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ABSTRACT

A model for description and generation of new samples of intermittent daily precipitation series is de-
veloped. The basic assumption is that precipitation is a result of truncating a non-intermittent process.
Clasgical methods for modeling the time dependence in this latter process can then be applied. The univariate
non-intermittent process permits then an extension to multivariate case. Specific tests, related to stationa-
rity and time independence of the process, are formulated. The model is tested on series of several precipi-
tation stations in USA. Results have been found satisfactory.

Another model, in this case for the description and generation of new samples of daily streamflow, is also
@ev§loped. The basic assumption is that the rising and falling limbs of discharge hydrographs can be modeled
1n§1vidua11y as two difference, intermittent processes, also physically different. The rising limb process is
mainly due to factors external to watersheds. It is modeled similarly as the intermittent precipitation process.
The falling limb is conceived as governed by regularities of water outfiow from watersheds, with the watershed
storage and outflow represented by two linear reservoirs. A sequence of recession flows is then a stochastic
output from these two reservoirs. The model is tested for a case study. Results are satisfactory in repro-
ducing the combined process.

FOREWORD

Hydrologic time processes have been classified for practical purposes as continuous and intermittent. Most
climatologic and hydrologic time processes are continuous series, meaning that there is a non-zero value of that
variable at any time. Instantaneous precipitation, evaporation, sediment transport in rivers, some runoff (usu-
ally on small rivers with negligible underground or surface water storage) represent the typical hydrologic
intermittent time series. For some times the observed values are zeros; for other times values are greater than
zero. Though there may be a continuous flux of water molecules through the liquid-gasous or solid-gasous inter-
phases on the continental areas, with a difference in the number of molecules passing in two directions, the
original concept of precipitation variable was designed in such a way that the process of instantaneous or short-
interval precipitation is intermittent.

In practice, many intermittent processes, with positive series values for some time intervals and zero
values for the other time intervals, are observed as totals for given time intervals, usually counted in minutes,
hours, days, or a longer interval. Therefore, a sequence of intervals with values greater than zero is inter-
changed with intervals of zero values. This is the way how many observed or computed time series have been pro-
cessed and their data published. A large amount of available data of this type makes it necessary to design
methods most feasible for their investigation and mathematical description that would permit the simulation of
these intermittent series by the data generation methods.

Because of spatial interrelation for most of the climatological variables, the resulting hydrologic varia-
bles such as precipitation, evaporation, sediment transport, runoff of small rivers, and similar variables may
all have intermittent series that are also spatially dependent. Solutions of practical water resources problems
require data on time series either at a point or at a set of points. When a point series is studied independently
of time series at the other points, methods are already available for the description of these intermittent series
in the form of mathematical models and the estimation of their parameters. The classical approach to the uni-
variate (or point), intermittent time series is to first describe the process by such random events and their
time process as the sequence of zero and non-zero intervals. The difficulty in this approach arises from the
fact that nearly all the parameters, especially the interval mean, standard deviation and autocorrelation coef-
ficients (and sometime the skewness and kurtosis coefficients), are or may be periodic. To aveoid the difficulty
of this combination of periodicities and intermittency, an approach to analysis starts by dividing the annual
cycle into the seasons and the daily cycle into its parts, with an assumption that all the parameters are con-
stants inside these intervals. This assumption requires the break of cycles into a relatively large number of
seasons or parts, in order to justify it.

When the problem of generating new samples by using the Monte Carlo (experimental statistical method) is
posed in hydrology and water resources, with the generated data to preserve both the time and space properties
of random variables involved, this problem becomes that of a mathematical description and that of the generation
of new samples in case of periodic-stochastic, intermittent time series. Both the periodicity in parameters,
and the fact that the non-zero values occur at some space points while the zero values are not observed simul-
taneously at the other points, create difficulties in generating new samples of multi-point intermittent time
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series. Attempts have been made to apply the combinatorial analysis and Markov chains in order to generate
simultaneously the series of 2-3 stations, by generating first their zero and non-zero intervals, and then by
preserving both the space and time dependences within the non-zero intervals. Researchers following this ap-
proach have been able to simulate only 2-3 station series. For more than four stations. the combinatorial
approach becomes so complex that it is then difficult to extend it to cases of five. six, and more intermittent
time series.

The generation of multivariate time series, which are periodic, intermittent and also stochastically depend-
ent both in time and space, can be best accomplished by using the approach of the multivariate normal distribution
and the principal component analysis. It seems logical to procede in that direction also for variables which
have asymmetric probability distributions and periodic-stochastic, intermittent time series. When a multivaria-
ble process is found to be periodic-stochastic, intermittent, non-normal stochastic process, difficulties arise
both in mathematical description and in generation of new multivariate samples. When it becomes feasible to
study intermittency by assuming it to be a truncated process of a non-intermittent time series, by removing
periodicities in parameters, and by transforming the original variables or their residuals into the normal varia-
bles, then the principal component analysis for the generation of new samples becomes a feasible and very de-
sirable approach.

The Ph.D. dissertation by Jerson Kelman. entitled "Stochastic Modeling of Intermittent Daily Hydrologic
Series" (1976), and the Ph.D. dissertation by Clarence Wade Richardson. entitled "A Model of Stochastiec Structure
of Daily Precipitation over an Area" (1976), represent attempts to mathematically model the multi-series pro-
cesses and to generate the new multivariate samples of periodic-stochastic, intermittent time series of daily
precipitation as asymmetrically distributed random variable. As shown by the first dissertation. also the non-
intermittent daily runoff series may be conceived as two intermittent processes, with variables transformed to
normal distributions. Daily series are selected as typical examples of the short-interval time series. The
basic approach is then in postulating that an intermittent time series with short time interval is only a trun-
cated process of a non-intermittent, descrete time series. Basically. it is assumed that the probability distri-
bution of non-zero values of an intermittent time series is only a tail, or a part of, either a truncated normal
distribution, or a truncated other distribution, such as gamma, lognormal and similar. Therefore, techniques be-
come needed for estimation of properties of a non-intermittent process from a periodic-stochastic, intermittent
process. Techniques are further needed for the transformation of original variables or of their stochastic re-
siduals in such a way that the periodic-stochastic, intermittent process of an asymmetric variable becomes only
the truncated part of a normal distribution in case of the non-normal distribution of variables. The above two
doctoral theses, one more tilted toward the theoretical and the other more toward the practical side, are the at-
tempts to implement the above concepts by postulating the mathematical models and by estimating parameters of non-
intermittent time series from the original, intermittent series. Once the properties of the non-intermittent dis-
crete time series are estimated for each point of a multi-point set of series, it then becomes feasible to ap-
proximate closely by transformations their multivariate non-normal distribution by a multivariate normal distri-
bution. From it then the periodic parameters can be estimated by fitting a set of harmonics in the Fourier ana-
lysis, and the periodic parameters appropriately removed from the series. The remaining stationary stochastic
components may be either dependent or independent time processes. For a dependent process, linear dependence
models can be inferred and their parameters estimated. This permits the computation of the independent identi-
cally distributed residuals, as the time independent stochastic components (TISC-variables). Once the series have
been reduced to a set of normal, time independent,. identically distributed stochastic processes, their spacial lag-
zero correlation matrix enables a transformation of this set of series to their principal components, as a new
set of space and time independent normal process. To gemerate the new samples of multi-point series, the normal
independent samples are generated for each point and the reversed procedure applied on these time and space
normal independent processes., Further transformations of reverse order produce the periodic-stochastic, non-
intermittent process at each point. They preserve then the space dependence, periodicity and time dependence.

By equating each negative value with zero, the multivariate, periodic-stochastic truncated (or intermittent)
normal process is simulated by a set of new samples. Variables are then transformed from normal to the corres-
ponding ' non-normal distribution.

The writer of this Foreword is convinced that the approach outlined above, and studied in this paper, for
the generation of new samples by using the Monte Carlo (or statistical experimental) sample generation method
is a feasible, practical method to model a set of periodic-stochastic, intermittent, time and space dependent
series.

The other problem investigated by Dr. Jerson Kelman in this paper is the difference process applicable to
the non-intermittent descrete time series, such as the non-intermittent daily runoff series, It is assumed
that whenever the flow increases for a river the response of the river basin is different from its response
during the river flow decrease. Therefore, the process could be divided into two separate but interconnected
intermittent processes: the positive intermittent process as a difference process during the runoff increase,
and a negative intermittent process as another difference process during the runoff decrease. The two differ-
ence processes, each considered as an intermittent process, are then combined to become a non-intermittent
process.

Further research into the application of the above concept of considering the intermittent processes at a
set of points along a line, over an area Or AaCross a space as the truncated processes of the periodic-stocha-
stic, non-intermittent processes, is needed to sharpen the practical aspects of this method for the generation
of new series.

Vujica Yevjevich
Bobmary 1347 Professor-in-Charge of
Hydrology and Water Resources Program



Chapter 1

Introduction

1-1 Needs to Simulate Hydrologic Processes

The need for generating hydrologic sequences in
the study of complex water resources problems is
recognized by many hydrologists. It does not mean
that this so-called experimental (Monte Carlo) method
needs to be applied in every or most hydrologic pro-
blems. One should use an anlytical solution whenever
available rather than any other method. Unfortunately
such explicit solutions are rare. Usually the
way to extract probabilistic information about the
performance of a system is to determine its response
or output to a set of new hydrologic sequences obtain-
ed through simulation.

2-2 Objectives of the Study

This study is devoted to a development of a model
for generating of sequences (samples) of daily preci-
pitation and another model for daily streamflow
sequences.

The precipitation is assumed to be a filtered
realization of the first-order, linear, autoregressive
stochastic process. Figure 1-1 illustrates this
filtering procedure. It will be seen in the ensuing
chapters that the resulting X _-process is not only in-
termittent but also it possesses a mechanism that en-

sures the persistence in data. Furthermore, the set
& | FiuTer L or ¥ X
o i I%;ER L FILTER fou
3
Figure 1-1. Representation of the Intermittent Model.

of positive outcomes can be accepted as drawn from a
highly skewed marginal distribution. These character-
istics are quite relevant to the time series studied
herein. [EtJ are independent random variables with

standard normal distribution;
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The streamflow record, q(t), is analyzed
according to its increments q(t)}-q(t-1). The posi-
tive sequences of these increments are modeled differ-
ently from the negative ones. This approach is intend-
ed to bring forth a model that takes into
consideration the diversity of physical factors that
produce streamflows. The positive increments, pro-
duced mainly by spells of surface and sub-surface
flow, are characterized by a weak persistence. The
negative increments are the consequences of the water-
shed retention and outflow process, and therefore have
a strong persistence. The sequence of positive incre-
ments has the same form as the precipitation process,
because the surface flow may be considered as a

slightly filtered rainfall. The sequence of negative
increments is obtained by assuming that the recession
discharges are a stochastic output of two linear
reservoirs. In this model the sequence of positive
increments and the sequence of negative increments are,
respectively, the realizations of masfer and sfave
stochastic processes.

The model is designed for rivers with runoff
predominantly produced by rainfall. Care is recom-
mended when it is used under different conditions, say
when snowmelt is a significant input to streamflow.

No attempt is made to route the rainfall excess to end
up as the streamflow. In fact, these two processes
‘are dealt with separately.

Time intervals shorter than one day are not dealt

with in order to avoid the complexities resulting from
the diurnal variations in the processes. Nevertheless,
techniques are available in the literature for it by
breaking down the daily values into hourly values.
One of these within-the-day periodicities are found to
be not significant, there is no conceptual impediment
for the use of the models presented herein for modeling
processes on a fraction-of-the-day time interval.

Meteorological factors related to the precipi-
tation process, for example cloud type, temperature,
winds, humidity, etc., are not considered. The
observed record is examined merely as a realization of
the stochastic process. No physical explanation of
precipitation occurrence can be derived from the
statistical description of the observations presented
herein.

The precipitation model was conceived as
reproducing (in a stochastic sense) processes
significant time persistence.

with
No claim is made on the

goodness of fit of this model to various types of
precipitation.
1-3. Needs for the Use of Daily Series

The use of models to model and generate the anmual
and/or monthly sequences is already widespread in
hydrology. In many situations, when a large scale
project is involved, further refinement of the time
scale becomes an exercise in futility. However, in
many hydrologic studies the use of series of short
time intervals is required. For example, Beard (1968)
stated that "although fluctuations of flows within a
month usually have minor influence on reservoir
storage required for conservation purposes, such fluc-
tuations are ordinarily crucial in the determination

of reservoir space requirements for flood control."
The optimization of a system involving a %un-cff-the-
fiver hydroelectric power plant is another example.
In fact, Pfaehler (1933), referring to duration curves,
said that "...the monthly curves were used as a basis
in arriving at the estimated power output, and check-
ing the figures... by the use of daily streamflow re-
cords, the results thus obtained sometimes differed
as much as 35% to the disadvantage of the project."

In the 30's the difficulty in handling the prodigious



amount of daily data justified using the monthly
values. In the computer age this is no longer the
case. It should be pointed out, however, that the
shorter the time interval of the series to be studied,
the more difficult it is to develop a generation
scheme. It is understandable that time series with
long intervals, say annual streamflow, bettfer behave
than those with the short interval, say the daily
streamflow.

1-4 Needs to Model Precipitation Process of Short
Intervals

The needs for developing a reliable model for
daily streamflow is in general accepted. However,
with respect to the precipitation process,a discussion
on its needs seems to be appropriate. First, a
precipitation time series is mostly homogeneous, a
property not always found in streamflows. The latter
is frequently affected by man-made structures, while
climate is in general stationary.

Second, the generated rainfall samples can be
used in deterministic models which route rainfall
through the several phases of the land segment of the
hydrologic cycle. These models implicitly assume that
the stochasticity of the streamflow process is due
only to rainfall and potential evapotranspiration,
which is equivalent to stating that the stochasticity
imbedded in the watershed is integrated in such a way
that it yields mean values. These models may be used
to predict modifications in the streamflow due to
changes in the watershed (for examples, the urbani-
zation) without modifying the generation model for
precipitation. Whether the accuracy and the physical
meaning of deterministic models is sufficiently high
to assure the reliable samples is a question which
cannot be answered in the text. Riviews of various
philosophies in this approach, as well as a closer
examination of some of these deterministic models,
may be found in Flemming (1975) or Brown et al. (1974)

are available
It is conceivable

Third, many bfack-box techniques
which connect runoff to rainfall.

that due to the better quality and quantity of rain-
fall data one may choose to face the uncertainty in
the transfer function, rather than generating new se-
quences of streamflow from the unreliable historic
records. Regional studies may fit these conditions.

Finally, generated rainfall sequences may be
important by themselves, and not merely to be used to
produce streamflow sequences, as would be the case in
water resources systems which involve the irrigation
and urban drainage.

1-5 Outline of Chapter Contents

Chapter II gives a brief survey on the state of
the art of modeling as related to the present study.

Chapter III presents the conceptual framework for
modeling the intermittent processes. An intermittent
process is such that there is a positive probability
that an observation is equal to a constant. For ex-
ample, daily rainfall is such a process, since there
is a finite probability that at any given day no rain-
fall would occur, i.e., that the observation is equal
to the constant, in this case the value of zero.
Similarly, daily streamflows of small rivers may have
zero flows between floods; therefore, they satisfy the
definition of intermittent processes.

In Chapter IV the developed model is tested
whether it reproduces the major statistics of the
rainfall process, either univarite or multivariate.
Periodic functions are used to account for the sea-
sonal variation of parameters.

In Chapter V a model for daily streamflow is
presented. It uses the dual approach: positive in-
crements of streamflow are represented by an inter-
mittent process which is different from the one
related to the negative increments.

Chapter VI presents conclusions and recommenda-
tions for further studies.



Chapter II

Brief Review of Models For Daily Rainfall and Daily Streamflow

The first part of this chapter includes a de-
scription of mathematical models used for the precipi-
tation process. The second part does the same thing
for the streamflow process. No attempt is made to
report about all the efforts and contributions made on
this subject; only those that are designed for daily
data and/or are relevant to the present study are men-
tioned. For a broader perspective on the topic of
stochastic modeling on hydrology the interested reader
might consult, for example, Yevjevich (1972), Lawrance
and Kottegoda (1976), or Clarke (1973).

2-1 Models for the Precipitation Processes

One of the §inst thoughts on the subject. One
should start with recognizing the fact that most
records of daily rainfall have large numbers of zeros.
They can be conceived as the realizations of a non-
negative, intermittent stochastic process. As a first
approach to the problem of modeling such a process,
one might consider that a good fit would be obtained
by a mixed distribution, with the probability mass
concentration.. p(0<p<l) at the origin of x = 0, and
a continuous probability density distribution,
(I-p)f(x) for x > 0. Alternatively, one could lump
all the values which are smaller than a small value

8* (including the zero), and fit a continuous distri-
bution for x > 0 in such a way that P (X<§*) =

a*

f f(x) dx is close to the relative frequency in the

o

interval [0,6*%]. Das (1955) made &* = 0.05 inches
and applied this method for the Sydney rainfall data
from October 17 to November 7 for 94 years. He used a
truncated gamma distribution to fit the values larger
than &%, and obtained good results. Unfortunately,
the approach is not powerful enough to satisfy the
needs of stochastic hydrology.. As it will become
clear in the following subsections, a general model-
should have the capability to cope with these subjects:
(i) the non-stationarity of the process, (ii) the time
persistence of the process, (iii) the expansion from
the univariate case to the multivariate (several rain-
fall stations), and (iv) the extreme events (the model
should be able to reproduce the flood causing type of
events).

Stationanity. It is conceivable that if Das
(1955) wanted to model not 22 but, say, 100 days he
could have analyzed five periods of 20 days each. This
is the so-called 4easdon approach to the obviously non-
stationary hydrologic time series with discrete series
intervals shorter than the year. An abrupt transition
between the last day of season i and the first day
of season i + 1 may not be acceptable. Therefore,
some hydrologists use the continuous variation of
parameters along the seasons of the year, creating
thus a smooth representation for changing parameters
for non-stationary processes. The season can be as
short as one day, though it may not be advisable
because of an increase of uncertainty in the estimation.
Most of the rainfall models use the seasonal approach.

Todorovic (1968), Verschuren (1968), and
Todorovic and Yevjevich (1969), attempted at obtaining
the explicit expressions for distributions of some
functionals of a hypothesized continuous and instan-
taneous rainfall process, rather than develop a model
oriented to generation of samples. In the latter
reference the year was divided into 28 seasons, each
13 days long, and the following functionals were
studied; (i) the number of complete storm events in a
given time interval, (ii) the maximum number of storm
events, with the total precipitation which does not
exceed a given amount, (iii) the end times of storm
events; (iv) the total precipitation for a given number
of storm events; (v) the total precipitation for a
specific storm event; and (vi) the total precipitation
during a given time interval. A storm event was
defined either as an uninterrupted period of rainfall,
or as a day (or an hour) with rainfall. An assessment
of the sensitivity of final results to these two
interpretations of uninterrupted period was estab-
lished. Assuming that the number of storm events in a
given time interval (within a season, in order to
assure the stationarity) was distributed as Poisson,
made some simplifications possible. The result was
that the desired probability distributions could
actually be evaluated. It was demonstrated that all
the functionals were dependent on the two parameters:

rl = the number of storms in a time unit, and rz = the

inverse of the average yield per storm at a given time
of the year. The time variation of these two parame-
ters was studied for four precipitation stations in
the USA and periodic ,functions were fitted for the set
of 28 points (one for each season), respectively of

Fl and Pz.

There is an alternative to the seasonal approach.
One might consider the raw data as the combination of
a deterministic and.a stationary stochastic process.
When the deterministic component in form of periodic
parameters is identified, the hydrologist can isolate
the remaining stochastic process, usually modeled by
a linear autoregressive scheme. As is well known,
there is always a random independent component in any
autoregressive model. Therefore, the last task is to
fit some probability distribution to this nodse.
Yevjevich (1972b) gives a thorough discussion of this
method for the general application in hydrologic time
series. However, the type of distribution of the
noise for the daily rainfall process remains undefined.
Adamowski and Smith (1972) assumed that the noise was
normally distributed, without giving a justification.
It seems that this approach does not work properly
for hydrologic time series with short time intervals,
although it may be satisfactory for longer time in-
tervals, as for example a month or perhaps even a week.
This assertion will be investigated when the stream-
flow models are dealt with.

Pers.istence. Wiser (1964) has shown dependence
in daily precipitation for North Carolina gauging
stations. He states that the dependence is quite a



general phenomenon. The degree of dependence is small-
er in monthly than in daily series, and also smaller
for wet periods than for dry periods of these series.
At some locations the dependence tends to a condition
in which the information about only the previous day
is required for its description.

