0.50

f 0.40

24

2.0 T T 1
Rainfall Rate
o Observed Plot 5
— I8 e Computed July 19,1940 —
= |
& &
= o]
& [ ]
S .
i | .0 L L ] [o] ]
e
3
(4
L ]
0.5} Cy=243 §
Si =0.27
. fo= 0.36
0 o | | l
0 40 80 120 160
Time ( min)
2.0 T T T
Rainfall Rate
o QObserved
Plot 6
1.5k L] Computed July 23‘ 1940 —
s
°
&
2o -
5 8
é L ]
[s]
0.5~ C,= 207 g
® $i=0.27
f,=0.58
0 e O | 1 |
0 40 80 120 160
Time (min)

Fig. 5-8 Plots 5 and 6 Infiltrometer Tests

from Table 5-2. Figures 5-9 and 5-10 are arranged so
that each succeeding figure has the normalized devia-
tion scale reduced by a factor of 10 from the previous
figure. From these plots, one concludes that minimum
infiltration is the most sensitive parameter for in-
filtration with the initial water content and the
constant relating water content and normalizing time
being somewhat less sensitive. The most sensitive
parameters are fortunately those that have the most
physical significance and can be estimated from field
experiments if they are available. The parameters a
and y are the most difficult to estimate from field
measurements but also least affect the computed infil-
tration.

5.3 Testing the Watershed Model

The previous two sections of this chapter have
involved the development and verification of compo-
nents of the computer model. These components have
been incorporated with the surface water model and



I T T T together they form a complete watershed model of rain-
ol Minimum Infiltration fall and‘associatecl runoff. The remainder of this
= chapter is devoted to testing the model on several ex-
perimental watersheds that vary in surface character-
i ~ istics, pervious and impervious areas, and degree of
i Lo precision with which the rainfall-runoff process is
l }L 0.5

e v e S T g

L =) measured.

i == Colorade State University Rainfall-Runoff Experimental
Faetllity

i _ . Past studies of the data from this facility have
i 1 | i 1 concentrated on the upstream conic section that accounts
0 0.5 1.0 15 2.0 55  for slightly more than half the area. This study is
concerned with analyzing data for the entire watershed
so that the composite effect of a conic section, planes,
and a triangular-shaped channel can be studied. Simu-
T T T lation tests were conducted on two types of surface

e configurations, a butyl rubber surface over the entire

Q.15 o Initial Moisture - watershed and a butyl rubber surface covered with 20-

1b. of gravel/ydz over the lower one-third of the conic
section and one-third of the two planes. The conic
section was represented by a series of cascading planes.
— Kibler and Woolhiser (1970) present a procedure to
determine the appropriate width of planes to approxi-
mate a conic section while maintaining the correct

area.

~ The first hypothesis to be tested is that a con-
stant friction relationship is sufficient to describe
the flow regime. Detailed investigations of the mech-
anics of overland flow (Woo and Brater, 1962; Yu and
= McNown, 1964; and Fawkes, 1972) indicate that flow
begins as laminar and then becomes turbulent as the
Reynolds number increases. Thus, a more precise fric-
tion relationship would be variable, with the highest
5 roughness when depth is small and roughness decreasing
o o as the depth of flow increases. However, the hypo-

thesis of constant friction is formulated on the

: _ : . . assumption that the composite geometry and finite

Rigo 50 MfFLitiation SSISICIIEYIOE ;. C1 and difference approximation would mask the laminar-tur-
S; . bulent effect. A constant value for the Chezy C
friction coefficient was obtained from Singh's (1974)

study of the data from the RREF. He obtained values
for the kinematic wave coefficient o by optimizing
on the peak discharges for rainfall-runoff events from
the conic section. Values of a were obtained for
each event. Average a's for a set of events from
the same surface configuration were used to estimate
! I | 1 T a constant friction factor. Chezy's C was obtained
0015 s a by relatin% a and C by the equation

sy

o] 0.5 1.0 1.5 2.0 2.5

=2 (5-5)

Vs~
0010

After the initial runs were made, the conclusion was
drawn that a constant friction factor was adequate to
U match peak rates but in some cases the rising limb of
the hydrograph was not well simulated. The results
0.0051- 2 of some of these tests are presented in Figs. 5-11

\ and 5-12.

\\\ An alternative to the constant friction relation-
ship is one of the types of variable friction laws
used by Fawkes (1972) on the CSU facility. This type
1 1 f i ; of friction relationship accounts for laminar-turbulent
[s) 0.5 1.0 15 20 flow regime and also has the capability of accounting
Y for flow resistance due to the impact of rain drops
Qo 7, on the surface. Figure 5-13 shows the variable fric-
tion relationship. The parameters of the friction
relationship are k , a constant; Re , a transition-
T
al Reynolds number; and IC , an intensity coefficient.

F—ﬁy

(

Fig. 5-10 Infiltration Sensitivity of a and v
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These para-

meters were estimated from Fawke's (1972) study of

runoff from butyl rubber and graveled surfaces for the

conic section. The best results were obtained by us-

ing k values that were about 50% higher than the

average k

value as computed by Fawkes.

Rainfali (iph)

The results

of simulations using a laminar-turbulent friction re-
lationship are plotted in Figs. 5-11 and 5-12, along
with the simulations using a constant friction rela-
These figures allow comparison of the two

tionship.

friction relationships that have been used in the wat-
ershed model.
discharge is more closely approximated by the constant
Chezy C relationship, while the laminar-turbulent rela-

In three of the four cases, the peak

tionship consistently matches the rising limb of the
hydrographs, especially for the surface of a combina-

tion of butyl rubber and gravel.

Before drawing con-

clusions about which of the friction relationships is
best, we must consider the technique by which the

parameters were estimated.

Singh optimized only on

the peak discharge rates, while Fawkes optimized the

parameters based upon the entire hydrographs.
choice of objective functions is reflected in the per-
formance of the model, as use of Singh's
results in a better fit of peaks, while use of Fawke's

This

C wvalues

relationship gives a better overall fit of the hydro-

graph.
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Schaake's Urban Watershed

Schaake (1965, 1970) reported the results of com-
puter simulations of runoff from a small urban catch-
ment that has been studied by the Johns Hopkins Univ-

ersity Storm Drainage Research Project.

The results



are used in this study to provide an independent ver-
ification of the surface water routing portion of the
watershed model that has been developed in previous
sections. Schaake (1965) presented results from a
deterministic runoff model based on the complete un-
steady flow equations for channel routing and overland
flow routing. Schaake (1970) presented results of
the simulation of an event, where the computer model
was based upon kinematic routing for both channel and
overland flow. This event had also been reported in
the 1965 publication. There is very little difference
in the computed results from these two different mod-
els. The storm designated 3SPL1, and the 0.39-acre
watershed, designated SPL1, have been described in
detail in Schaake's 1970 publication. A diagram of
the watershed and the geometry of Schaake's computer
segments are shown in Fig. 5-14. Schaake specified
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Fig.
Area (after Schaake, 1970)

that overland flow for the watershed should be comput-
ed by a laminar flow relationship.
meter for laminar overland flow was given a value of
10; this parameter is theoretically equivalent to the
parameter k (shown in Fig. 5-13) divided by four.
The swale shown in Fig. 5-14 was represented by a
triangular-shaped channel where turbulent flow is
assumed to exist throughout the entire runoff event.
A roughness parameter similar to Manning's n with a
value of 0.02 was assigned by Schaake to the swale
area.

The strategy of the independent test of the com-

puter model KINGEN is to use the geometric segments,
just as Schaake had represented the watershed as well
as the same number of Ax increments for each segment.

His roughness para-
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These selections avoid bias by using another's repre-
sentation of the watershed. Schaake used a specified
time increment in the explicit finite difference form
of the kinematic equations. The model KINGEN computes
the necessary At to maintain numerical stability as
defined by Eq. (3-39). Since the geometric character-
istics of the watershed have been determined, the test
of the model is the selection of the roughness para-
meters. The laminar-turbulent friction relationship,
described in the section on Colorado State Universit
Rainfall-Runoff Experimental Faeility, is used to model
the surface roughness. The transition Reynolds number
is selected as 300 and the intensity coefficient as 10.
This leaves the parameter k to be chosen. Two simu-
lation tests were made with storm 3SLP1 as the inmput.
The first test was with the lower extreme value of k
for concrete or asphalt, as reported by Woolhiser
(1974). The other test was with the upper extreme
value of k . The results of these two test computa-
tions are shown in Fig. 5-15 along with the measured
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Fig. 5-15 Comparison of Measured and Synthesized
Runoff Hydrographs--Urban Area

runoff hydrograph and Schaake's computed hydrograph.
This figure shows the results of the computer simula-
tion bracket the observed results by using the extreme
values as reported in the engineering literature.

These results are encouraging because they indicate
that a watershed engineer could exercise some judgment
about the physical characteristics of the watershed and
estimate an appropriate roughness parameter that would
result in reasonable predictions of runoff, as long as



the roughness parameter was within the reported limits.
Comparison of the computed results from program KINGEN
and Schaake's work reveals very little difference be-
tween the two for the lowest value of k . Both sim-
ulations overpredicted the first peak by substantial
amounts. The higher value of k 'resulted in a better
estimation of the first peak but the estimation of the
second peak was then poorer for the lower k value.

Hillerest Drain, Colorado Urban Watershed

The watershed model is used in the section on
Schaake's Urban Watershed to simulate runoff from a
small urban catchment with a uniform surface cover of
asphalt. In this sectioh, the model is used to simu-
late runoff from a large urban watershed that is a
mixture of pervious and impervious area. A description
of the Hillcrest Drain watershed was given in Section
4.3. The complexity of the watershed features, natur-
al and man-made, requires an extremely large number
of computer segments to represent the physiographic
features with any degree of completeness. The computer
storage required to accommodate such a large number of
geometric segments may not exist on any standard com-
puter that is available to watershed engineers. The
computational cost of such a complete representation
is prohibitive even for research. Another possibility
of representing the watershed geometry is to use only
two or three computer segments, i.e. one or two planes
and a channel, and optimize the watershed parameters
by matching computed and measured results. However,
physical interpretation of parameters obtained by this
type of technique becomes very difficult, if not impos-
sible. Also, transferability of results from the
Hillcrest Drain watershed to other watersheds may not
be possible. The solution to the dilemma of represent-
ing the watershed by a very large number of segments
or a very few segments is a compromise of the two ex-
tremes. The watershed is represented by enough seg-
ments to maintain a resemblance of the physiographic

features, but the number is limited to keep the com-
puter storage and computation time to an acceptable
level. Even with severe simplifications of the geo-
metry, the number of computer segments used to repre-
sent the Hillcrest Drain watershed exceeds 150 and for
the most detailed representation used, the number is
slightly more than 200. Figure 5-16 shows the computer
segments, indicated by dashed lines, used to represent
a typical block of the watershed. Each segment is num-
bered in the same order that computations occur. The
computer segments, their corresponding physical sig-
nificance, and the sources of inflow are listed in
Table 5-3. This schematization of the urban watershed
is the most complete representation that is used.

Parameter Estimation

The dimensions of the computer segments were
estimated from an enlarged topographic map of the
watershed., Summation of the area of all the computer
segments is within 2% of the total area of the water-
shed as measured from the topographic map. The soil
characteristics of the watershed were described in
Section 4.3. These characteristics represent the con-
ditions when the area was cultivated for agricultural
purposes. Changes in some of the soil characteristics
are expected to have occurred when the area was urban-
ized. The clayey subsurface material that is exca-
vated for basements is often spread atop or mixed with
the topsoil, which reduces the infiltration rate of
the soil. Also the soil is compacted during the move-
ment of construction equipment and the planting of
lawns. The model parameters for the pervious sections
of the watershed were obtained by comparison of the
measured and adjusted soil characteristics to the
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Table 5-3 Computer Segments Used to Represent
Geometry Shown in Fig. 5-16
Segment Physical Lateral Upstream Inflow
Number Significance Inflow Plane Channel
1 Roof Rainfall - -
2 Lawn Rainfall 1 -
3 Street Rainfall - -
4 Gutter « 2, 3 - -
S Roof Rainfall - -
Lawn Rainfall 5 -
7 Street Rainfall - -
8 Gutter 6, 7 - -
9 None
(add channels) - - 4, 8
10 Street Rainfall - -
11 Gutter 12 = -
12 Street Rainfall - -
13 Gutter 12 - 9, 11




range of soils that Smith (1972) used to conduct in-
filtration experiments. The comparison revealed the
characteristics of the watershed soils to be closest
to those of Muren clay soil. Table 5-4 lists the mod-
el parameters for the infiltration component of the
urban watershed. Preliminary test results showed that
runoff did not occur from the pervious area, when the
C1 value for Muren clay was used for the short dura-

The C

1
value was lowered to that value in Table 5-4 and
corresponds nearly to the Cl for Nibley silty clay

tion storms, as observed on the watershed.

loam.
Table 5-4 Infiltration Parameters for Hillcrest
Drain Soil
Parameter Value of
Parameter

a 0.53
Y 0.45
5o 0.95
Cl 400
f- 0.2"
5 0.4%+

tafter initial tests, this was lowered to 0.1 in/hr.

**minimum moisture content because of watered lawns,

events preceded by precipitation estimated at higher
content. :

The surface roughness characteristics were mod-
eled by constant Chezy C friction factors. These
friction factors were estimated by comparison of the
surface type being considered with the types of sur-
faces that have been studied extensively for surface
runoff and reported in the literature. The constant
friction factors were estimated for five types of
surfaces: streets, gutters, lawns, roofs, and storm
sewers. Table 5-5 lists the values of the roughness
coefficient for these surfaces.

Table 5-5 Roughness Factors for Hillcrest Drain
Watershed

Chezy C

f.
Trpe of Surface Friction Factor

Street 50
Roof 50
Lawn 4.2
Gutter 85
Storm Sewer Manning's n = 0.013

29

The storm sewer roughness is listed in terms of
Manning's n for reasons that are outlined in Section
5.1. The friction factor for storm sewers has the
value that is often recommended for concrete pipe.
The Chezy C values are within the values reported by
Woolhiser (1974). The geometric, infiltration, and
flow resistance parameters are estimated for the ur-
ban watershed. With this information, simulation
experiments are conducted using measured rainfall
events as input to the model. Information about the
watershed as a hydrologic system is obtained by mak-
ing modifications to the parameters, as described in

this section.

Effects of simplifications to watershed representation

The importance of runoff from the pervious area
is analyzed by postulating that runoff is coming from
only the directly connected impervious areas, i.e.,
streets contributing to the gutters and storm sewers.
This assumes that all lateral inflow to the lawns,
either rainfall or runoff from roofs, is infiltrated
and none flows into the gutter. Simulation experiments,
based upon this assumption, are compared with the ob-
served hydrographs. Results of these simulations are
used to judge the importance of the runoff from per-
vious areas of the urban watershed. Figure 5-17 shows
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Fig. 5-17 Runoff Simulation from Hillcrest Drain,
No Contribution from Pervious Area

the results of a typical example assuming no contribu-
tion of flow from the pervious area. Four storms were
simulated with this assumption. Three of the four
events showed results similar to Fig. 5-17, i.e., under-
prediction of the volume and peak rates.  The fourth
simulation resulted in overprediction of the volume

and peak by more than 50%. Further investigations of
the fourth event revealed that it was the first event
recorded at the gaging station and the possibility of
errors in the data because of faulty calibration is
great. No plausible explanation other than this one
could be formulated about the event. Since overpre-
diction occurs when only the streets and gutters are
assumed to be contributing flow, greater overprediction
occurs when the more realistic assumption is used that
all areas contribute flow. The underprediction of the



majority of events is what is expected when only a
limited area of the watershed contributes to the run-
off process. The conclusion is drawn that runoff from
the pervious portion of urban watersheds is important
even for moderate storms and is not to be ignored when
simulating the runoff events.

Further simulation tests were conducted with the
entire area of the watershed contributing flow. The
infiltration parameters used in these tests are shown
in Table 5-4. The results of this simulation are an
increase of the peak discharge rate and of the total
volume of runoff. However, the results are still an
underprediction of the observed peaks and volumes.
The minimum infiltration rate, f_ , was lowered to

0.1 IPH and further simulations were conducted. This
parameter modification results in a better approxima-
tion of the peak flow rates but the recession hydro-
graph is again underpredicted. The problem of under-
prediction of the recession portion of the hydrographs
is similar to that reported by Smith (1970). Repre-
sentation of overland flow as runoff from a plane
surface results in the implicit assumption that the
entire surface is covered by water if there is any
depth whatsoever present. The real situation is that
the surface is covered by a series of depression and
undulations. When rainfall ceases, only a portion of
the surface is covered by water; the remainder of the
surface protrudes above the water surface. Thus, in-
filtration computed for a plane surface is too large
during recession as compared with the natural situa-
tion where infiltration is occurring on only the sub-
merged portion of the surface. It is necessary to
limit the amount of infiltration that occurs on the
recession portion of hydrographs so that computed
recessions not consistently underpredict the observed
recession. An empirical factor was developed that
was used to limit the amount of negative lateral in-
flowe(precipitation and surface water is less than
infiltration). The factor is

B S g (5-6)
where k” is a constant with value 75, and h is the
depth of water on the surface in feet. The parameter
F” ranges in value from zero to unity. When h is

zero, F” 1is zero and when h is 0.75 in., F~ is
0.99. Thus, recession infiltration is limited by the
exponential factor as given in Eq. (5-6) whenever the
mean water depth is below 0.75 in. (This feature is
not included in the program KINGEN 75, which is listed
in Appendix B).

Simulations using the final watershed representation

Multiple storms from the urban watershed are sim-
ulated with the computer parameters, as shown in Table
5-4, for infiltration with f_ lowered to 0.1 IPH.

Roughness parameters and surface geometry are as shown
in Table 5-5 and Fig. 5-16, respectively. The results
of these simulations are plotted in Figs. 5-18 through
5-20. The results show an overestimation of runoff
volume in some of the cases but an underestimation of
the volume in other cases. The peak discharges show

a similar distribution of the predictions. The major
problem lies in the-estimation of rainfall excess.
This problem is divided into two sub-problems. One is
the amount of infiltration on pervious areas and the
other is the geometric representation of the watersheds
in terms of the percentage of pervious and impervious
area as compared with the actual amount of these areas.
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Fig. 5-18 Hillcrest Drain, June 21 and July 16, 1969

The ratio of impervious areas to the total watershed
area was measured by Root and Miller (1971) and was
nearly constant during the study period at a value of
about 42%. The ratio of impervious to total area of
the computer segments is 40%. A consistent underesti-
mation of runoff volume is expected as a result of
this bias in the amount of impervious area. The dis-
tribution of the impervious area and the amount that
is directly connected to the gutter and storm sewer
systems is not precisely known. Its importance re-
quires further investigationm.

One problem that is likely to cause the variations
of overprediction and also underprediction is the
estimation of infiltration for each storm. The infil-
tration parameters have been held constant for each
event, except for the initial water content, S.1

This variable was altered when recorded data was
sufficient to indicate that rainfall events or lack
of them occurred so as to affect the antecedent mois-
ture condition. The record of rainfall at Hillscrest
Drain is not published for each day, but only when
there is a runoff event. This lack of rainfall data
and the unpredictable times of lawn watering present
a problem when attempting to estimate the antecedent
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moisture. Because the usual rainfall event is the
localized thunderstorms in this area, the use of pre-
cipitation records from some other measuring station
is not adequate to define the conditions on the Hill-
crest Drain watershed. The computed results indicate
the surface runoff model is adequate to simulate the
outflow hydrograph, even for this complex system, if
the rainfall excess is accruately estimated. The
problem of infiltration estimation is the greatest
problem that must be overcome before the model can be
widely used as a means of estimating the runoff from
such a complex hydrologic system as the Hillcrest
Drain watershed.

Agricultural Watershed near Edvardsville, Illinois

The watershed model has been used in the past
three sections to simulate runoff from watersheds
that are partially or totally impervious. The W-I
watershed near Edwardsville, Illinois is an entirely
pervious area and was described in Section 4.2. Sim-
ulation of runoff from this watershed is the most
severe test in this study of the infiltration compo-
nent of the watershed model. The infiltration para-
meters are determined from the infiltrometer experi-
ments, soil survey, and comparison to the parameters
reported in Section 3.3. The infiltration character-
istics are assumed to represent the entire watershed.
That is, one set of infiltration parameters is assign-
ed to all the pervious segments of the watershed.
There is sufficient information from the soil survey
to allow a more detailed representation of the water-
shed infiltration characteristics. However, the ob-
jective of testing the infiltration component of the
model is to determine its applicability to an agricul-
tural watershed in which detailed information on in-
filtration characteristics other than the predominant
soil type is normally not available. Thus, a water-
shed engineer generally assumes that uniform infil-
tration conditions exist over the entire watershed.