Grace and Eagleson (1967) report that there is a
definite persistence in rainfall values with time
interval equal or shorter than the day. They developed
a dependence model for the 10-minute rainfall incre-
ments by fitting the probability distributions to the
length of time between storms and to the duration of
each storm. A &ftoum is defined as the sequence of
observations separated from the others by a row of
zeros longer than a certain ciifical fag. An alter-
nating sequence of wet and dry periods could thus be
generated. They divided storms into three classes:
trace, moderate and peaked. For each class they
fitted a linear regression to the storm depth given
the storm duration. By fitting a probability distri-
bution to the residuals of the above regression they
were able to generate a sequence of storm events, with
the total depth of each storm known. The question
comes of how to distribute the total amount of preci-
pitation in a given time interval in such a way that
the serial dependence is preserved. They developed
an interesting technique that is particularly relevant
to the present study because it might be applied to
transform the generated daily sequences into hourly
ones. Suppose that there are n hundreths of an inch
of rainfall to be distributed amongst k intervals.
An equivalent problem is how to distribute n black
balls contained in an urn amongst k boxes. The
serial dependence is introduced by adding to the urn
m red balls and allocating the balls to the boxes
according to the following rule. The first black ball
is allocated at random, say to box j. To box j is
then given m red balls, boxes j-1 and j+1 are given

mi The next
black ball is allocated in such a way that the proba-
bility of it falling in any given box is proportional
to the number of red balls that it contains. Then the
process is repeated again. The first and last box
must be given at least one black ball in order to
assure the duration of the storm. The values of m,

mo, My, ..., Were selected by trial and error, com-

paring the correlation coefficients and probability
distributions between the generated historic sequences.

of the remaining red balls, and so on.

Gabriel and Neumann (1962) studying the succes-
sion of wet and dry days for the mid-winter peried in
Tel Aviv, showed that a two state (wet and dry) Markov
chain was a good model for representing this dichoto-
mized process. This means that, at least for the
situation analyzed by these authors, the probability
that day i+l will be wet (or dry) is clearly depen-
dent upon the event which occurred on day i. They
were not concerned with generating new rainfall se-
quences, but concluded by suggesting that a valuable
information could be obtained if the amounts of preci-
pitation were included in the analysis.

Green (1964) approached the same problem by
assuming that the sequence of dry and wet periocds could
be modeled by an alternating renewal process, with
exponential density functions for the lengths of dry
runs and the lengths of wet runs. It was found that
the results yielded by this non-Markovian approach were
comparable, and sometimes even better, than those
obtained by Gabriel and Neumann (1962).

Nicks (1974) used the two-state Markov chain to
model the occurrence and non-occurrence of rain on
each day for a whole region, rather than for a single
point in space. For a wet day the rainfall was gen-
erated in two steps: (i) determine which station
receives the maximum rainfall and generate its value;
this is done by sampling from distributions fitted to
the historical data, and (ii) determine the rainfall
depth for each station, based on regression on the
center of the storm type equations.

Todorovic and Woolhiser (1974) aimed at finding.
an explicit expression for the probability distribu-
tion of the total amount of precipitation, Sn’ during

a period of n days. Under the hypothesis that the
total precipitation for k wet days in a period of
n days long is independent of which of these k days
were actually wet and which of the (n-k) days were
dry, they showed that

n *
PE, £ i PN, =i0) & Z! P(S, <) J(N =),
V=

where N_ is the number of wet days in an n-day

*
period; and Sv is the total amount of precipitation
*
for v wet days. P(Sy < s) was evaluated assuming

* -
that P{S1 £ 5) = 1-e As’ i.e., the amount of rainfall

of a wet day is exponentially distributed. They
further assumed that the rainfall depths on different
wet days were independent; therefore, Sv is the sum

of v independent exponentially distributed random
variables and thus has the gamma distribution.
P(Nn = v) was evaluated under two hypothesis: (i)

that there is no serial dependence in the sequence of
wet and dry days, and consequently Nn is assumed

binomially distributed, and (ii) the sequence of wet
and dry days follows a two-state Markov chain and
hence the results of Gabriel and Neumann (1962) are
applicable. They found that the Markov-chain expo-
nential model was superior to the binomial-exponential
model. This is one more indication that precipitation
cannot be treated as a succession of independent
events.

Ison, Feyerhem and Bark (1971) also considered
the sequences of wet and dry days as a Markov chain.
The amount of rainfall in a sequence of n wet days
was assumed to be gamma distributed with the scale
parameter dependent on n. Therefore the results were
similar in some respects to those of Todorovic and
Woolhiser (1974).

It appears that a new class of models is at hand
if one assumes that not only the dry-wet condition of
day i+l depends on the condition of day i, but also
the amount of precipitation on day i+l depends on the
measured depth of the day i. This seems to be a
reasonable assumption to make when one deals with
precipitation of the frontal type. The obvious way to
proceed is to divide the range of observations in
n > 2 classes (states), rather than have only n = 2.
An n xn transition matrix can then be estimated and
the concept of Markov chains again applied. Pattison
(1965) used this approach to model the hourly rainfall.
However, the large probability that a state 0 (no
rainfall) will follow the state 0 made the model

incapable of reproducing the length of dry periods:



the generated sequences usually had diy funs longer
than the historic series. To resolve this he broke
the models into two parts. The first part, used for
wet periods, was the same first-order n x n Markov
chain. The second part, used for dry periods, was a
sixth-order Markov chain in which each hour.was classi-
fied only as wet or dry. For generation, the first-
order chain was used when the hour i was wet. If
the hour i was dry the model shifted to the sixth-
order chain, i.e., the information was used on the wet
or dry state of hours i-5, i-4, ...,‘i, in order to
generate the new state at the hour i+l. If it
happened for the (i+1)-th hour to be dry, the sixth-
order chain was used again. If it was wet, the rain-
fall depth was sampled from a distribution fitted to
the §insf wet howr, and the model would again switch
to the first-order chain. In the wet period the
actual rainfall depth would be obtained by sampling
from a uniform distribution defined only for the in-
terval under consideration.

Khanal and Hamrick (1974) used the n state
Markov chain to model the daily rainfall. They report
that ''the problem that Pattison had with the inbetween
sequence while synthesizing the hourly rainfall values,
does not arise with the daily rainfall values." They
considered the process stationary for each month, i.e.,
the year was divided in twelve seasons. The range for
the daily rainfall depth was divided in 14 intervals.
Therefore, 13 x 14 = 182 transition probabilities
ought to be estimated for each season. They did not
attempt to fit the analytical distributions to con-
ditional probabilities of the transition matrix.
Whenever a state was reached, the midpoint of the
corresponding interval was assigned as the generated
rainfall depth. Any Markov-chain approach suffers
from the opposite effects between the need for a large
number of states (for an increase of precision) and
the explosion of the number of transition probabil-
ities which must be estimated. Analytical distribu-
tions not always can be fitted to alleviate the
problen.

The Multivariate Case. None of the techniques
described so far appears to be apt for generalization
in order to treat the multiple station case. Franz
(1974) developed a model for the multivariate hourly
rainfall. He tested it for a three-station network in
northern California. The storm and interstorm events
were modeled separately. A storm was taken to be a
consecutive series of hours in which each hour had the
rainfall recorded at one or more stations of the
network. It was assumed that the data corresponding
to storm periods can be transformed in such a way that
it will appear as a sample from a multivariate normal
distribution. Strictly speaking the set of transformed
observations does not constitute a random sample
because of the persistence in data and the lack of
negative values. The persistence was included by
treating the transformed series as a Markov model of
lag one. The limited range was included by assuming
that all the negative values have been set to zero
before the sample was observed. The transformation
used to normalize the marginal distributions was of

the form Y = a+bxg, where Y = the normal variable,
X = the observed values, and a, b and g are the
parameters. The estimation of these parameters was
performed by fitting the above equation, by a least
squares approach, to the pairs (xi, ¥;). For each

X the value of y; was obtained in such a way that

¥ .
Tt s(t)de = P(Y < y;) = P(X < x,), where ¢(+) is the

p.d.f. of the standard normal and ﬁ(x < xi} stands
The co-

variances between the transformed variables of differ-
ent stations were also found through fitting proce-
dures. For storms the generation procedure followed
the steps suggested by Matalas (1967). It was
necessary, to take into account the stationarity con-
siderations, to divide the year into four seasons.

The interstorm model required that the year to be
divided into 50 seasons, for each one of them an
empirically defined distribution was found for the
interstorm length. No single distribution could be
fitted accurately to interstorms. It was concluded
that empirical adjustments had to be used to obtain an
acceptable level of performance.

for the sample c.d.f. evaluated at X, -

One must not confuse the multivariate with the
multidimensional models. The first category deals
with the rainfall as point processes; with the obser-
vations of one station related to those of the other
through a correlation structure, regardless of the
distance between the stations. The second category

-deals with a process that is not only dependent upon

the time but also upon the geographic location; a good
introduction to multidimensional models can be found
in Bras and Rodriguez (1975).

Extreme Events. The generated sequences should
imitate the historical sequence, and not only for the
average conditions but also for the situations in
which floods or droughts are of the concern. In other
words, the faif events, or the very large observations,
should occur in the generated sequences with the same
magnitudes, pattern and frequence as in the historical
one. By the same token, the dry intervals should be
correctly reproduced. An agricultural drought is
related to the sequence of dry and wet runs of rain-
fall during the growing season for crops. It is
surprising that very little attention has been given
to these two factors by the builders of hydrologic
models for rainfall. An exception is the work by
Todorovic and Woolhiser (1976), who gave the distri-
bution of the largest daily value of precipitation in
the n-day period, for the same set of assumptions as
advanced in their previous work (Todorovic and
Woolhiser, 1974). Gupta and Duckstein (1975) concen-
trated on the problem of the maximum dry interval for
a point rainfall process. They assumed, as many
others did, that the number of wet days in an n-day
period is Poisson distributed. They reported a good
agreement between the theoretical and empirical
distribution functions.

Other Reviews. Complementary reviews to the

present one might be found in Tedorovic and Woolhiser
(1976); also in Rhenals, Rodriguez, and Schaake (1974).

2-2 Models for Streamflow Processes

Direct Approach. Likewise to precipitation, a
daily streamflow model should be able to cope with
four aspects: non-stationarity, persistence, multi-
variate case, and extremes. At first, one might try
to approach the problem of how to model the process by
using the same successful techniques employed in
studying the hydrologic series with the longer time
intervals, such as a month. For example, following
Yevjevich (1972b) let the daily streamflow sequence
be represented by {xi}, where i=1, 2, ..., n

(n = number of years). If m and S.» TS Ly 12y

+..s 365, are designated as daily means and daily



standard deviations, respectively, the standardization
of the process gives g, = (xi-mrjjsr’ in which €

is the new reduced variable. This process may be
stationary and quite often well modeled by a linear
autoregressive scheme. For the sake of simplicity,

let us assume that a second-order model is appropriate,
namely

€. = Qa, €

7_ 2
i~ % 1-1”‘251-2*'4'“1"’2‘2“1"2"51’

where @5 Gy, and p = the parameters and Ei = the

random component, with mean zero and variance unity,
independent and identically distributed over all T
positions. Quimpo (1967) applied this scheme to daily
runoff records of the 17 rivers and found that indeed
all the residual series satisfied the second-order
autoregressive representation.

~ Tao (1973), using the same data as Quimpo (1967),
made an extensive attempt to fit a distribution func-
tion to the random component, gi. In his words

"...no distribution was found to fit the frequency
distribution of the daily variables, because of the
sharp peak and high skewness of the empirical distri-
butions." For longer time intervals, however, he was
able to fit distributions with unusually high number
of parameters. For example, for the 7-day variables

the double-branch gamma function with six parameters
was found most applicable. He also devoted attention
to testing whether the distribution of the random
component had or had not a heavy tail. This is some-
what surprising since the very important problem of
tail behavior (for extreme events) is usually neglected
by model builders. He concluded that the distributions
of the studied variables did not possess heavy tails.

Kottegoda (1972) avoided the complexities of
daily streamflow because ",..the high variance of the
flows, the unconventional probability distributions,

and the failure of the simulation processes to trans-
fer hydrograph characteristics of the historical

flows." Instead he aimed to model the 5-day stream-
flow. For the €, -process he found the fourth-order

autoregressive representation to be appropriate. The
distribution for the random component, Ei’ was

searched among the Pearson.system and Johnson type
distribution functions. It was concluded that the
best fits were obtained by using the Pearson Type III
and Type VI, and the lognormal distribution functions.

Indirect Approach. Since the direct approach
for generating daily sequences is unsuccessful most of
the time, one alternative procedure is often used,
namely the values are generated for longer time
intervals, say a month or a week, and then disiéributed
among the days. For example, Green (1973) used
Kottegoda's (1972) model to generate sequences of
S5-day average flows, and then split them into daily
average flows using a sophisticated method of inter-
polation. Beard (1968) used a linear regression of
the standard deviation of daily flow logarithms, within

“each month of record, upon the logarithm of the total

flow for that month. The daily values were obtained
considering {Ei} as a second-order autoregressive

process, and s, asa linear function of the generated

monthly streamflow, this one generated by some other
model.

Further Comments. Many other attempts have been
made to develop the daily runoff models. However, it
seems fair to say that all of them have serious
limitations. It is this writer's opinion, this con-
dition can only be changed if hydrologists recognize
that the high complexity of the process stems from
the diversity of the factors that are lumped into the
streamflow. The only hope for improvement is to embody
into the stochastic models some knowledge about the
physical processes that cause runoff.



Chapter III

MODEL FOR INTERMITTENT PROCESSES

In this chapter a model for intermittent processes
is developed and proposed. Hopefully it will be a
useful tool for hydrologists studying time series such
as rainfall, overland flow, and the runoff of ephemeral
rivers. In Chapter V it will be shown that the model
is also often appropriate to represent the positive
increments of streamflow. The model was conceived
with the generation of new samples in mind. Therefore,
an important objective in the model building stage
was to obtain a simple-to-use scheme of generation,
even for a multivariate case; and yet fulfill all the
requirements specified in Chapter II. This does not
imply that the estimation procedure is simple, As a
matter of fact, quite the opposite comes out to be
true.

3-1 The Conceptual Framework

Let us assume that a stochastic process follows a
first-order autoregressive model. Furthermore, let
us admit that the marginal distribution is normal,
namely

Zy=u+o(Z -0 +o 1~p2 £y

where £, = N(0,1), and Z, = N(u,0%). P24

Obviously, the Z_-process is far from resembling
an intermittent record such as daily rainfall (for the
sake of simplicity in this chapter only daily rainfall
will be considered). Therefore, some filtering is
necessary, at least to eliminate the negative values
of Z_.

t

Define a Yt-process as:
Yt = Zt, if Zt >0

Y =0, if Z_ <
£ = Al (3-2)

A realization of the Y, -process can be consider-
ed as a censored sample of Zt. A censored sample is

such sequence for which the values of the process that
fall in a specified interval are not known. For ex-
ample, all zero values in a realization of the Y, -

process represent negative but unknown observations of
Zt. In this case the censoring interval is (-=,0).
For this example, the resulting sample would be trun-

cated, if the negative values of zt were not only

censored but also deleted from the record. In this
case even the number of negative outcomes would not
be known.

It is clear that Yt is an intermittent process,

provided with a mechanism of persistence. It remains
to be seen whether this mechanism is appropriate in

modeling and whether the marginal distribution of the
positive observations obtained through the Yt model,

namely P(Yt<yjyt>aj fits the sample distribution well.

In fact this last condition is not satisfied, because
quite often the marginal distributions, in case the
positive observations of the processes are only studied,
are characterized by a high skewness (higher than the
one obtained by the truncated normal). Incidently,

the fuwncated normal is the name given to the cumula-
tive distribution function (c.d.f.)

_ elGy-u)/o
Pllsy) = J%W%Tl Lo, ) (3-3)

where &(+) is the c.d.f. for the standard normal
distribution. The positive values of Yt might then

be considered as a sample of this truncated normal
distribution.

3-2 Need for a Power Transformation of the Truncated
Normal

An examination of a typical case will help to
explain why Yt is not sufficient to represent the

precipitation process. The histogram of the positive
observations of daily rainfall at Austin for 70 years
during the period May 1-June 1 is plotted in Figure
3-1. For comparison the probability density functions
(P.d.f.) which correspond to the truncated normal, and
to the exponential distributions are also plotted in
Figure 3-1. The exponential distribution is included
because it is often used to model the precipitation
(see Chapter II). The p.d.f. of the exponential dis-
tribution is

= pe ¥X
£y(x) = ve I(o’,)(x] (5-4)

The parameter ¢ is routinely estimated as the
inverse of the arithmetic mean of the positive obser-
vations. For the Austin example ¢ = 1.898. The p.d.f.
of the truncated normal distribution is

1 1 x-p
fo(x) =————expl- 5 (=9} I, (x)
3 o) Varo 2R el gy

The parameters u and o are in principle
estimated following the procedure proposed by Cohen
(1959). However, Cohen was mostly concerned with
cases in which the number of censored elements is small
compared with the total number of observations. In
precipitation data there is a large number of zeros
(censored observations). It turns out that graphs and
tables supplied by Cohen are not sufficiently complete
to handle this situation. Alternatively, -an estima-
tion procedure presented in Section 3-3 is employed,
and as will be seen, it is a better approach, because
it takes into consideration the serial dependence.

For the moment it is sufficient to give the estimates
i= 0.627 and §=0.951. The exponential one-parameter
distribution was fitted only to positive observations,
while the two-parameter truncated normal was fitted to
the censored sample, in which the number of zeros was

important. Since the probability of a zero outcome




depends on the ratio /g, it can be said that both
distributions, exponential and truncated normal, had
one degree-of-freedom to fit the data.

1,0

Fig. 3-1.

Comparison in Fitting Three Probability
Density Functions to the Frequency Histogram
of Daily Rainfall at Austin for the Interval

May 1-June 1: (1) Histogram for 70 Years
of Data; (2) Fit of the Truncated Normal,
Eq. (3-5); (3) Fit of the Negative Exponen-
tial, Eq. (3-4); and (4) Fit of the Power-
Transformed Truncated Normal, Eq. (3-7).

The inspection of Figure 3-1 leads to the conclu-
sion that none of the two distributions produces a
good fit. The form of the histogram suggests that a
better fit could be obtained by using a p.d.£. which
is asymptotic to the vertical axis.

Suppose that the Y, -process is filtered according
to

X = Yl/u
t t (3-6)
with o = a real number. In this case the marginal

distribution of positive observations of the X, -process

is the power-transformed truncated normal distribution
(p.t.t.n., for short), namely

£.(x) = ___353:3__ exp{- E{EE:EQ} I x)
X o (u/c)av2n ol - (0,%) (3-7)
Notice that when a < 1, lim fx(x) = =, From the

x+0
procedure to be presented in Section 3-3, for the Austin
rainfall example, the estimate is o = 0.595. The cor-
responding p.d.f. is plotted in Figure 3-1. From
visual inspection, without any test, it is apparent
that the p.t.t.n. does fit better the frequency histo-
gram than the other two p.d.f.

3-3 The Estimation Procedure

Seek gon the maximum Likelihooa esiimates. Given
a sample Xy Xgs Xz, ooee of an intermittent process,

a method should be available for estimating the para-
meters u,o0,p, o (see Figure 1-1). Usually the avail-
able samples will be large. The maximum likelihood
estimators possess several asymptotic properties.
Some of these properties are essential to the analysis
of data. Therefore it is natural to select the maximm
likelihood estimation procedure for the intermittent
process.

Let us approach the problem straightforwardly,
but showing that some tiicks, as presented later, are
necessary. Suppose the time series displayed in
Figure 3-2(a) is available. In general the likelihood
function L is

L(EJEJ = fx(E;xl’xz"..’x]\l] »

(3-8)
where 8 is the parameter vector. The first difficulty
arises from the fact that some of the X; are zero,

and therefore represent censored outcomes of the Zt-

3-2(a),
are all censored.

process. For the realization shown in Figure

232 Zg0 Pnogr Pno3e Fmo2e In-1
The second difficulty arises from the fact that Xy

are not independent in sequence, so that Eq. 3-8 can-
not be written as a product of marginals.

To show how the difficulties of censoring and
dependence complicate the estimation procedure, it is
sufficient to examine a simple case. Assume a = 1
and the need to write the likelihood function, given
the realization displayed in Figure 3-2(b).

The m values between X,

the unmeasured negative values. Assume the dependence
follows a Markov or linear autoregressive model,

and Xp.1 Tepresent

f X: |X. X. sty 2iE (x:]x; ;)
Xi|xi-1’xi-2""( 1I i-1°7i-2? xilxiﬁl 11711
(3-9)
X
II' |||I|'
© | 2 3 4 5 6 mEm5m4m-3m-2ml m
(a)
X
. e o oo Jlo—s—o *—o | !
0O 1 2 3 4 5 6 m6Em5S md4m3Im2milm mtl
1]
Fig. 3-2. Representation of Twc Possible Outcomes of
the Intermittent Process
Now ,

m
L(9,x) = p(j[}l {xj-cO}[xo,xmﬂ)fxo’xmﬂ(xo,xm+1) .
(3-10)

where obviously in the present case P(:) and

f -,*'} are functions of 9 = (u,0,p).
X X =
0’ m+l
Therefore,
o o o
LOD = KO | |x Canlxd [T o] £0q0x,
——
m
Xy xo,xm+lj (dxl, dxz, S dxm) (3-11)



where fx(§) is the p.d.f. for a multivariate normal,

fitxl’xz""xmlxo’xm+l}
m/2 p-1/2 1 -1

= (2n - (x-u)’ X-1

@™ I gl gl U0
Y= (s vy e, ) is the mean vector
N _,2m+2-i mel-i meled
L 1_pzm*2 [(p™-p Jx *(p Jx i

- u(1_92m+2-pm¢1-1+pm+1+1 i 2m+2 1]]

and L = (ai.], i=l, m and j=1, m, is the covariance
matrix, J
2 . i
o B s R
¢ e (1 Zméé) (o7 -pIm ] e 1™y 1<
-p

(3-13)

In general the analytical solution for the m-fold
integral of Eq. (3-11) is not available, except for
m < 3. Even for m = 3 the expression is very cumber-
some. An alternative is to use the tetrachoric series
expansion suggested by Kendal et al. (1963), used and
extended by Saldarriaga and Yevjevich (1970). Never-
theless, according to Kendall (vol. 1, p. 351), the
technique "though convergent, converges too slowly to
be of general use."

This example shows that the straightforward
approach of evaluating the likelihood function is, in
this particular case, untractable.

The iterative algorithm for the univariate case.
Several attempts were made to find the approximate
solutions to this estimation problem. Unfortunately,
none has worked satisfactorily. As an alternative, a
solution to an approximate problem was searched for,
rather than looking for an approximate solution to the
correct problem.

The approximate problem is to find the estimates
for the parameters assuming the pairs of values
(X15X5) s (X3,X,), (X5.Xg), .., to be independent. The

experience obtained on generated series, i.e., in such
situations that popufatfion parameters were known,
supports the results obtained under the above sim-
plifying approximation.

The estimation problem reduces to the evaluation
of parameters of a bivariate distribution. Suppose a

sample {xt,xt+1}, t=1,3,5,...,n, to be available.

Define the three events as:

A1t= {Kt =0, Xt+1 = 0}
Age= X =z, Xy = Y}
Age= {Xt = e, Xt+1 = 0} or {Xt =0, Xt+1 = zt}

0 < xt’ yt’ A

Assume further for the sample given that each of the
events A,., A ., A; occurs respectively n;, n, and
ng times (n - n1+n2+n3). The likelihood function is
then

I'l

n,
L(u,o,p, = nl
(u,0,0,a) EITH;TH;T'[pCAI)] twl P4,,) wl P(45,)
(3-14)
H o? og?

for (UW)' = NI(D. (G2 53]

P(A;) = P(U < 0, V < 0)
(3-15)

The random variables (U-uj/o and (V-u)/o might be
expressed respectively by

/p Wy + /I W,
and

W +i-e Wy (3-16)

with Nl, Nz, Ws the independent standard normal

variables. From (3-15) and (3-16 it results
. P(4)) = f §(2) [p(ERIE 12 4y
agvl-p
(3-17)
Similarly,
g a a
Plae) = £y vy, ddu dv
(3-18)
where
1 Q
£ ,0,v) = expf{ }
u,
v wPASE 2009
with (3-19)
Q= B2 - 2yl L @ly?
Now

v(xt,yt) dudv = J[“’ e V(x:,y:) dxdy

where the Jacobian is

w,v, _ |du/ax su/ay| | |ex® Tl o 2 a-1
J[x,y] = lav/ax av/ay‘ =gt ax:-l = o (zy,)
Hence, Eq. (3-18) becomes

i a-1 a_ a
P(AZtJ = o (®y,) fU,V{xt’yt]dx dy
. (3-20)
Finally,
a ° a
P(45,) = f(z,) du {w fvlu(v[u = z.)dv
f v-p3 —u[l—p) i
= f Ez ) du ] dv ,
U
GJl of;-p
or
uz:'l zi-u -os:-u{l-o)
P(4s,) = sl o [ ] dz
[ g 5
avl-p (3-21)
From Eqs. (3-14), (3-17), (3-20), and (3-21), and after

dropping the subscripts,



log L =

= LL(,0,0,a) = C + n log [ $(t) (8(2RTYy12 g
- ovl-p
2 2
+ (2n, + n;) log % - nz{log(;-p ), ¥ 5]
4 (1+p)o
By
i Z [(U. 1)log[xy) + 2u(1-p) [I Y ) (_x "'.Z )"‘29(@) ]
2(1-p )U
n
3 o ]
+ ] [a-1loga + loge[RERU2)y | 105y -1y
o/1-p? (3-22)
where C 1is a constant.
The estimate 8 = (ﬁ,S,S,&) ought to be found in

such a way that the likelihood function, or its loga-
rithm, becomes the maximum for ©. When the ubjective
function LL 1is concave, as is the case here, it is
enough to search for a local maximum, since this will
be a global maximum. Recall that a necessary condition
for a local optimum is that the first derivatives be-
come zeros. Therefore, the estimation problem is
equivalent to finding the point © for which the first
derivatives of LL(©®) are simultaneously equal to
zero. This can be accomplished numerically, through
the Newton-Raphson algorithm, by

(D)o (3-23)

where H 1is the Hessian matrix corresponding to the
LL-function,

Sxew = Sorp -

namely
2 2 2 2 2 -
3“LL/3u 3"LL/3ud3c 8"LL/3udp 3°LL/3uda
321L/30° 8%LL/303p 32LL/30%
H=
32LL/ 202 3%LL/3p %
s 32LL/ 30
(3-24)
and D' = (3LL/3,3LL/30,3LL/3p,3LL/3a). The first

and second derivatives of LL, needed to evaluate
Eq. (3-23), are given in Appendix A.

Extension to the Multivariate Case. In generating
samples of several dependent station series, the cross
correlations ought to be preserved. For the sake of
simplicity only the lag-zero cross correlation will be
considered. Yet, the estimation problem becomes
greatly complicated because of the increase on the
dimensionality of the parameter space. In order to
avoid the use of the objective functions with too many
variables, the following two-step procedure is proposed
in dealing with the multivariate cases: (i) To find
for each station the parameters wu(j), p(j), and a(j),
according to algorithm of Eq. (3-23); for £ the num-
ber of stations, j = 1,2,...,£; and (ii) Find each
lag-zero cross correlation coefficient, p(j,k),

1 <j< k < £, using only the data of station series j
and k.

The estimation procedure for the multivariate
case can, in principle, follow the approach used for
the univariate case, namely the maximization of the

10

likelihood function. However, if all the positive
observations of station series j are raised on the
a(j) power, the problem is reduced to the question as
to how to estimate the correlation coefficient of a
standard bivariate normal distribution, with a cen-
sored sample. The censoring is done in such a way that
observations respectively of the two variables to the
left of -u(J)/c(J] and -u(k)/5(k) are not available.
For truncated samples (rather than censored), when only
the observations (events) type A, are available, the
problem was solved by Rosenbaum (%961) and by Regier
et al. (1971). Often one might be satisfied with the
use of expressions derived by the fruncated approach,
even at the cost of losing some information, because
they are easier to use. This is the course of action
herein chosen. Rosenbaum used the method of moments
and obtained a particularly simple expression, adopted
for the purposes of this study as,

_ [u11; u(k)] AZ{J,k)

5G) 6K
U(j) 0{ ) U(J}a(k)
+m {k}]}p(J k) + [J.J_l. u(k)'[ - U(J)u(k) [Ill (i)
SG) 0 ()6
e iy (9]- B0) 4 5y 20D 5
3G9 5 (K)
where
2 a6 n
. 1 29 Cdgm, 2 . a() _
Ay () = - 2, 8,00 =1 = eV}
n, 5(3) n, 5%G3)
n2 i
7 faon, Ny a0k
A 0 = - 2, 5,00 = RG]
n, 5(K) n, 3%(k)
Sy = [cx“(” -u@) *® - w9y,
n,6(3)0 (k) (3-25)
and S(j,k) is the only unknown. Once again it is

emphasized that the expression of Eq. (3-25) is to be
used for the data of days with non-zero observations
occur in both stations under consideration. All the
remaining information is neglected. Because of the
sample variation Eq. (3-25) may not have the real roots.

3-4 TheAsymptotic Covariance Matrix for the Estimators

Method of Obiaining the Covardiance Matrix. The
estimation of a parameter is not always sufficient.
Sometimes it is necessary to find how the system under
study reacts to variations in parameter values. This
is the so-called sensitivity analysis. Its use results
from the recognition that an estimate € is one obser-
vation of a random variable and as such is subject to
sampling departure from the unknown population value
6. Then the question to deal with is the variation of
the parameter vector. One would expect that the dif-
ferent parameters will have different reasonable




ranges of variation, according to the confidence one
has on the accuracy of its estimation. Actually, the
higher reliability of an estimate, the narrower is its
#easonabfe range. The measure of reliability of an
estimate most often used is the variance of the cor-
responding estimator. Similarly, covariances between
the estimators give measures of their dependence, which
help in the decision how the parameters should be
simultaneously changed in the sensitivity analysis.
Hence, it is highly needed to calculate the covariance
matrix of the estimators. It happens that maximum
likelihood estimators asymptotically follow the multi-
variate normal distribution. Furthermore, the asympto-

tic covariance matrix can be expressed by {-E[HJ}‘l,
where H is the Hessian matrix given by Eq. (3-24)
and E(+) is the expectation operator. This is useful
for the problems herein analyzed due to the fact that
most of the samples are of large size.

In order to find the asymptotic covariance matrix,
the first step is to evaluate the expected vaiue for
each one of the second derivatives which appear in

Appendix A. An inspection of these expressions shows
that this task is difficult. As a result numerical
approximations are used. Fortunately these approxi-

mations have no significant effect on the accuracy of
the results, as it will be seen in an ensuing example.

The values of n, n,, and ny which appear in

equations of Appendix A, are the actual observations
of random variables. In order to evaluate the asympto-
tic covariance maxtrix, they should be substituted in-
to their corresponding expected values; namely

n
EQN) = 3PU <0, V <o) = BL00.2)

(3-26)
n
E(N)) =5 P(U>0, V> 0) = %-[1-21(0,0,1)+1(0,0,2)]
(3-27)
E(st = % P(U>0, V<0 or U<0, V>0) =
= n[1(0,0,1)-1(0,0,2)] (3-28)
where 1I(i,j,k) 1is as defined in Appendix A. Similarly,

T(v;i,j,k), also as defined in Appendix A, should be
substituted by the corresponding expected values.
These expected values are not always available in
closed form. However, the most frequent occurrence of
(T(v;i,j,k) is for i=k=0; and for these, explicit
solutions can be derived. The following five results
are helpful:

i £ x¢(x,y;0) dxdy = ¢(n)%(8) (1+p) (3-29)
[ [ x%(x,y;0) dxdy = [1-21(0,0,1)+I(0,0,2)]
nn
+ np(n)6(8) (1+02)  + pY1-p% 4(n)6(8) (3-30)

xy¢(x,y;p) dxdy = p[1-21(0,0,1)+1(0,0,2)]

+ lp® §(m)8(8)

=8
O 8

+ 2pne(n)e(s)
(3-31)
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n o
[ [ xé(x,y;p) dxdy = ¢(n) [1-6(8) (1+p)]
- n

(3-32)

n o
[ x2¢fx,y;ﬂJ dxdy = I(0,0,1) - 1(0,0,2)

- 7]

+ 16 (n) [1-0(8) (1+02)] - p¥A-p2 6(n)6(8)

(3-33)
where
-1 2
b(x,y;0) = 1 exp{ = [x2~29xy+y 1}
S 2 2(1-p7)
Al (3-34)
and
- oM =K/l
N g = g l4p
(3-35)

Equations (3-29) to (3-31) are given, but in a modified
form by Rosenbaum (1961). Equations (3-32) and (3-33)
can be evaluated in a straightforward but tedious way.
These expressions could be also found by using the
moment generating function of the truncated multi-

normal distribution, as given by Tallis (1961). Then,
E[T(2,0,1,0)] = E[T(y,0,1,0)] = EQ,E(X™)
= 3 P(U>0,V>0)E(X%)
(3-36)

Recall that U and V follow the bivariate normal
distribution, with equal marginal distribution

N(u,czj and the correlation coefficient p. Therefore,

E(X*) = E(U|U>0,V>0)
= [P0,v>0)]7 [ [ (xo+u)é(x,y;p) dxdy
nn
(3-37)
From Eqs. (3-27), (3-29) and (3-37)
" a¢(n)é(8) (1+p)
ECX™) = ¥ + 179700, 0. 1) 100, )

From Eqs. (3-36) and (3-38)

E[T(;C,O,l;o)] = E[T{y,o:lso}]

= 5 [06(n)e(8) (1+p) +u[1-21(0,0,1)+1(0,0,2)]]

(3-39)

Similarly,

E[T(=,0,2,0)] = E[T(,0,2,0)] = %.P(U>O,V>0)E(X2&]

(3-40)



and
E(X’®) = EU?|U>0,V>0)

@

= [PW0,v>0)1"" [ [ (xou)é(x,y;0) dxdy
nn

(3-41)
From Eqs. (3-27), (3-29), (3-30), and (3-41),

E@x®) =

-0 (p=2p-1)¢ (n) #(8) +3 20 ¥1-p 24 () ()

5 2
" & 0K % [1-21(0,0,1)+1(0,0,2)]
(3-42)
From Eqs. (3-40) and (3-42),
E[T[x,O,Z,O)] = EIT(y’OSZ’O)] =
2 [(u2+0%) [1-21(0,0,1)+1(0,0,2)]
2 2 2 e
- uo(p -2p+1)6(n)e(8) + o p/1-p° $(n)¢(8)] (3-43)
Similarly,
E[T(zy,0,1,0)] = Z P(U>0,V>0) E[(X1)*]
(3-44)
and

E[(xN)®] = E(UV|U>0,V>0) =

[P(U>0,v>0)17" [ [ (xou) (yosm) o (x,y;0) dxdy
1

(3-45)

From Eqs. (3-27), (3-29), (3-31), and (3-45),

. Gr2p o 2ugd ()@ (8) + 02J1—92¢(n)¢(5)
[1-21(0,0,1)+1(0,0,2)]

E[(a)®] = u?

(3-46)
From Eqs. (3-44) and (3-46),

E[T(z4,0,1,0)] =
n 2, 2
5 [(#"+0%0) [1-21(0,0,1)+1(0,0,2)]+2u0é(n) &(8)

+ 0% N1-p% 4(n)4(8)]
(3-47)

Similarly

3 o
E[T(z,0,1,0)] = nP(U>0,V<0 or U<0,V>0) E[Z"]

(3-48)
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and
E[2%] = E(U|U>0,V<0) =

n
P>0,v<0)] " [ [ (xom)e(x,y;e) dxdy
- 'n

(3-49)
From Eqs. (3-28), (3-30), and (3-49),
ST g¢(n) [1-8(8) (1+p)]
EIZT = ¥ * 11(0,0,-100,0,2)] (5-50)
From Eqs. (3-48) and (3-50),
E[T(2,0,1,0)] =
n{u[I(0,0,1)-1(0,0,2)]+co(n) [1-2(5) (1+p)]]
(3-51)
Similarly
E[T(2,0,2,0)] = nP(U>0,V<0 or U<0,V>0)E(z%)
(3-52)
and
E(z%) = E@®|us0,v<0) =

_ mn
[PW0,v<0) 17! [ [ (xov %6 (x,yip) dxdy

=@ 7

_ (3-53)
From Eqs. (3-28), (3-32), (3-33), and (3-53),

E[Zzu] =

12,02, 106 (n) [148(8) (0%-20+1)]-6"0Y1-p%6 (n) $(6)
[I [0’0) 1}-1 (0)01 2)]

(3-54)
From Eqs. (3-52) and (3-54),

E[T(2,0,2,0)] = n[(u%+0?) [1(0,0,1)-1(0,0,2)]

+UU¢(H)[1+¢[5)(02-ZD+I]-azp/l-pz¢(n)c{6}]
(3-55)

The values of E[T(v;i,j,k)] for i > 1 and/or
k > 1 can be found in an approximate way. If two
random variables R and S follow a functional rela-
tionship, R = g(8), then the Taylor series expansion
may be used giving

2
R 2 g[E(S)]+[S-ES) g’ [E(S)]+ BEE gne(s))

(3-56)

where the terms of the order higher than two were
neglected.

Taking the expected value on both sides of
Eq. (3-56) then,
» "[E(S
E[R] = glE(s)] + ELESIL

var (5) (3-57)



where var(-)
Therefore,

E[T(v;i,5,0] = 2 [g[E(S)] +

stands for the variance operator.

: i}s var(S)]

(3-58)

where P* and S are given in Table 3-1, according to
the meaning of v,

Table 3-1. Values of P* and S of Eq. (3-58)
v p* s
x P(U>0,V>0) = [1-21(0,0,1)+1(0,0,2)] X
y P(U>0,V>0) = [1-21(0,0,1)+I(0,0,2)] y*
Xy P(U>0,V>0) = [1-21(0,0,1)+I(0,0,2)] (xv)®
z P(U>0,V<0 or U<0,V>0) =
2[1(0,0,1)~1(0,0,2)] A
and
g =[]t o ABGK
(3-59)
where
a(x) = M-nx-u(l-p]/(c-’l-nz)]
#[-px-u(1-p)/ (c¥1-p%)]
(3-60)
From Eqs. (3-59) and (3-60)
g"'(x) =

A '
[h(xlll (eix” ° [logx}k-l

o

[x(228% 2 [i(n(x)
avl-p o] l-p2
_ px+u[1-91)2

- 1+ h(x) (h(x) - 2x*r(1-0),
gl 2

gri-p

+ 2(j(l%§39 + éﬂ{h(x) = XER(L0Y o

2

ovl-p

12, ko2
¥ 5“‘£;§le-"* (k(k-1) + logx(jk+(j-1) (jlogx+k)))}

(3-61)

Equations (3-59) and (3-61) should be substituted into

Eq. (3-58). The expected values of S, for each case,
are given by Eqs. (3-38), (3-42), (3-46), and (3-50),
respectively.
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From Eqs. (3-38) and (3-42) it follows

s g g¢(n [ 2
var(x') = o [1-§Tfﬁ,o,iji%to,oT§T] [opY1-0" 4(8)
- 2 _ o(1+p)d(n)e(s 2
u(1+7)2(8)] {[1-§TTE;U,1)£TIéto,3j]i
(3-62)
From Eqs. (3-50) and (3-54) it follows

var(z) = 0¥ + e ) I8 (10D1)

- oo -p2 _ 198(n) [1-2(8) (1+p) 1,2
oerl-e” ¢(8] - 770, 1-100,0.2)]

(3-63)
fhe derivation of var[XV®] would require the
evaluation of the fourth-order moments. In order to

avoid this complication, the Taylor expansion is
applied once more, yielding:

var[(x0)%] = 2[E(@®) 2 {var @ E[ @D %] - [E@S ]

(3-64)
It could be shown that for i=k=0, Eq. (3-58) is
identical to Eqgs. (3-39), (3-43), (3-47), (3-51), and

(3-55), respectively. In other words, the Taylor
expansion yields the exact results for these particular
cases.

The approximations used to calculate the asympto-
tic covariance matrix might cast doubt upon the ac-
curacy of results. Fortunately, the experience shows
that the procedure is worthy, and this can be best
expounded through the example to follow.

Exampfe. 195 new samples were generated with

=-0.25, 0=1.00, p=0.40, and o=0.60. These parameters
are fairly typical for the precipitation process.
Algorithm of Eq. (3-23) was applied to each generated
time series, resulting in a sample of 195 observations
for the estimator vector (random vector). To better
understand the role of the sample length, the time
series were grouped into three classes respectively of
lengths 500, 1000 and 2000. Therefore, there are three
sets, each of 65 observations of a random vector, as
shown in Tables 3-2, 3-3, and 3-4. For reasons that
will become clear in the following text, each set was
further divided into three subsets, each with 15, 20,
and 30 samples, respectively. The information on each
set is condensed in Tables 3-5, 3-6, and 3-7. The re-
sults are:

(a) First row gives the population parameters,
which were used for the generation. Second row gives
the means of the 65 estimates. The comparisons be-
tween the means of estimates and the population values
suggest that the estimation procedure is unbiased.