Parameter estimation

Figure 4-3 shows a topographic map of watershed
W-I and a schematic representation of the geometry.
The computer segments are chosen from the map to con-
serve the watershed area and channel flow length.
Details of the geometric segments are shown in Table
5-6. The choice of geometric representation for the

Table 5-6 Geometry of Watershed Segments at

Edwardsville, Illinois W-I

Segment Type Length width Slope Contributing
Nuzber (£t} [$34] Inflow
1 plane 32 663 .01 Rainfall
2 plane 275 519 015 Rainfall,l
3 plane 205 327 .039 Rainfall
4 plane 143 265 .035 Rainfall
5 channel 385 - .oe 2,3.4
6 plane 785 282 .017 Rainfall
7 plane 140 276 043 Rainfall
B channel 245 016 6,7
9 plane 150 203 .07 Rainfall
10 channel 195 - -021 5,8,9
11 plane 465 380 009 Rainfall
12 plane 165 573 042 Rainfall,ll
13 plane 125 492 -056 Rainfall
14 plane 395 70 013 Rainfall
15 channel 675 - .018  12,13,14
16 (add channels) - = - 10,15




computer model user is subjective. There are several
reasons the geometric representation is maintained as
simple as possible. Computer time is saved with a
simple representation because fewer calculations are
made than for a very detailed representation. There
is also a savings of time for processing input data.
However, there is a trade-off in the accuracy of
simulation and cost of computations. Further investi-
gation is required to adequately define the detail of
representation that is required to obtain a desired
degree of accuracy.

Results of infiltrometer tests were presented in
© Section 5.2 These tests were conducted on sample
" plots of the W-I watershed. The range of steady state
infiltration rates of the infiltrometer experiments
is .15 to .78 IPH. The upper values of this range
are quite high for the silt loam soil of the water-
shed. Several rainfall-runoff events of extended
duration were analyzed for infiltration losses. Rain-
fall events of duration of 12 hours or more are as-
sumed to have reached a steady-state condition of
infiltration. Pulses of moderate intensity rainfall
that occur late in a storm are used to estimate the
minimum infiltration rate by calculating the differ-
ence between rainfall and runoff for a period of
time, The difference between rainfall and runoff is
the infiltration. The analysis of extended events
shows the f_ = rate was about .10. Chow (1964) des-

cribed a soil type within which the Alma and Bogota
soils are classes as having a minimum infiltration
rate from 0.05 to 0.15. Thus, the results of the
infiltrometer tests show substantially higher infil-
tration rates than other analyses of similar soil
types. The minimum infiltration rate for the W-I
watershed is estimated to be 0.12. The infiltration
parameters, as determined by comparison to the Colby
silt loam described in Section 3.3, are listed in
Table 5-7.

Table 5-7 Infiltration Parameters for W-I Runoff
Simulation
Parameter Value of
Parameter
a 0.58
Y 0.90
So 0.95
*
Cl 5000
Si . Estimated for
each storm
f 0.12

The watershed area was planted entirely with al-
falfa during the study period. One roughness para-
meter is assumed to describe flow resistance for the
entire overland flow portion of the watershed. The
Chezy C friction factor estimated for the watershed is
5.1. This value is within the range of Chezy C values
reported by Woolhiser (1974) for short-grass prairie.
The value is slightly higher than those reported by
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Woolhiser (1974) for bluegrass sod. The swale-like
areas of the watershed are represented as channel seg-
ments. The flow in these areas is deeper than over
the plane segments. Often there is little or no vege-
tation established in the lowest portion of the swales.
These two factors result in lower effective flow re-
sistance in the swales than in the overland areas.

The Chezy C value assigned to the channel segments is
35. The determination of the geometric, infiltrationm,
and flow resistance parameters permits simulation of
runoff from the W-I watershed.

Simulation of runoff from watershed W-I

The results of some of the runoff simulations are
shown in Figs. 5-21 and 5-22. The results indicate
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that the observed and computed hydrographs-are closely
matched when the rainfall excess is properly estimated.
Rainfall excess during the early portion of each event
is the quantity least adequately simulated by the
watershed model. The constant friction relationship
is adequate to approximate flow resistance during the
rising limb, peak discharge rates, and the recession
portion of the runoff events. More comprehensive
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friction relationships are unwarranted unless more
precise means of estimating rainfall excess are devel-
oped. The inability to use information directly from
the infiltrometer experiments when estimating infil-
tration parameters for the entire watershed is some-
what disappointing. A possible explanation of the
variation of infiltrometer experiments and the natural
infiltration is the difference between the infiltro-
meter and natural surfaces. The 6 by 12 foot plots
of the infiltrometer experiments were probably chosen
where the surface was uniform and had few depressions.
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This results in the surface water covering the ground
area uniformly. The natural surface may consist of
significant undulations and depressions. Except dur-
ing the higher intensities of rainfall, surface run-
off may quickly form into rivulets and not cover the
entire surface uniformly. Thus, infiltration is res-
tricted to less than the entire watershed surface.

It is encouraging that infiltration parameters esti-
mated by comparison of the watershed soil to the soil
types discussed in Section 3.3 resulted in as good of
estimations of runoff as indicated by the results.



Chapter 6
CONCLUSIONS AND RECOMMENDATIONS

6.1 Conclusions

Kinematic routing of flow in circular conduits is
applicable within the limitations of kinematic wave
theory. Kinematic routing cannot account for back-
water effects; applications must be limited according-
ly. This study shows that kinematic routing performs
as well as a hydrograph lag method for predicting out-
flows. The kinematic method has the advantage that no

observed hydrographs are needed to estimate parameters.

Computation of infiltration on pervious surfaces
is based upon a parametric decay-type function. Field
measurements are used to estimate parameters for sim-
ulation of infiltrometer experiments. The three most
sensitive parameters of the five computer infiltra-
tion parameters have physical significance. A pre-
vious study of the infiltration component lists appro-
priate parameters for a wide range of soil types. It
is possible to estimate infiltration parameters of a
soil by comparison of type and characteristics to re-
sults of the previous study.

A variable friction relationship that accounts
for both laminar and turbulent flow regimes gives a
better overall fit to the hydrograph than a constant
friction relationship. However, the constant rela-
tionship may give a better fit of the peak discharge
rate based on a priori estimates of flow resistance.
The variable friction relationship is warranted only
on a totally impervious area. When a watershed is
partially or totally pervious, the estimation of rain-
fall excess is more important than the type of fric-
tion relationship used. On pervious watersheds, the
constant friction relationship is adequate.
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The watershed model is used to simulate runoff
from two urban watersheds. Results from the small
impervious watersheds show good agreement between ob-
served and predicted hydrographs. Results from the
large, complex urban watershed are good when the rain-
fall excess is properly estimated. Results from both
watersheds indicate that a priori estimates of fric-
tion parameters are adequate to define flow resistance.
The watershed model can be applied to complex urban
systems, to predict runoff rates for sizing storm
drains and conveyance structures. However, the cur-
rent form of the model may be too complex for wide-
spread use as a design tool. It does have application
in further research and also as a comparative tool for
the more simplified methods of flow calculations, like
the unit hydrograph.

6.2 Recommendations

Further research should be undertaken to make a
more extensive study of kinematic routing in circular
conduits by testing the technique on observed data.

The infiltration component of the watershed model
should be extensively tested on field data for a var-
iety of soil and cover conditions. Initial soil mois-
ture content should be estimated using daily models
that account for drainage and evapotranspiration.
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APPENDIX A

PROGRAM KINGEN 75

GENERAL DESCRIPTION

The program KINGEN described in the main portion
of this report was developed for research purposes over
a period of several years. Consequently, the program
became progressively more complicated and difficult to
understand. A new program KINGEN 75 is described and
documented in the following pages. The approach used
is similar to that described in the main part of this
report but the program has been subdivided into sever-
al subroutines and some of the numerical methods used
are different. Friction law options have been added
and a subroutine to check the input for errors has also
been included.

KINGEN 75 consists of program MAIN and 18 sub-
routines listed below. The principal function of each
subroutine is indicated here and is also indicated in
the comments cards in the Program Listing, Appendix B.
PROGRAM MAIN: Calls subroutines READER, PLANE and
CHANNL.

SUBROUTINES:
1. READER: Reads in model parameters, watershed
geometry data and rainfall data. Called
from MAIN.
2. INSPEC: Inspects input data for errors and
prints out an error message, if one is
detected.
3. RESET: Places input data read by SUBROUTINE
READER into appropriate arrays. This
is done so that no subscripts are
necessary on the data cards.
4. CONVERT: Converts units of time and length in
input data to units used internally and
reconverts to desired units in output.

Finite difference solution for overland
flow on a plane. A four-point implicit
method is used.

5. PLANE:

6. CHANNL: Implicit finite difference solution for
unsteady flow in channels with trape-
zoidal or circular cross sections.

7. XPLINF:

Computes infiltration rates. Called

only from PLANE.
8. ADD: Adds specified discharges (lateral flow,
channel junctions), and computes up-
stream boundary values (depth, atea,
or intersection angle © in conduits).
9. RESLAW: Calculates the parameters for the
hydraulic resistance law selected in
the input.
10. CHGLAW: Changes the hydraulic resistance laws
at the transition Reynolds number if
Laminar-Turbulent option has been
selected.
11. UNIF: Uses linear interpolation to convert a
1ist of discharge values at irregular
time increments into a list with regular
time increments.

37

12. IMTHUB: Calculates a residual function for an
assumed value of the independent vari-
able © in the iterative solution of
upper boundary area of a circular con-
duit, given an upstream discharge Q
from ADD. Called from ADD thru ITER.
13. IMPLCT: Four-peint implicit finite difference
scheme. Called from subroutines PLANE
and CHANNL.

14. ITER: Newton-Raphson iteration scheme to solve
general nonlinear equations of the form
F(x) = 0 . Called from subrouting
IMPLCT.

Calculates a residual function for an
assumed depth h in the iterative
solution of depth along a plane.
from IMPLCT thru ITER.

15. IMPOCF:

Called

Calculates a residual function for an
assumed area in the iterative solution
for cross-sectional area in a trape-
2pidal channel. Called from IMPLCT
thru ITER.

16. IMPCHA:

17. IMPCIR: Calculates a residuzl function for
assumed value of the independent variable
o in the iterative solution for cross-
sectional area in a circular channel.

Called from IMPLCT thru ITER.

Calculates a residual function for an
assumed area in the iterative solution
for the upper bound area of a trapezoidal
channel, given an upstream discharge.
Called from ADD thru ITER.

18. IMPAUB:

19. ERROR: Prints appropriate error messages.

PROGRAM INPUT

The watershed is first divided into cascades of
rectangular planes contributing to a network of triang-
ular, trapezoidal, or circular channels, as described
in the main portion of this report.

Input data are read by SUBROUTINE READER in an
order specified by NAMELIST and DATA declarations.

Example 1. As an example, consider the input
cards for the hypothetical watershed shown in Fig. A-1.
In this example, the plane, element number 1, contri-
butes lateral inflow to a trapezoidal channel, element
number 2.

Identification Card. From the comment cards in
SUBROUTINE READER, we find that the data cards are
preceded by a card, which may contain up to 80 columns
of alphanumeric identifying information. For this
example, the information card will be as shown below:

Col. 1 !

-
b tlim-u‘LL 1 IMPERVIOUS TTANE AHD TRATEZOLDAL CILANNTL

*bh indicates a blank column



Fig. A-1

Hypothetical Watershed

Card 1. From the comment cards in the program
listing, Appendix B, we find that the first data card
contains the variables for NAMELIST BEGIN, where: NELE
is the number of elements in the system (in this case,
2). The maximum NELE allowable in this program is 20.
This can be increased by modifying COMMON and DATA
statements and part of subroutine INSPEC. NRES is a
resistance law code that allows considerable freedom
in choosing the hydraulic resistance law to be used.
From the comments in SUBROUTINE PLANE, we find that we
have the following four choices for a plane:

NRES = 1: a Manning Law will be used,

NRES = 2: a Laminar Law will be used until the
Reynolds number exceeds a certain
value, then Manning's Law will be used,

NRES = 3: a Laminar Law will be used until the

Reynolds number exceeds a given value,
” then the Chezy Law will be used,
NRES = 4: the Chezy Law will be used.

For plane 1, let us assume that we will use the
Laminar-Manning Law, therefore, NRES = 2. The Manning
Law will automatically be used for channels with this
option.

CLEN is a characteristic length that is used with-
in the program to choose the length of Ax increments
in the finite difference solutions. It should normally
be set equal to the sum of the lengths of the longest
cascade of planes in the system or the longest single
channel, whichever is greatest. The number of Ax
increments is then:

NK = MAX1 (15*XL(J)/CLEN,3)
For this example, CLEN = 200 ft.

TFIN is the desired maximum duration of the run-
off event (in seconds, minutes or hours). Assume for
this example that we wish the program to stop after
it has computed a runoff hydrograph with a duration
of 60 min. from the beginning of the rain.

DELT is the desired time increment for computa-
tions and for print-out of the hydrograph. The choice
of DELT depends on the time resolution of the rainfall
input data and the response time of the system. For
this example, choose DELT = 2 min.

THETA is the weighting factor in the implicit
numerical solution. When THETA = 0.5 the x-derivatives
are computed by an average of the derivatives at time
steps i and i+l . If THETA = 1, the x-derivatives
are computed entirely from the derivatives at time
i+1 . We will use THETA = 0.8.
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TEMP is the water temperature in degrees Fahren-
heit, used to compute the kinematic viscosity for
laminar flow computations. If TEMP is not entered,

a default value of 65° is used. We will use the de-
fault value.

Card 1 will be as shown below:

tols. |1 Iz :

CLEN - I00., 1FIN = 60..

—b‘r‘;_l?i?r;-lﬂ NELE = 2, NRER = 2,
DELT = 2., THETA = 0.8 S

Card 2. Card 2 contains the variables and para-
meters for NAMELIST OPTION where: N@PT is a code
reserved to allow an optimization subroutine to be
added. When N@PT = 0 the program is in the prediction
mode. When N@PT = 1 the reading sequence includes
observed time-discharge data, which can be used to
calculate an objective function. The friction para-
meters could be optimized by including a new subrou-
tine. THIS OPTION IS NOT OPERATIVE IN KINGEN 75 SO
N@PT = 0.

NTIME is & time units code referring to the time

units of input and output data.

Il - seconds
NTIME = 2 - minutes
3 - hours.

In this case, the input data were in minutes so
NTIME = 2.

NUNITS is a code referfing to input units (all
internal calculations are done in English units).

_11 - English
NUNITS '{2 - Metric.
Rainfall rates in English units are in inches per
hours and all lengths are in feet. Metric rainfall
rates assume centimeters per minutes, and all lengths
must be in meters. Input data for this example are
in English units so NUNITS = 1. Card 2 is shown be-

low:
Cols. |1| 2.
|b| $ OPTION N@PT = 0, NTIME = 2, NUNITS = 1 §
Card 3. Card 3 contains the data for NAMELIST
ORDER.

NL@G(I), I = 1, NELE contains the index number
assigned to planes and channels in the order in which
computations should proceed. It is not necessary that
NLPG(I+1) = NLPG(I)+1; however, the outflow hydro-
graphs of all elements contributing as lateral inflow
or upstream inflow to the element J must be computed
before the computations can proceed for element J .
Card 3 is shown below:

Cols. |1| 2

'b| $ ORDER NL@G(1) = 1,2, §

Note that the index (1) is required for this array.

Card 4. Card 4 contains data describing an ele-
ment of the cascade as specified by NAMELIST FIRST.

J is the index number of the element for the
plane in the example J =1 .



NU is the number of the plane element contribut-
ing to the upstream boundary of element F o [If ele-
ment J is the uppermost in a cascade of planes,

NU =0 .

NR is required for channels and is the number
of the plane contributing lateral inflow to the right
side of the channel. NR is omitted for a plane ele-
ment .

NL refers to the plane contributing to the left

side of the channels. NL is omitted for a plane
element.
NC1 and NC2 rtefer to the numbers of channels

contributing at the upstream boundary of a channel.
For this example, they may be omitted for element 1.

NCASE
cross section.

is a code to indicate the type of channel
NCASE may be omitted for element £ 1%

NPRINT is a code used to obtain or suppress print-
out of output from any element.

- No print-out

- Outflow hydrograph and
interim computational data
will be printed.

1
NPRINT =

We will select the no print-out option for plane 1.
NPRINT = 1. Card 4 is shown below:

Cols. ‘1\ 2.

\b\ $ FIRST J = 1, NU = 0, NPRINT = 1 $

Card 5. Card 5 contains element geometry and
hydraulic roughness data as specified by NAMELIST
SECOND.

J is the element number.

XL is the length of the plane in appropriate
units. For this example, XL = 100 ft.

W is the width of the element. For element 1,
W = 200 ft.

S 1is the slope. S = 0.05.

ZR , ZL , A, and DIAM are not required for

plane elements.

Rl is the turbulent law roughness parameter
(Manning's n in this case). If we assume that plane
1 is covered with asphalt, an apprepriate Manning's
n is 0.013.

R2 in the ex-

pression f = LS
R

is the laminar law parameter (K
is the Darcy-Weisbach fric-

tion factor and R is the Reymolds number). A K
value of 80 is within the range shown in Table A-l.

R? is omitted if only a turbulent law is used. Friec-
tion parameters listed in Table A-1 were obtained from
experiments reported in the literature and are gener-
ally representative of very small areas. If a plane
is used to represent a section of watershed larger
than about two acres, the friction parameter must be
adjusted (see Lane, Woolhiser and Yevjevich, 1975).

where f

FMIN is the minimum (steady state) infiltration
rate for a plane. We will assume that the asphalt
plane is impervious.
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Table A-1 Resistance Parameters for Overland Flowlf

Laminar Flow Turbulent Flow
Surface Ico Manning's n Chezy C
(£t 2 sec)
Concrete or Asphalt 24 = 108 .01 - .013 73 - 38
Bare Sand 30 - 120 0L - 016 65 - 33
Graveled Surface 90 = 400 .012 - .03 k] - 18
Bare Clay-Loam Soil 100 - 500 012 - .033 36 - 16
(eroded)
Sparse Vegetation 1000 - 4,000 .053 - .13 11 - 5
Short Grass Prairie 3000 - 10,000 10 - .20 6.5 - 3.6
Bluegrass Sod 7000 - 40,000 17 - W48 4,2 - 1.8
Card 5 is shown below:
Cols. Jl: W e w wn e
h|S SECOMD J =1, XL = 100., W = 20),, S = 0.05, Ri = 0.013,

RZ = 80., FMIN = 0. §

. Card 6. Ca;d 6 normally contains the infiltra-
ion parameters for a plane as specified by NAMELIST
THIRD. FOR THIS EXAMPLE, the p]gne is impzrvious
(FMIN = 0) so NAMELIST THIRD is omitted. An example
with infiltration will be considered subsequently.
The plane element has been completely described, so
Card 6 will contain data describing the channel,
element 2.

As described for Card 4, J =2, NU=0, and
NR = 0 . In this example, plane 1 contributes lateral
inflow to the left side of channel 2 so NL =1 . NCI
and NC2 are omitted because no channels contribute to
the upstream boundary of channel 2.

From the comments in subroutine CHANNL, the code
NCASE indicates the type of channel cross section.

NCASE = 1 Trapezoidal cross section.
NCASE = 2 Circular cross section.
NCASE = 3 Has been reserved for input of

irregular cross sectionms.
OPERATIVE IN KINGEN 75.

IT IS NOT

Use of NCASE = 3 will result in a programmed stop. In

this example, NCASE = 1.

We will select the print-out option for the chan-
nel so NPRINT = 2.

Card 6 is shown below:

$ FIRST J = 2,

b KU =0, NR =20,
NCZ = 0, KNCASE = 1,

NTRINT = 2 §

ML =1, NCl=0,

Cols. 11 ll.

1/ trom Woolhiser, D. A. "Simulation of Unsteady
Overland Flow." Chapter 12 in Unsteady Flow in
Open Channels. Water Resources Publication, Fort
Collins, Colorado, 1975.



Card 7. Card 7 contains element geometry and hy-
draulic roughness data for channel 2 as specified by
NAMELIST SECOND.

As described for Card 5,
The width W is set equal
this element is a channel.
are defined in Fig. A-2.

J =2 and XL = 200..
to zero, indicating that
S = 0.03.

ZL, ZR and A

Fig. A-2 Trapezoidal Channel Geémetry. (Looking

downstream)

For this example, we will assume that IR = ZL = 1.
and that A = 1. Thus, we have a trapezoidal channel
with 1:1 side slopes and a 2-ft. bottom width. If the
channel is triangular, A should be set equal to a very
small number rather than zero to avoid problems in a
function subroutine. DIAM is the diameter of a cir-
cular channel and may be omitted for this case.

Rl is the turbulent law roughness parameter for
the channel. Because we have chosen the Laminar-Manning
Law, it will be Manning's n. Choose Rl = 0.013 for
this example. R2 may be omitted for the channel and
FMIN = 0.0 for a channel.

Card 7 is shown below:

Cols. 1.|2 .
b i5 SECOND J =32, xu = M., We=0, S =0.01,
ZL =1.0, 2R =1.0, A=1.0, RI = 0.013, FMIN = 0.0 §

Card 8. All of the geometric data and parameters
for the watershed itself have now been provided. Card
8 contains rainfall data as specified by NAMELIST RAIN.
Let us assume that the rainfall intensity histogram
for the event of interest is shown in Fig. A-3.

o
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Fig. A-3 Rainfall Intensity Histogram
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QI(I) is the rainfall rate (iph or c¢m/min). TI(I)
is the time at which the corresponding rainfall rate
begins. ND is the number of rainfall data pairs.

Card 8 is shown below:

Culs.!lJ 2.
bl $ RAIN gQI(1) = 0.5, 1.0, 0.5, 0.0, 0.0,
Ti¢l) = 0.0, 5.0, 10.0, 20.0, 65., ND =5 $

Note that the subscript 1 (one) is required for
arrays QI and TI . TI(ND) should be greater than
TFIN shown on Card 1 so that the rainfall rate is de-
fined throughout the event.

Because the optimization option is inoperative in
KINGEN 75, NAMELIST RAIN is the last item of input.

Example 2. WATERSHED WITH INFILTRATION, BRANCHED
CHANNELS AND CIRCULAR CONDUIT. 1In this example, use
of an infiltrating plane, branched channels, and a
circular conduit will be illustrated. The seven element
model is shown schematically in Fig. A-4. The imper-
vious plane-channel pair of the previous example will
be used as elements 1 and 2. Necessary data cards
will be shown and comments given where the options are
different from those explained in the previous example.

T

Fig. A-4 Elements Used in Example 2

Identification Card.

Cola.’ 1 I 2. .
b | EXAMPLE 2. INFILTRATING PLANE AND BRANCIHED CIANNEL
CASE WITH CIRCULAR CONDULT
Card 1.
cot. |1 -
$ BEGIN NELE = 7, NRES = 2, CLEN = 300., TFIN = 90.,

DELT = 2., THETA = 0.8 §



TFIN has been increased in anticipation of longer Te-
cession from a hydraulically rougher, grassed surface,
and a larger watershed.

Card 2. Same as in previous example.

Card 3. As indicated in Fig. A-4, the order
would proceed as shown:

Col. |1\ %@ e

\b‘ $ ORDER NLOG(1) = 1, 2, 3, 7, 4, 5, 6 §

Card 4. Same as in previous example.
Card 5. Same as in previous example.
Card 6.
Cols.|L[2. -
b |5 FIRST J=2, N0 =0, 1R =0, N =1, KCL =0,
nC2 = 0, NCASE = 1, NPRINT = 1 §

We have deleted printeut as this is now an intermediate
output.

Card 7. Same as in previous example.

Card 8. The second channel (element 5) drains
two infiltrating planes, (elements 3 and 4) each 100
ft. wide, and 200 ft. long. The right plane is the
element 3, and Card 9 will be the same as Card 4
(except J = 3), since this plane also is the most
upstream element and contributes to a channel.

Cols. 1‘ 2 4

|
1
.b‘ $ FIRST J = 3, NU = 0, NPRINT = 1 §

Card 9. The data on this card specify the geo-
metry for plane three, and asymptotic (t+=) infiltra-
tion rate FMIN (as an indicator of whether this sur-
face is impervious or pervious). FMIN must be in the
same units as the rainfall, given later, as indicated
on Card 2 by parameter NUNITS. Its value is found in
this example, from an infiltrometer experiment as
explained below. Rl and R2 have been chosen from
Table A-1 to approximately represent a sparsely vege-
tated rangeland watershed.

Table A-2

e

b |s sEconn 3 = 3, X = 200., W= 100., § = 0.06,
g1 = D.05, R2 = 2000., PMIN = 0.2362 §

Card 10. The infiltration parameters for the
model outlined by Egs. (3-56), (3-60), and (3-64) in
Chapter 3 are specified by data in NAMELIST THIRD.
Table A-2 summarizes the parameters describing infil-
tration from Chapter 3 and their corresponding com-
puter names. To illustrate the determination of these
parameters from field data, we shall here assume that
an infiltrometer experiment has been performed on the
same soil type, and the data shown in Table A-3 have
been obtained.

The basic model parameters are obtained from this
infiltrometer data in the following manner. First, a

log-log plot of t -t Vs. f - £_ is made with ini-
This is essentially

a graphical fitting of the data to Eq. (3-53), and is
demonstrated in Fig. A-5. From Table A-2, apparently

tial estimates of t0 and fu° .

2 <tp <3, and a reasonable first estimate for t,
is 1/2 t
and to and fm are varied to obtain a reasonably

Apparently, f£_ is less than .028 cm/min.

straight line. The process is aided by noting that
estimates of f_ that are too large or too small
affect the curve at the lower end (t large) of the
data, and, conversely, the curve is sensitive to esti-
mates of t at the opposite (t small) end. The user

is cautioned that large infiltrometer plots incorporate
considerable storage delay into measurements of the
plot outflow, which will bias the infiltration para-
meters, unless this is corrected. This as well as
natural soil variability cause response curves typi-
cally not to exhibit the sharp break at t = tp shown

in Fig. 3-5.
As shown in Fig. A-5, a line has been fitted to
the data of Table A-2 using tD =1.3 and £_=

The intersection of this line with the horizontal line
representing i = 0.1596 cpm is at tp = By o= 1.45 ,

2.75 min. The slope of the line is -0.51
1.0,

gpr t_ = a =
and A

here found to be 0.185 cpm.

is the value of f - £  when t - to =

Infiltration Model Parameters

Infiltratisn Reference in Computer Definition Units limiting values,
Parametar, rexc, Program if any
{Chapcer 3} Chagter ] aymbol
a Zg.(3-33) AL exponent parasecer for decay™ none Oea<l
curve
Ep Eg. (3-60) BF ponding cioe parameter dimensionless Cime C‘EF
Cl Eg. (3-64) [ inf{leration scaling paramecer time, (min)¥* o<C
SJ. £q.(3=64) 51 intrial wolumestic relacive - 0<5, <<5
water content 1 "
s, £5.{3-64) SHAX maximum volumetrie water cencent - .58 <1.0
uader imbibition v
v Eq.(3-85) ROC volumetric relarive rock content - 0<ROC<<1.0

*minutes ara uséd ln subreoutime omly.

Input option NTINE will gevern data unics used.

0.01 cpm.

3



Table A-3 Example Infiltrometer Data
i = 0.1596 cm. per min.

Time Infiltration Rate
(minutes) (em/min)
b} 15964
1 .1596
2 .1596
3 .150
4 106
5 .099
7 076
9 .073
12 .068
15 062
20 .053
30 047
50 .034
100 .028

|‘0 L] T ¥ TrTrTrTT i T i
infiltrometer Experiment
Soil: Nickel Silt Loam
Initial Saturation=0.2
Max Saturation =09 .
Rock Content =025 -
Application Rate =0.1536 cm/min

T TTT

@ = Slope of Best Fit Line=(-)0.51
B A = Intercept {at t-14=1.0)=0.185cm/min -
= 2.75min

uxﬁ::rh? e

#0005

\Jo=13 8 ﬂ%;o-lé
{0.015 2 o7 0010
. BT
tp-1to = L.45min m]

| i-fp=01496cpm b\g\g\ . ]
\ﬁ3~\\

f- foo c/min
[=}
=

Ll 1 1)

o1 .

-t min

Fig. A-5 Graphical Fitting of Infiltrometer Data to
Determine Infiltration Parameters o , A
to » and f_

Now Eq. (3-55) is used to determine TO

0.185 1/.51

o T(1-0.51)(.01) = 1236 min.

(which must be
and S
max

To is used in Eq. (3-65) with v,
measured) and the measured variables Si

from the infiltrometer experiment data to obtain C1 :

2
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(@]
"

T,/ (S,-5;)/(1-v )

1236/ (.9-.2)/(1-0.2)

= 2207 min.
Bp is obtained by solying Eq. (3-60). Fp* is first
obtained as
P _i p_ .1596 2.75 _ —
pr T Mpr TE T T TooT 1236 -
Then from Eq. (3-60),
o eaagls  ow
Bp = I;higfﬁg_'- .549
14.96

This completes the determination of necessary infil-
tration parameters. The data Card 10, for plane 3
will look thus:

(‘.als,Ll I .

i
'b }s THIRD J = 3, AL = D.51, B = 0.55, € = 2207.,
1=0.6, SMAX = 0.9, RAC = 0.2 §

Note that FMIN on Card 9 is the IPH equilalent to
0.01 cpm of this example, and SI for the simulation
problem is quite independent of the soil saturation
SI from the infiltrometer experiment.

The remaining cards are prepared as described in
the previous example.

Card 11.

Cols. |1| 2.

bl § FIRST J = 4, NU = 7, NPRINT = 1 §

Card 12.

Cols. 1| 2. . . . . . . . ..

b| $ SECOND J = 4, XL = 200., W= 100, S = 0.06,
Rl = 0.05, R2 = 2000., FMIN = .2362 §
Card 13.
Cols. 1‘ i
b| $§ THIRD J = 4, AL = 0.51, B = 0.55, C = 2207.,
SI = 0.6, SMAX = 0.9, R@C = 0.2 §
Card 14.

Cols<! 2.

]h‘ FIRST J = 5, NU = 0, NR = &4, NL = 3, NCL = O,
NC2 = 0, NCASE = 1, NPRINT=1$




Card 15.
Cols.il 2.
I
‘b $ SECOND J = 5, XL = 100., W= 0., 5§ = 0.04, ZL = 2.,
IR = 2., A= 0.5, RL = 0,020, TMIN = 0. §

Note that we have specified a channel with 1:2 side
slopes and 0.5-ft. bottom width.

The last element is to be a round con-

Card 16.
The caxrd

duit receiving input from channels 2 and 5.
reads as follows:

Colsi 1 iz.

§ FIRST J = 6, MU =0, NR =0, NL = 0, NCl = 2,
MC2 = 5, NCASE = 2, NFRINT = 2 5

b

Card 17. We will use a 2.0 foot diameter conduit

150 feet long.

Cols. M 2.

b| $ SECOND J = 6, XL = 150., W
DI 2.0, Rl = 0.012, FMIN

0., S =0.02,
AM = 0

- 8

Cards 18, 19. Plane no. 7 might conceptually be
a parking lot contributing to a swale composed of
planes 3 and 4 and channel 5. It is used here to
illustrate both cascading of planes with disparate
widths, and the flow from an impervious to a pervious
plane, which the infiltration subroutine is designed
to treat explicitly (statements 127 to 133). The
plane will be assumed as follows:

Cols| 1 |2.

b | FIRST J = 7, NU = O, NFRINT = 1 $

§ SECOND J = 7, XL = 100, W = 200, S = 0.01, Rl = .012,
R2 = 100., FMIN = 0. §

Card 20. We have finished describing the water-
shed and this card will contain rainfall data. We
will use the same rainfall as in the previous example,
but the time TI(ND) must again extend beyond TFIN.

As specified by NUNITS, our dimensions are in inches

per hour.

wl;ll]L

b |$ RALN QI(1) = 0.5, 1.0, 0.5, 0.0, 0.0, TI(1} = 0.0,

5.0, 10.0, 20.0, 95.0, ¥p =5 §
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PROGRAM QUTPUT

A portion of the computer output for the first
example is shown in Fig. A-3. The identifying infor-
mation and the rainfall data are shown first. HTRANS
and QTRANS are the depth and discharge, respectively,
at which the laminar flow equation and the Manning
equation intersect. The next line shows MBT and NB.
MBT is the index number in the temporary time-discharge
storage vectors, QS(I), TS(I) where the hydrograph
from the next element to be computed will be stored.
NB(I) is the index number of the storage vector where
the output from the element being computed is tempor-
arily stored. This location information is only re-
quired for debugging if program changes are made. The
message ''plane No. 1 processes'' means that all compu-
tations have been completed for this element. Any
unprogrammed stop would then be caused by problems
associated with the next element. The printout of the
geometric parameters allows one to check the accuracy
of input data.

The next several lines of output are optional and
were printed by setting NPRINT = 2 in Card 6. A2(K),
K = 1, NK is the cross-sectional area in square feet
at each node point of channel 2 at the time (T(I)(in
seconds)). QL(I) is the lateral inflow rate in cubic
feet per second/ft. If this print-out is requested
for a plane, the depth in feet is given for each node
point. This information is normally not required but
may be useful in special cases or if problems develop.

The final hydrograph, the volume of rainfall in-
put and the volume of runoff are all printed auto-
matically.

PROGRAM LISTING

A complete listing of KINGEN 75 follows. A card
deck of this program in 026 code can be obtained before
December 31, 1978 for the cost of cards, duplication,
and postage by writing to:

Secretary, CSU Hydrology Papers
Engineering Research Center

Colorado State University Foothills Campus
Fort Collins, Colorado 80523

REFERENCE

Lane, Leonard J., D. A. Woolhiser, and V. M. Yevjevich.
Influence of Simplifications in Watershed Geometry
in Simulation of Surface Runoff. CSU Hydrology
Paper No. 81, December 1975, 50 pp.
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APPENDIX B

PROGRAM LISTING — KINGEN 75

PROGHAM MAIN (INPUT.OUTBUT . TAPESE INPUT TAPELe0UTPUT ,DERUSEOUTPLT)
COMMCM /107 IWEADsIwHITE
COMMOM FCKTHLS NRESsMOMToNT[HE sNUNTTSaMELE «CLENSDELT +NLOG L0
COMWON /GEUM/ XL IZTham (201 o2020) vl (200 vRET20) aFMINLZUI 4NL (200 A NRYE
120V INLI20NaNCT 1200 oNC2120) o NCASE (200 o 2L (20D oM 120T s AL201 +DIAM2T) »
2KP 200
COMMON FEVENT/ TFINGNDWT(10014TI(100) 0081001+ TUB(100) sNOsSLNRCM
COMHOM /PLANELS HL{S01aHZ (500 9QL 1100} yALFHAISU) oPUNERISD) v T(100) 2
TO108) eUBCIUU 1 +DXoDT 2 INDER S imE TR ANUYGRAY oM 10} s Q51500 oLENTs LENG
2SeLENALIL «JL1 (58] LIS
COMMOM LIRS/ THLASNI 0 THZ (SUT»SINLID01 5 TNS 1500 +COS1 IS0 «COS2 (500 s
ISINEASSINIADCUSIA+COS2Ae THUR (100) aDF ACHLEACHD
COMMUM /CraN/ ALISDI+AZ(50) +QUSIICO) sALUBLIOD] vCOI+COZaBeNTINOOL
COMMON ZINFILY AL G wBT120FaC 20T oS (20) o SMAR 10 sROC (L0}
COMMON /LAWS/ ATURHPTUNE1ALA4PLAMIHTRANS s W THANS
DIMENSION 20:1035s QD2L1001s SDICE0UD
DATE RLowsSodl o d2aFMINGHL sNh s NUSKC Lo NCR2aNCASE 1 2L v SR e A DIAMA20%=] o0
1208c) 402 0¢Gareu®0.e20%0.420%04420%0020%0s20%0ecUmUs20%0220%0420%0,
2r20%04 02081, 42000,/
DATA AL+RIeCaSTeSMAZROCA1ZURD,
AREA=0,0 t
CALL REACER
DO 405 J=l+MELE
J=HLOGT)
AREASAREA+W(J) *XL(J)
IF (W(J).KELO) CALL PLANE ()
1F (W(J).EU.01 CALL CHANSL ()
CONTINUE
CALL GONVERT (2)
SUMRO=0,
D0 F1W L=1sNT
CDiLI=QILI*AREA/43200,
SUMRD=SUMKD+GD (L) *DELT
ODZiL)=0(LI*0,04233

110 QD3 TLY=COiL) *0.02B317
AREMSRREA®,092951
WRITE (IWRITEs135) AHEAsAHEM
GO YO (115s12usl25)s NTIME
115 WRITE (IWRITE#140) (TILJ+CDILI+QUL) +@QD2 LT vQO3 (L) sL=1sNID
60 TO 130
120 SRITE (IWAITEs145) (TILI+UDILY+@ UL +@D2HL) »QOI (L) sL=1eND)
60 YO0 130
125 WRITE (IWAITE#1S50) (TIL)»UDIL)+Q (LI +QD2ILY sQO3 (L) sL=lenND)
130 wRITE (IRKRITE«155)

135 FORWAT (20X+11HTOTAL AREA=+F20.5+12H5Q. FT.s

SUMINEH=SUMRACH/ 2.54
SHROIN=SUMRD/AHEA® 2.
SHROCR=SHROIN®Z.54

SMROM=SUMRO®, 028317

WRITE (IWRITE+160) SUMINCHSUMRCM &
WRITE (IWRITE»165) SHMAOINISMROCM s SUMROsSHROM '
SToe -

URsF20.5+11H 5Q. MET
1ERSK/)

140 FORMAT (35X+23H FINAL TOTAL HYDROGRAFH»/31XeL0H TIME(SEC)+20Xs6HQ(

1CFS51 s 6Xe6HO(1PH) o GR16HA(CPH) 46Xy THOIMIPS) o/ (31 XsF T 2v21X4FB.SeaX4F
28, 614K FB.6r4XsELDA))

145 FORMAT (354+23H FINAL TOTAL HYDHOGHAPH./31X+10H TIME(MINI +20X+6HAL

1CFST s XebHOLIFH) 26X o BHG(CPMI s O Xy THOIMIPS) 0/ (3L X4F 12021 XFBLS 08 KsF
2B.ErANIFALBIAZIELDLAD)

150 FORMAT (35Ks23H FINAL TOTAL HMYDROGRAPH»/31XeL0H TIME(HRS) r2UXs6HO(

1CF5) 98X 6HQUTFH]) 06X 6HO(CHM) 26X e THO (MIPS ) o/ (JLAFT 2921 KoFH.SrakaF
2B.61AK FB. brdReEIDL4))

155 FORMAT (1H +//74BXs3IAEVENT TOTALS = INPUT AND OUTPUT)

160 FORMAT (1H o/9Xs 1THHAINFALL DEPTH = +FT.3s12H INCHESs OR +F7,.3s4H
1CM usd)

165 FORMAF (1H +2BXe6HINCHES 5K JHCM, 85K ISHCULFT, CUMas /RRs1EHTOT

- -

JAL RUNUFFoaXoF 10.b sl RoF et LXoFB,2v2R4FB,3)

END

SUBROWTINE READER

COMmMOM 710/ IREADsIWRITE

COMPOM FCHTRLS HHESsNCPToNTIME+NUNTTSoNELE+CLENSDELT+NLOG (20D
COMMOM FEVENT/ TFIMsNOUT (100} TITIV0) 4QOB (1001 4 TORLI00) sNO» SUMREH
COMMOM /PLANEL/ HL(SD)aHZ (501 +QL(20U) s ALPHA(SUD sPUNER (501 4 TE100) 40

1E0108) sHUB(100) +ORsDT o INDER s IHETA» KNUsGRAV e NH (200 + Q5 (S0U01 s LENG+LENG
2S+LENMI Lo OLY (S0 s UL 2150}

DIMENSION KARD(B)

NAMELIST  /BEGIN/ NELEsMRESsCLENSTFINMDELToTHETASTEMP

NAMELIST /OPTIONS ROPTonWTIME«NUNITS

NAMELIST /UKDER/ NLOG

NAMEL IST  /FIAST/ JeNUsNRoNLoNCIoNCE+NCASE «HPRINT

NAMELIST /SECONDY JeALeweSelReZLaheDIAMARLRZECFMIN

WARELIST  /THIHD/ JedLedaCaSToSMARROC

NAMEL IST  /RAINS QL+TIsND

NAMELIST /OURSEWMYS QUE+TOBWNO

DATA TREAD+IWATITE/ St/

DATA kELE-NHES-CLENa:F[N|DELT’TEIP-THETIIQUD(O.th|0..0.0U-TI

DATA MLOG/20=0/

DATA MOPTaNTIME +KUNTTS/040407

DATA NUSNRoNL s NCTeNCZaNCASE«NPRINT/0+040+04040417

DATA XL oWaSsZRsZLvAsOLAMsRLIvRZWFMIN/ =] so=1an0asO0uv0as=Luss0un0ae0as
10./

DaTa
DATA

AL+B+CoST+SMAX+ROC/E%0./
GI+TI+Q08sTOBNDINO/100%0.+100%0,100%0,0100%0.+0.0/

READ IN DATA = DATA DECK SHOULD BE COMPOSED AS FOLLOWS
READ IN IDENTIFYING INFORMATION 80 COLUMNS OF ALPHANUMERIC INFO

READ (IREADs185) (KARD(I)+I®1s8)
IF 1EOF (TREADI} 105+110+105

105 STOP
110 WRITE (IWRITEs190) (KARDII)»I=1s+8)

CARD] = CONTAINS VARITBLES LISTED FOR NAMELIST/BEGIN

CARDZ - CONTAINS VARIBLES LISTED FOR NAMELIST/OPTION

CARD3 = CONTAINS VARIBLES LISTED FOR NAMELIST/ORDER

CARD4 = 15T CARD OF INFO FOR ELEMENT J= CONMTAINS INFO FOR OTHE
CONTRIB ELEMENTS AND CHAMNEL TYPE= SEE NAMELIST/FIRST
2ND CARD OF INFO FOR ELEMENT J = CONTAINS ELEMENT
GEOMETRY AND ROUGHNESS COEF = SEE NAMELIST/SECONDG

CARDS =~
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CARDG = OPTIONAL IRU CAHD OF INFO CONTAINING INFILTRATICN
CHARACTERISTICS OF PLANES - SHOULD NOT BE IwmPUT IF

FHINiJI=0, :

CARDS T=819=10... (N=3)=1N=2)
ELEMENTS = SEE CARDS & A%D &
CARD(N=1) CONTAINS RAINFALL DATA OF STORM = SEE NAMEL IST/AAIN
CARDIN) = COKTAINS OUBSERVED HUNOFF FOR OPTIMIZATION [F DCSIRED

CARD IS5 OPTIONAL = SEE MAMELIST/OBSERV
THE FOLLOWING EXAMPLE CARDS ILLUSTRATE INPUT FOR CARDS 3+5+AND N-1

PAIRS OF CAHDS FOR OTHER

SOPTION NLOGIL)=142464B412413,154 3
SSECOND JEl XL =200, WTa0. 157005401 RI6. oR22100,4 §
SRATN GIili=1ues2es0as00sTI(1120,035.4200,4400.4ND=4 §

Ih REGARDS TO OATA CAHDS
1 = COLUMN 1 MUST BE ELANK FOR ALL DATA CARDS.