(b) The use of asymptotic expressions for the
estimation of the covariance matrix is subject to the
following two sources of errors: The sample size might
not be Large enough; Numerical approximations are used
to evaluate the expressions.



Third row gives the asymptotic standard deyiation
(of the estimators) evaluated at the correct point,
i.e., calculated at the population parameter vector.

Table 3-2.

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42

-

in

-0.2302
-0.1719
-0.2759
-0.2266
-0.2441

- -0.2357

-0.3444
-0.1593
-0.2909
-0.2600
-0.3438
-0.3425
-0.4058
-0.2514
-0.2304

-0.2662
-0.1820
-0.4205
-0.1237
-0.3160
-0.1948
-0.2491
-0.2853
-0.1895
-0.1111
-0.2329
-0.3029

-0.3450

-0.2322
-0.2310
-0.2242
-0.3805
-0.2351
-0.1441
-0.4101

-0.2405
-0.1584
-0.2564
-0.2018
-0.2105
-0.3412
-0.2012

[+

0.8749
0.9607
0.9735
0.9783
0.9578
1.0118
1.0565
0.9306
1.0311
0.9809
0.9525
1.0335
1.1929
0.9290
0.9668

1.0195
1.0791
1.0374
0.9439
0.9303
1.0011
0.9729
1.0883
0.9308
0.9387
1.0209
1.0547
1.1022
0.9766
0.9573
0.9876
1.1171
1.0069
0.9139
1.1717

0.9212
0.9177
0.9541
0.9411
1.0194
0.9594
0.9446

»

o]

0.2881
0.3413
0.3298
0.4109
0.3374
0.3404
0.4300
0.3985
0.3335
0.4298
0.3120
0.3410
0.3858
0.3741
0.3217

0.3852
0.5279
0.4347
0.3788
0.3381
0.4531
0.5949
0.5568
0.3920
0.3764
0.3050
0.3178
0.3755
0.3874
0.3878
0.4261
0.4342
0.4804
0.4034
0.4285

0.2813
0.4213
0.3116
0.3861
0.4379
0.3690
0.4141

Estimat'es of the Parameters for the 65
Samples of Length M = 500

-

o

0.6437
0.5211
0.6023
0.5758
0.5741
0.6303
0.6102
0.6236
0.6669
0.6088
0.6514
0.6083
0.6038
0.6208
0.6537

0.5727
0.6051
0.6322
0.5672
0.5857
0.6093
0.59870
0.6170
0.5887
0.5760
0.6132
0.6221
0.6461
0.5795
0.5916
0.6144
0.6190
0.5928
0.6168
0.6257

0.5583
0.6138
0.5757
0.5591
0.6378
0.5881
0.5793

14

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Table 3-3.

L B = A " T T

e o
o W= O W

16
17
18
19

u

-0.2944
-0.2138
-0.3821
-0.2494
-0.2662
-0.2575
-0.3500
-0.1693
-0.3085
-0.4103
-0.2909
-0.1803
-0.2178
-0.0908
-0.1972
-0.1922
-0.2583
-0.3284
-0.2885
-0.2973
-0,2259
-0.2813
-0.1627

g

1.0262
0.9794
1.0580
0.9404
0.9807
1.0168
1.0880
0.8910
0.9383
1.0576
0.9464
0.9750
0.9587
0.8829
0.9003
0.9755
1.0037
0.9580
1.0799
1.0078
1.0403
1.1096
0.8997

o o o oo o o o o o o oo oo o Qo o o o o o o o o o

-

P

.2329
.3250
.3818
L4270
.3807
.5128
.2582
.3020
.4135
.3354
.3319
.5094
.3899
.3727
.3193
.4238
.4282
.3296
.4560
.4916
.3246
.5248
.3119

Estimates of the Parameters
1000

Samples of Length m

=

-0.1994
-0.2290
-0.2846
-0.2457
-0.2971
-0.2576
-0.3034
-0.2369
-0.3435
-0.1983
-0.1428
-0.2245
-0.3120
-0.2623
-0.2125

-0.2195
-0.1956
-0.2750
-0.2338

a»

.9185
.9491
.9992
.9823
.0184
.9614
.0523
.9145
.9969
L9653
.8921
.9891
0229
0252
9956

o = - o o 0 o O - © = o o o9

.9338
-0994
.0702
.0453

o O

o o o o

o o o o o 9o o o o o o o o o o

Oy

.3552
.3512
.4130
L3237
.3549
. 4050
.3906
.3594
. 3335

4536

. 3497
.4263
. 4037
.4053
.4266

.3756
L4631
.5016
.3580

o o o o o o o o o o oo o o o o o o o o o o o o

.5788
.5241

.6248
.6041
.6407
.5920
.6436
.5516
.5734
.6157
.6179

6455

.5701
.5309
.5973
. 5938
.6046
.6193
.6363
.5830
.5860
.6191
.5936

for the 65

o o o O

o o o o o o o o o o o o o o

-5828
.5686
.6186
.5785

5660
6269
6162
5614
6153
6042
5605
5990

L6253

5830
6035

.5598
.6510
.5978
.6148



n g p a Table 3-4. Estimates of the Parameters for the 65
Samples of Length m = 2000

20 -0.2007  0.9410  0.3514  0.5997 ¥ . s ; .
21 -0.3178  0.9596  0.2694  0.5876

22 -0.2514  1.0134  0.4406  0.5673 1 -0.2798  0.9871  0.4132  0.5893
23 -0.3110  0.9482  0.2869  0.5697 2 -0.2807  0.9679  0.3903  0.6135
5 GBS G GEEE s 3 -0.2860  1.0601  0.3994  0.6358
25 -0.1969  0.9887  0.4778  0.6472 4 -0.1781.  0.9373 . 0.3878  0.5875
26 -0.2926  0.9636  0.3815  0.5546 5 -0.23%7  0.9399  0.4120  0.6144
27 -0.3147  1.0596  0.3925  0.6311 6 -0.2404  0.9813  0.4078  0.5737
I T T N 7 -0.2539  1.0350  0.4375  0.6001
63006 .60 AR HLSE 8 -0.2398  1.0024  0.3973  0.5833
30 -0.3312  1.0908  0.3697  0.6406 9 <0.2632  0.9669  0.3378  0.5041
o O GGEE  GA  Sedi 10 -0.2710  0.9877  0.3955  0.6059
P T I 11 -0.1973  1.0585  0.4012  0.6031
A S Vo . 12 -0.2250  1.0115  0.4223  0.6428
S w0.dee8  D.0R0N i atas  migars 13 -0.2507  0.9813  0.4156  0.6042
35 -0.3500  1.0002  0.3126  0.5588 14 -0.2446  1.0393  0.3431  0.6314
36 -0.3116  0.9845  0.4008  0.5877 15 =0.2098  1.0282  '0.3780  '0:6211
37 -0.2714  0.9508  0.3604  0.6167

8 -0.1471 00631 03885 05706 16 -0.2665  1.0363  0.4320  0.6058
39 -0.2384  0.9633  0.3280  0.5771 17 -0.1800  0.9774  0.3818  0.5918
o Seun GOl G SR 18 -0.2763  0.9697  0.3484  0.5639
RN i S e g s 19 -0.2519  0.9824  0.3906  0.5787
fp oz wmewmn  mszr 20 -0.2877  1.0716  0.4234  0.6232
43 -0.2701  0.9774  0.3751  0.6234 21 -0.2363  0.9893  0.3306  0.6131
44 02635  0.962 05867 06118 22 -0.3075  1.0444  0.4738 - 06028
g e 23 -0.2800  1.0344  0.4545  0.6187
6 -0.2636 09924 04117 0 050 24 -0.2640  1.0405  0.4078  0.6241
47 -0.2572  0.9659  0.4026  0.6007 5 =b2hg . 1028 DAlLE 06193
8 02668  1.0295 05785 06036 26 -0.2047  1.0120  0.4448  0.6042
s Rt G 27 -0.1648  0.9113  0.3783  0.5762
S0 02671 10572 05115 06170 28 -0.2012  1.0458  0.4054  0.6323
S M LGRS D 29 -0.2597  0.9838  0.4487  0.5999
52 -0.2275  0.9722  0.4073  0.6028 0 SE2ue LosED Dl4eEZ  Gusksl
6 B LGRS R G 31 -0.2078  0.9792  0.3219  0.6075
d s0.zse e Omss  Gotes 32 -0.2907  1.0167  0.3683  0.5986
S S GaY EEE bk 33 -0.3311  1.0178  0.4242  0.6125
S opdoss  dosn g Bugs 34 -0.2092  1.0219  0.4035  0.5910
S LTSH  iJeE  GEie.  BES 35 -0.2314  0.9450  0.3638  0.5823
58 -0.2338  1.0453  0.3580  0.6148 36 -0.2714  0.9428  0.4588  0.5819
59 -0.2007  0.9410  0.3514  0.5997 37 -0.2755  1.0344  0.4193  0.6419
60 -0.3178  0.9596  0.2694  0.5876 38 -0.2001  1.0273  0.4256  0.5960
61 -0.2514  1.0134  0.4406  0.5673 30 -0.2407  0.9791  0.3961  0.6022
62 -0.3110  0.9482  0.2869  0.5697 40 -0.1990  0.9139  0.4154  0.6080
63 -0.2403  0.9890  0.4038  0.5845 41 -0.2118  0.9867  0.3389  0.6028
64 -0,1969  0.9887  0.4778  0.6472 42 -0.2866  1.0574  0.4426  0.5928
65 -0.2926  0.9636  0.3815  0.5546 43 -0.2985  1.0535  0.4070  0.5908
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o 5 ; - )
p a 9 = [E(ﬂi - Bp)zlln' (the sample standard deviation)

44 -0.2370 0.9866 0.4479 0.6101 9 =0y for the lumped set of 65 samples
45 -0.2330 = i
1.0120 0.4052 0.5796 0,(6) = the asymptotic standard deviation, evaluated at @,
46 -0.2351 0.9692 0.4181 0.6064
47 -0.1640 1.0001 0.4372 0.6074
Table 3-6. Characteristics of Sample Estimates with
48 -0.2779 1.0216 0.4321 0.6167 Sample Length m = 1000
49 -0.2849  1.0090  0.3936  0.6190 Row  n* °
50 -0.2550 0.9897 0.3904 0.5874 ¥ g P a
51 -0.3345 0.9977 0.4233 0.5998 1 BP -0.250 1.000 0.400 0.600
52 -0.304 . -
041 0.9794 0.3861 0.5805 2 B -0.249  0.996  0.392  0.598
53 -0.2555 0.9906 0.4416 0.5882 i &5 Gose e Bose Wonds
[+] . . - .
54 -0.2975  0.9478  0.3842  0.5873 o
55 -0.2869 1.0068 0.4211 0.5938 L% 0.0 0.047 0,056 0.0
56 -0.207 : 5 £ -0.250  0.979  0.383  0.594
071 0.9699 0.4367 0.5786 6 1o - -0.213  0.996  0.427  0.604
57 -0.2764 1.0136 0.4004 0.5798 7 g 0.051  0.049  0.041  0.024
8 o (0,5 0.049  0.045  0.049  0.028
58 -0.3019 1.0016 0.3794 0.5828 2 = —
9 ) -0.249  1.009  0.391  0.601
59 -0.2298 1.0352 0.4219 0.6026 16 ) 035 -0.359  1.000  0.313  0.559
60 -0. 11 g 0.055 0,047  0.059  0.030
0 -0.242¢  1.0124  0.4400  0.5983 12 o.(6,)  0.052  0.043 0.0  0.028
61 -0.2815 1.0137 0.3987 0.6075 3 =
13 ] -0.248  0.996  0.308  0.597
62 -0.2284 0.9914 0.4049 0.5914 4 865 -0.203  0.964  0.382  0.555
15 a 0.044  0.046  0.065  0.024
63 -0.2650  0.9768  0.4321  0.5911 16 oo(6gg)  0.08  0.041 0,055  0.026
64 -0.2442 1.0567 0.4508 0.6426 =
65 -0.2935  1.0390  0.4878  0.6673 nE isEhe:mmber oL guiecRtad EanpLas
] = thia dummy parameter (may represent any one of u,0,p, or
a
n
Table 3-5. Characteristics of Sample Estimates with 8 = ([ ©;)/n* (8; is the estimate © for the ith sample)

Sample Length m = 500 - - .
o* = @ for the lumped set of 65 observations

2] = the population parameter
Row n* -] P
: 2 # A 9 = J-[I(ei - ep}zjfn* (the sample standard deviation)
-0. . .4 0.600
1 eP B0 1.0 0.4%0 LH = 0g for the lumped set of 65 samples
o* -0. .992 0.387 0.602
" 0238 8. 6_(6) = the asymptotic standard deviation, evaluated at ©.
3 cwfep) 0.071 0.063 0.073 0.040
' % 9,074 .06 2060 0-030 Table 3-7. Characteristics of Sample Estimates with
5 ] -0.268  0.989  0.358  0.613 Sample Length m = 2000
6 15 915 -0.230 0.967 0.322 0.654
7 og 0.068 0.073 0.044 0.037
8 0,0, ) 0.066 0.058 0.077 0.043 Row  n* 0
s [ ® -0.254  1.013  0.419  0.604 . . " .
10 ., 35 -0.410 1.172 0.429 0.626
11 og 0.086 0.071 0.076 0.021 1 a -0.250 1.000 0.400 0.600
12 o, (85c) 0.076 0.084  0.066 0.054 R
- 2 o* -0.252 1.002 0.410 0.602
13 e -0,251 0.979 0.38_0 0.595
4 4, 9¢5 -0,163 0.900 0.312 0.594 3 0,00 ) 0.035 0.031 0.036 0.020
15 9 0.070 0.060 0.077 0.032 P
16 0‘“(965] 0.079 0.068 0.092 0.039 4 55 0.038 0.036 0.032 0.020
5 [ E) -0.244 0.999 0.396 0.605
n* = the number of generated samples 6 15 615 -0,210 1.028 0,378 0.621
= 7 gg 0.031 0.038 0.026 0.023
<] tﬁl:)s dummy parameter (may represent any one of u,d,p, OT L “.(315) g e i e
n 3
<] =i} ei)ln* (8; is the estimate © for the ith sample) 9 ) -0.250 1.007 0.407 0.601
s - ; W oy 8z5 -0.231  0.945  0.364  0.582
o* = @ for the lumped set of 65 observations 11 o 0.044 0.039 0.041 0.018
8, = the population parameter 12 0,(05¢) 0.036 0.031 0.040 0.019
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13 8 -0.258 1.001 0.418 0.601
14 30 Bgg -0,293 1.039 0.488 0.667
15 ag 0.038 0.034 0.029 0.020
16 a_(965] 0.038 0.035 0.034 0.022
n* = the number of generated samples

e = the dummy parameter (may represent any one of p,6,p, or
a)

) = {§ ei]fn* (Gi is the estimate © for the ith sample)
® =9 for the lumped set of 65 observations

ep = the population parameter

og = /11, - Bp)z]/n‘ (the sample standard deviation)

65 =0y for the lumped set of 65 samples

0,(8) = the asymptotic standard deviation, evaluated at 6.

Fourth row gives the sample standard deviations
calculated from the 65 outcomes. In order not to )
increase the complexity of the analysis the covariances
between the estimators have not been investigated.
Comparing the third and fourth rows, the approximation
between corresponding values seems good.

(c) It must be emphasized that the standard
deviations of the estimators do not appear in the
fourth row, but rather the corresponding estimates
obtained from a sample of 65 items. Therefore, there
is a new source of error, as far as this comparison is
concerned, namely: The number of generated samples
may not be sufficient fo produce accurate estimates of
standand deviations of the estimatons.

To clarify this issue each set was subdivided
into three subsets, with unequal number of samples in
each (15, 20, 30). The means and sample standard
deviation were then calculated. These values are
shown in rows .5, 9, 13, and 7, 11, 15, respectively.
The second row is the result of a weighted average of
the corresponding values of rows 5, 9, 13. The same
is true of the fourth row, with regard to rows 7, 11,
15.

(d) An important question to be addressed is
whether the asymptotic expressions can be used re-
liably in any real case. Usually only one historic
record is available, which yields the estimates of the
parameters. Not knowing the population values, the
logical thing to do is to evaluate the asymptotic
expressions at these estimated points. Therefore, a
fourth source of error is: The uncertainty about the
panameter values at which the asymptotic expressions
are evaluated.

This question was investigated assuming that
only the 15th, 35th, and 65th samples of each of the
three sets were available. The corresponding estimates
are found in rows 6, 10, 14 (and also in Tables 3-2,
2-3, and 3-4). The asymptotic standard deviations
evaluated at these points are given in rows 7, 11, and
15. The feasibility of the proposed procedure may be
evaluated by comparing rows 7, 11, and 15 to the fourth
row. The evaluation is approximate because only nine
cases were examined.

(e) Though the accuracy of results increases
with an increase of the sample length, it seems that
the procedure may be applied to samples as short as
500. Likely even shorter samples will yield satis-
factory results.
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(£) For the sample lengths of ny and ny, the
relationship
am(e,nl] /nz
o (0,n,) m,
w( £ 2] 1 (3"65)

holds, where o_(9,n) is the asymptotic standard

deviation evaluated at ©, for a time series of length
N.

Thus, for instance

s_(6.,500)
=%p /7050
5.(5,,2000) - * 500 <00

and
um(eP,IOOOJ ca(ep,soo)
5,.(8,,2000) " (0 ,1000) "

2 =1.41

which can be easily verified by comparing the third
rows of Tables 3-5, 3-6, and 3-7.

3-5 Tests to be Performed

The material so far presented had implicitly
assumed a number of hypotheses, for example that there
is time persistence in the data and that the process
is stationary. Actually, this last condition will be
relaxed in Chapter IV. In what follows, tests for the
two above mentioned hypotheses are developed.

Test of Serial Independence. One might wonder
whether the model assumed for the continuous process,
namely the first-order-Markov, may be excessively
sophisticated for the problem at hand. This can be
put in another way, whether it is possible that the
continuous process is in fact serially independent,
therefore with p=0. If this is the case, any
positive value estimated for p would be due to
sample fluctuations. Hence, a test of the null hy-
pothesis that p=0 may be appropriate.

Let 8 be the four-dimensional parameter space,
namely 8 = {(n,0,p,0); > <<=, 0<0,0<p <1,
-@ < g < »}, Let us define the three-dimensional
parameter subspace by 8 = {(u,0,p,a); == < p < =,

0<g,p=0, -»<a <=}" Wewant to test the null

hypothesis Ho: 8 = (u,0,p,a)e E; versus the alter-

native hypothesis Hy:
generalized likelihood-ratio, denoted by A is
defined to be

8 = (M,0,p,a)e @ - QD. The

supe s*e:o L

- supeeeL (3-66)

with sup(*) meaning the supremum.

Notice that A is a function only of the ob-
servations and therefore is a statistic. When the
observations are replaced by their corresponding
random variables then A is itself a random variable.
It is know, for example from Mood et al. (1974), that
for large sample -2 log A is approximately distri-
buted as chi-square with one degree of freedom, for
this particular case.

Recalling that LL = log L, we have, from Eq.
(3-66)



ZISUPGEE‘LL - supy 7 LL] - xz(lj
2 =0

(3-67)

SUpg. g LL is the value of the log-likelihood

function evaluated at the estimated vector. Let

LL* = supeég LL (3-68)
Therefore, one should reject the null hypothesis, for
the size of the test equal to ¥y, if i
2
2(LL* - supy o LL) > xp_ ™, (3-69)
-0
where y 1is the probability that a wrong decision is

reached, if the null hypothesis is rejected (Type I
error).

Test of Stationarity. The stationarity assump-
tion made for each season is perhaps the hypothesis
that may raise most of the doubts. Actually, this is
an intermediate step toward a more realistic repre-
sentation of the usually non-stationarity processes of
hydrology; each season yields a parameter vector and
the fitting of periodic functions to this number of
points, which equals the number of seasons, will give
a non-stationary representation of the whole process.
Hence, the stationarity assumption ought to be seen as
an approximation used in an estimation procedure de-
signed for a non-stationary model. Nevertheless, one
should expect the period of the year to be divided in-
to seasons in such a way that the non-stationarity in-
side each season is kept at a Low Level. A test for

the stationarity of each season is, therefore, in
order.

A way of testing for the stationarity is again
through the use of the generalized likelihood ratio.
Let the season be split into two subseasons, A and B.
If the process was indeed stationary, one could expect
the estimates for the subseason A to be close to those
for the subseason B. Different season splitting
criteria represent different alternative hypotheses.
From the several ways of splitting a season, the follow-
ing two schematic representations may be most convenient

Alternative I

A is the first half and B is the second half of
the season. See Figure 3-3(a).

Alternative II

A is made of the first and last quarters, and B
of the second and third quarters of the season. See
Figure 3-3(b).

It is easily verified that Alternative I would
work satisfactorily whenever a parameter @ varies
with time in the way shown in Figure 3-3(c). However
it would not be appropriate for a situation like the
one displayed in Figure 3-3(d); despite the fact that
@ 1is not constant with time, still GA and GB might

turn out to be statiscally equal. By a similar rea-
soning it can be shown that Alternative II is appro-
priate for situations 1like the one displayed in
Figure 3-3(d) and not appropriate for situations
exemplified by Figure 3-3(c)
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For safe tests, both alternatives should be used.
The parameter space can be reshaped in the following
way:

8) = MpMps Oy % 0p0p, 05 =ppPps Oy = @ty
Gs‘uA s @6=(‘1A s B7=DA » 93'_‘“}\
1 1 1 l---l
(d)
Fig. 3-3. Illustration of splitting Criteria for
Testing for the Stationarity.
Let E be the eight-dimensional parameter space
e = {(8;), -= < o, <= for i=1,2,3,4,5,8; 0 < ;
0 < @? < 1}. Define the four-dimensional parameter

space 9 = {(8;); &; = 0 for i=1,2,3,4, -=< O,
eB <w; 0 <8, 0c< 97 < 1}. The null hypothesis is
then HO: @egﬂ.

6’

GEQO, versus the alternative H,:

A

The generalized likelihood ratio_is then given by
Eq. (3-66). From the definition of 8, SUPy.m LL =
S0

LL*, where LL* 1is defined by Eq. (3-68). For large
sample -2 log A is distributed as chi-square, this
time with four degrees of freedom. Therefore, one
should reject the hypothesis, for a test of size y, if

2
2(supy g LL - LL*) > X1-y (4) (3-70)

3-6 Generation of New Samples

Once the parameters are estimated, the generation
of new samples can be accomplished by following the
stepwise procedure illustrated in Figure 1-1.

The standard normal noise, gt, can be obtained

by using several canned computer subroutines. However,
for the multivariate case some care must be paid in

generating Et j; j =1,2,...,2 because the variables
»
may not be independent, with j as the station subscript

A way of doing this is by the use of:



o,

(3-71)

in which 7 is a £xf matrix and n, is a £x1 vector of

independent standard normal deviations. Then
cov(gt) = cov(wﬂt) =T cov(gt] T (3-72)

where cov(:) means the covariance matrix of the
argument vector. Because

cov(n,) = I, . (3-73)
where I£ is the £xf identity matrix, then from Eqgs.
(3-72) and (3-73)

cov{gt) !

(3-74)

On the other hand, the linear autoregressive equations
for stations j and k are:

zt,j = u(j) + p{j](ztnl,j-UEj}} + o(j) /l-pz(j) Et ;

(3-75)
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and

Py T RO ¢ 0@y ) + 000 AP 6,

(3-76)
Multiplying Eqs. (3-75) and (3-76) and finding the
expected values, then :
cov(e, g ) = 2020 0-0()e®)
3 AT )
1-p7(3) (1-p" (k)
(3-77)

where p(j) and p(k) r >
coefficients respectively for stations j
o(j,k) 1is the lag-zero cross correlation between the
two station series. From Eqs. (3-74) and (3-77) one
may conclude that the (j,k)-element of matrix ',
J#k, is given by Eq. (3-77). The diagonal elements
are unities. Several methods are available for find-
ing the matrix +# when wx' is known; Young (1968)
gives a straightforward one.

are the serial correlation
and k, and



Chapter IV

JAPPLICATION OF INTERMITTENT PROCESSES MODEL TO
PRECIPITATION DAILY SERIES

In this chapter the model previously presented is
applied and tested to daily precipitation data. The
approach undertaken is to show, by a few examples,
that the model has sufficient merit to find place
among the techniques already used in hydrologic prac-
tice. No attempt is made to test the method on a
large number of station series. The emphasis is on
demonstrating the reliability of the methodology,
rather than an exhaustive examination of the stochas-
tic characteristics of hundreds of precipitation series.

4-1 Data Selection

Choosing a particular precipitation record to be
one of the cases studied in this chapter has been con-
ditioned by the two requirements:

(i) The climatological description of the station
location should be easily available; and

(ii) The stations should be sufficiently apart
to possess different climatological conditions. How-
ever, a few stations should be sufficiently close in
order to display some dependence, in this way serving
as an illustration for the multivariate case for which
the model is also applicable.

The first requirement was satisfied by Imposing
that a station would only qualify if it had been se-
lected to receive a detailed description in WIC (1974).
This publication gives a summary of climatological data
of a large number of precipitation stations in USA,
furnished on a state by state basis. Among those, only
a few are chosen to receive a complete description.
The stations herein selected for study belong to this
second category. They are given in Table 4-1.

Table 4-1. List of Stations Used for the Study
Station Period of Location Elevation Average Annual
Record LATIT. LONG. (£t Precip. Days w/
{in.] . Precip.
Columbia (MO) 1951-1968 38°s8' 92°22° 778 33.66 107
Kansas City (MO) 1946-1968 39°07' 94°56° 742 33.04 98
Springfield (M0) 1946-1968 37°14' 93°23' 1268 38.46 106
Raleigh-Turham (NC) 1951-1971 35°52' 78°47T 434 41.35 113
Austin (TX)} 1898-1967 30°18' 97°42' 587 33.02 31
Rapid City (SD) 1951-1968 44°02' 103°03' 3165 16,39 93
Flagstaff (AZ) 1953-1970 35°08' 111°40' 6993 19.82 72
‘Seattle-Tacoma (WA) 1950-1970 47°270 122°18' 386 39.95 164
The periods of record given in Table 4-1 were
selected on the basis of the availability of data.
They do not necessarily coincide with the periods in

the WIC (1974) publication. Figure 4-1, with the lo-
cations of eight stations shows that the second re-
quirement is also satisfied, namely that the stations
are scattered throughout USA, with the exception of the
three stations located in the State of Missouri, used
to illustrate the multivariate case.
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To avoid an excessive number of tables and graphs
throughout this chapter, the detailed results pertinemnt
to the station of Columbia (MO) will be only given in
the text. The results related to the other stations
will be referred to and introduced in a summarized way.
However, Appendices Bl to B7, give the detailed outputs
corresponding respectively to each one of the remaining
stations. They are presented in the same order as the
one employed in the text for the station of Columbia

Figure 4-1. Location of Stations of Daily Precipita-

tion Series Used in this Study.

4-2 Application of the Model for the Stationary Case

A possible application of the model may be in
generating the new samples related to a specific short
interval of time during the year, say a particular
month. For this case one is tempted to assume the
stationarity in the data, therefore enabling the use
of the model in the form developed in Chapter III. To
study the applicability of the model for this case the
data of each station series is divided in twelve sea-
sons. The tests developed in Chapter III are then
applied to each season of each station series yielding
a detailed picture of how the data conforms to the
hypotheses of the model. The seasons have alternating
lengths of 32 and 28 days, adding up to a total of 360
days. The selection of these lengths stems from the
fact that the stationarity tests developed in Section
3.5 require the number of daily observations to be the
multiples of 8 and 4, respectively.

For each season and each station, the following
procedure was used in the analysis:

(i) To estimate the parameters u,o0,p and a
of the marginal distributions, using all the data
available;

{(ii) To find the approximate covariance matrix
of the estimators by using the asymptotic expressions
developed in Section 3-4;

(iii)
ginal distribution by using the

To test- the goodness of fit of the mar-
statistic;



Table 4-2. Results Obtained in Case the Year is Divided in Twelve Seasons, for the Columbia Station
ASYMPTOTIC
PERIOD PARAMETERS COVARIANCE MATRIX T.S.1 T.S5:2 T.S5.3 T.S.4 T.S.5
u o 0 M x 1074 (d.£.) (1d.f.) (4d.f.) (4d.f.) N(0,1)
001-032 -.4109 .5475 .3848 .6121 2988 -2071 - 582 865 8.979 17.305 10.294 4.403 -6.902
2383 950 -1302 (4)
7832 - 206
2398
033-060 -.3291 .5370 .3584 .6655 2382 -1555 - 416 607 7.015 15.023 6.195 -3.237
2048 827 1227 (5)
7934 - 148
2760
061-092 -.2170 .5383 .1928 .6249 1347 - 767 - 113 140 10.857 5.633 7.601 3.191 -5.925
: 1235 320 - 648 (6)
6754 - 25
1676
093-120 -.1947 5578 ,2295 ,7106 1557 - 832 - 196 101 10.427 7.316 1.028 -2.940
1381 455 - 752 (7)
7166 - 22
2362
121-152 -.3110 .7080 .3169 .7143 2547 =-=1329 - 264 - 4 16.416 15.243 2.587 5.804 -1.528
1885 682 - 421 (9)
6146 - 40
2274
153-180 -.2939 .7182 .1900 .6052 2743 -1460 - 171 - 37 6.570 4.521 2.297 -4.870
2076 472 - 346 (9)
7771 - 12
1784
181-212 -.3846 .7701 .2641 .6353 3274 -1818 - 313 - 2 7.825 9,650 2.242 7.865 -4.185
2352 675 - 334 (9)
6980 - 22
1876
213-240 -.5526 .7812 .2158 .6304 5566 -3465 - 427 346 7.823 4,374 4,990 -4.469
3771 777 - 726 ()
10608 - 62
2597
241-272 -.6331 .9114 .3958 .6065 6681 -3916 - 771 - 64 5.637 19.562 5.601 4.058 -4.325
4312 1348 - 169 (9
7176 - 67
2093
273-300 -.6799 .8538 .3706 .6254 8188 -5006 - 959 348 6.093 13.139 5.042 -3.186
5115 1533 - 679 (7
9684 - 122
2879
301-332 -.5193 .6632 .2948 _.6576 4355 -2864 - 551 788 10.577 8.961 1.449 3.572 -4.172
3048 891 -1171 (5)
9407 -~ 148
2739
333-360 ;.3301 .5219 .3451 .6527 2365 -1595 - 424 676 4.687 13.269 0.730 -4.137
2068 813 -1276 (4)
8330 - 158
’ 2696
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(iv) To test the hypothesis that there is no
serial dependence in the data (in which case a much
simpler model would do the job...)

(v) To test the hypothesis of stationarity for
alternative II (only for the seasons of length 32); and

(vi) To investigate which family of distribu-
tions, light or heavy tail, best fits the data.

The results obtained are presented in Table 4-2
(see also the Appendices Bl to B7 for the correspond-
ing tables concerning the seven other stations). The
remainder of this section is devoted to the descriptim
and comments related to these tables.

The Seasons. The first column of tables gives
the beginning and the end, in days of each season.
January 1 is day one. The 12th season ends on the
360th day of the year; therefore, five or six days (in
leap years) are neglected for each year. This is
certainly irrelvant for the objectives of this investi-
gation, namely to evaluate the applicability of the
model.

The Estimates and the Covariance Matrix. The next
four columns give the estimates of u,0,p and a,
respectively. The next four columms give the asympto-
tic covariance matrix of the estimators, assuming them
arranged in the above order (u,o,p and a). As stated,
previously these results are helpful in designing
sensitivity studies. For example, assume that a geme-
rated sample will be used to perform a hydrologic
routing, with the resulting output hydrograph at a
location of particular interest. Suppose further that
the hydrograph will be used for the design of a flood
control structure. An important information is how the
final product say the height of a dam or its cost, will
be modified when reasonable variations are imposed on
parameters of the generation model. What is a neason-
labfe!variation depends on the subjective criteria of an
engineer. Regardless of this subjectivity, omne would
not expect that the taue parameter would lie, say five
standard deviations (of the pertient estimator) away
from the estimated value. What is suggested is that
the approximate covariance matrix may be useful in
establishing the variations of parameters, which will
be found reasonable by most people. Logically sensi-
tivity analysis is a procedure to be applied on a case-
by case basis. It seems worthwhile to point out that
the first step in any sensitivity study will likely be
to construct confidence intervals around each of the
estimates, or even better, a confidence region. An
approximate procedure to do it is to assume that each
estimator is normally distributed, (which is true for
large samples), and find intervals, rather than regims.
In this case the approximate limits of the confidence
intervals are obtained by adding to and subtracting
from each estimate a quantity that is equal to the
appropriate quantile of the standard normal distribu-
tion multiplied by the corresponding standard devia-
tion. The last one can be obtained from the asymptotic
expressions. For instance, for the Columbia data,
period from 1 to 32, u = -0.4109, std (v} =

2088 x 10°° = 0.0547. Therefore, an approximate 95
percent confidence interval for u is given by
(-0.4109 + 1.960 x 0.0547), so that the limits are for
u: -0.5180 and -0.3038; similarly for o: 0.4518 and
0.6432; for p = 0.2113 and 0.5583; and for a: 0.5161
and 0.7081l. The same precedure could be repeated for
each of the four parameters, for each season of each
station.
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Goodness of Fit. Column 10, headed by the label
T.S.1 (symbol for the test statistic No. 1), gives
important information, namely the chi-square goodness
of fit statistic. Inside the parenthesis are displayed
the number of degrees of freedom, which depend on how
the data have been arranged into groups. The good per-
formance of the model with respect to reproducing the
marginal distribution for each season-station is re-
markable. Indeed none of the twelve seasons in which
the Columbia data was divided has yielded a statistic
that would lead to the rejection of the marginal fit,
at a 5 percent significance level. (Appendix C gives
the critical values of the chi-square distribution, at
the 5 percent and the 1 percent significance levels).
As it concerns the other stations (see Appendix B) the
following results are given.

Table 4-3. Seasons for Which the Marginal Fit Were
Rejected at the Five Percent Significance
Level.
Station Period Chi-square Degrees of
Statistic freedom
Kansas City (MO) 061-092 21.586 9
Springfield (MO) 061-092 16.871 8
333-360 15.226 7
Raleigh-Durham (NC) 032-060 24.353 9*
301-332 19.083 8
Austin (TX) 001-032 34.282 11*
033-060 27.749 13
061-092 23.074 13
333-360 32.065 14*
Rapid City (SD) 301-332 7.061 2
Flagstaff (AZ) 213-240 12.934 6
241-272 14.631 6
Seattle-Tacoma (WA) 333-360 25,928 10*

*Rejected also at a 1 percent significance level

Therefore, out of 12 x 8 = 96 season-stations,
13 had the hypothesis of correct fit of the marginal
distribution rejected at the 5 percent significance
level. At the 1 percent significance level only four
cases, those marked by an asterisk in Table 4-3 are
rejected. No null hypothesis stating the universality
of the model applications is tested here. If this was
the case, and if the studied time series were spatially
and serially uncorrelated, then one would expect to
have no more than 5 season-stations rejected at a 5
percent level or no more than 1 at a 1 percent level.
The purpose of this particular study is rather to
identify cases for which it is not avisable to apply
the model. For instance, an examination of Table 4-3
reveals that the four seasons that roughly span from
December to March for the Austin station should not
be modeled by this approach.

Test of Serial Independence. The next test
statistic to be examined, T.S5.2 of Table 4-2 and
Appendix B, is described in section 3-5. It tests

HO: o = 0 against HA: p # 0. If the null hypothesis

holds, then the test statistic has approximately a
chi-square distribution with one degree of freedom.
Hence, one can reject the hypothesis, say at 5 percent
significance level, whenever the test statistic takes
a value greater than 3.84. For all except two of the
96 cases the null hypotheses were rejected. The only
exceptions occurred for the 1lth season of Rapid City



station, where X2 = 3.81, and 4th season of Flagstaff,

with XZ = 3.79. These two cases may be results of
pure chance variations.

This overwhelming rejection of the hypothesis of
serial independence in the analysed precipitation
series makes one wonder about the reality of several
models, as described in Chapter II, that neglect the

“time dependence in daily precipitation

Tests of Stationarify. The next two test statis-
tics, T.S.3 and T.S.4 in Table 4-2 and Appendix B are
related to the question of stationarity. One would
not use the 4eason approach in generating new samples
if the data of a particular season shows some evidence
of non-stationarity. In Section 3-5 two test statis-
tics were developed to test the null hypothesis H :
the process is stationary, versus two alternative
hypotheses: Alternative I, with the parameters varying
with time in a symmetrical manner around the center of
the season. Under the null hypothesis both test
statistics have approximately a chi-square distribution
with four degrees of freedom. Hence, the hypothesis
should be rejected at 5 percent significance level
whenever the test statistic is greater than 9.49.

The test with the Alternative II was only applied
for the seasons composed of 32 days, because the
splitting procedure requires a sample which is a
multiple of eight.

For the Columbia station data, only one season
has the null hypothesis rejected. This happened for
the first season and only against Alternative I. With
regard to the other stations, very few rejections oc-
curred. either, as it is demonstrated by Table 4-4.

Hence the hypothesis of stationarity was rejected
for 11 seasons, at the 5 percent significance level.
Some of these rejections might be due to randomness in
data, rather than to a deficiency of the model. Con-
versely the test might have been accepted for some of
the other seasons due to chance and not to the adequacy
of the model. However if one had to select Auspicious
seasons, as far as the application of the model is
concerned, then the eleven cases which had the station-
arity hypothesis rejected would lead the list. In the
ensuing sections, it will be shown that alternative
procedures may allow the use of the model for all year
around with satisfactory results.

Table 4-4. Seasons for Which the Hypothesis of
Stationarity was Rejected at the Five
Percent Significance Level (critical value

= 9.49)

Station Period Test Statistic Alternative
Columbia (MO) 001-032 10.29 I
Kansas City (MO) 001-032 10.57 I
Rapid City (SD) 061-092 11.45 11

121-152 13.27 11
Flagstaff (AZ) 121-152 11.25 I
181-212 39.62 I
241-272 14.23 I
Seattle-Tacoma (WA) 033-060 13.06 I
061-092 11.18 I
121-152 11.64 I
241-272 19.30 I
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Tests for Extreme Events. The last test statistic
to appear in Table 4-2 is not directly related to the
model, but rather is an evaluation of the characteris-
tics of the data. Do sample frequencies need to be
fitted by a light or a heavy tail probability distri-
bution? The importance of this question stems from the
singular role played by extreme events in the hydro-
logic design. The use of some light tail distribution,
when the data require some heavy tail distribution,
can lead to serious mistakes.

Bryson (1974) classified a distribution with c.d.
f. FX(x) as heavy tailed whenever g(x) =

f: Fx(t]dt is an increasing function of x,

Fx(x]
with Fk(x) = Lo Fx{x}. If g(x) is constant, namely
glx) = %3 ¥x, then F, (x) =1 - e'¢x, i.e. the expo-
nential "distribution  is the benchmark between light

and heavy tail distributions. It is important to
underline that the family of distributions frequently
used in hydrology has the exponential tail.

Holander and Proschan (1975) developed a procedure
for testing the null hypothesis, namely HO: the dis-

tribution has exponential tail. They proposed the test
statistic (modified by a constant factor here)

«_ f210 if1 Cin Ry
T AL o S
n5 n
£ Ry : (4-1)

=

i=1
where
3
_ 4.3 .2 2. n
Cin =gi" - 4ni” + i - 7 (4-2)
with Rl, Rz, — Rn = the order statistics. They

also proved that under the null hypothesis the test
statistic follows the standard normal distribution.
Lighter than exponential distributions will tend to
have large V" values and conversely heavier than
exponential distributions will tend to have small
(negative) V* values. Therefore, the exponential and
light tail hypothesis ought to be rejected, at the 5
percent significance level, whenever the observed test
statistic is smaller than -1.645. Checking the column
T.S.5 of Table 4-2, one realizes that this happened
for all the 12 seasons but the 5th. Table 4-5 lists
all the instances where the null hypothesis failed to
be rejected.

Therefore only in 10 cases out of 96 cases the
null hypothesis failed to be rejected at the 5 percent
significance level. This could lead to the conclusion
that in the majority of cases daily precipitation data
ought to be fitted by a heavy tail distribution. How-
ever, it should be pointed out that the test assumes
time particular application. Furthermore, the distri-
bution of the test statistic is only asymptotically
krown. In other words, the above test might not per-
form the task it is supposed to do. Even for a
correct test, insight on the degree 0f heaviness of
the precipitation distributions would be useful. An
alternate procedure for checking the tails seems to be
in order.