@ - EACH RECORDUEACH READ STATEWEMT) MUST HEGIN WITH § IN
COLUMN & AND END #I[Tr S AFTEH ALL DATA W2 BEEN COOED,
EACH SECCPO MUST of IDENTIFIED wWITH & WAMELIST GROUP NAME
IMMEDIATELY FOLLOWING THE FI#ST Sa
A MEX, OF 150 CHe~ACTErS ARE ALLOWED FOR E&CH RECOHD = THE
EXTR& CARDy IF MEEEDEDs STARTS IN COL.2 INGTHING IN COL.1D
MO SUHSCOTFIS ON vARIAGLES CaN SE USED OM NAMELIST/FjW&T
ANG HAMELIST/SECOND 0ATA £2wDS (EVEN THOUGH THEY ARE SuB=
SCHIPTED LATER IN TME PROGeAM)

THE SURSCAIPT (1} [% RESUISED FOR THPUT OF  ARRATS WLOGs
CIsTIsUOMeRND TUR (3EE E/a4eLE DATa CAWDS FOR OWDER A40
RATN MNAMELIST GHOUF DATA INPUT CLAWIFICATION)
ALL ASSIGNMENTS MUST BE FOLLUWED BY A CUMMAy
LAST OKE,

VAHTAELES MAY AE LTSTED IN ANY ORJER OR WAY BE OMITTED [F
NOT MEEODED FUM THE SITaT{ON = UMITTel YAWTARLES wiLL HE
SET TO ZEWD = EMwis MESSASES wiLL HE ISSURD HY PROUGRAM IF
ZOHG 15 HOT ALLGWED Fus & F25TICULAN VaRTARLE.

CAPD PEIVS SOk EATH ELFRENT CAN HE ALwANGLD [N ANY OBGER -
PROCESSING WILL STILL OCCUR AS SHECIFIED wY NLOG = IOKEVER
FIRST MUST PWECEED SECGKD FOR EACH J ELEMENT,

3 -
4 -

L
[

EXCERT THE

L4
1

18- A YALUE FOR J mUST SE SPECIFIED ON BOTH FLIRST AND SECOND
Th= A MAX OF 20 ELEMENTS MAY RE INFUT,.
12 = DO WOT INPUT NAMELIST GHEUP THIRD IF FMLN{JI=0 [N SECOMD.

INPUT VARIAGLES
WELE= WUMHER OF ELFMENTSe NQESSRESISTENCE LAwW COODE (SEE COMMENTS
IH PLANE) s CLEN-CHARACTERISTIC LENGTHWTFIN=TIME TO END PHOCESSs
DELT=TIME INCHEMENT FOR QUIFPUT«TEMP-oATER TEMP.iIN DEGHEES F-
CEFAULT 15 o5F )+ THETA-WEIGHTING FACTOR IN IWPLICIT SOLUTION
FORMULAS (DEFauLT vaLugE 1S5 1.0
NOPT=-OPTIMIZATION CODE(SEE COMMENTS IN OATIM)} NTIUE=TIME UNITS
CODE WHICH APPLIES TO INPUTI T FOW RAIN HATTERNs DELTs ANOD
INFILTRATION PARAMETH Cle AND PUTPUT TIMES. COUE 1 = SEC.s 23
MIN.s AND 3= HH.  NUNITS ~ENGLISH OR METHIC UNITS CODE 11 =
ENBLISH =IPHs FT, 2 = METHIC =C¥Me “ETEAS
KLOG(20)=EACKH ELEMENT OF aRRAY CUNTAINS A J - WATEHSHED
ELEMENTS ZRE PROCESSED IN ORDER OF NLCG{IVsl=lsNFLE.
J=RATERSHED ELEMENT IDENTIFIER+NU(J]=J VALUE OF PLANE CONTRIB,
AT UPPER BOUND OF ELEMENT JehR{JI=J VALUE OF PLANE CONTHIH. TO
RISHT SIDE OF CHANMEL JeNLIJ)-%aME EACEPT TO LEFT SIDEsNCLIJ)=J
YALUE OF CHAN. CGNTRIB TO UFPER BOUND UF CHAN JeWC2(J)=SAME AS
NCl (SECOND CONTRIS CHANI »NCASE(J)-CHANNEL TYRE COOE FOR CHAN J
TSEE COMMENTS IN CHANNL) sNPRINT=-PRINT CODE = 1 IF NO PRINTOUT
DESIREDs = 2 IF PAINTOUT DESIRED FOH THIS ELEMENT.
ELU{JI=LENGTH OF ELEMENT Jaw(J)=wIDTH OF ELEMENT J(FOR CHANMELSe
WiJI=0.)eSIJV=5L0FE OF ZLEMENT J+ZRUJ)=3LCPE OF RIGHT SIDE OF
TRAPEZOIDAL CHANNEL Jell (J}=SAME AS IR EXCEPT LEFT SIDEs+A(J)}=
METGHT OF EXCLUDED TRIANGLE FOR THAPEZOID CHANMEL Je+DIAMIJI=
BIAMETER OF CIRCULAK CraNNEL JeR1(JI-TUSBULENT LAw ROUGHNESS
FACTOR{MANNING N OR CHEZY C) FOR ELEMENT JUREQUIRED)sRZ(J)~-
LAMINAR ROUGHNESS FACTOR(REYNOLD=-S K) FOR ELEMENT J (OPTIONAL!+e
FMIN(J)=MINIMUM INFILTRATION RATE FOR PLANE J.
ALGJY«BLJI#C LI = INFILTRATION PARAMETEARS DETERMINED BY SOIL
CHARACTERISTICS. SEE R.E. SMITH=5 PAFER IN JOUAN.HYDROL.+V¥.l7s
No1/2419724%  SIMJ) = INITIAL SOIL MOISTURE CONTENT OF PLANE Jv
SHMAX (J) = MAXIMUN MOISTURE STORAGE CAPAC. OF PLANE Js ROC(J) =
PERCENT RQCK CONTENT OF SOIL IN PLANE J
QI(100)~ARRAY CONTAINING HAINFALL RATE (IN/HH OR CM/HRI
TI(I00)=TIMES CORRESPONGING TO QI ELEMENTS+MO=WUMAER OF RAIN=
FALL DATA PAIRS+GOB(100)-0BSERVED RUNOFF HYOROGRAPH FOR OPTIM=
TZATION (IN/WR QR CM/HRI+TOBI190)-TIMES CORRESFONSING TO QOB
ELEMENTS+NO~NUMBER OF OBSERYED RUNOFF DATA PAJHS.

+e+REMEMBER = DO NOT FUT SUBSCRIPTS ON DATA GROUPS FIRST AND
SECOND , HOWEYERe THE SUBSCRIPT (1) IS FEQUIREQ FOR ANY ARRAYS
IN PATA GROUPS ORDERs+RAINs OR OBSERY..

sEsssssssnanesns

THE FOLLOWING ARE AHRAY DIMENSIONS USED AS CHMECKS WITHMIN THE PROGR

LENGS =~ SIZE OF Q5
LENe =~ SIIE OF @
LENW] = SIZE OF Hi
LENGS=500

LENE=100

LENK1=SD

GRAV=32,17
1SUBR=6HREADER

READ (IREAD'BEGIN}

SURROUTINE INSPEC CHECKS [NPUT DATA FOR ANY OBVIOUS ERRORS OR
OMISSIONS. SUBROUTIME RESET PLACES VALUES READ FHOM FIRSTsSECOND
+THIAG [NTO THEIR AFPHOPRIATE ARRAY LOCATIONS IN COMMON/GEUM/INFIL

INSPEC (l1040)
(IREADYOPTION)
INSPEC (2+040)
READ (IPEAD+ORDER)
CALL INSPEC (340,0}
JLST=NLOG INELE}

CALL
READ
CaLe



[alalel

non

non

1s

120

125

130
135

140

145

150
155

160

165
170
175

18

185
150
195

150 THAT TI1(mDel1)

1203 oNUT20) oNCL 20D aNCELE0T

D0 115 I=1.NELE
READ (IREAQWFIRST)
JJ=J
READ (IREAD»SECOND)
IF (JuNELJJY CALL ERROR (1S5UBRaSeJJed)
IF (FHIN.GT.0.00011 HREAD (IREADsTHIHD)
CALL RESET (XL smeSsR Lo HZsFHINsNL s KRy NUSNC I eNC2oNCASE+vZR e ZL vAy
BIAMs AL ReCoSTaSMARcHOCANPHINT)
CALL INSPEC (4sJeJLSTH
CALL INSFEC (6eJe0)

CONTINUE

READ LIREADsRAINY

IF ITIIKD)-TFIN} 12041254125

NOENDe L

TIINDI=TFIN

QltkD)=0.0

WRITE (IWRITES195)

IF (NOPT.GT.0) KEAD (IREAD+OBSERV)

CALL INSPEC (510400

IF INRES.NE.2.AND.NRES.ME.3) GO TG 130

COMPUTE XINEMATIC VISCOSITY IN 5G4 FT./SEC.

IF {TEWP.EQ.0.) TEMP=&5.

TEMP=(5,/9, ) #(TEMP=32.1
INUIt.00000]T?Sb/(l.00-03368'TEHFI0.OGOEZI'TEHPIIEHPl]
ANUSENU/ (0.0254%0,0254% 148,10

no 335 I=1sNELE
NELI) =0
WARITE (IWRITEs200)
GG TO (140414541501 NTIME
WRITE (IWRITE«Z05)
FC=R.016666686T
60 T0 155
WAITE (IWRITE«210}
FC=1.0
G0 TO
wWRITE
FC=60.
SUMBCH=O,
DO B0 T=14ND
80 TO (160+165)s NUNITS
QIE=QI(I}
QIC=QIE*,.0%2333
60 TO 170
QIE=QI(11/,042333
QIC=0I(I}
WAITE (IWRITE#220) TICI)+GIEWQIC

18%
(IMRITE+215])

IF (ND-1) 1B0s+1B0+175

L ) )

SUNRCHMzSUMRCH=FC* (TI(IPI=TI{I})*QIC
CONTINUE

——

CONVERT TIME INTO SECONDS AND DISCHARGE INTO CU.FT. PER 5EC.

CALL CONVERT (1)

RETURN

FORMAT (BaLO)

FORMAT (1H1+BALO)

FORMAT (78H A PGINT Gl(NDe1)+TI(ND+1]} HAS BEEN ADDED TO RAIN DAT

= TFINI L
(21K THPUT VALUES= TIME»¥9X s BHRAINFALL
(ISXaSHISECT s 12XvSHITPHI s TR BHICM/MING )
(1SRaSH{MINI s 12X SH{IPHI o TR BH(CHAMIND B
L1SKeSHIHKS) ¢ 12X SHEIPH] s TRaBHICHAMIND )
CIINAFLI0.2e5KsF 1030 2ReFL0.S)

FORMAT
FOHMAT
FORMAT
FokmaT
FORMAT

END
SUBROUTINE INSPEC (NREADWJ+JLST)

COMMON SGEOMS lLl?nl-I(ZDlvthulcRi{ZOI-ﬁ!l!ﬂlvF'lNlZBlaNLI?O\|NFI
ANCASE(20) o ZL1ZU) 9 ZHIZ0) oATZ01 +DIANIZ0} S

2NPLZOD

105

110

115
120

125

130
135
140

145
150

COMMON FCNTRLS NHESyNOPT o NTIHE sNUNTTSaNELE v CLENSCELTSNLOG (20D
COMRON FINFILY ALIZ200 4B 1201 oCtED1aST (200 43MARLOIWROC 2T
COMNON JEVENTZ IF1N1N0|HIilﬁﬂlnilllUDIQﬂOHIiOQItfoaliaol0N9-5UNRCN

TH1S SUBROUTINE INSPECTS THE IKPUT DATA FUR ANY ORYIOUS ERRORS

15UBR=6HIRSPEC

GO TO (105s130+115+1204150,1700+ NREAD

IF INELE,EG.O! CALL EWHOR (ISUEZ+1e4HNELELD)

IF [CLEM.EG.D.) CALL EFHCH (15UHAelsanCLENSO)

1F TTFIN.EQ.0.) CALL ERRUR (I5UBH&LraHTF INO)

IF (NHES.EQ.D)] CALL ESROK (ISUER+ZsannRES0)

IF tDELT.EQ.0.] CALL ERROR [(15UBRaleanDELTO)

IF INRES.GT.4) CALL ERHUR (ISLZRe3v4HNRESINAES]

IF TNELE.GT.2U) CALL ERROR (1503Re3s4HNELE+NELE]

RETURAN

INTIME,EG.01 CALL ERROR {15UBRe1sSHNTIMESC
tNUNITS,EQ,0) CALL EHMKOR (ISUBH»1+6HNUNITSD)
INBPT,.6T.1) CALL ERAOR (ISUBR ¢ 40 4HNOPT s NOPT)
(NTIMELGT.3) CALL ERROR (ISULH=3+SHNTIME sATIME)

IF TNUNITS,.GT.2] CALL ERROR IISUBH+3+6HNUNI TS NUNLTS)
RETURN

If (NLOGINELE).EQ.0) CALL ERROR (1SUBR+#+NLOGINELE) +NELE)
RETURN

1F (XL(J).LT.0.) CALL ERROR (ISUBRs2s2HELYJ)

IM(J).LT,0.) CALL ERROR (1SUBRa2wlHWsJ)

1S(J).EQ.0.) CALL ERROR [1SUBR2s1H5sJ)

TRL(J)LEUL0,) CALL EKROA (ISUBR+2s2HR1+J)

TWiJI NE.0.) GO TO 140

1AL (] oEQ s 04 o AND 4 JANELULST) CALL ERROR [ISUBR+6sJs0)
[NCASE(J} .£Q.D) CALL EWROR 1ISURH#21SHNCASEWJ)
INCASE(J).GT.3) CALL ERROR (ISUBR»3I+SHNCASEsJ)

TO (125013041351 NCASE(S)

{ZLIJ) EQ. 04} CALL EWROR (ISUBRsZw2ZHILsJ)
[ZR{J}.EQ.0.) CALL ERAGH (ISUSReZe2HIRwJ]

IF TALJI.LT.0.) CALL ERROK (ISUBR+ZslHAsJ)

G0 TO 145

1F TDIAMIJILEG.04) CALL ERROR (ISUBRs2+4HDIAM+JI

GO TO 145 :

sToR 3333

1F (AL (J1.EQ,0.) CALL ERROR LISUBR+3e2ZHEL»J)

IF tNRES.EQ.2+ANDWRZ(J? 2EU, 0.} CALL ERHOR (ISUBR+212HRZWJ)
IF INFES.EQ.3.AND.RZ(J).EG.0.F CALL ERKCR (ISUBRYZs2HRZ )
RETURN

IF tND.EQ.0) CALL ERROR
KK=0

-
-

IF
1F
IF
1F
1F
IF
60
IF
IF

[ISUBHRsL+2HND+0)

45

annaonon

o0

155

160

165
170

1715

DO 159 I=1+ND
IF (GI111.NELO.) KE=1
IF (TIHI).EQ.0..AND.I.NE21) CALL ERROR (ISUBRBsZHTII)
CONTINUE
IF tKE.EQ.0) CALL ERROR (ISUBR.7+2HAI+4HRAIN)
IF (NOPT,.EQ,0) GO TO 165
KE=0
IF INB,EQ.0) CALL ERROR (ISUBR»1+2HNO»0)
DO 6% I=1+HD
IF [(GOBII).NE.O.) RE=]
IF (TOBIT).EQ.0. AND.I.NE.1) CALL ERROR (ISUBR+Bs3IHTOB. 1}
CONTINUE
IF tKf.E@.0) CALL ERROR (15UBR47:3HOC0B6HOBSERY)
HETURN
IFMINGJY LLE.0,0001) GO TO 175
[ALIJ)LED,0.) CALL EHFOR (1SUBRe222HALYJ)
THLJ) LEN.D.] CALL EHHOR (ISUBRaZs1HAsJ])
{C1J) JEGLD.) CALL ERFOR [ISUBRe2elhCed)
[SMAX(J) LEW.0.) CALL EHAUR ([SUBHs2e4nSMAXYJ)
RETURN

END

SUBROUTINE RESET l]-xLT.u1.57ualT.RquFnjnf.NLToNHT‘HuT-N:lTancaT-
INCASETsZRToZLToAT+GIAMT eALT BT 4 CToSIToSHARTHOCTINPT)

COMMUM AINFILZ ALGZUY +BI2012CE20) w51 1201 15MARI2004ROCI20)

COMMON FGEUMS AL (700w (200 +51200 sRLIZ0) K2 I20]FMINIZ) oL 201 o HR(
1200 sNUL20) o NCL (201 sNC2 1200 oNCASE (2009 ZL L2011 £R 1200 eATZO)2DIAMILTN Y

ZNFLEn]

105
110

115

120
12%

13

135

14

145
150
155

NU (1} mNUT

NUT30
WROTI=NPT
NRT=0

NL (T)=NLT
NLT=0
NCITIVENCIT
KC1T=4
NC2111=NC2T
NC2T=0
NCASE (11 =NCASET
HCASET=0
KL{TTRLT
XLT==1a
wWilr=uT
wlasl.
S(11=5T
5T=0.
IRL1Y2IRT
ZAT=0.
ZLUIVRILY
ILT=0.
A(II=aT
AT==1.
DIAM{EI=DIAMT
OIAMT=0.
R1(}1=R1T
R1T=04
RZ(I)1=R2T
R2T=0.
FHINCI)=FMINT
FHMINT=0,
ALIT)=ALT
ALT=0.
B(1)=BT
BT=0.
CiIr=CT
CT=0.
SI(E)=SIT
SIT=0.
SMAK (11 =5MAXT
SHAXT=D.
ROC11)=ROCT
ROCT=0.

NP (11=NPT
NPT=1
RETURN

SUBROUTINE CONVERT (KEY)

COMMON FCNTRLY NRES'NGP'|HYIME-NURITS-NELE;CLENQDELT;NLOSlEN
COMMON /GEOM/ lLtanlastanl.:nzar-nl:201oﬁZlaur‘!nlutzﬂl-uLiznl-Nat
lZH]oNUtéGI-NCI:20!rNCElZﬂIkahSEIED)oZLIZOIoZR(ZOIaaizﬂlnnllnlzuln
2NP(20)

COMMON FEVENT/ TFINsND+Q@1(100)2T11100)+GOB(100)+TOB(100] 4NO+SUKRCH
COMMON FPLANELS nllSﬂl.dzlﬁUI-OL(!no:.aLPHL(sol.ﬂouEPtsn).fllunlnd
1(100:.nuelluui-DlnoluINuelvIHEYl.‘Nu.GR;i-N312n:.cs:&nu:.LENG‘LENQ
2SsLENHLsLsOL1 1500 s GL2ZE50)

COMMON JCHANS AL(S0) wAZ(S0) s QUBILIRE)

COMMOM A INFILS AL(20)sB1(201+C({201251(200+SMARIZD)
GO TO (10Ss1800s KEY

¢AUB (1001 +COL+COZvBaNT#NOOL
sROC (20}

KEYsle..CONVERT INPUT UNITS TO THOSE OPERATED ON BY PROGRAM

THIS PORTION CONVERTS ALL TIMES TO SECONDSMETEWS TO FEET+AND
CH/MIN OR IN/HR TO CULFT./5ECscaainnass

60 TO (110+115¢1200 4 NTIKE

G0 10 125
FAC23600,
TF IN=TFINSFAC
DELT=DELT*FAC

DO 130 I=1.20

ClI1=ClIV*FAC/b0.

DO }35 I=1+ND
QIL11=01011 /43200,

TIeE)=T1el) *FAC

IF INCPTLEQ.01 GO TO 15

DC 140 T=1.+N0
QOMITII=QORIT) /43200,

TORTII=TOB(L)*FAC

METRIC CONVERSION

GO TO (17541500 NUNITS
DO 155 I=leND
WIth)=GIIY*23.622

1IF {NCPT,.EG.O0) GO 10 165



noonn

-

aoon

non

AaoOnN oon Ao NON

ann

160
165

170
175

la0
185

1s0

155
200

20

n

210
21s

220

22

w

105

1

115

12

-

0O 150 I=1s80

GOBTII=QOR (1! *23,622

CLEN=CLEN®3.281

DO IT¢ [=1.20
RLil1=xL(Tie3,28])
Will=wil1®3,28]
Allr=a(])*3.241
ODIEM{11=01AMIT)*3,2581
FMIN(II=FRINIII®23.622

CONTINUE

RETURN

KEY=2.. CONVERT UNITS BACK FOR CONVENIENT QUTRUT
CONYERT ALL CU.FT./SEC TO IN/HR,SECOMDS TO DESIRED LELT ) P

GO TO (185.1904195) s NTIME
o0Iv=1.
&0 0 200
DIv=60,
60 To 200
Dilv=3&p0,
DO 205 I=l.ND
TItLI=TI¢1)/DIV
CGICE)=QI(T1%43200,
IF tNOPT.EQ.0) GO TO 215
CO 219 I=l.NO
TOR(I)=TOR(T}/DIV
QOBTII=COB(I)*&3200.
AREA=D, .
D0 220 I=1+NELE
SJENLOGIL)
AREA=RREAs (AL (J) "W IJT)
00 225 1=14NI
Tl =T¢1)1 700V
Qi11=0(1)1%43200./AREA
RETUAN

END

SUBROUTINE PLANE ([J)

COMMON /107 TREAD+IWRITE

COMMON /CNTRL/ MRESyNOPTSNTIMEyNUNTTSANELE »CLENSDELT o NLOG (20}
COMMON /GEOMS XL I20) am (201 a5{20) 4RLI201oM2 1201 oFMINIZO} aNL (20) o8N8 (
120) sWUIZ0DNCL 1200 aNCE1e0) sNCASE (200 o ZL (200 o ZHI20) s AiP00 sOLAMIZ00 s
ENP(20)

COMMON FEVENT/ TFINsHNUSGT(LO0) 2T {1001 +GOB{ L0010 fTURTIDD) sNOsSUMHCH
COMMON FPLANEL/ MIISU)gHZ (501 sGL 11001 +ALPRAISG) sPORER(S0) v TL100] @
](]BI)-HUEIIUO!|GI-DIQINDF&|IhETl|lNU!GHIY;NnI(UI-QSISQGI-LENQoLLNH
ZSeLENHLL 9 UL] 15010002 (503

COMMON /CHANZ ALISH) 4821501 s TUBIIV0) s AUB LU +COLCOZvByNT s NOGL
COMMON FINFILS ALIZ0) oBI12000Ci2D) oSTIP0] s SMAK(E0) 4HOC{Z0)

COMMON /LANSY ATURB P I UMH 1 ALAK. Bl AMyHTHANS s GTHANS

DIKENSION XINISO)s WE{100)a QIMMES0). AVGINF(S0)

DATA BLANKALM #

CALCULATE NUMBER OF DISTANCE INCHREMENTS
INCREMENT SIZE (DX).

(NK] AND THE DISTANCE

SUMzs=e,

SUM]l=SUNZ
NEEMARL{I15.%AL tJ) FCLENT 3,00
IF (NK.LE.LENRL) GO TO 10%
WPLTE (IWRITE+2H0)

$108

DX=XL A A (FLOAT (NKD =) o)

INITIALIZE

FHIMNCJI=FMIN{S) 760,

DO 118 K=laNk
aLliei=QIely
GL2ikI=QI(1)
WliK)=0,0

CONTINUE

KB=2

L=2

Tilr=e,0-

Qrlr=d,0

RF(1Yy=Q1 (1)

TiL)=T (1) +DELT

RFtLI=QI (1)

RESLA® CALCULATES VALUES T0 8E PLACED IN THE ARRAYS ALPHA(K)
POMER (K], HESLAW FETURNS wITn VALUES FOR ATURHPIURK s ALAMAND
PLAM WHICH ARE THE ALFHA AND POWER VALUES FOR A TURBULENT AND
THE LAM[NAR OVERLAND FLOw MODELS RESPECTIVELY.

KRES=1, . MANNING

NRES=2,., sMANNING=L AMINAR

NRES=3., ,CHEZY~LAMINAK

NRES=4,..CHEZY

AND

CHGLAW PLACES THE APPHOPRIATE VALES ALREADY CALCULATED IN HESLAW
INTO THE ARRAYS ALPHA(K] AND POMER(K) s K=1sNK DEPENDENT UPON
CHITERTA INVOLVING HTRANS AND GTRANS. IF IFLAG=0...ALPHA AND POWER
ARRAYS wILL BE BASSED ON A TUHBULENT FLOW MODEL. IF IFLAG =1 THESE
ARRAYS WILL BE BASED ON THE LAMINAK FLOW HODEL.

CALL RESLAW (NRES+J}
PRINT 285: HTRANSGTRANS

CHECK FOR OTHER PLANES CONTRIBUTING, NUIJIED - NO CONTRIBUTORS.

IF (NUEJI=0) 11541254115

OTHER PLANES ARE CONTHIBUTING == CHECK TOo SEE IF CORRECT LAW IS IN
EFFECT == CALCULATE UPPER BOUND DERPTHS (MUB) FOR ALL TIME INCREMNT

JU=NUTI)
MHENB {JJ) =1
IF (NB{JJ).EQ.0) CALL EHROR (SHPLANEs1SsJJe0)
DO 128 MWz].N]
IF (QS(MeMM) /W () .GT.QTRANS) IFLAG=0
IF (QS{MsMM) /wiJ) JLE.GTRANS) [FLAG=]
CALL CHGLAW (IFLAG+1sNRES)
HUB (M) = (05 (MeMM) ZALPHA LL) /W tJF)## (1. /PONEREL] )
HLE [MB ) =HUB (N] }
NHtyd) =0
60 7o 135

NO PLANES ARE CONTRIB, -= DEFINE NI (NO. OF TIME INCREMENTS)== SET
ALL UPPER BOUND DEPTHS (nUB) To ZERO,.

46

RalalaNals)

anon

125

130

13

w

1a

=

»
wn

Ano anAon

o0n

nOoon

el Ko Na N,

1s

158

leo
165

17

118

176

17T

180

las

190
1ss

200

205
elo

215

220

22

w

230

MESFFIX{TFIN/OELT) 2
Nl=Hp~-1
CALL CHGLAW
D0 130 M=].4@
MMl =g,
CONTIHUE

(0elaNRES]

CHECK TN SEE IF INTEWMAL TIME INCREMENT LOOP IS FIKISHED (LOGP §%
BETWEEN STMTS.500 AnD 11001 == ALLG MANE SUPE Wi ALWAYS HAVE
COMPATARLE INFUT AND INTERNAL TIME (TI AND T WERECTIVELY).

RF(L1®Q] tRA=])
REL=-li=RF (L)

LFLEG=D

IF ATOL)LLELTFIND GO TD 140

IF tTiL-1)1+.0001.uELTFINY GO TO 230
TiLr=TFIN

IF tTILYLLT.TI(KBI=,0001) GO TD 145
TiLt=T1(xd)

CALCULATE INITIAL AUVANCED TINE DEPTH (H2(1)) USING HUB AND R TI4E
IKTEHFOLATION.,

MTI=IFIXATEL) /DELT) ]
HZU) =hUB (HT )+ (HUB(HT # 1) ~HUB{MT) ) ® ((TIL) =~ (DELT*FLOAT (MT=1111/DELT)

IMPLCT RETURNS w1Th LOWER BOUND DEPTH (HZINK)} == CHECK TO MAKE
SURE COFBECT Law IS IN EFFECT == GALCULATE TOTAL DISCHARGE (CFS)
FROM PLAME J FOR TIME [NCREMENT L.

DT=T(L)=T(L=1}

TEST FOR IMPERVIOUS FLANE. FMIN{J) LE. 0.0001 - IMPERVIOUS PLANE
TF=T(L)
IF 1FMINGJ) 26T 0.0001) CALL XPLIMP (H1+OToT(L] oRF (L) s@LZ s TF oNK eHE (
T10eNToDELTwAL () 0BT )0 C i) 45T (U] e SHAX (I} s ROC L) wal)
IF twR(J) L EC,1) GO TQ 155
IF (FMIMIJILLT.0.0001) GO TO 155
PPT=QliKB~]1)*s3200,
WRITE [IWRITE+29G)
00 15¢ I=lenk
GIPMITI=aL2 (1) *43200,
CONTINUE
WHITE (IWRITES295) (QIPH{I)el=1aNK)
IF 1L.NE.2) GO TO las
00 189 K=]linx
IF (QL2(m).EG.0.) OLl(K}=0.

TiL)«PPT

CONTINUE
IF tH2(1).NE.O.) GO TO 18S
DO 170 K=1.MK
IF (QLZ(K)LEWO.saNDHIIR) JLE 8.} OLZIK) =0,
CONTINUE
DO 175 k=lenk
IF (OLLiK}.NELDL) GO TO 1BS
1F (QL2(K1.NELD.) GO TO lBS

IF (H1I{K}.KEaD.) GO TO 185
CONTINUE
DO B0 KeZ. NK
B0 TO (1TT+176+176:017T) NRES
POSER (K) =PLAM
ALPHAIK)=ALAM
60 Ta lsd
POMER (X} =PTURB
ALFHA(K)=ATURE
H2Z (KI=0,
IF 1THLILGE.TI(KHI-.0001) ¥B=K8+]
60 10 i95
IF TTHL).LT.TI(xA1I=,0001]
KB=KB4]
IF TFMINGJ) LT, 0000)) LFLAG=]
CALL IMELCT (ndedd
CONTINUE
UILP=ALPHA CHK) * (H2 (NE) S *PLRER (HK) ) * N 1)
IF TNU L) JNF L0 SUML=SUM)« (ALPHAL L) ®HZ (1) ®*PONEH (L} s ALPHATLI ®H1 (1}
IoPguER ] %, 260Tew I
SUML=LRF (LY ) SEL (U] *CToW 10) s SUK]
SUMZ=(OILY+QIL=1)%0T/2.+5UH2
00 200 m=1l4nK
RINTRISORF LY =1GLL(RI+OLZ IR )S2.0*DT
KINSS(XIN(L e RININKD D42,
STON®(HZ (1) sHE (MK /2,
HEMZ =K -2
IF INEMZ.LT.1} GO TO 210
DO 205 walaheKe
EINS=xTNS«XIN(K+])

GO To w0

STOR=STORsHS (Kel)
STOR=STuRenNKsw )
XINS=RImSepxewid)

SUMZESUMZe X [NS

IF INPLUI.FULL) GO T 215

WAITE (TWHITE#3000 (MZ(K)srE] Nk

CONTINULTY CHECK

ER={SUN1-SUMZ-STOR) /SUMl* 100,
WRITE (IWRITE 335} SUML s SUMZsSTORSER

INCREMENT L AND INTERNAL TIME == REDEFINE LATERAL INFLOW (GL) 4 AND
SET ADVANCE TIME DEPTHS (M2} EQUAL TD THE KNOWN DEPTHS tHI)

L=Ls]

IF tL.LE.LENOG) GO TO 220
WRITE (IWRITEs»210)

5Tar

TiLI=T(L=1)+DELT
DO 225 m=l.nx
LItk =QLZ ()
IF (LFLAG.LT.11 GO 10 22%
QL2 K)I=qT (nE=1)
QL1 (k) =0L2 (KD
HL (K] =H2 (K}
G0 TO 135
:ix!tziﬂlsﬁEn PROCESSING THE PLANE THROUGH TIME TFINs UNIF
ONV 5 @ OVER UNIFORM TIME INCR A 1
WYOROBRAPH IN 05 IME EMENTS AND SAVES THIS STANDARD

CONTINUE



AafAnOANNAO0

Ao on

nn

235
240

250
255
260
265
270

275

2RO

2RE
290

29% FORmaT

390

305 FCHmaAT

3in

315 FLwemaT

3z0

325 Foumal

3xo
a1s
J40
=R
aso

ELL]

110
11s

120
125
130

135
140

145
150

L=t=1
LASTKI=NALL)
IF (MELE.EC.1) GO TQ 249
D0 235 NE=Z MNELE

TF {NB(NE] oGTLLASTNE]
CONTINUE
MET=LASTRA+NT
IF TLASTNE,EG.0) MaT=s]
IF THBT.LE.LENES) GO TO 245
WRITE (IWRITE+3i3}
STOP
CALL UNIF (Q+TsLsQSIMBTI4NI+DELT)
NE 1) =HET
WRITE (623200 MBTNB
WRITE (IWRITE#325) JeKL(JiWiJ1aSTJ)
GO TO 125042554260 42650 e NIES
WRITE (IWRITE«3300 AltJ)
6t Ta 270
WRITE (IWRITE#335)
60 To 270
WRITE (IWHITEW340)
6C T 270
WHITE (IWFITEs345) RITJ)
IF TFMINGJYJLE.. 000010 O TO 275
WEITE (IWBITE 3500 FHMINIJIALLJ)»BT LA oC 1 o ST 1) v SHAR (J) SHOC LD
KETLSN
WH[TF
KETURN

LASTME=NB (NE)

HITJ)sH2LJ)

RItJd)eH2UJY

(TWAITES355)

FORMET
1H}

FORMAT

FoRrmaT

(SEH Hlem2 sALPHAy AND POWER NEED TO RE DIMENSICMED LARGE

(5K 84 nTRANSZWIPELZ Sabn GTHANSTWIRELZ.S)

(G THTIME I%F Ll beedn SEC.e RAIN WATE [5

LR MG (IPRI 2 2 i2AsFH.S) )

ElEslirheilolemmizaldidteFH, 9]0

110w TSFLtea o F 0.0l M DUTFLOW=4E1C. 3ol

Franwsaf [ladsdn cERCENT)

(339 T BN 4 MEED T BE GIRFNSIONED LARGEW)

(3&H 05 NEEDNS TO PL CIWENSTIGNED LARGER)

151 MuTes[8s [0 smnf- 20000

104 s YHPLANE MG+ J4a1l0k PROCESSED»/ /08 s 2HHMGEOMETRIC PARAMET
ZaFTalokn wraFT,.lodH S524FT.4)

sF19.504r 1FH)

ForMAT

STORAGE=EL
10.3+7H
Frepal

FChMaT

1EFS

FCREAT
FChuat
FOrmaT

1ha s L IHMARNINGS N2 FS, )

[158e ) IRMARNINGS Kool Sa3e12ZH  LAMINAM KEoFB.1)
LIS PrCHE LY C=oFoalel2d  LAMINAR KuoF8.1)
FCHEAT (162,94 CHELY C=aFb,1)

FOHMAT (19X 30HINFILTHATJON FARAMFTERS
IE=aFA.2eaH C=aF8.2a0m SI=eFH, 24 1H
FCRMAT [15Xs L&nIMPERVIOUS PLANE)

FMINSsFH, 5 3H AR FB.214H
SMALZFH.2veH  HOC®FH,.2)

ErD
SLEROUTINE XPLINF
IK+584ROCK )

EHLsDT 4 ToRF s QL2 aTF o NK 4 HUP sNI+DELT s ALF o BIN+CINSI

THIS SURROUTINE wAS DEVELOFELD BY R, E. SHITH. AHSe
FCH  WSF WITH KINGENTS

HEFERENCF . SM[THsR. E.s THE INFILTHATION EMVELOPE-RESULTS FHOM A T
IMNFILTROMETE®y JOUkNAL OF HYOROLOGYs VolTaM.lsgelwT2,

SUBRCUTINE COMPUTES INFILTRATICON AND RETUMNS EXCESS RAINFALL FOR &
TIME INCREMENT

AND MODIFIED

QPERATING DIMENSIONS ARE INCHES AND MINUTES

COMMON /107 JHEAD+IWRITE
COMMON AGEOM/ XL (201 +M 1201450200 «RIIZ0I4REIZ0IFHINIZO) oML I20 MR
1201 9HW (2004 NCL 1200 s NC2H20) yNCASE (200 #ZL (200 v ZHI20) v A(2014D1AMI20)
2NP120)
DIMENSION AL24500s TOS50)s DISt58)e S1(50%s H1(50)y DELTSIS0}s QO
150580 s SINT(S0)s Q500501 NANISO)a NRO(SO)s NMODE(SOls QSTAR(SO}
DECF (SsC)=EAP{ALF® .04/ (ALOGIS®TON) =CLI/{C*255) /(Cr o551 ) %%, 8)
CELT=CELT/80.
DT=0T/60,
T1=T/60,
TF=TF /60,
RF=RFS720.,
DO LO0S I=14NK
CLEII)=GL2(T1°T20.
RST=RF /FMIN{J)
Ji=1
IkD20
IF (T.GT.DT) GO TO 115
GAM=ALF/(1.=ALF)
wal
JRP=D
D0 110 w=lenx
SINT(K}=SIN
OSTAP (K] =0
NRE (K)=0
NHODE (K)=0
NRNTIK) =@
CONTINUE

BIN IS DIMENSTONLESS PAHAMETER WHICH CONTROLS TIME OF PONDING.

17 IS THFOPETICALLY EGUAL TU NONDIMENSIONALIZED SGRPTIVITY SGUARED
CIVICED RY (2,9FMIN} (SEE PRILIP+o55+195T1. THIS IS5 NOT THE SAME

B USED BY SM]THs 1972

==5GLYE FOk TIME WHEN PONDINGIRUNOFF BEGINS! wILL OCCUR

TF IKEGIZ2).KF.0) GO TO 145
TON=CIN* (SG=5INT (2) )% (]l a=RUCK]
QOR=FMIN(JI*TON

Ta1=0T

IF (RST.LT.IE=&) GO TO 130
OTEl(HIN*ALOGIRST/AIHST=1.) ) =GSTARIZ] ) *00N/RF) +0.0001
IF 10T} 12041200125

TRO=2

G0 Ta 130

IF [T+0T=TF) 13541304130
OT=TF=-T

T=TF

GO0 YO 140

TaT+nT

CONT INUE

IF (WP IJ).EG.D1) GO TO 150
WHITE (65355 OT#T

CONT INUE
0O 34% Jeg)enm

=~CONVERT FEFT TQ INCRES

47

e RN RaRaNaRaReRalalel

[aXalsl

(e Ralsl

o0

nRoOOn

[alsNs)

155
160
165
170
175
180

185

150

185

200

205

210

215

225

236

235

240
245
250

255
260

265

210

275

280

285

290

Slilr=12.oH1 (1)

1F (IRO! 1591591095

TF INMODE (T} 16Ds1604285

IF INRDLEY) 1B0wleSs220

IF [JRP) 170417041%0

[F (I=J1) 1754175140

IF (FUP=.000001) 190+190s265

IF (RET=1.) Z2aD+2404185
~=====  UNPONDEDs HAININGs PLANE CASE
klil)=0.
iF (1.GE.NK)
JRP=]
CONTINUE
TON=CIN® (SO-SINTII)I® (1., ~ROCK)
CONZFMINIJI*TGN
KRO(T1=0
iF (RST-1,1 200+200+195
GPSsEINCALOGIRST/RST=1.1)
e5T=a5TaR (11 +RFeDT/00N
IF (QST-QPS) 2004205205
ASTAR(TI=0STARITI)« (RF2DT+51 (1)1 /G0N
CLEIT) =0,
IF (NP(J),EQ.1) GO TO 3ab
WRITE (IWRITES370) GSTQPS
€0 TO 3a5

WAITE (6+360) (SINTIRIsK=1ahK]

$* 708 IS VERTICAL ASYMPTOTE OF INFIL. DECAY CURE.

Q0S5 IS WYPOTHETICAL INFIL. LEPTH PARAMETER wHICH IS SET 50 THAT

THE INFIL CUNVE FASSES ThAu kF(TPS) aT T=1PS,

NOTE @STAR AND Q05 ARE USED IN DEFINING INFIL DECAY TO CCRRECTLY A
COUNT FOR PERTODS WITHIN THE RAIN PATTERN #HEN RF JLT. INFIL.CAP.
(OTHERWISEs FOR SIMPLE PATTEANS WITH RF.GTWFeF IS5 DEFINED BY T
AND TOS ALONED.