PP
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Table 4-5. Seasons for Which the Hypothesis of Light
Tail Failed to Be Rejected
Station Period Test Statistic
Columbia (MO) 121-152 -1.528
Kansas City (MO) 153-180 -1.213
Raleigh-Durham (NC)  033-060 0.571
333-360 0.002
Flagstaff (AZ) 033-060 -1.592
093-120 -0.697
121-152 -0.741
Seattle-Tacoma (WA) 001-032 -1.627
061-092 -1.325
273-300 ~1.378

_ Bryson (1974) suggested that a graph of log
Fx(x) versus x could give a visual perception of the

tail behaviour of the probability distribution function.
In fact, the procedure serves the purpose of amplifying
the tail characteristics of a distribution. Obviously
in case of exponential probability distribution this
graph will plot as a straight line. According to
Bryson, "...the graph of a distribution with an expo-
nential tail, such as the gamma will approach such
linearity for large x. (Heavy tail) distributions
then, will be characterized by graphs that do not
approach such linearity and which remain too high. Un-
. fortunately, it is difficult to be more precise.
This property means that the graph will tend to be
concave for large x..."

Figure 4-2 displays the graphs of log ?;(x] versus

x for several power-transformed-truncated-normal-dis-
tributions with different power parameters o, and for
u = o. For comparison other distributions were also
plotted, such as Pareto, exponential, and kappa. The
kappa distribution was used by Mielke (1973) for fit-
ting precipitation data. The plot was done in such a
way that F(10) = 0.05 for all cases. It is apparent
that the smaller o the heavier is the tail. For
a = 1, which corresponds to the truncated normal,
tail is lighter than the exponential.

the

An excess number of figures is avoided by consi-
dering only the sequence of four seasons (120 days)
that have the highest average precipitation. This
seems to be an appropriate criterion due to the problem
being investigated, namely extreme or flood type events.
Figure 4-3 displays the four graphs pertinent to
Columbia station. The same graphs related to the other
stations are given in Appendix B. In general, no con-
cavity of the curves, either the fitted (continuous)
or the observed (dashed), is evident. Rather, they
resemble very much straight lines, which indicates
that the distributions with exponential type tail are
not precluded from fitting precipitation data. This
statement is in contradiction with the previous conclu-
sion about the test made on tails, The important point,
however, is that even if data require indeed the heavy
tail distributions, the deghee o4 heaviness would be
very low. Based on the above study, one can say that
the issue of heavy or light tail does not seem to be
very relevant to the application of the precipitation
model developed in this study.
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Fig. 4-2. Graphs of log F&(x)'_Mersus x for
Selected Distributions: (1) Exponential;
(2) Truncated Normal; (3) Power-Transformed
Truncated Normal, a = 0.6; (4) Power-Trans-
formed Truncated Normal, a = 0.4; (5) Power-
Transformed Truncated Normal, o= 2; (6)

Kappa; (7) Paretto.

4-3 An Example of a Multivariate Application

A simple illustration is given here to show the
use of the model in a multivariate case. Suppose that
one wants to produce the new samples of precipitation
data for the stations of Columbia, Kansas City, and
Springfield simultaneously by preserving the areal de-
pendence among them. Assume further that only the
most rainy month for the region is of interest. This
is in June, roughly corresponding to the 6th season of
the classification used in the last section (period
153-180 or June 2-June 29). Therefore the marginal
parameters can be found respectively from Table 4-2,
and Appendices B-1 and B-2, respectively.

Next step is to find each of the three lag-zero
cross correlation coefficients between station series
by using Eq. (3-24). The results are summarized in
Figure 4-4.

One hundred trivariate samples each for the month
of June, were generated simultaneously according to
the procedure explained in Section 3-6. Out of many



100E+Q1

T

I

. 100E+Q0

. 100E~01

||||l’l| 1

T

= (a)
- \ .
\
. \
0
- 100E+00 | N o
2 >~ 3
C I 3
o A\
\ _
\ —
b -
. 100E-01 1 | 1
8 & & @
g & & &
s : -
. 100E+Q1 T T T -
n ®)
L N J
~
= '\\ B
5 |
.
. 100E+00 [ N -
- R ]
i LY il
L \\ ]
. 100E-0! | 1 |
3 g 8 g
I -
s > '
. 100E+01
1 ] 1
- (c)

N

R T

S00€+00 |
. 100E~01 |
1S0E-01 [

 200E+01

25

. 1Q0E+0] | T : :
BN (@
= W -
b Y -

A\
- \h“ -
\\
L N\
\"\

L 100E+00 | ~ -
= i -
g o\ 3
= "5
- \ -1

\
- \ -
AY
100E-01 = 1 1 A
8 g 3 g
-]
RN
Q
Fig. 4-3. Plot of log Fk[x) Versus x for Selected

Distributions: (a) Period 93-120; (b)
Period 121-152; (c) Period 153-180; (d)
Period 181-212.

Fig. 4-4. Representation of Parameters Needed for
Generation of Daily Precipitation Series

for the Month of June.

@ [¢}]
Kansas City (MD) Py = 0.772 Columbia (MO)
u=-0.3091, p = 0.1938 = -0,2939, p = 0.1900
o= 0.8008, a = 0,.6870 o= 0.7182, a = 0.6052
TN :
Pyy = 0,489 | y3 - 5.6
(3)
Springfield (M0)

= -0.3748, p = 0.2893
o= 0.8293, a = 0.6797

ways of comparing the historic and the generated series,
it was decided to focus attention on the joint positive
runs. A joint positive run is defined as a succession
of days for which the precipitation is observed at all
three stations, preceded and followed by days for which
at least at one of the stations no precipitation oc-
curred. For each joint positive rum, the,two variables
of interest are: (i) The length, defined by

L, - Ll + 1, and (ii) the joint run-sum, defined as

g L

] ] X,  where X,. is the amount of precipi-
= I = 2

1

tation at the ith station in the jth day, L1 = the
first day of the joint positive run, and L2 = the

last day of the joint positive run. These two varia-
bles were selected with the solution of flood problems
in mind. Table 4-6 gives the absolute frequencies of
run-lengths for the historic and generated series.



Table 4-6. Absolute Frequency of the Joint Positive
Run-Lengths
Sample Run-length Total
1 2 3 4° 5 6
Historic 31 8 5 1 0 0 45
Generated 190 31 19 4 0 1 245

Whether the two samples of Table 4-6 can be con-
sidered as drawn from the same population is of crucial
importance in the evaluation of the model. A way of
answering this question is by using the test of equa-
lity of two multinomial distributions. The reader is
referred to Mood et al. (1974) where a description of
the test is given (pages 448-452). It is sufficient
to state here that the sample space is divided in
k + 1 subsets and the null hypothesis states that
Ho: plj = P2j’ j=1,2, ..., k + 1, where Plj =

probability that an outcome of the first population
belongs to the jth subset, and ij = the same as

the

P,: but in regard to the second population. For the
aéave data the division in three subsets (k = 2) seems
convenient, namely: (i) run of length 1; (ii) run
of length 2; and (iii) run of length > 2.

It can be shown that

2
2 k+l (cij - 31[G1j + sz}/(gl + g,))

T.S.6 = -
izl ys1 gi(Glj + szJ/(g1 + g))

(4-3)

has a limiting chi-square distribution with k degrees
of freedom, where 2= the total number of observa-

tions for the first population (in the present case,
45); g, = the same as g,, but for the second popula-

tion (245); G1j = number of outcomes in class j, from

the first population; and G,. =

23 the same as Glj’ but

from the second population.

The use of Eq. (4-3) with the data of Table 4-6
yields a value of T.5.6 = 1.58. Since the 95 percent
quantile of the chi-square distribution with two de-
grees of freedom is 5.99, the null hypothesis cannot
be rejected at the 5 percent significance level.

With regard to the joint run-sums, again the test
whether the two samples (not given in tables) were
drawn from the same population if performed. Since
this variable is continuous, the two-sample-Smirnov
test seems more suitable than the multinomial one. For
a description of that test see Bradley (1968). Here it
is sufficient to state that under the null hypothesis
of equality of the two distributions, the random
variable

T.S.7 = max |Sl{x) “ Sz(x)[ (4-4)
b x
has some distribution which 95 percent quantile is
given approximately by

8 * &
£18;

1.358
(4-5)
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_Fig. 4-5.

where Sl{x) is the sample c.d.f. of the historic

sample and Szix) is its counterpart for the generated
sample.

The application of Eqs. (4-4) and (4-5) to data
gives the values of 0.1868 and 0.2202, respectively.
Therefore, the hypothesis stating that the two samples
can be considered as drawn from the same population
should be accepted at the 5 percent significance level.

In synthesis, the application of the model to the
multivariate case is satisfactory for the example used.
This is a positive indication about the feasibility of
using the model.

4-4 The Non-Stationary Approach to Analysis of
Intermittent Stochastic Processes

If the model is applied to a long period of time,
say to the whole year, the season approach is no more
feasible. First, one might consider the possibility
of generating new samples by using a succession of
seasons. For example, one could divide the year in
twelve seasons (as in Section 4-2), and assume station-
arity inside each season, though each season would be
stochastically different from the others. However if,
say, April 30 is the last day of a season, and May 1
is the first day of the next season, then according to
described procedure the daily precipitation process is
expected to undergo an abrupt transition in parameters
between these two days. This is not a realistic
approach.

Another alternative is to assume that any para-
meter of the model is a periodic function of time,
rather than a constant. In this case, the question is
how to estimate the time functions M50 5P 50, and

pT{i,j). The 4eason approach can be used as an inter-

mediate step for solving the problem, namely split the
year into seasons and for each season estimate a set
of parameters under the hypothesis of stationarity.
The time variation of each parameter can be represented
by a bar graph, as in Figure 4-5, where © represents
any of the above referred parameters. Next fit the
bar graph with some smooth function.

a0

T

Fitting a Smooth Function to Values Obtain-
ed by Season Approach.

The most convenient way of expressing @r is
through an analytical expression. Smoothing techniques
like the moving-average scheme are not appropriate.
Usually the periodic parameters of hydrologic time
series are fitted by Fourier series, with the present
study following this technique.

The periodic .function @T, T=1,2..., 2 1s
difined by

_k/2
E)=6+

5 2mjT . A . 2miT :
! 4 [aj cos (=) bj sin(=)Im(j)

(4-6)



with
- 2 E 2rjt
a, = — 0 cos —— 4-7
i K2yt K (4-7)
and,
F a2 ¥ gy 2
] k =1 T k (4‘“3)
and,
k
1 B,
5 _ 1=1
°= X (4-9)_

with GT the individual estimates of © along the

values 1 =1, 2, ..., k: k = the number of seasons in
which the year is divided (for simplicity assumed to
be an even number); T = the day index; @ = the number

" .y _ (1, if the jth harmonic is consi-
of days; and m(j) = {dered significant; 0, otherwise.
A clarification is necessary about what is meant
by significant hawmonic. The use of Eqs. @-7) and
(4-8) yields only the estimates of the faue parameters

aj and bj' Hence even if aj and bj were both

equal to zero, meaning that there is no periodic signal
with frequency j/k, still a; and bj are likely to be

different from zero. In these conditions, if the jth
harmonic is accepted as a legitimate periodic compo-
nent, then a spuriors periodicity would be included in
the formation of .- The question is then how to

decide whether a. and bj are significantly differ-

ent from zero, i.e. whether the jth harmonic is signi-
ficant. A way of accomplishing this is by the
classical Fisher's test for a process composed of the
sum of a harmonic and a normal independent process.
This test, as well as some empirical procedures, are
described in detail by Yevjevich (1972b). A diffi-
culty with the Fisher's approach for this kind of
problem, besides those pointed out by Yevjevich, is
that when fitting the periodic functions one is much
more worried about the possibility of committing the
Type II error than the Type I error. The Fisher's
test only controls the Type I error. In other words,
while smoothing a sfep function one is very much con-
cerned with missing some periodic signal that should
be included but does not care so much when the case is
opposite, namely of a harmonic being wrongly considered
as significant.

As mentioned before, Yevjevich (1972b) suggests a
couple of empirical procedures for testing the signi-
ficance of harmonics. Another empirical methodology
was found to be convenient in the present study.

The mean square of deviations of et,T =1, 2,

...,k, from the mean @ is given by

E

i=1 j=1 (4-10)

where (var hj) is called variance of the jth harmonic.
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Under the hypothesis that all the k/2 harmonics
are not significant, the expected value of the variance
of any harmonic is given by

2 k/2
E(var h)) =g ) var hj = var h
j=1 (4-11)

If the above hypothesis is not true the tendency
will be to have at least one of var h. well above

var h. The suggested empirical procedure is to reject
the hypothesis whenever

max (var hj] > var h, (4-123

where ¢ 1is a constant greater than one. In the
cases analysed in the ensuing text the value of c¢ =3
was found appropriate.

The hypothesis being rejected means that the
harmonic hi with the highest variance ought to be

considered significant. Next step is to redefine

. , K2
var h = 7 [ E (var h.) - var hi]
j=1 J (4-13)

(the ith harmonic is excluded) and check whether

max (var h,) > c var h,

i, 3£ 4 ?
and so on. As long as the hypothesis is not rejected
the procedure is continued.

The precipitation data for the eight stations
studied were divided into 26 seasons (k = 26), 14 days
each, adding up to 364 days. This is a rather arbi-
trary selection; one could choose the season length as
short as two days. For each station-season the para-
meters u,o,x, and p are estimated according to the
procedure described in Chapter III. No test as applied
in Section 4-2 was repeated. Then the above techmnique
was applied to each of the four parameters of the
eight stations. After some studies, it was found that
sometimes the harmonics corresponding to high frequen-
cies were inferred significant, which somehow violates
the general experience. Because of that a further
criterion was added to the method. A harmonic was
only considered able to be significant if its order
was lower than six. The results are summarized in
Table 4-7. Graphs of the functions u_,0 ,p , and o

for the Columbia station, obtained by using Eq. 4-6,
with parameters given in Table 4-7, are plotted in
Figures 4-6 and 4-7. The similar graphs, corresponding
to the other seven stations are given in Appendix B.

A matter of interest is to check how the empirical
procedure for determining the significant harmonics
compares with the Fisher's test. The later was ap-
plied to all the 8 x 4 = 32 cases and the difference
between the number of harmonics indicated for each
case, by the two techniques is shown in Table 4-8.

In general the empirical method yields a greater
or equal number of significant harmonics as compared
with the Fisher's test. This means that the probabi-
lity of rejecting a significant harmonic is lower if
the empirical approach is used rather than vice-versa.




Therefore the empirical technique has the property o~ S —
for which it was developed. i ]
1
The number of parameters estimated from data and Sk ]
used for generation is an important information. One = P ™ r1.==£:l=t=.1:?=£:
can say that the reliability of any schematic repre- g il (i il i T ]
sentation of data varies inversely with the number of S E % i 112 40 168 19 2% 22 260 308 % &
parameters estimated from data. Table 4-7 shows all o N S N M P I R B,
the estimates required for generating new series for T
each one of the stations. Table 4-9 displays the num- L
ber of parameters used for each station; this informa- i e == B
tion is extracted from Table 4-7.
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Taking into consideration that daily precipitation e AT TR T R T T

is being modeled, it seems fair to say that the neces-
sary number of parameters is remarkably low. However,

the central issue is whether the model is capable of Fig. 4-7. The Periodic p  and o  for Daily
producing the results of practical significance. This Values of the Columbia Precipitation
is investigated in the next section. Station.

Table 4-7. Significant Harmonics of Four Parameters

u a [ a
Station -T j 4. [ a ] a. s ~ v E] = b. (3 b H b.
] i 5 by = 25 b j by
Columbia .403666 1 .031489 -.19%0090 .673970 1 -.100808 -.144378 306145 .653941
Kansas City .461488 1 .075859 -.191089 .721135 1 -.113136 -, 148063 .320545 4 .037535 .067766 .661580 &  .022762 -.027159
2. -,052782 -.009277 1 .069217 -.025740
Springfield .415715 1 030349 -.140684 .724957 1 -.072608 -.0B8316 314639 .620299 1 -.038077 .010293
Raleigh 441735 1 .029385 -~,176852 .751143 1 -.027255 =-.124785 .306876 .695255

w

L017570 074833

Austin L713762 1 -.150029 ~-.173400 .B75042 1 -.119636 -.084729 .425415 5 -.047476 -.016018 .586908
3 -.042823 -.056385 2 -.042252 -.06B506
5 .033835  .040210
6 -.010444 -.046761

Rapid City .241580 1 -.010936 -.127151 388333 1 -.175118 -.048592 .319249 .7025% 1 .110888 -.004344
2 -.095697 -.007476 2 -.043872 -.034110 f
4 .013093  .063780

Flagstaff .569254 2 .085979 -.198420 .631429 4 .100050 -.022900  .483464 724391
3 -.078080 .147733 1 .078021 -.043959
4 .138501 -.046148

Seattle .069268 1  -.240519 -.089106 .421739 1 040363 -.039487 .426829 2 -.041110 .082934  .6B5665
2 -.010185  .060887
5 .024331 -.022304
4  -.030524  .D05607

Table 4-8. Number of Harmonics Obtained by Empirical
Procedure Reduced for Number of Harmonics

o~
i e e Obtained by Fisher's Test
. u [+] p a
-1
Columbia 0 0 0 0
o L ! 1 L 1 I 1 P IR 1 1 I Kansas City 0 1 2 1
Sg 28 55 84 112 140 168 196 224 252 280 308 336 364 . i
b —————TT T T Springfield 0 0 1 1
° Raleigh-Durham 0 1 0 0
pri Austin 3 0 1 4]
) ] Rapid City 0 1 -1 0
o PR ) 1 1 1 i 3 L TG 3w | 1 i
S0 28 S5 64 112 140 168 196 224 252 280 308 336 Flagstaff 2 2 0 0
Seattle-Tacoma 2 0 0 0

Fig. 4-6. The Peridoic B and o for Daily Values

Table 4-9. Total Number of Parameters Used for

of the Columbia Precipitation Statiom. % :
? Generation of New Series

4-5 Further Tests of the Model Columbia 8 Austin 18
The practical use of the model ultimately depends Kansas City 16 Rapid City 16
on its capacity to generate new series that correctly Springfield 10 Flagstaff 14
reproduce, in a stochastic sense, the historical series. .
In order to study this subject, samples of 50 years Raleigh-Durham 10 Seattle-Tacoma 16
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length were generated for each station using periodic
parameters, as explained in Section 4-4. The periodic
functions used for each station are given in Table 4-7.
The objective is to compare whether the generated and
the histroic series can be considered as drawn from
the same population.

Likely, a practitioner will be satisfied with the
model performance if the sample distributions, historic
and synthetics.of some functional of the process are
similar to each other. In more specific terms, an
engineer would be interested in a practical case in
some random variable which is derived from the original
process (called a functional). Which functional is se-

lected depends on the problem the model user is facing.

Eleven functionals are chosen to be investigated in
this study. It is expected, that they adequately

cover all the practical aspects an engineer might be
interested in. Figure 4-8 represents a hypothetical
year of record, for which only three sfonms have oc-

curred. It helps the definitions of these functionals.
x(t)
t
te
4 h 4 4 s

Fig. 4-8. Definition of Functionals.

The various functionals are named and defined as
follows:

(i) The positive run-length as the length of a
succession of days for which some precipitation is ob-
served, preceded and followed by days with no precipi-
tation registered, such as Tr rs, and TS' A Tun
that starts in year j and ends in year j + 1 is
counted as it had happened in year j + 1.

(ii) The negative run-lengths as the length of a
succession of days for which no precipitation is ob-
served, preceded and followed by days with some preci-
patation registered, such as Tos Tyt

(iii) The longest positive run-length, as the
length of the longest positive run in a year, such as
T

(iv) The longest negative run-length as the

length of the longest negative run in a year, such
as 14.

(v) The number of total runs, as the number of
complete pairs of positive and negative run-lengths in
a sample, such as the two total rums, (Tl, T2} and

(Tz, 14)-
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(vi) The time of occurrence of the longest
positive run-length, as the time when the longest
positive run begins, such as t-

(vii) The time of occurrence of the longest
negative run-length as the time when the longest nega-
tive run begins, such as ty.

(viii) The time of occurrence of the largest
run-sum, as the time when the largest run-sum begins
(see the definition of the next functional) such as ts

(ix) The maximum run-sum, as the highest amount
of precipitation corresponding to a positive run-sum,

ta
such as J x(t)dt.

3
(x) The annual total, as the total precipitation
t
in a year, such as IT x(t)dt.
0
b (xi) The daily maximum, as the maximum amount of

precipitation registered for a single day, such as
x(t.).
6

The null hypothesis to be tested, for any func-
tional is that the two samples, historic and generated,
are from the same underlying population distribution.