===e= CALCULATE TOST AND QO(1} FOR INFILTRATION DECAY CURVE

NRB([)=2
TS=T/TOM
BST=({1.~ALF)/(RST=1.11%%(1,/ALF)
005 (1) =QP5-DST** (1.~ALF)=-DST
iF (QP5=QSTAR(II) Z15+213+210
TP5=T5
TOS1)=TPS=DST
OSTARITI=GSTAR(I) +RF*DT/QON
L2 (T0=0,
GO TO 345
TPS=1T-DT)/TON
OPS=0STaR(D)
TOS (11 =TPS=05T
00S(1)=0FS=-DST**(1.~ALF)=-DST
FCLERST
60 To 230
TON=CIN* (SO=SINT(I))®(]1.=ROCK}
QON=FMIN{JI*TON
T58T/TON

TLS={T=DTI/TON
RFST=RST«SLIT1/DT/FRINLY)
IF (RFST=1.1 264042254225
FOL® 1. =ALF I/ (QSTARILI=TLS*TOS(T1-00S(1)) #*GAMs],

==LET INFIL CONTINUE AT MAX RATE

IF (RFST=FCL+1.E=74) 235+7304230
QSTAR(II=0nSIT) « (TS=TInScl)loeija=aLF)TS=T05(1}
FCH= (] =ALF) 7 1QSTAR{L)=T5« TOSETI-Q0S LI ) **GAMe ],
BLA(T)ekF=FHINIJI =i, 5% (FUNFCL)

60 TO 345

QSTARCII=QSTAH (T}« (HF*DT+S1{1}) /00N

QL2tI)a=1,#(S1(1)/CT+aF)
80 TO 345

IF (SLi1) =0, S*FHINIJI=0T)
IF INRGETI)) 2554255.250
NRB(LI==]

24542354235

RESET INTIAL SOIL wATEH TO MEAK SATUNATION AT ZERQ PRESSURE

SINT(I)=50=-0.01
GSDEM=0STAKIT) *30N
GSTAR(I}=0.

IF (NP{J1,LE.1} 6O TO 260
WAITE (&+30%) QSDEM.I

60 TO 260

==EMPIRICAL DRAINAGE FUNCTION

SINTOI)=SINTII)I®{1.-.02% (La=ASTI)#epT
BLZ(I)==51(1)/00T=.0001
80 TO 345

==THIS SECTION IS GENERALLY NOT USED,. IT IS USED IF IMPERV. PLANE
~=OhTE PERV. PLANE
mewass SUDDEMN PONDING SITUTATION

KMBDE(I1=2

IF INRNIII) 2704270.300
NRN[T)=2

IF (RF=FHMIN{J1} 2T5,275.280

T0S¢1)=(T-0T)/TON

DELTS(I1=0.

GOS(1V=QSTAR(I}

&0 TO 290

QPS=RIN®ALOG(RF/ (RF=FMINIJI )

0S5=0STAR(I) +RF*OT/TON

RATIO=0SS/0PS

IF (RATIO=1.} 285+205.205

PTSIIV =]l =ALF )/ (AF/FMIN{JI=04)0%® (1, /ALF)

= EMPTIRICAL RELATION FOR DELTS/

BELTS(I)=DTS(II*RATIO®*(1./ALF)
FOSCI)=(T=-0T} A TON=CELTS (T

Q05 (1)=0STAR(II=DELTS(I)** (1. ~ALF)=DELTS(I)
DELTS{TI)=DELTS(I}*TON

CLE=ALOGIDELTSI(I))

TH=T/TON=TOS (1)

DCF=DECF (TMeDELTS(I1)

FCM=1,¢(1,~aLF)/TN®®A_ F*0CF

IF ((FCM=1.)/DCF+1.®(S1(II/DT+RFISFMIN(J)) 2954295+290
GSTAR(I)=QSTARCI)+ (RFDT+S1 (1)) /GON



255

QL2il)=0.

GO TO 345

oTT=DT/TON
OSTAR(II=GSTARIT)+DTToTN®® (], ~ALFI-(TN=DTTI®8 (1, =ALF}
BLRI1)=RF=FCHM*FEINIJ)

60 TO 345

c
Cosesves CHECK THIS ON RECESSION FROM FONDING

c

aoon

[sXaRaRalsa) aonMnnNon (el RaleNel

GoOonn ann

ELL]
305

3le
3is

3z0
3zs
330

335
340

345

35

355

385
iTe

10

TLe(T-0T}/TON=TOS11)

IF (DELTS(I}=0.00001) 3104310305
COMTINJE

CL=ALOGIGELTS (1))
DCF=0ECFITL.DELTSIL))

60 T0 315

BCF=1.0

CONTTHUE

DEMO=QSTAR(T)=TL-LOSIT)

IF (DENG) 27942754320

FCL=l s (1l.=ALF1/ULRUS*GAMDCF

IF IFCL-(RF+SLIDI/UTIZFMINGI)) 3254351290
TS=T/TON=TOSITY

IF (DELTS{I}=-0.50001) 33Us330.33%
BCFR=1.

60 To 3a0
DCF=DECF (TS«DELTS (1)
CONT INUF
QSTARII)=0STAR(II+DT/TONs (TSe® (] ,~ALF)=TLO® ], =ALF}]
FOM2L o (1.=aLF) /{USTAR(I) ~TS-003 (1) ) S*GAMSDCF
QL2111 =RF-FMIN(J}I®0. 5% (FCNsFCL)

CONTINUE

RF=RF /120,

DELT=DEL T#60,

DT1=DT*s0.

T=Teu0,

TF=TF"&0,

DO 350 I=l.kK
QLTI =aL2 (11 /T20.

QSDUTI=GSTAR 11 Q0N

RETURN

FORPAT (1M 2 1EHDT(FHOM XPLINFI=+F30,3+5%+3HTn +F10.3)

FCRMAT (1X410F10,5)

FORMAT (1H »SR+2IHTOTAL ACCUM INFIL(IM,!=sFB,4+BHAT NODE +13)
FORMAT (&M QST=1F10.5+5H OPST4F10,5)

END

SLBROUTINE CHANNL (J)

COMMOM /107 TREAD+IWARITE

COMMOM /CNTRL/ MRESsNOPToNTIMEsNUNITS«NELE+CLENsDELTNLOGIZD)
COMMOM /GEOH/ XLI200+m{201¢S(2014R1(Z01 vREIZ014FHINIZ014NLI20TNRI
120) »8UI20) #NCL (200 #NCZ(20) yNCASE 1200 +2L (200 1 ZR (0D +AT201 4DIAMIZD] »
2P 20)

COMMOM ZEVENMT/ TFIN+ND2QIt100}oTI(100) 0081003 +TOB(100) sNOsSUMRCH
COMMON /PLANELS H1(S014A2150)+GL LF00} 4 5LPHAISO] vPONER (SO T (LU0 40
10100 sHUR (1000 +DXaDTo INDEX s THETA» ANUSGRAY 1 HB (200 v Q5 (500) s LEND#LENG
25eLENHIvLoQLY (501 40L2 5D

COMMON /CHAM/ AL(S0)+AZ(SUI+QUBILID0) yAUBCLI00) vCOLYCOZvBWNTINOQL
COMMON /CIRC/ TH1(S01+THZISUT +SINE(S0]+SIN21S0)+CO51 (501 +COS2(50)
ISINEA+SINZACOSIAYCOSEAsTHUB (100 «DFACUFACD

COMMON /LANSY ATURB+PTURBsALAM+PLAMIHTRANS s UTRANS

DATA BLANK/IH /

CALEULATE NK AND DX AND NI

NE=FAXL ({15, *XL (J) FCLEN) #3,0
IF INK.LE.LENH1) GO TO 105
WRITE (IWRITE«Z280)

DX=XL {J) S IFLOAT (NKI=14)
NI=IFIX(TFIN/DELTI+1

CHOOSE TURBULENT OVEHLAND FLOW RESISTANCE LAW
KRES=]1 OH NHES=Z..0ssMANNING FORMULA
NRES=3 DR NRES=4..4.CHEZY FORMULA

IF INRES.EQ.].OR.NHES.EQ.2) NHEST=]
IF THRES.EQ.3.0R.NHES.EU.4] NHEST=4
CALL RESLAW (NRESTsJ}

D0 369 KalsNK

365 CALL CHGLAW (0eKeNREST)

CHECK TO SEE wHAT TYPE OF CHANNEL
WCASESl..o TRAPEZUTIUAL SHAPED CHANNEL CROSS=SECTION
NCASE=2,, ,CIRCULAH SHAPED CROSS-SECTION
NCASE=3, ., RHEGULAH SHAPLD CROSS-SECTION

GO TO (110411542750 MCASE(J)

110 COl=1./7R{Jbela /2L 0}

COZ2(da el /(ZRISIPIRIIIII®D, Suflael o/ 1LLIJISLLUIII) ) 9205
B=aTJ)
GO ¥0 l20

115 0=DIAN(Y)

SUBROMTINE ADD RETUHNS WITH UPPER BOUND AHMEAS [AUN) AND COMBINED
LATERRL INFLOW INTO CHANNEL Je IF CHANMEL IS5 & CIRCULAR CONDUITs
ADD RETUANS WITH AND UPFEH BOUND THETA ANGLE (THUM! INSTEAD UF AHE

120 CALL mOD )

125

130

w

IF TXLGD)) 2659+28B012%

ROUTE TO COHRECT CHANNEL GEUMETRY
GO TO (130415542750« NCASE(JY

TRAPAROIDAL SHAPED CROSS=-SECTIGN
CALEULATE AHEAS AT EACH DX FOINT FOH ALL TIME INCHEMENTS

Qirlr=0,0
T(li=0,0
DO #3989 K=lehK
AlLIE}=0,.0
0O §5® L=2.N1
T(L)=T{L=1)+DELT
A2il)=auB L)
BTDELT
EALL IMPLCT (INKsJ)
QUME (B*B+2 , A2 (NK) /CO1] *%0,5
WPERTM=(DUM=B) #C02+A*C0]
QLI =ALPHA (NK]} *A42 INK] ©®PONER INK) /WPERTM®*{PONER (NK)=14)
IF (NPIJ).EQ.1) GO TO 140
WRITE (IWRITE#285) (AZIK)s+K=14NK]

48

aon

non

LaRsNals)

RAITE (IwHITE«290) LaTiLIaleQil)obLeOLIL)
140 BO 145 K=1ohK
ALK =AZ(K)
145 COKTINUE
150 CONTINUE
60 ¥ 205

CIREULAR CONDUIT CHANMEL

155 T(ll=#,

Qrlr=e.

DT=DELT

D0 t68 K=liNK
THE(KI=0.0
SINL(Ki=D,0
COSi(kI=1.0

160 CONTINUE

INIT=1

DO 70 L=24N]
LL=L-1
QILI=0,0

TILI=T(LL) +DELT
Tl (1)=THUB(LL)
BF O (THI(1)oLEL. 0.0 AND.THUB (L) +LELO.) GO TO 165
SINL(1)=SINITHIILI/24)
€051 (11=50RT(1.=5IN1(11®SINL(1}}
INET=L
165 1F INPIJ)LLE.1) GO TO 1TU
WRETE (TwRITEs295) (THLIK) iRz 1aNK)
WRETE (1wHITE#290) LoT(L)sLo@tL)eLoQLIL)
IF (INIT.Eu.L) 60 TO 175
170 CONTINUE
175 DO 208 L=INITeNI
THZ 111 =THUB L)
SINIA=SINIITRICLI+THZ (1)) sE,)
COSIA=SURT (1a=BINIA®SINIA)
HOGL=0
CALL IMPLCT (MKsJ)
SIME=SINITHZINK]]
IF (THZ(NK).NE.D.] GO 10 180
Qili=0.
6o To 18%
180 QIL)=(DeU* (THZINK)=SINA] 78, ) **PONER (NK) # (D* THZ (NK) £2. ) ** IPOWEW (
1 NEI=1.)%ELPrA(NK]
1F INPIJ)LEQ.1) GO TO 150
185 WRETE (IwkITE.300) [(THZIK)sK=]aNK]
WRETE (IWRITE#290) LaTiLIsLeGILIsLaGLIL)
190 B0 195 Ka]lbin
THLIKI =THE (K]
SINLiK) =5 M2 (K]
COSLiKI=CUS2ZIR]
195 €ONT INUE
200 CONTIMUE

HAS FENISHED PROCESSING THAUUGH TIME TFIN. STORE HYDROGRAPH IN Q5

205 WRITE (IWRITE+J0S) XL (J3eS({J)
GO T0 (210+2151s NCASEIL
210 «RITE (IWRIVEL310) LLiJ)wIRIJVaAld)
G0 10 220
215 WRITE (IWRITE#+315) DI1AMIJ)
220 60 YO (225+230+235+2800 % NRES
225 WRITE (IWAITE#3<0) R1tJ)
GO TO 245
230 WHITE (IWRITE«3251 RI(J)«RZLI)
GC TO 245
235 WAITE (IWRITE«330) RICJI«RZLJ)
GO TO 245
240 wHITE (IWRITE«335) RltJ}
245 wRITE (IWRITE#3407 NCI(J)+NCZ2(J)eNLIJ}sNRIJ)D
LASTNRSNB (1)
DO 2568 NE=24NELE
IF (NBINE).GT.LASTNB) LASTNB=NB(NE)
250 CONTINUE
MEBTELASTNB NI ]
IF [LASTNA.EQ.O0) MBT=]
IF TMBT.LE.LENGS] GO TO 255
WRITE C(IWARITE»345)
£55 D0 268 L=1.N]
WMEL =]
QS (HM+MBT ) =Q (L)
CONTINUE
NB{UI=MBT
WHITE (IWRITE»350) MBT+NB
G0 ¥O 270

26

IF XL=0 WE MERELY OUTPUT THE ADDED UPPER BOUND DISCHARGE (QuB
WHIEH WAS CALCULATED IN ADD.

265 T(11=0.0
Qilr=ouacly
DO 368 L=2.NI
TILI=T(L=1)+DELT
QiLI=GuBa(L)
360 CONTIMUE
WRITE (IWRITE«355) J
h5IG=]
270 RETURN
275 STOP 6666

280 FORMAT (S53H AlsAZ+ALPHA»AND POWEH NEED TO BE DIMENSIONED LARGER)

285 FORMAF (1H »11MAZ (K=1aNKIZelS(1XeFT.4))

290 FORMAT (5 T(al3s2ni=elPELZ45+3XesH QUa13:12HI=e IPEL2.S+3X04H QL
Tts[3ed@HI=e]lPELZ.5I

295 FORMAT (1H +11HTHLIK=1sHK} 315 (1RsFTud))

300 FORMAT (1XellHTHZ(K=LsNKIolS(IXaFT 4))
305 FORMAT (10Xs10nCHANNEL NO»I%410H PROCESSED s/ /51 24HGEOMETRIC PARAM
IETERS L=wFB.ledH  S=yF 7, 4/10K, 1 IHCHOSS SECTION) :
310 FORMAT (SX,30HTHAPEZOIDAL SMAFE LEFT SLOPE=+F.5+13H RIGHT SLOPE=
14FTI5e3H A=eF8.2)

315 FORMAT (SX+26rCIRCULAR SHAPE  DIAMETER=.F8,5)

320 FORMAT (1SKs1lhMANNINGS NZ+F5,.3)

325 FOPMAT (1SXellHMANNINGS N=oFS.3+12H LAMINAR K=eFH.1)

330 FORKAT (1SKe@HCREZY C=eFbalvlen LAMIMAM KzoFB.1)

335 FOPMAT (15X+9H CHEZY C=eFb, L)

340 FORMAT (10Xs2YHCHANNEL IDEMIJFICATIUN HCl=sldosH NC2ms 471080254
IPLANE TUDFNTIFICATIUN NLT+I8s4H NH=s14)

345 FORMAT (34n 05 MEEDS 10 HE DIMENSIONED LAHGEN)

350 FORMAT (SH MBT=sl4410Ke3nnBs2ular

355 FORMAT (20H OUTFUT FOR ELEMENT »12s26H IS THE FINAL HYDROGHAPM)
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105

110

115

125

130

135

140

105

110

115

105

120

12
130
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SUHROWTINE RESLAW (NHESw+J)

COMMOM /GEGM/ ZLIZ0) vm {201 950201 +vRI1Z0)+RZ1200+FHINIZ0) ML (200 oNRL
1200 tNM 1200 yNCI (200 aNC2(20) sNCASE (Z0) o ZL (200 9 ZHIL0) v ALL0) s DIAMIZOI »
ZNF(20)

COMMON /PLANELZ MI{S0)sHZ(SUI+GLIIOU] +ALPHA{SU) +PONER(S0) o TEIV0]»Q

10100} sHUB(L00) DX sDT v INVER+ IHETA s ANUSGRAV s NH [20) +US(500) sLENTWLENG

ZSeLENMIsL QL1 1501 0 QL2 (D)
COMMON ZLANSY ATURBPTUAH yALAMPLAM HTRANS U THANS

THIS SUBROUTIME CALCULATES TeE VALUES TO dE LSEd FOR ALPHAIK) AND
FOWERIK) IN DEPTH AND DISCHAHGE CALULATIUNS. ATUHH AND PTUHE ARE

THE VALUES MASED OM & TUKHULENT OvEWLAND FLUW WOUDEL WHILE ALAM AND

FLAM RRE THUSE SASED ON A LAWINAA FLUW MODEL.
FOR NHESZle. CALCS, ONLY MANNING TURHULENT FLOW VALUES.
NRESS2...CALCS. BOTH MANNING TUKBULENT FLOW AND DARCY=
WIESHACH LAMINAR FLUW YALUES.
MNRES33aa.CALCS. BOTH CHEZY TUWBULENT FLON AND DARCY-
WIESBACH LANINAR FLOW VALUES,
MRES®4. . .CALCS. OMLY CHEZY TURBULENT FLOW VALUES.
ALS0 CALCULATED IN THIS HOLTINE AKE THE THANSITION POINTS FOR
PEPTH (HTRANS) ANB FOR DISCHARGE (UTHANS! wHICH AHE THE VALUES
RHERE WF CHANGE FROM TURBULENT TO LAMINAR FLUW. FUR NRESS1 AND
KRES=#4 HTRAKS AND UTRANS AHE MACE NEGATIVE SO THAT THE PROGHAM
WILL ALWAYS CFEHATE wlTH TURBULENT FLOW PAHAMETEHS.

60 TO €105+105+1104110)9 NRES
MANNING TURBULENT FLOW

ATUBBZ (1, 49/R1(J))}®(S5(J1*%0,5)
PTURB®S, /3.
60 10 115

CHE2ZY TURBULENT FLOW

ATURBERL (J)*5(J}»*0.5
PIURB®3, /2.
GO YO (135+120+120+4135)% NRES

DAREY-WETISBACH LAMINAR FLOW

ALAMES ()] %8, *GRAV/ (ANUSRZ (J1)
PLAM=S,
G0 IO (125+130)+ NRES-1

TRANSETONS POINTS FOR MANNING-LAMINAR

HTRANS= (1. 49%XNUSRZ (J) 7 (B, *GRAVERE (J) =S (J)"%0 .51 1*=0,75
ATRANS= (1,495 (J) * 20, 5*HTRANS®** (5:/3,) ) /R1 (D)
60 10 140

TRANSETION POINTS FOR CHEZY-LAMINAR

HTRANS=E (R1(J) *XNUSRZ (J)/ (B, *GHAV®S (J) #20 5] ) ®*(2,/3,]
QTRANSSRLIJI*S(J) # 20 5*HTRANS®*] 5
60 10 140

F1X SO THAT OMLY TURBULENT MODEL WILL BE EXPRESSEU FOR NON-LAMINAR
MODELS. ONLYFOR NRES=1 OR MHESz4,

HIRANS==1,
QTRANS==1,
RETURN

END

SUBROWTINE CHGLAW (IFLAGK«NRES)’

COMMON /PLANELS M1 (501 sHZ(50) vGL 14001 ¢ ALPHA(S0) sPOVERIS0) #TLED0) 40
11108 sHUB {100} +DXaDT+ [NOER s THETA+ ANU»GRAVSNH (£0) +US(500) + LENGLENG
25+LENmMLsL QLY (500 20L21ISD)

COMMON /L AWS/ ATURB4PTURBIALAMPLAMIHTRANS s UTHANS

THIS SUBROUTINE CHANGES HYDRAULIC RESISTENCE LAWS (TURBULENT TO
LAWINAR OR VICE VEHSA) AS DICTATED BY THE THANSTION POINTS FOH
DEPTH AND DISCHARGE (HTRANS AND QTHANS) .

IF TIPLAG] 110+105+110
E=ATURB

Y=pTURE

G0 Y0 115

A=ALAN

Y=PLAR

CONTINUE
ALPHA IR} =X
PONERIK) =Y
RETURN

END
SUBROWTINE UNIF (QeTeNIMsQOsNI+DELT)
DIMEKSION GININ)» TININ)s QUINI)

THIS SUBROUTINE TAKES THE YALUES OF @ AT TREIN COHRESPOMDING TIME
CONVERTS THEM INTO VALUES wITW EQUAL TIME INTERVALS (UELT). ThESE
VALUES ARE STORED IN 00.