The test of above hypothesis depends on the
functional. For the continuous variables, functional
(ix) through (xi), the Smirnov two-sample test can be
applied. For the discrete variables with outcomes well
spread, the Smirnov two-sample test can be also applied
through in an approximate way; this is the case for
functionals (iv) through (viii). However, the func-
tionals (i) through (iii) are discrete and have their
outcomes clustered around few possibilities so that
for this group the test of equality of two multinomial
distributions is most appropriate. Both tests were
referred to in Section 4-3.

Table 4-10 shows some of the results related to
the functionals (i) through |(iii), that were obtained
from the, historic and generated series. The sample
mean and standard deviation are given respectively as
x and s. The degree of homogeneity between the
sample distributions is measured by T.S5.6, which is
defined by Eq. (4-3). Under the null hypothesis this
test statistic has a limiting chi-square distributien.
The degrees of freedom, for each case, are shown in-
side parentheses, under the appropriate heading.
Appendix C gives the critical values of the chi-square
distribution at the 5 percent and at the 1 percent
significance levels, respectively.

The values marked with asterisks are those that
lead to the rejection of the null hypothesis at the 5

percent significance level. It can be seen that the
generated series did quite well with respect to the
maximum positive run-length inasmuch as none of the
stations had the hypothesis of homogeneity rejected.
Even with respect to the negative run-length the per-
formance is good, with only two rejections: Raleigh-
Durham and Flagstaff. However when it comes to the
positive run-length the results are bad: for all the
stations but one the hypothesis is rejected. This is
a strong indication of the incapability of the model
to reproduce this particular functional. An inspection




Table 4-10. Comparisons of Sample Distribution for Functionals (i), (ii), (iii), of Historic and

Generated Series

POSITIVE RUN-LENGTH

NEGATIVE RUN-LENGTH

MAX POS. RUN-LENGTH

x s X2 X s X2 x s X2
(HIST) (HIST) (d.£.) (HIST) (HIST) (d.f.) (HIST) (HIST) (d.£.)
(GEN)  (GEN) (GEN)  (GEN) (GEN)  (GEN)
Columbia 1.73 1.07 *24.,29 4.42 4.00 Tl 5.61 1.83 3.99
1.71 1.15 (5) 4.39 4,04 (15) 6.08 1.65 (3)
Kansas City 1.71 1.02 *11.29 4,72 4.56 26.40 5.22 1.06 2.37
1.68 1.06 (5) 4.79 4.89 (17) 5.54 1.17 (3)
Springfield 1.81 1.10 *43.16 4.45 3.95 14.96 6.00 1.38 1.34
1.74 1.16 (6) 4.42 4.25 (16) 6.24 1.30 (2)
Raleigh-Durham 1.82 1.13 *38.28 4.46 3.89 *46.77 6.00 1.38 1. 12
1.74 1.54 (6) 4.39 3.98 (14) 6.02 1.62 (2)
Austin 1.76 1.17 10.88 6.46 6.75 31.78 5.56 1.82 2.43
1.69 1.13 (7) 6.28 6.35 (27) 5.64 1.73 (4)
Rapid City 1.81 1.19 *11.73 4.98° 5.33 8.26 6.39 1.70 1.68
1.80 1.31 (5) 4.89 5.09 (15) 6.90 1.84 (2)
Flagstaff 1.98 1.45 *30.17 7.69 9.13 *36.50 7.00 3.40 0.61
1.87 1.43 (6) 7.31 8.77 (an 6.96 1.79 (2)
Seattle-Tacoma 3.02 3.02 *19.78 3.80 4.64 14.43 15.10 5.75 2,01
2.76 2.44 an 3.52 4.08 (12) 12.32 .22 (0

*The null hypothesis is rejected at the five percent significance level.

of sample distributions of the positive run-lenth helps
to explain this case. See Table 4-11.

Table 4-11. Sample Distributions of Positive Run-
Lengths
P (J=1) P (J=2) P (J52)

Columbia HIST .5488 .2908 .8396
GEN .6017 L2235 .8251

Kansas City HIST .5488 .2882 .8370
GEN .5944 .2442 .8386

Springfield HIST .5011 .3079 .8090
GEN .5924 .2223 .B146

Raleigh-Durham HIST .5008 .3125 .8133
. GEN .5892 .2269 .8162

Austin HIST  .5648  .2535 8183
GEN .6053 .2298 .8350

Rapid City HIST .5358 L2674 .8132
GEN .5828 L2270 .8098

Flagstaff HIST .4815 .2733 .7548
GEN .5750 .2231 .7981

Seattle-Tacoma HIST .3696 .2268 .5964
GEN . 4045 L2173 .6214

In the Table 4-11 "J" stands for the positive

run-length. Attention is called to the fact that the
frequencies of runs of length one to the historic
series are always lower than their equivalents obtained
from the generated series. The situation is reversed
when it comes to the runs of length two. These

discrepancies are the main source for high outcomes of

xz as listed in Table 4-10. In Table 4-11 one can
see also that the frequencies of runs of lengths
shorter or equal to two for both, the historic and the
generated series are very close.

It can be inferred from the above that the gener-
ated series fail consistently reproducing the distri-
butions of positive run-length, because a part of
the run of one should be the run of two. Whether this
is a serious drawback of the model depends on the
application to each particular case. The manipulation
of the historic series is done in such a way that all
daily precipitation that do not reach a minimum
amount are considered as zero. Since for the gener-
ated series the same procedure is not applied, this
might partially explain the problem.

The Smirnov two-sample test was used for testing
the null hypothesis for the functionals (iv) through
(xi). Equation (4-4) was used to find T.S.7 and Eq.
(4-5) was used to compute the critical value, dcr‘ g;

corresponds to the number of years of the historic
data, as given in Table 4-1; g, corresponds to the

number of years in the generated series, which was set
to 50 for all the stations. Tables 4-12, 4-13, and
4-14 show the results. As usual, an asterisk was used
to mark the cases for which the null hypothesis is
rejected at the 5 percent significance level. An ex-
amination of results in Tables 4-12, 4-13, and 4-14
indicate that the model can be trusted as a working
technique. The worst discrepancy came from the daily
maximum. However, this is more than compensated by
the excellent results related to the maximum run-

sum, as both functionals are related to flood pro-

plems with the latter being far more important to
flood designs than the former.
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Table 4-12. Comparisons of Sample Distribution for Functionals (iv) and (v), of Historic and

Generated Series

Colﬁmbia
Kansas City
Springfield
Raleigh-Durham
Austin

Rapid City
Flagstaff

Seattle-Tacoma

MAX NEG RUN-LENGTH
TS

X
(HIST)
(GEN)

18.56
20.58

22.43
24.86

19.26
20.60

19.62
18.80

30.09
28.86

27.89
25.36

39.94
42.38

24.67
22.98

5
(HIST)
(GEN)

5.62
5.59

10.36
13.40

7.36
6.87

10.97
14.06

L2778

.1530

.0878

.1933

.2000 °

.1844

.1689

.1505

NUMBER OF TOTAL RUNS

X

(HIST)
(GEN)

59.
59.

56.
56.

58.
59.

57.
59.

a4,
45.

53.
.46

54

37.
39.

53.
57.

17
68

57
26

04
12

90
40

19
70

61
61
62

33
38

s T.5.7
(HIST)
(GEN)
4.72  .1533
4.61
5.91  .1191
5.33
6.05  .1696
6.03
3.84  .2143
6.25
6.81  .2029
4.28
7.36  .1400
6.87
4.26 .3556
4.14
6.15  *.4086
4.62

*The null hypothesis is rejected at the five percent significance level.

cr

.3738

.3427

.3427

.3536

.2518

.3738

L3738

.3536

Table 4-13. Comparisons of Sample Distribution for Functionals (vi), (vii), (viii), of Historic and

Generated Series

TIME OF LONG. POS. RUN

X
(HIST)
(GEN)
Columbia 144.67
128.14
Kansas City 167.65
134.62
Springfield 143.52
142.36
Raleigh- 131.29
Durham 131.52
Austin 143.07
152.28

Rapid City  109.78
134.06

Flagstaff 130.22

189.52
Seattle- 171.71
Tacoma 144,96

5

(HIST)
(GEN)

81.15
79.28

76.52
96.05

99.65
90.70

87.73
94.45

109.28
116.58

69.66
55.98

109.47
95.25

146.12
136.74

T.5.7

.1644

*.3461

.1574

.2010

.1057

.3244

*.4578

.2210

TIME OF LONG. NEG. RUN

X

(HIST)
(GEN)

216.
236.

190.
222.

228

229,
220.

186.
179.

249,
187.

225,
.28

147

195.
202.

*The null hypothesis is rejected at the five

94
54

17
16

.00
220.

76

62
54

60
22

28
64

0o

86
50

s

(HIST)
(GEN)

127.
110.

131

106.
107.

100.
.23

92

87.
83.

115.
131.

97.
61.

34

48
83

.60
137.

59

73
73

74
04
73

56
15

23
27

.74
24.

48

T.S5.7

.1778

L2061

L1181

. 2067

L1314

.2689

*.4356

L2143

_TIME OF LARGEST RUN-SUM

X
(HIST)
(GEN)

184.72
196.30

195.48
206.56

185.65
177.16

233.86
184.60

187.34
186.30

170.67
163.52

217.56
173.94

205.38
175.24

percent significance level.
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5

(HIST)
(GEN)

1

1
1

49
66

64.
69.

92

86.

52.

81

88.
90.

40.
35,

a5
06

46
42

S AT
.25

39
21

.34
45

76

.50

32
26

51
05

.88
.13

.61
.89

T.5.7

.2778

.1557

.1922

*,3895

.1114

.1844

L2733

.1590

cr

.3738
.3427
. 3427
.3536
.2518
-3738
- L3738

.3536



Table 4-14. Comparisons for Sample Distributions for Functionals (ix), (x), and (xi), of Historic and
Generated Series

MAX RUN-SUM

X s
(HIST) (HIST)

(GEN)
Columbia 3.70
371
Kansas City 3.77
4.50
Springfield 4.61
4.49
Raleigh-Durham 3.78
4,27
Austin 5.25
5.02
Rapid City 2.50
2.69
Flagstaff 335
3.46
Seattle-Tacoma 5.65
4.88

*The null hypothesis is rejected at the five percent significance level

(GEN)

3.25
1.84

.92
1.35

T.5.7

.1800

.3322

.0843

.2867

.1800

.2422

.1511

.1857

ANNUAL TOTAL
x s T.5.7

(HIST) (HIST)

(GEN) (GEN)

33.66 6.43 .2422
33.25 5.90
36.04 9.06 .1583
36.13 7.67
38.46 7.64 .2087
37.26 6.20
41.35 4.80 .1524
41.44 6.62
33.02 10.09 .0800

32.45 8.25

16.39 3.55 .1622
16.88 3.51

19.82 5.50 .2600
21.61 5.00

39.95 6.66 .1838
41.07 5.74
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DAILY MAXIMUM

X
(HIST)
(GEN)

s
(HIST)
(GEN)

.58
.61

.83
.83

.87
.65

.87
.64

2.10
.96

.72
.42

.51
.50

.56
.31

T.5.7

*,3822

.2548

*.4157

.2886

.1971

.3089

*.3822

*,4495

cr

.3738

. 3427

.3427

.3536

.2518

.3738

.3738

.3536



Chapter V [

A Dual Model For Daily Streamflows

In this chapter a new approach for the stochastic
modeling of daily streamflow is introduced. It should
be pointed out at the outset that no universality is
claimed for the model to be described. In fact, the
attempt to develop a general model may have been the
reason for failures of previous efforts to model daily
flows. It is hardly conceivable that a simple scheme
could model equally well the streams fed by snowmelt
and the streams draining a tropical catchment, to give
only an example. The model to be described here
refers to catchments for which the direct runoff plays
an important part in the composition of the total flow.
Nevertheless, each catchment that qualifies for such
a description must be studied on a case-by-case basis.

A dual approach is used, in the sense that the
positive and the negative first-derivatives of the
streamflow process can be modeled by two alternating
intermittent stochastic processes.

In this chapter first the conceptual framework
is set up, and then the technique described with the
help of the case study of the Powell River, near
Arthur, Tennessee. This river is described by Quimpo
(1967) as having an accurate record from 1921 to 1960.
The outlet drains an area of 683 square miles and is
located at 36°32'N latitude and 83°38'W longitude.

The mean daily flow is 1116 cfs. For a better insight
into the type of streamflow studied, Figure 5-1 shows
the hydrograph for the year of 1921, which is a fairly
typical hydrograph.
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Fig. 5-1. Daily Flow Hydrograph of the Powell River

for the Year of 1921.
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5-1 The Conceptual Framework

The runoff at the outlet of a watershed is con-
sidered to be the sum of three components, namely,
q(t)

= q;(t) + qy(t) + qq(t) (5-1) il

Conceptually, these components have different
physical characteristics, as in the case of under-
ground flow and surface flow. Therefore, it is ex-
pected that these components will exhibit also
different stochastic characteristics. Figure 5-2 ks
gives an illustration of how the runoff formation is IH
conceived in this study. i

Rainfall
\ -
- ‘ %p}sjg”,fﬂ'ffffﬂﬂf!ff!ﬂ'v
“ Quiflow =
qIU} ()

Fig. 5-2. Schematic Representation of Components

in Streamflow. i

ql(t) is the outflow from Reservoir No. 1, which
simulates the groundwater storage; qztt) is the

outflow from Reservoir No. 2, which simulates the
lumped storages of: (i) surface detention storage,
(ii) bank storage and (iii) channel storage; and
qs(t) is the direct runoff, which is composed mainly

of the surface runoff and the precipitation over the
stream surfaces. Like daily precipitation, daily
direct runoff is an intermittent process.

There is no doubt that representing the retention
capacity of a watershed by only two reservoirs is an
oversimplification of the real situation. However, it
is better than assuming the homogeneity of the whole
process, as is usually done.

Ideally q.(t) depends mostly on factors
external to a watershed. It can be thought as the
Ammediate response of a catchment to the precipitation
events. Therefore, it is modeled reasonably well by



the methods as developed in Chapter III. However, a
serious obstacle must still be removed, namely how to
estimate the parameters of the process qs{t] if no

realization of the process is available.

The fact is that only the time series of the
total discharge, q(t), is available. There is no way
of splitting q(t) into exactly its three components,
qltt), qz(t), and qs{t). A somehow arbitrary assump-

tion is then necessary. It is possible that some
modification would lead to a more realistic repre-
sentation of the phenomena. The assumption is,
a5(t) = max(0,q(t)-q(t-1)) (5-2)
Equation (5-2) says that the direct runoff is

either zero or it is equal to the positive increment
of the total discharge. In fact, if qs(t}>0 one

might expect that the reservoirs are partially re-
plenished on the day t, and therefore it is likely
that

qp(E41) + q,(t+1) > q;(t) + qy(t)

or
(q,(t+1) - g (£)) + (a,(t+1) - 93(1)) > 0 (5.5)
Equation (5-2) simply says that the above
positive quantity is equal to qs[t], or that
qs(t] = {ql(t-i-l) = qlft]) + fqz(t+1J - qz(t)],
(5-4)

for qsft] >0

From Eqs. (5-1) and (5-4) one can see that,
whenever qs(t) >0

9y (t) + q,(t) = q(t-1) (5-5)
Hence any rising limb of the hydrograph, say
from day t day ty can be obtained if the value of

q(t,) as well as of the succession q3(to)""’q3(tf)

are known. In order to have a rising limb all the
values in the succession q3(to)""’q3(tf) should be

positive.

How to cope with the falling limbs of the
hydrographs is the subject of Section 5-3. Next the
process qs(t) is studied in more details.

5-2 Direct Runoff

As already mentioned, the process qz{t] is

modeled according to the technique explained in
III. Therefore, all the tests there explained,
well -as the asymptotic covariance matrix, could con-
ceivably be employed to the positive increments of
streamflow. However this was not done in this in-
vestigation. Rather a simple procedure, demonstrated
on data provided by the case study, was used to give a
first insight on the potential benefits of this
approach.

Chapter
as

First, the observed streamflow data of the Powell
River was processed following Eq. (5-2) to produce the
time series qs[t). (The same symbol is used for

convenience, either for the stochastic process or for
the corresponding time series.) The data was divided
into 26 seasons, each 14 days long, adding up to 364
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days. For each season the parameters u,o,p, and o
were estimated. This is essentially the same as done
in Section 4-4, with the difference that there the
year started on January 1 and here on October 1.
second difference is that no goodness of fit was
tested in Section 4-4 because it was already done in
Section 4-2 while focusing on the stationary case.

For the gq,(t)-process the chi-square goodness-of-fit
statistic “was computed for each of the 26 marginal
distributions (one for each season). The results are
shown in Table 5-1. As usual the seasons marked with
an asterisk are those which have the goodness-of-fit
of the marginal distribution rejected at the 5 percent
significance level. Those marked with a triangle are
the cases with the rejection also at 1 percent
significance level. The number of rejections was high:
7 cases at the 5 percent level and 2 at the 1 percent
level. August through November, roughly the Autumn,
seems to be the time of the year for which the positive
increments were badly fitted by the model. Section

5-4 will reveal that this problem is serious enough to
impede a reliable working of the model for this spe-
cific season. However it is likely that one will be
more concerned on studying the Spring and Summer,
rather than the Autumn, due to the timing of the
floods. In Section 5-4 it will be shown that for this
particular set of data the model can be applied for
the whole year except for the Autumn.

A

Data from Table 5-1 was used to produce the
periodic furictions that represent the time variation
of each one of the parameters, expressed in the general
form by Eq. (4-6). The criterion for deciding which
harmonics are relevant was described in Section 4-4.
The results are summarized in Table 5-2. Plots of
periodic functions Hos O Pos and . for the daily

flows of the Powell River are shown in Figures 5-3
and 5-4.

5-3 Qutflow from the Watershed Storage

It was seen in Section 5-1 that, according to the
proposed model, any falling limb of a hydrograph is
the result of emptying the two reservoirs. The hy-
drograph values decrease only when q,(t) = 0. Hence,
the hydrograph recession curve is neafly independent
of the characteristics of storm which causes the
hydrograph rise. Only the states of the reservoirs,
as well as their operating rules are relevant for
this analysis. The description of reservoirs is then
needed. It is assumed that both reservoirs are linear,
meaning that the output qi(tJ, i =1 and 2, is
proportional to the storageé Si[t). Or

1 and 2)

qi{t) = Kisi(t] i fa

(5-6)

During the hydrograph recession part the input
to reservoirs is zero with the continuity equation
expressed in the simple form as

-ds, (t)

T,(i.:landZ)

9; (%) = (5-7)
If Eq. (5-6) is differentiated with respect to
time t and then Eq. (5-6) used,

dq, (1) _
N P = - Kiqi(t) , (1=1and 2)

or
dq; (¢)
m = - Kidt ¥ (j. =1 and 2) [5-3)



Table 5-1.