@ & INPUT DATA ARRAY

T &= INPUT TIHE ARRAY

NIN = LENGTH OF @ AND T AHRAYS
Q0 = OQUTPUT DATA ARRAY

Nl = LENGTH OF GO

DELY =~ TIME INCREMENT

I=2

K=]

Qo(I¥Ql)

TO=8,

TOsYO+DELT

IF IT{K).GE.TO) GO TO 115

K=K+l

60 70 110

IF TABS(T(k)-TO)} . LE.1.E-5) GO TO 125

?ntl:'ﬂ!K-l}otTu—TlK-lllIlTlKI-TIu—lll‘tolll-ﬂlK-ll]
=]+

IF 11.GE.NI) GO TO 130

60 TO 105

QoIYI=G (K}

60 Y0 120

QOINIY=Q(NIN)

RETURN

END

49

noo

fno0

anon

Aano

SUBROUT INE IMTHUB (X+FXaDERF)

COMMOM FCHAN/ ALISO)sAZ150]19QUB(100) +AUB(EDD) +»COLPCOZvBaNI+NCIL
-COMMON /PLANELZ H1(S0)+m2{50)+0L (1001 s ALPHALS0) sPONERISO) +T L1001+
10100} +HUB(100) +DXyDTaINDEXs THETA» KNU+GRAY#NE (20) 40515001 s LENGLENG
2S+LENMLsLwOL] (500 GL2(SD)

COMMOM /CIRCS THI(S01+THZIS01+SINE(S0]+SIN2IS0)+COS1(50) 0521500
1SINFASSINZA+COSLA+COS2A+THUE (100} +DFACSOFACID

J=IKDEX

SINX=SIN(X)

Al=x«,000001

SINXI®SIN(KL)

PRLISPONER (1) =14

FACI=ID/4.)* (1. =SINRL/RL)

F1=ALPHA (1) ® (FAC1#*PM]) *0*0* (X1=SINK]1} /8, =QUB(J)

FACE (B/&.)*(1.=SINX/X)

FX=ALRHA (1) ® (FAC®*PH1) *0*0® [A=-5SINK} /B, ~QUB (J)

DERF= (F1=FX)/.000001

RETuRN

EnD

SUBROWTINE IMPOCF (X+FR+DERFX}

COMMON SPLANELY BI(50) vhZ (501 QL {E00) s ALPHAIS0) yPOWER(S0)1+TI100)+0
1C108) +HUB (1000 oDXaDT o INDELy THETA 9 ENUSGHAV s hH (201 +USIS00) +LENGLENG
25sLENNLSLQGLE(S0) sLLZ 150

JEINGLX

JELEJe]

P=POWER (J)

PP=PORER(J+1)

PMl=p-|,

PPuL=PP=-1,

THETHETR

Tl=t.~THETA

PazHZiJl o X=H] 1J) =ML TJPL)

Paa]z.‘n?!nl}'lTH'(JLFﬂllJPlI'I‘!FP'ILFHIIJI‘HEIJI"P].TI‘IIL”H!{J
IPLI L IIPL) #*PE=ALPHA LJI*HL{J) **P) )

PC=pToiGL2(J}+QLETJFLIH)

Fr=PasFE=PC

DERFX2],9 (2,07 (ALPHA(JPL) *PPSTHETA® (X**PPM1} /DX) )
RETEAN

END

SUHROMTINE IMPCHA (X+FX+DERF)

COMMON /CHANS AL (500 +A21(50)+QUBII00) s AUK(100) +CO1+COZvBsNIvHOGL
COMMON /PLANELS H1{50) M2 1500 +UL LEOD) s ALPHATISO) «PONERISO)+T (100040
Iilollvﬁballﬂﬂl-chgl-INDElaIkETIolNU.ﬁRlU‘hdIZOI;GSESUOInLtNurLENO
2SeLENMLSLeOLL (500 s0L2150)

DIMENSION DQDAL2)

DODAFGT (AL +A+D1oD2+FePMLCI=AL® (AZD2) *5PML® (P=({PHMl®A=C/ (DI1*D2)))
ZFUNC (B AREASCOLI = (B H+2.*AHEA/CDEI ®%0,.5

CONSTANTS

IF 1B:2EQ.U.) B=.000001

o= [NDEX

C=co2/Ccol

AK=@*G01

P=POWER (1)

PHlEpe],

PuZ22P-2,

THETAL=1.=THETA

CALEULATE DERIVATIVES OF THE DISCHMARGE EQN., (DQ/DA)
AREAL® (AL (J)saltds1))r2,

DUME1=ZFUNC(B+AREAL+COL)

DUM21E (DUK])L=-B)*CO2+XK

DGOA (R =DADAFCT IALPAA (L) +AREAL yDUML L+ DUMZL+PsPMLLC]
AREAZE (Xea2(J) ) /2.

DUMLZ2ZFUNC (B vAREAZ,COL)

DUMB2ZE (DUM12-B) *COZ+ XK

DGDA (27 =DGDAFCT LALPHA L1} s AREAZ+DUMEZ+DUMZZ:PoPH1VC)

CALEULATE SECOND DERIVATIVE OF DISCHARGE EQM WITH RESPECT TO X
{D20/0ADX)

IF TAREAZ.EQ.0.) GO TO 105

FAC= (RREAZ/DUMZ22)
TERMIEFAC**PHZ*PML® (1, ~X*C/ (DUM12#DUMR2) )/ (2, *DUML2)
TERMZEFAC**PM1*CoPH1® (1, ~AREAZ® (C+DUMZ2/ (COL*DUMLE) )/ (DUMIZ®DUMEZ)
11/ (2.°DUKIZ*DUMR2)

D2QBAR=ALPHA J) * (TERML=TERMZ)

G0 70 110

105 DZQBAXa0,
110 CONVINUE

FINITE DIFFERENCE EGN. AND ITS DERIVATIVE

FXmAREAZ-AREAL) /(DT#2,)+ {THETA/DX) *DODA [2) ® (X=AZ(J} )+ (THETAl/DX) *
1DGDA(R)® (AL{U+])=AL(J] ) =0.S* (UL ILSIDeQLILY)

DERF=b ./ (2.%0T)« (THETA/DX) * (DQDA (2) +D2CDAX® (X=AZ(J) )}
RETBRN

END

SUBROWTINE IMPCIR (X+FX+DERF)

COMMON /PLANEL/ H1(501 +HZ(S0)+QL L300) + ALPHA({50) sPONER(SD1+T(100)Q
(108 sHUB (100} sDXsDT s INDEXs THETAs XNUSGRAVINB (201 Q5 (500) + LENQSLEND
25+LENMISL+ULL(50) s GLEZ (50]

COMMOM /CIHC/ THL(SG)+TrZ150) oSINE(90) «SINZ LS00 2CUS1(50)+C052(50)
1SINIA#SINZASCOSLA+COS2As THUB 1100} aDFACIUFACD

COMMOM 710/ IREAD+IWRITE

DIMENSION DADTH(2) s DADTHIZ)

NC=#

JEINDEX

JPlEJel

OMEGASTHETA

P=POwER(J}

Pulep=1,

PHZeP=2,

IF 1X.E0,0,) X=0.0001

ANGLZR= (X+THI (JPL})/2s

ANGLLG= (THL(J} o THI(UPLYI /2,

ANBL2O= (X+Th2(JV ) FE.
SIMIASSIN [ANGL2A)
SINEQESTING (J)
SINZOESIN(ANGL2G)

COS2AECOS (ANGLZA)
COS1a=Cosl 1

CO520=C05 (ANGL2Q)
ARERLG=D*0® (ANGL1O~SINId} /8.



Ao o000

A AONAN

aoon

an0

los
lio

115
lz0

les

110
115

los

110

115

120

ANEAZUeDOD® (ANGLII-SINZL) /84
DADTHIL)=D20® (1. =COS18)/H,

DADTHI2) =D*D= (1. =CUSEA) /8,

IF [AMGLIQWNE.O.) GO TO 10S
Faci=e,

GO T0 110
FRACY=(2.*ATEALC/ (ANGLIU*D) ) SoPNM]

FACZ=(2,%a0EA22/ (ANGLAQ*D) ) »oPu]

TERM1l=pe0ep®e1].-C051u] /8,

IF TAMGLIG.NE.O.) GO 10 115

TERR1Z=0.

GC FO 120

TERM1Z=AREALQ®PHI/ANGLIG
TERMZl=pepepe (], ~COS20) /4.

TERM2E=RREAZQ*FHI/ANGLZU

DODTAIL)=ALPHA [ JI*FACL® (TEAMLL1=TERML2)

DEOTHIZI=ALPHA(JPL) F ACE® (TERMZL=TERMZZ)

FACY=FAC24D*ANGL20/ (2. *AREAZQ)

DADX=E*D* {],=C0520) /16,

DEREVE2,*0ADX/ (D¥ANGLZG)~AREAZG/ (ANGLZQ®ANGL2U*D)

TERMI=FAC2% (P*D*D*SINCQ/16,~PHI*0ADX/ANGLZGsAHEAZDOPM]/ (2, *ANGLEQ®
1AKGL28) ) )

TERMZ=FACI*PMI*DERIV® (TERMZL=TERMEZ2)

DEGBTA=ALPHA (L) *(TERML+TEHMZ)

D2ADTX=D*0*SIN2A/I6.

FX=T14/12.20T) ) *(DADTHII)I®(THZ (J) @ THL (J) ) *DADTHIZ) * (X=THL (JP]) )1 o
LOMEGA/DX} *DUDTHIZ)# (K=THZ{J) )+ (114=0MEGA) /DX) *DGOTHEL) ® (THE [UPL] =T
EL AR

DEHF!!I.}tZ-*DT)}'{DEIDII'(!-THItHPll)*BADTlelI4(DHEG&/0I!1102007
1X% (X=FHZ 1) ) +DOOTHIZ) )

SINZ LJ})=51N20

€o0s2 tJ)=cosza

RETHRM

END

SUBROMTINE IMPAUB (X+FX+DERF)

COMMON JCHAN/ ALISQ)yAZ1S0)+QUB(100) 4AUB(100]+COLICOZ0BNT#NOQL
COMMON /PLANEL/ HLIS01+H2I50) sCL {00} vALPHAISU) yPONER(S0) 4T (1001 4G
101G8)+HUBLLO0) +DXs0T v INUER s THETA ZNU s GRAVSNE (201 195 (500) s LENGsLENG
2SeLENWLsL+QL1 IS0 QL2 (5D

DGOAFGT (AL s AsDLsD2oPsPHLICIZAL® (AZDE)*4PML* (P= (PMI*ASC/ (D1*D2) )]
N=0

KFLAG=0

J=INDEX

IF TX4EQa0,.AND.GUB(J) .EQ.0.) QUBIJI=0.0000001

P=POWER (1]

PMlgR-1,

C=COZ/C01

DUM]=[B*Be2,%X/C0L) 900, 5

DUMZ= (BUM1=B) *COZ+H*CO1

FXZALAHA (1) *X**P/DUMZ* *PML-QUB (J)

CALCULATE DEFIVATIVE OF ERRUR FUNCTION (DERFI
DERFE00DAFCT (ALPHA (1) v X1 DUML +DUMZ P «PH12C)H

DUE T8 MISEEMAVIOR OF Thi EWROR FUNCTION IN SOME CASES. THE FOL -
LOWIN® CORRECTION OF X MAY HE NECESSARY FOR CONVEHGENCE

IF TOUUB(J=1),EG.0.) GO TO 110

IF 10UB(JI/5..GT.CUBIJ=1)) KFLAG=}

IF (rFLAG.EQ.O} GO TO 110

IF MOEWF LTo0. AND.FX.LT, 0.0 GO TO 115
HETURN

X=xs]0,

LTS

IF TM.GT.2) CALL EHROH [GHIMPAUBs 0410400

60 10 los

END
SUBROVTINE ADD (J)

COMMON /107 IMEADS1WRITE

COMMON /CHAN/ A1(50) 4420501 +3UB(100)+AUB(1001+COLrCO2+BsNTsNCAL
COMMON /CIRC/ Th1{50) +THZ IS0 oSTNE (500 «SINZ(50) +COS1 (50) +COSZ (S0«
1SINIAPSINZA+COSIACUSEA+THUB (100) «DFACIGFACSD

COMMON /PLANEL/ HL(50) ¢H2i50) +GLIFO0) s ALPHAIS0) +POWERIS0)+T(10014Q
10100) sHUB{100) sDX+0T o INDEX THETA KNUSGRAVING (201 105 (5000 s LENQ'LENG
2SsLENRIL+QOLY 1500 4QL2(50)

COMMON /GEOM/ XL{20) »w(20)+5(20) 4R1(20)4R2120)+FMINIZ0) +NL 1200 oNR(
120) +NUL20) sNCL (203 sNC2(20) oNCASE (200 o ZL (201 s ZRI20) s AL20) o DIANIZ0) o
2hPL20)

THIS ROUTINE DOES TwD THINGS 1) T CALCULATES THE UPPER BOUNDARY
AREA FOR INPUT INTO THE CHANMEL ROUTINE FOR CASES WHERE THERE 15 A
EITHER A CONVEWGING PLANE OF CHANMELS CONTRIBUTING TO THE UPPER
BOUNDARY OF CHMANNEL J...2)IT ADDS TOGETHER ALL LATERAL INFLOW FROM
ANY CONTRIBUTING LATERAL PLANES,

NOTE THAT THE INDEX (N} IM THIS ROUTINE IS ON TIME,.

EXTERNAL IMPAUB«IMTHUB
NOQL=1

NCHN=0

NP A=NCHN

NUT=NU(J}

NC1T=NC1(J)
NC2T=NC2 (J)

DO 105 N=l.NT
AUBINI=O,.0

CHECK FOR CONTRIB. ELEMENTS AT UPPER END AND SENO TO APPROP. LOOP

TNUT,.NE.O) 60 TO 115
INCLT.MEL0) NCHN=NCHNe]
TNC2T.NE.O) NCHN=NCHN+L
TNCHN.EQ.0) GO TO 21%
TO (125+135) ¢ NCHN

CONYERGING PLANE AT UPPER END OF CHANNEL

IF INCIT.NE.0.ORLNC2T.NE.O) CALL ERROR (3HADDs14sds0,)
IF INBINUT).EQ.0) CALL ERROR (3IHADD+15sNUTs0,)
BUENE (NUT)
DO 120 N=leNI
MMEN-]
QUB [N] =05 (MM MU)
CONTINUE
NB (NUT) =0

50

Lalals)

130

[aRalal

13

w

14

=3

145

AN onan

150

155

160
165

4
14
170

115
lao

les
190
195
200
205
210

OO0 N

215

a0

220

225

OKE CHANWEL AT UPPER END

M=KB(NCIT+NC2T) f
IF INBINC1T+NC2T).EGL0) CALL ERAQOR {3HADD s 15 NCLIT+NC2T0,)
DO 139 K=1WNI
FHsN=]
QUB (N) =05 (MMen)
CONTTHUE
NB(NCIT+nC2TI =0
NC2T=0
‘WC1T=hC2T
NCHH=0
60 TO 145

TwO CHANNELS AT UPPER END

MI=MAINCIT)

MZENAINLZT)

IF INRI(MCIT).FQ.0) CALL EHROR (IHALDW15+NCIT40.)
IF INB(NC2T).EQa0) CALL FHRGR (3HADDs1SeNCZT40.)

DO 148 Me=leND
MMFN=]
QUBINIRQS (M1 +MM) +QS [HZeMM)

CONTINUE

KHINCITI=0

NE(NC2T)=0

NC2TaR

NC1T=HC2T

NCHK=#

GO TO la5

CALCULATE NECESSARY UPPER ROUND PARAMETERS--EITHER AREAS OR ANGLES
VALUES ARE SOLVED FOR BY NEWTONS ITERATION METHOD.

GO TO (150+170+210% s NCASE (J)
TRAPEZOIDAL CASE =-- UPFER BCUND AREA (AUB)

IF TXLGJ)LEQ.0) RETURN
AUBTL) =0,
1END=15
XST=(GUB(2) *B*COL/ALPHATL) 1%8 (1, /PONER (1))
00 165 N=2,NI
INDEX=N
IF (QUBIN).EQ.0,) GO TO 168
IF (R.GT.,000001} GO TO 155
AUB (NI ={ (GURIN) /ALPHA L) ) ® (2, #CO2%C02/COL) %% (,5% (PONERIL)=1.1))

1 2], /{5 IPONER{L)+1,0))

60 To 165
IF {X57.E0.0.) X5T=0,001
CALL ITER (AUBIN)+FA+DERFAsTHPAUBSXST-0,00010+JENDs IER)
TER=TER1
BF (IER.EG.3) AUBINI=0,
BF (JER.EQ.3) I€w=1
IF (1ER.EG.4) AUBIN)=0.
IF (IER.EQ.4) IER=]
IF (AUBIM).LT.0,0001) AUB(NI=Q.
XST=AUB (N}
60 TO (165+18511504195+2000+ IER
AUR (N 20,

CONTINUE

60 TO 110

CIRCULAR COMDUIT CASE - UPPER BOUND ANGLE (THUB)

Pl1=ACOS(=1.)
D=0IAM )
DFAC=(D/2.)%%(1.~1./POWERI]})
QUAX=RLPHA(L) *PI®D® (D/4.) **POMER (T}
IEND=10
XSP=PRI/S,
THUB tl1=0,
00 188 N=2.NI
INDEX=N
IF [OUBIN).EQ.D.) GO TO 175
IF [QUBINIZ10..GT.QUE(N=L)) XSP=5S,eTHUBIN=1}
IF (X5P.EQ.0.) XSP=Pl/5,
IF (QUBINI.GT.QMAX) GO TO 205
QFAC= (QUB IN) JALPHALLY 1 %% (), sPONERTL))
CALL ITER (THUBIN)+FTDERFT,1HTHUBX5P+ 0,005 IEND . JER)

JER=JERs]
IF (IFR.EQ.3) THUBINI=O,
IF (IER.FO.3) [EA=]
IF (IER.EQ.4) THUB(N) =0,
IF (JER.EW.4) JER=1
IF (THUB W) ,LT.0,00%) THUB(NI=G,
XSPETHUR (N)
@0 TO (1B0+185+190+195+200)s IER
THUR (N1 =0,
CONTINUE
G0 70 240
CALL EPPOR (3HADDs10IEND+O.)
CALL EFRGR (3IHADD1lshe0,)
CALL EPROR ([3HAGDs13+M40,)
CALL ERROR (3raDDalTedsl)
WRITE (IWRITF+255) JoD s UMAX s N+ QUBINT
5Tor 855

CHECK FOR NUMBER OF CONTRIA. PLANES ON SIDES AND SEND TO CORRECT
LOOP., AFTER THIS IS DONEs HETURN.

NRT=NR (.4}

NLT=NL ()

IF tNRT.NE,O01 NPAzZNPA+]
IF tNLT.NE,0) NPA=NPAsL
IF INFALEQ.0) GO TO 2s0
60 TO (220423004 NPA

ONE SIDE LATEAAL INFLOW OMLY

MENE (NLTNRT)
IF INB{NRT+NLT)
DO 22% k=1.NI
MMaN=]
AL INI = (QS (MMeM) ) £5L ()
CONTINUE
NPA=D
MB(NLT+NRT) =0
NLT=Q

+EQ.0) CALL ERROR {3HADDS1SsNRTNLT+04)



E
1

1
3
}

NRT=NLT
G0 70 250

BOTH LEFT AND RIGHT LATERAL INFLOW

nnn

230 MR=NEBINRT)
HL=KE INLT)
IF INGI(KRT]L.E@.0) CALL ERROR (3HADDW15,NAT.0.)
IF {NBINLT).EG.0) CALL ERROR [3HB00+15.NLT4+04)
DO 238 N=laenI
MMaN=1
QL (NI = (D5 [MMeMR I +GS (MMeMLY I /XL LD
CONTINUE
NPAZO
NBIKLT)=0
WE(WRT) =NB(NLT)
NLT=0
NRT=NLT
60 TO 250

23

w

NO LATERAL INFLOW

[alaNel

240 DO 245 N=laNI
UL NI =0,0
245 CONTINUE
NCQL=d
250 RETURN

255 FORMAT (//+1Xn120(1H®) 4/ sSK+OHPIPE NO. +I12415H WITH DIAMETER=+FT.3
1ed0n wAS EXCEEDED ITS FLOW CAPACITY OF OMAX=,L1PELZ.5+/+5XsIZHOVERF
20w ECCCURRED AT TIME STEP »I3410M WITH QUB=+IPE1Z.5+/1Xs1200(LA%T

3xy
c
END
SUEROMTINE IMPLCT (NKs1)
COMMLA /IC/ IREEDs[WHITE
COWMON JONTRLS NHESeNOPTaNTIME +HUNITSoNELE+CLEN+DELT#NLDG (200
COMMON JGEDH/ ALT201smi20)aS (201 9R1 1207 vH2 (200 s FHINI201aNL (2014 NE(
1207 sMW (201 sNCL IR0 sNC2 1201 sNCASE(20) s 2L L2019 ZR 200 4 A120)+D1AMI200
eHP 120}
COMMON FEVENWT/ TFIMGND+UII200) 3 TI (1000 +QUBCI00) 9 TOAI100) eNOr SUMRCH
COMMON /BLANEL/ HIISO)oHZ 501 93U tR00) s ALPHAISO) PUNERISD)«TI1L0140
10100) oHUR 100} «0XaDT 2 INOFAs THETA s KNUSGRAVANE (201505 (5000 4 LENDILEND
2SaLEMMLsLaNLL 150} afL2 150
COMMOL FCHANS ALTSD) +AZ150) vQUATL00) »AUBTEND) 4COLYCOZBaNTWNOGL
COMMON FCIRCA THLIS01 s THE (G0 1 s STNE(H01+SINZ 10190501500 4L032(200
1S THIBeSI2AsCOSLACOSEAs THUS LL1OD) 4DF ACHUF LD
COCHMMON /L AWS/ ATUHE +PTURE s ALAMsPLAM s HTHANS s UTHANS
EXTEFRMAL IsFOCF s IMBCHAS IPPCIH
DATA EPS+IENN/D.00014507
NEME=NK=1
[
[ CHECK To SEE IF PLANE O CHANNEL
14
IF tw(1}.EQ.0) GO TO 160
c
CHosssnanuntsnniony . saeen L
c
c PLANE CASE -=- ADVAMCE TIME DEFTH (H2) 1S SOLVED IMPLICITLY BY
c WEWTON=S JTERATIVE METrOn IN ITER. HOUTINE IMPOCF 15 THE ROUT IME
c WHICH CALCULATES IRE FINITE DIFFEHLNCE EGM, USED BY ITEH. NOTE
[ THAT THE CORRECT RESISTENCE LAW 1S CHOSEN BEFORE EACH CALL TO ITER
[4
D0 155 J=1eNKM]
INDEX=4
Jel=gel
x5T=H2 L)
IF (1ST.EQ.0.) XST=H1(JPL)
§F [HI(JP1).GT HTRANS.ORH2(J) .GT HTHANS) IFLAG=0
IF (H1(JP1) o LE HIRANS OR.H2 () aLE.HTHANS] IFLAG=L
CALL CHGLAW (IFLAGsJP1+NRES)
c
[+ ChECK FOR NEGATIVE LATERAL INFLOW. [IF 50+ CHECK TOQ SEE IF IT
< IS SUFFICIENT TO DHY LP HZ{J+l)l. IF SO0+ SET TO O AND CONTINUE.
c

01557-0.5‘lOLZ(Ji-GLZIJPl!I'DI
IF ICTEST.GTa0.) GO TO 105
QTEST=-QTEST
IF (QTEST.LT.HI(JPL)) GO TO 105
H2JP1)=0.
@0 To 155
105 IF tJ-1) 110s110+120
110 IF ({H2(1)+H112)) 115+115+120
115 w2 (21=DT*0L2{2}

1ER=]
&0 TO 125

120 CALL 1TER ch(JPlI!FHZ:DERFHZ-]NPOCF-KSTu.00001-I[ND'IER-IU.OI
JER=TEA«]

125 M2 (J+ ) =AMAXL (O aHE 100

INTERPRET FRROR FLAG FOR TOO MANY NEG. TRIAL VALUES AS CONVERGEMNCE
AT ZERG. ONLY POSSIBLE DURING RECESSION PERIOD OF HYDROGRAPH AND
WITH KINEMATIC SHOCK CONDITION.

anaonn

IF (IER,NE.&) GO TO 140

IF (OLZ1J)+GL2{JP11.6T.0.] GO YO 140

IF (JPL.EQ.NK) GO TO 135

PO 130 JEK=JPlaidK

IF IH2(JK).6T.0.) 60 TO 135

130 CONTINUE

G0 TO 140
135 H2iJrll=0,

®0 To 15%
140 60 TQ (155+27591501285+3000s IER
145 W2 (JPII=HL (JP])+QTEST

WwRITE (IWRITE310) J

60 TO 155
150 WRITE (IwRITE#315) JPLeTILIs]
155 CONTINUE

RETURN

CHEEK FOR TYPE OF CHAMNEL
160 ‘60 TO (165:220) ¢ NCASELD)

TRAPEIOIDAL CHANNEL == SOLUTION FOR ADVANCE TIME AREA(A2).

SINCE POUTIME wiLL NOT CONVERGE AT ZERD AND SINCE THE ERROR FLAG
FOH TOD WAMY CORRECTED MEGATIVE TRIAL VALUES 15 SET WHENEVER CON=
VERGENCE AT ZERQ 15 ATTEMPTEDs THIS EPPOR FLAG 1S PECOGNIZED AS
COMVERGENCE AT ZEAD. FOR NO LATERAL INFLOw CASES (NQOL®Z) ZEWO

AROOONN ANONo

a0 ono

Aannon

[aRalal

non

anAOOn

n

LaRalalal

non

CONVFEGENCE 15 POSSIALE EITHER REFOWE HUNOFF WEACHES THE CHANNEL
FROM AAOVE CF DUFING THE HECESSION PERIOD OF THE HYDHOGHAPH. 1F
LATERAL INFLOW OCCURS (NOULZLD THEN ZEHO IS ONLY POSSIALE FOR

RECESSION,

165 DO 2195 J=loNKHL
INDEXED
FLITNTS
AST=a21J)
60 TO (17541700, NOOL

170 TF (ALIJP1) EQ.0.) X5T=da

175 CALL ITER (AZ2(JP1)+FAZ+DERFAZIMPCHASXSTERPSsTEND s IER1000.)
TER=1ER+1
IF (1ER.EG.4) GG TO 189
IF (A2(JP1).EC.0.) GC 1O 180
IF (A2(JP1).LT.EPS) AZIJPLI=0,
6o To 205

CHECK TO SEE IF ZERO VALUE 15 DUE TO PRE- RUNUFF PERIOD CR To
RECESSION

180 JPl=Jel
PO 185 JK=JPleNK
IF (AL(JKI.G6T,0.] GO To 200
185 CONTINUE
G0 TO (205+1501 NOGOL

RUNDFF HAS NOT REACHMED J+1

190 B0 195 JJ=JPleRK
A2(J1=0.
195 COMNT [NUE
RETURN

RECESSION ZEROC WALUE

200 AZ(JPII=0,
80 To 215
205 60 TO (215+275+2800285,3000s 1ER
210 A20J+1)=(QLILI+GLIL=L11®*.5°DT
wRITE (IWRITEs.3200 J
215 CONTINUE
RETURN

CIRCULAR COMDUTT CASE =- SOLUTION FOR ADVANCE TIME THETA ANGLE
(TH2}. NOTE THAT THERE IS MO LATERAL INFLOWs S0 THE SAME CONDITIO
APPLY TO CONVERGENCE AT ZERD AS DISCUSSED ABOVE UNDER THE TRAFEZO
NC LATEREL INFLOW CASE.

220 DO 270 J=1.NEMI

INDER=J

JPl=gsl

IF (TH2(JI+THLLJI+THL (UP1) .NE.8.) GO TO 230
22% TH2(JP1)=0.

SINla=0.

SINZ{JI=SINLA

CoS5la=1,

CoS2(J1=CO51A

60 TO 270
230 CONTINUE

ESP=THZ (J)

£F (XSP.EQ.O.) XSP=0.01

CALL 1TER (THEIJP1) sFTHZ+DERFTHZ s IMPCIRsRSP+0, 00001+ JENDVIER &,

1 28

SINlA=SINZA

COS1A=CNS2A

JER=IERs]

IF (THZ(JP1)EQ.0.1 GO.TO 240

IF (IEA=&) 260+235+260

CHECK TO SEE If ZERD VALUE IS DUE TO PRE-HUNOFF PERIOD OR TO RECES
L SI0M.

235 THRIJPLI=0,
SINZ(JI=SINITHRIJI /2]
COSZIJ)=SOHT (L, =SThZ (I *5INZ IS )
SINIA=SINITHLIJPL) /2]

COSLa=SUHT(1.~SINIA®SINLIA)
80 To 270
240 JPiEgel
B0 245 JK=JPLaNK
TF (TH1{JK).GT.0.) GO TO 25%
245 CONTINUE

PRE-RUNOFF ZEROC VALUE

SINZ(J1 =0,

cos2iJi=l,

00 250 JJEJPLsNK
THZ (JJ) =0,
SINZ(JI) =0,
Cos2(JaJi=l,

250 CONTINUE
RETUAN

RECESSION ZERD VALUE

255 THEZ(JP1}=0.
SIMNIA=SIN(THL (IP1) /2,
COS1A=SQRT(1,=SINIA®SINIA)
SINZiJI=0.
€052tJ1=]1,

60 To 270

260 B0 TO (265+275+280+290+305) IER

265 1F (TH2(JPL).LT.0.005) 60 To 225

270 CONTINUE

RETURN

ERRBR RETURNS

275 CALL ERROR (6HIMPLCT+10+IENDsO,)
280 IP1=INDEXe]

CALL EPROR (6HIMPLCT11ls1P1le04)
285 IPLl=INDEXs]

IF T(H1(J) . EQeHI(J+1)) o AND, [H2(J} 46T

1F Tt ieey «(HZ(J) 46T (HLLJ) +QTESTH)) GO TO 145
290 IP1=INDEX+]

’§: ;{:ltd).io.liIJOli!.lNﬂ.ilZ[J!-GtcllDLlL-ll‘DLlLDI'.S’OT!!] 60
295 CALL ERROR (SHIMPLCT+1321P1+0.)



c
310 FORMAT

(2]

ARAOOOONONONOOAN0 AONNONOANAANROOOON

nono

oo n oo

fano

aOn Oonn

RETURN
300 IP1=INDEX«]
CALL ERROR (GHIMPLCT4174141P1)
305 1PL=INDERs]
CALL ERROR (6HIMPLCT+16sTs1P1}
RETURN

[2X425H NO POSITIVE ROOT AT J= +I3e/elOXeZ4HHZ(J+1 oMl (Je]
11«igL) (DT

315 FORMAT (2X434M NEGATIVE DEPTH CALLED ZERQ AT J= +12+3HAT
IH MIN. ON PLANE »12)

320 FORMAT (2X423H NO POSITIVE ROOT AT JseI3s/+10Ne29HAZ (J+11300LI1) 0
L2 (L,511DT1)

+F10,2415

END
SUBROUTINE ITER {(X+F+DERF+FCToXSTSEPSs IEND+IERs XMAR)

SUBRCMTINE ITER
THIS ROUTINE SOLVES GENERAL WONLINEAR EQUATIONS OF THE FORM FiX)=0
‘BY MEANS OF THE NEWTOM ITEHATION METHOD.

DESCRIPTION OF PARAMETERS

X = RESULTANT RUOT OF FUUATION FiX1=0

F = RESULTANT FUNCTION VALUE AT ROOT X.

DERF-RESULTANT VALUE OF DERIVATIVE AT ROOT X,

FCT = NAME OF THE EXTEHHAL SUBKOUTIWE USED. IT COMPUTES TO
GIVEN ARGUMENT X FUNCTIOM VALUE F ANO UEWIVATIVE DERF, IT
PARAMETER LIST MuUST HE KaF «DEWF
IMPUT YALUE wHICH SPECIFIES THE

RODT X,
IKPUT VALUE WHICH SPECIFIES THE
OF RESULT X,
MARIMUM NUMBER OF ITEHATION STEPS SPECIFIED.
RESULTANT ERROR PAHAMETER CODED AS FOLLOWS
IER=0 = WO LRFOR
TER=1 = WO CONVEHGENCE AFTER [END ITERATION STEPS
1ER=Z = AT ANY [IEWATION STEP DENIVATIVE DERF wAS
EQUAL T0 ZERD.
A HAS TAKEN ON 4 NEGATIVYE VALUE 5 CONSECUTIVE
TIMES FOLLOWING COARECTICON TO A POSTIVE WALUE.

XST - INITIAL BUESS OF THE

EPS - UPPEX BOUND OF THE EHROR

TEND=
IER -

IER23 =

PREFARE TTERATION

COMMON /10/ IREADsIWRITE
1ER=0

HC=8

X=XST

TeL=x

CALL FCT (TOL+F+DERF)
DX=F /DERF

A=xk=DX

NS1BN=0

IF TDERF.LT.0.) NSIGN=1
TOLF=100.%EPS

START ITERATION LOOP

00 145 I=1+IEND
IF (F) 105+155+105

EQUATION IS NOT SATISFIED BY X

105 IF (DERF) 110+160+110

ITERATION IS POSSIBLE

IF X TAKES A NEGATIVE VALUEs CORRECT X TQ BE HALF ITS OLD VALUE.
IF NOTs MAKE SURE NC=0 AND CONTINUE.

110 IF (%) 115+120+120

115 NCENC+ L
X=(K+DRD/ (1, +FLOAT(NC))
IF (MC=S51 13541704170
NC=O

IF (X=EKMAX) 130+130+125
LC=LCel
X=0,90XuAN
IF (LC=5)
LC*0
ToL=x
CALL FCT (TOL+F+DERF}

NCE=0

IF (DERF.LT.0.) MCE=]

IF (NSIGN=NCK.NE.U) GO TO 165
DX®F /DEHF

X=X=DX

120
125

13541354175
130
135

TEST ON SATISFACTORY ACCURACY

TOL=EPS

IF (ARS(DX}=TOL)

IF (ABSIF)=TOLF)
CONTINUE

140+ 1402145

140 15501951145

145
END OF ITERATION LOOP
60 To 150
NO COMVERGENCE AFTER IEND ITERATI®N STEPS. ERROR RETURN

150
155

IER=]
RETURN

52

ERROR RETURN TN CASE OF ZERO DIVISIOR

ann

160 IER=2
RETURN
sRITE

165 LIWRITEs180)

FLAGGED RETURN IN CASE OF S CORRECTED NEGATIVE X WALUES

ano

178 IER43

RETURN
FLAGBED RETURN AFTER CONVEWGENCE TO 6T. MAX WALUE OF X

non

175 IER=4

RETURN
180 FORMAT (17X+36HERROR STOP ON CHANGE OF SIGN IN DEHF)

EKD

SUBROMTIME ERROR (ISUBRsI+IVAR'KVAR)

COMMON 710/ TREAD LWRITE

DATA IUP/1S/

WRITE (IWRITE»200) I+15uBA

IF T{1.GE.1).AND.(I.LE.IUP)) GO TO 105

WRITE (IWRITEs205)

60 TO 195
105 GO ¥O (110+115+1200125¢1304135+140+145,150+155+160+165+170+175.4180
1+185+190)# 1
WRITE (IWRITE#215)
WRITE (IWRITE«210)
WRITE (IWRITEs225)
60 TO 155
WRITE (IWRITEs215)
WRITE (IWRITE«225)
WRITE (IWRITEs220)
60 TO 195
WRITE (IWRITE+215)
(1WRITE»230)

110
IVAR

115

TVARWKYAR

120
IVARWKYAR

15%
125 (IWRITE+235)
130

135

KEYARI1EVAR

o
L-]
-
o
-

95
WRITE (IWRITEs+240) IVAR+KVAR

19
(IWRITE+245) IVAR
195

140 IVAR+EVAR
145
150
155

160

[INRITE-250)
195
(IWRITE255) IVARWKVAR
195
(IWRITE+260) IVAR

9
[IWRITE+265) IVAR

(]
o
-
o

95
WRITE (IWRITE+270) IVAR

19
165 (IWRITES275)
1%5

170 (IWRITE2B0) IVAR
N

175 (IMRITE+285)
195
(IWARITE+290)

IVAR

180 IVAR
1%
(IWRITE295)
195
(INRITE#300)
(1WRITE+305)

185 IVARsKVAR

150 IVARsKYAR
155

FORMAT (1HDs1321)H*)//11H ERROR NO. »13+134 CALLED FROM w46}
FOHMAT (ATHOEWAOR NUMBER OUl OF RANGE, CALLED FHOUM ERROR.)
FORMAT (58H IT1 APPEARS THAT WO VALUE HAS BEEN INPUT FOR THE VARIAB

200
205
210

ILE oaBe2H .)

215 FORMAT (16HODATA CARD EHROHW/}

220 FORMAT (58M IT APPEARS THAT NO VALUE HAS BEEN INPUT FOR THE VARIAB
1LE #AB+30H FOR WATERSHED ELEMENT wITH J=el3)

225 FORMAT (T9H AT LEAST UNDER THE CONDITIONS SPECIFIEDs INPUT FOR THI
15 VARIABLE IS REQUIRED.)

230 FORMAT (34H THE VALUE INPUT FOR THE VARIABLE +AB8+79H IS ILLEGAL. T
1HIS VALUE OH ARRAY ELEMENT SUBSCRIPT (IFVARIABLE 1S AN ARRAY) IS »

214)

235 FORMAT (96H APPARENTLY ALL WATERSHED ELEMENTS WAVE NOT BEEN ASSIGN
1ED 10 THE ORDER OF PROCESSING ARRAY NLOG.s/+1lH THERE ARE +I3+19H
2ELEMENTSyBUT MLOGLvI3+4HIT0.)

240 FORMAT (82H DATA CARDS FOR GROUPS 15T AND 2ZND ARE FOR TWO DIFFEREN
1T waS. ELEMENTS, ON 15Ts J=s3sléM AND ON 2ND J=+13)

245 FORMAT (11H ELEMENT J=+I13+93H HAS BEEN SPECIFIED AS AN ADDER CHANN
1EL 1XL=0.) BUT IS NGT THE LAST ELEMENT TO 8E PROCESSED.)

250 FORMAT (11H THE ARRAY +ASe33n IS REQUIRED INPUT ON GROUP CARD +ABs
147H . APPAREMTLY IT [S MISSING FROM THE DATA INPUT)

255 FORMAT (11H FOP ARRAY sAS+l6M EITHER ELEMENT »I3+55H IS ILLEGAL (=0
1.) OR THE ENTIRE ARAAY HAS NOT BEEN INPUT)

EGOIF?RIIT (4TH THE NUMBER OF GEOMETRIC ELEMENTS EXCEEDS 20.

vlH=])

265 FORMAT

270 FORMAT

275 FORFAT (1TH

riH=s 110

(22H
1181

NO CONVEARGENCE AFTER «I4+17H ITERATION STEPSa)

DERIVATIVE OF K{sI4+6H) = 0,)

BLANK CARD READ)

280 FORWAT (924 5 CONSECUTIVE NEGATIVE VALUES wERE OBTAINED FOR NEW VA
ILUES IN THE ITERATIVE SOLUTION OF X(sl3+1H))

Elslqonln1 I9H ELEMENT +I2+40H HAS A PLANE AND CHANNEL(S) AT UPPER END

290 FORMAT (9H ELEMENT +13+2TH HAS NOT BEEN PROCESSED YET)

295 FORMAT (86M CENTRAL INTERCEPT ANGLE CALCULATED TO BE GT. ZPI+ IMP
ILYING FULL PIPE FLOW IN CONOUITsI3stH AT X(slZ2eln))

300 FORMAT (27H AREA OR DEPTH ON ELEMENT +12+6H AT ‘X(»12s42H} IS CALC
1ULATED TO EXCEED MAXIMUM ALLOWED )

305 FORMAT (1HO#132(1H®))

END
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A computer program of a general kinematic watershed model
is described and documented. This program, called KINGEN 75
may be used to predict hydrographs of individual storms for
small rural and urban watersheds, based on basin topography and
field measurements of infiltration parameters.

Reference: Rovey, Edward W., David A. Woolhiser and Roger E.
Smith; Colorado State University, Hydrology Paper No.
(July 1977), A Distributed Kinematic Model of Upland Watersheds.

A computer program of a general kinematic watershed model
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small rural and urban watersheds, based on basin topography and
field measurements of infiltration parameters.

Reference: Rovey, Edward W., David A. Woolhiser and Roger E.
Smith; Colorado State University, Hydrology Paper No.
(July 1977), A Distributed Kinematic Model of Upland Watersheds.

A computer program of a general kinematic watershed model
is described and documented. This program, called KINGEN 75
may be used to predict hydrographs of individual storms for
small rural and urban watersheds, based on basin topography and
field measurements of infiltration parameters.

Reference: Rovey, Edward W., David A. Woolhiser and Roger E.
Smith; Colorado State University, Hydrology Paper No.
(July 1977), A Distributed Kinematic Model of Upland Watersheds.

A computer program of a general kinematic watershed model
is described and documented. This program, called KINGEN 75
may be used to predict hydrographs of individual storms for
small rural and urban watersheds, based on basin topography and
field measurements of infiltration parameters.

Reference: Rovey, Edward W., David A. Woolhiser and Roger E.
Smith; Colorado State University, Hydrology Paper No.
(July 1977), A Distributed Kinematic Model of Upland Watersheds.
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