Results for Goodness-of-Fit Statistics
for the 26 Seasons of Daily Flows of
the Powell River

Period From-To -u o 0 a X(d.£.)
1 1 Oct-14 Oct 3.6296 6.9689 .2413 4312 8.01(1)a
2 15 Oct-28 Oct 3.2555  6.8980 7113 4098  10.57(4)*
3 29 Oct-11 Nov 3.3040  7.1673 .6098 .3883  8.76(3)*
4 12 Nov-25 Nov 4.3443  9.8158 .5737 3848  5.33(6)
5 26 Nov- 9 Dec 4.2393  13.5182 .6620 .4123  14.74(9)
6 10 Dec-23 Dec 11.2918 22.7644 6352 4500 6.19(11)
7 24 Dec- 6 Jan  13.5328 37.9861 .6001 .5197  20.54(13)
8  7Jan-20 Jan  15.2014 37.4007 .6905 .5067 18.57(l4)
9 21 Jan- 3 Feb  19.3112 43,0868 .5325 5038 12.78(14)
10 4 Feb-17 Feb  28.4365 67.6299 .5148 .5626 17.57(16)
11 18 Feb- 3 Mar  36.3807 68.4997 .6526 .5623 13.55(14)
12 4 Mar-17 Mar 43.4370 96.6109 6247 .6158 14.82(15)
13 18 Mar-31 Mar  29.4476 57,0287 .5679 .5421  10.52(14)
14 1 Apr-14 Apr 39.4548 60.2830 . 5625 ‘5300_ 12.72(9)
15 15 Apr-28 Apr 35,1393 52,9360 .5672 .5483  14.30(10)
16 29 Apr-12 May 21.0269 35.0319 6524 .5284 12.63(9)
17 13 May-26 May 19.7310 27.8554 .5145 ,4901  7.00(7)
18 27 May- 9 Jum 14.4111 20.8414 .5221 .4903 14.14(8)
19 10 Jun-23 Jun  12.2671 26.4863 .4879  .5550  14.32(9)
20 24 Jun- 7 Jul 7.0326 14.4152 L3834 .4371 18.79(10)*
21 8 Jul-21 Jul 8,0993 18,3048 4296 4800 14.91(10)
22 22 Jul- 4 Aug 8.9538 17.0723 .2473 .5132  9.86(6)
23 5 Aug-18 Aug 6.7849 15,0033  .4047  .4694  24.88(9)4
24 19 Aug- 1 Sep  10.3664 15.5428 .5306 .4953  8.70(5)
25 2 Sep-15 Sep 7.2767 11.7339 L3901 4904 9.17(3)*
26 16 Sep-29 Sep 7.6774 10.2326 . 3397 L4761 7.30(2)*

*The test is rejected at the
AThe test is rejected at the

5% significance level.
1% significance level,
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Integrating Eq. (5-8) between. 0 and t yields

q; (t) )
o 1n qi(ol = - Kit s (1 =1 and 2)
-Kit
a; (t) = q;(0)e (5-9)

Equation (5-9) is tne well known exponential
recession curve. It is obvious that the outflow
discharge from the ith linear reservoir, during a
recession period, depends only on the initial discharge
qi(O) and on the reservoir characteristic Ki‘

Therefore any recession curve can be expressed by
*Klt —Kzt :

where for convenience t=0 indicates the beginning
of the recession curve, and £ is the length of the
recession considered.

For

9 (0)
W= ——
- q(0)
(5-11)
Equation (5-10) may be rewritten as
-Klt -Kzt
q(t) = q(0)[W e *+(1-We 7] (5-12)
-K -K
or for Y =e 1 and Y,=e 2
T t
a(t) = q(0) [y, + (1-W) v,'] i5-15)

Kl and K2 are constants that must be estimated.

On the other hand, W indicates how the maintenance of
the hydrograph is split between the two reservoirs,
after a storm has occurred. Since the initial states
of reservoirs are expected to vary from one recession
curve to another, W cannot be conceived as a constant;
rather its visualization as a random variable seems
feasible. Therefore, in order to use Eq. (5-12) in
the generation of new samples, not only the values of
K, and K, must be known but also the probability
distribution of W, with q(0) always known.

It is reasonable to estimate Kl and Kz in

such a way that the theoretical recession curves will
resemble the observed recession curves. In the more
specific terms, the estimation of K, and K2 should

1
be taken in the framework of the following optimiza-
tion problem: n (1)
min
K,,K, r=1 t=1
1°%2 (5-14)
{q'(t,0)-q' (0,7) [W(x)e =~ +(1-w(r))e “ 1}

where ¢ (r) 1is the length of the rth recession curve;
n is the number of recession curves in the historic
data; q'(t,r) is the observed discharge on the t-th
day of the rth recession curve; and w(r) is the
outcome of the random variable W, associated with
the rth recession curve.

For any pair (K KZ) the objective fumction of

ll
Eq. (5-14) can only be evaluated if the outcomes
wir), T =L, 2y i are known. Again, it is
reasonable to assume that each w(r) is such that the
differences between the rth theoretical and the

|
b
i
|
t




observed recession curve values are minimized. By this
reasoning, each w(r) can be found by solving the equa-

tion
3 1fr) —Klt
Tl [tzl {q'(t,1)-q (O,r)IW{T}é +

K, t

(-w(re 21} =0 _
(5-15)
or
1{r) Zir] -Kzt
Cl'(t,T)’q{O:r] €
_ t=1 t=1
w(r) = I Kt Kt
q(0,1) { (e = -e
t=1 (5-16)
Several numerical algorithms are available for

solving the optimization problem defined by Eq.(5-14).
Among them is the Rosen Algorithm, as a quite conven-
ient one. It is amountain cfimbing type of technique,
based on the gradient projection method. A detailed
description of the algorithm is given by Kuester et al.
(1973). Here it is sufficient to say that the only
requirements for the algorithm are: (i) the objective
function, which is given by Eq. (5-14); (ii) the first-
derivatives of the objective function, which can be

obtained by a proper use of Eq. (5-14); and (iii) the
linear constraints, given as,
0<YI<]DI’ U<Kl<en
and
0<y,<1 or o0« -
2 s (5-17)

Attention is called to the fact that each time
the value of the pair [Kl, KZJ is changed, the obser-

vations w(r) are reassessed by using Eq. (5-16).
Also, one should expect from the way the conceptual

model was set that P2, (or K1 < KZJ, although

this does not constitute a constraint.

For the Powell River daily flow data, the
application of the algorithm yields

0.8971+K

1 l).1086,/c1a).!-1*L = 9,2091 days

T
1 Kl

i

Y, = 0.5029K 0.6874)day-+§}-= 1.4548 days
2

2
(5-18)

It is of interest to check how the theoretical
recession functions obtained by the above procedure,
fit their observed counterparts. Figure 5-5 gives
this visual comparison for the recession curves of the
daily flow series of the Powell River during the year
1921 for recessions which were longer than four days.
This choice is an arbitrary selection, imposed by the
practical difficulty of plotting all the recessions
registered in 40 years. Attention is called to the
fact that in general the curves would not be well
fitted by straight lines. This means that the repre-
sentation of the watershed storage by a singfe linear
reservoir would not be appropriate.

Once 1 and K2

next problem is how to statistically describe the ran-
dom variable W. The set of outcomes of this variable

the values K are estimated the

and KZ. in

principle, one might expect any outcome w to lie
between 0 and 1. A value of w > 1 would indicate
a reversion of the direction of flow related to the
second reservoir. Analogously w < 0 would indicate
a reversion of the direction of flow coming from the
first reservoir. These flow reversions are anticipated
to be rare, but when one of them does occur, it is nec-
cessary to assert the rules which govern the inflow
hydrographs, rather than the outflow hydrographs. This
leads to the assumption that the characteristics of
flow either from the reservoir to outlet o: from the
outlet to the reservoir are identical.

is simultaneously obtained with I(1

10,000
Observed
l‘i ===== Theoretical
H
v
B
&
5 1,000
[
8
[=]
100
Time ( days)
Fig. 5-5. Comparison Between Theoretical and Observed

Recession Curves, of Daily Flow Series of
the Powell River, for the Year 1921.

Qualitatively, one might expect E[W[q(0)] to be
small whenever the initial discharge q(0) is large.
Indeed high flows are associated with high retention
in the storages that the second reservoir is supposed
to represent. Consequently, its share of the flow
supply should be higher initially than the flow supply
which corresponds to the first reservoir. The first
reservoir is characterized by a high storage capacity,
which makes its contribution, g,(t), reasonable stable.
Whenever the initial discharge 1s small, it is likely
that the total flow will be sustained entirely by the
outflow from the first reservoir, i.e.,

lim  E[W|q(0)] =1 .
q(0)~0

A mathematical representétion that fits the above
qualitative descriptions is given by

EW|q(0)] = ¢ 7300y, o (5-19)



For each historical recession curve one pair of
values [q(0,r), w(r)] 4is available, where r stands
for the rth recession. These pairs can then be used
to estimate the value of ¥, by the least squares
method. For the daily flow sequences of the Powell
River, the value of ¥ is 0.000160. The coefficient
of correlation between q(0) and logw is -0.6737.

In general the random variable W might be
expressed by

-¥q(0
LET AR (5-20)

where Z 1is another random variable.

For each recession the corresponding outcomes of
Z can be obtained by solving Eq. (5-20) for Z. 1In
case of the daily flow series of the Powell River,
z(r) = w(r) - exp(-0.000160 q(0,7)), T =1, 2,

wavy M
(5-21)

The next thing to do is to test whether the sample
of Z may be considered as drawn from a normal pro-
bability distribution. This was tested for the daily
flows of the Powell River. The chi-square goodness-
of-fit test statistic is 42.70, with 36 degrees of
freedom. Therefore, the hypothesis of normality could
not be rejected at the 5 percent significance level.
The sample mean and standard deviation of Z are
0.07334 and 0.25604, respectively. With these last
estimates and test, one can then generate the new
series.

5-4 Testing the Model

The utility of the model depends on its capacity
to generate new series, to be considered the outcomes
of the same stochastic process from which the historic
series is observed. In Section 4-5, a way of compar-
ing the properties of historic series with the
properties of generated series was presented. Here a
similar comparison is given for the model of daily
flow series, as applied to the Powell River series.

The generation procedure is performed in the
following steps.

Step I: Generate the intermittent process qs(t].

This is accomplished by following the
procedure explained in Section 4-4. The
parameters used are given in Table 5-2.

Step II: Select a value of the discharge for the

beginning of new samples. The mean dis-
charge is a good choice for this value.

Step III: Generate for each day, according to:

(a) If q3[tj > 0, take Step III(b);

otherwise, go to Step III(c);

(b) Make q(t) = qlt-1) + qz(t), and go

back to Step III(a);

(¢} If qs(t—l) > 0, go to Step III(d);

otherwise, go to Step III(e);

Bind E[Njq(e-1)] = & 0-000164(t-1)
Sample from the normal distribution
a value for =z. For the Powell
River comes out as (N(0.07334,

(d)

X
A
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0.06556). Then find w by Eq.(5-20),
and define 61 = wq(t-1) and 8, =

(1-w)q(t-1);

(e) Make 51 = Ylal and EZ = 1262, S0
that q(t) = 51+£2. Go to Step
III(E).

(f) Make 61 =& and 62 = £y and go

back to Step III(a).

The above step-by-step procedure was used to
generate 40 years of data for daily flows of the
Powell River. The hydrograph for the first year of
the generated series is plotted in Figure 5-6. This
particular hydrograph year is given because the first
year of the historic record had previously been used.
For the model being good, Figures 5-1 and 5-6 show two
different realizations of the same hydrologic process.
These samples are different, but the patienn of the
series is expected to be similar. This approach is
based on a subjective inference, with the individual
assessment whether the hydrograph of Figure 5-6 fooks
Like the historic sample of Figure 5-1, in a general
hydrologic sense.
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Fig. 5-6. A generated Daily Flow Hydrograph of the

Powell River.

On a month-to-month basis, the random variables
which are likely to be relevant for the evaluation of
the goodness of the model are: (i) the maximum daily
discharge for each particular month; and (ii) the mean
daily discharge for each particular month.

For each of these two random variables a matrix
of observations with 40 rows (years) and 12 columns
(months) was constructed out of the historic and
generated samples. Let us designate these matrices by

{Fij}; =l 2% o A0y g s T ., 12. For a
month j the sample marginal distributions are avail-
able for the historic and generated series. The

Smirnov two-sample can then be applied. The critical
values at the 5 percent significance level are given

by Eq. (4-5); for g; = 40 and g, =40 it is 0.304.
The test statistics T.S.7 given by Eq. (4-4) are dis-
played in the last colums of Tables 5-3 and 5-4. In



these tables the values of

_ , 40
5730 L Fij (5-22)
and
std(F.) =
¢ JJ (5-23)

are also shown for the historic and generated series,
respectively.

Table 5-3. Maximum Daily Flows for Each Month
MONTH MEAN STD.DEV. T.5.7
HIST. GEN. HIST. GEN.
October 843.2 758.0  1649.6 568.2 .350%
November 2574.3 833.6 3522.9 990,8 .275
December 5328.4 4615.7 4706.5 5235.4 .200
January 7890.0 12347.2 6190.5 11286.5 .27
February 8615.6 11248,0 5377.4 9995,9 .125
March 7204,2 7888.8 4565,6 7156.4 .150
April 5000,1 6350.9 3270.7 5755.6 .100
May 3772.6 4638.5 3944.9 3164,6 .250
June 2320.4 2487.5 2910.2 2153.4 .225
July 2289.5 1408.7 2324.7 1002.4.  .225
August 1501.4 1680.9 1745.8 970.1 .300
September 747.8 1346.8 904,2 838.0 .550*

*
The test is rejected at the 5% significance level.
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As usual the deviations marked by an asterisk are
those of the rejection of the hypothesis of statistical
equality of samples, at the 5 percent significance
level. Using jointly the results given in the two
tables, one can see that the period of time between
August and November is characterized by a rejection

of the model. Fortunately, the remainder of the year
Table 5-4. Mean Daily Flows for Each Month
MONTH MEAN STD.DEV, T.8.7

HIST, GEN. HIST. GEN.

October 235.2 293.8 192.2 233.7 ,200
November 584.0 196.4 586.1 160.4 .425*
December 1288.4 1274.9 1053.9 1200.0 .125
January 1981.2 3394.2 1224.6 2390.9 .300
February 2396.9 3186.6 1217.7 2648.6 175
March 2310,3 2450.3 1136.8 1943.8 .225

~ April 1612.4 1698.6 753.6 1290.9 .150
May 1122,7 1563.0 786.5 1065.7 300
June 652.9 880.0 492.1 736.0 .200
July 610.3 550.3 440.2 374.3 .125
August 437.0 707.1 384,7 4007 .400*
September 241,7 578.8 173.2 352.2 .550"

*
The test is rejected at the 5% significance level.

shows the model to be
studying the process

accepted. In Section 5-2, while
qS(t), it was found that a rea-

sonable fit could not be obtained for the Autumn data.
This is likely also the reason for a poor performance
of the overall model during this specific season.



Chapter VI

CONCLUSIONS AND RECOMMENDATICONS

Several further research possibilities of the dual
streamflow model look promising, such as:

(i) As the direct-runoff q_(t) is supposed to
represent the portion of the inpué to the watershed
which is not retained by any river basin storage, it
is likely that the parameters of qS(t] are strongly

related to those that define the precipitation for the
area. A joint study of the two processes could yield
results valid for regional applications.
(ii) 1 and KZ’
with the linear reservoirs, are estimated by an itera-
tive algorithm. They define the operation rules of
the two reservoirs. As these two reservoirs concept-
ually represent the watershed retention capacity, Kl

and l(2 must be related to physiographic characteris-

The constants K associated

tics of the catchment. An estimation procedure that
could employ this additional information would repre-
sent a new dimension in the stochastic hydrologic
modeling.

39

The performance of the developed precipitation
model was tested for its goodness. The model is cap-
able of producing such generated samples that resemble
the historic series, in a stochastic sense.

The examined data show that the daily precipita-
tion series cannot be assumed to be a sequence of inde-
pendent events. Therefore, the capability of the model
to reproduce the serial dependence of the processes is
an essential feature to its good performance.

It is also shown that the model can be used for
the generation of simultaneous precipitation series
for several dependent-station processes.

The proposed streamflow model has a physically
justified basis. It is possible to generate new

samples with the complex characteristics of daily
streamflow. The intermittent model fairly fits the
positive first-differences of daily streamflow. Repre-
sentation of the recession parts of hydrographs as a

stochastic output from the two linear reservoirs
successful.

was
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Appendix A

First and Second Derivatives of the Log-Likelihood
Function
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+ ol oo ylats + ¥ 203
(140)5 o3 o (130)5(1-0)° ¢ (1-p%)a?
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02 (140)2 02(14P)2 (1)

+

32LL _ T(x;0,1,1)+T(y;0,1,1) , T(z;0,1,1)

duda (1+0)02 a?

L PleT(z51,2, )4 (1-P)T(2;1,1,1)] _ _T(2;2,1,1)
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64 T(x;0,1,0)+T(y;0,1,0) -nzu) 32 2001-9)° 10,0, L 0 Vo
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3 140)7(1-p)3
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a3V(1+0)5(1-p) 3 o3(1-p9)5
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u2T(z;2,0,0) o 2T(252,1,0)  pT(2;1,3,0)
We)’1-p)  F(1+)3(1-p)2  o3I-PD)7 ?LL _ u[T(x;0,1,2)+T(y;0,1,2)|
3a? a2 (1+0)

. T(z;2,2,0)

o2 f(1-p2)3 . PT(xy;0,1,2)-2|T(x;0,2,2)+T(y;0,2,2)

a2(1-p2)

a2LL _ -u[T(x;0,1,1)+T(y;0,1,1)] . Q) T(xy;0,1,1) . ¥T(2;0,1,2)-2T(2;0,2,2) _ 02T(z;2,2,2)

3pda 52(1+9]2 52(1_92)2 a2 62(1_92]

Dz[nT(z;1.3,2)+u(1-0)T{z;1,2,2}] 2NN,

2
02(1-p%)2 a3/(1-07) a?
Appendix B-1
Results of the Application of the Model
to the Kansas City Precipitation Series
Tablg B-1-1. Results Obtained in Case the Year is Divided in Twelve
Seasons, for the Kansas City Station
ASYMPTOTIC
PERIOD PARAMUTERS COVARIANCE MATRIX T.8.1 T.5.2 T.53 T.5.4 T.5.5
u 3 o a [T W] (ILEY (4LF) (4dLF) N,
001-032 =441 LB4T0 L3TO2 LeT4T 2TTO o953 - 5ol 50 10,870 19,423 10,508 L1136 -4.550
2110 S03 -1278 ()]
6738 - 190
2448
033-060 - 3786 5431 .3085 6695 2173 -1381 - o7 721 10.465 12.583 4,533 ' =4.387
1584 630 ~1166 i5)
7432 - 157
2398
061-092 -.3330 .6636 3864 .5133 1983 -1089 - 744 a7 21.586 29.020 8.553 1.062 -7.038
1502 638 - 428 9)
4607 - 51
1408
0'95—];"0 -.2658 .oDB2 .3218 .6838 1692 - 915 - 219 109 10.649 17,755 1.879 I -3.834
1369 543 - 567 [8)
5465 - a5
1876
121-152 -.2726 6982 2045 6478 1736 - 804 - 111 - 27 11.040 7.991 7.534 4.707 -3.888
1322 329 - 267 (11)
5180 - 10
1385
153-180 -.3091 8003 .1938 .6B70 2594 1349 - 143 - 147 16.2352 6.536 489 =1.213
1502 409 - a9 (12)
5822 - 4
1761
181-212 -.5109 .S052 .2613 .6753 3851 2271 - 3I3 - 138 8.247 11.112 .7B4  5.433 -1.950
L 62 - 5 12
5Bas - 14
1748
213-240 -.4765 7886 .37I0 .6664 3740 2130 = 437 73 6.026 20.713 4.547 -2.640
2579 202 - 331 [§1:3]
5%84 - A8
2078
241-272 -.6562 2435 L3162 L6131 5480 -3245 - 474 - 106 17.592 13.034 1.968 7.135 -6.422
3528 8BS - 35 1)
6373 - 33
1669
273-300 -.7926 9314 _14B9 .6934 BTG -5310 -i13% 176 10.477 23,827 2,983 -2.368
5104 1627 - 423 (8)
7001 - i
2918
301-332 -.6288 73389 .ITBS 5453 4815 3117 - 513 570 11.930 9,310 2367 1.563 -B.177
3ngs 779 - T2 i6)
8715 - 94
1719
333-360 -. 4955 (3818 L4570 6942 383 -2685 - B34 1224 65.931 25.057 .T54 -2.933
2803 1165 =-1577 i5)
6893 - 2835
3163
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Table B-2-1.

Results Obtained in Case the Year is

Appendix B-2

Results of the Application of the Model
to the Springfield Precipitation Series

for the Springfield Station

Divided in Twelve Seasons,

PERIOD PARAMETERS COVARIANCE MATRIX T.5.1 T.5.2 T.5.3 T.5.4 T.5.5
» a 0 a x 10"‘3 (d.£.) (1d.f.} (4d.£.) (4d.£.) N(0,1)
001-032 -.4192 .6168 3896 .5634 2436 -1561 - 425 391 5.035 24.474 5.015 9.149 -B.527
1863 747 - 106 03]
- 5590 - 98
1434
032-060 -.3157 .5917 .3459 _5871 1506 -1133 - 293 233 10.734 18.955  9.230 -7.2%4
1559 526 - 640 [e)]
5831 - 64
1524
061-092 -.2571 .6006 .2712 .6152 1395 - 761 - 151 85 16.871 14.343 2.831 4.4%0 -5.982
1149 395 - 449 (8)
5038 - 27
1312
093-120 ~.3080 .6941 .Z885 .6704 2182 -1155 3206 19 6.327 13.854 5.717 -3.237
1635 547 - 390 9)
5708 - 31
1798
121-152 -,2838 .7643 .2510 .6722Z 2071 -1042 - 153 - 103 17.041 12.860 2.041 4,913 -2.976
1515 438 - 131 (12)
4871 - 12 %
1465
153-180 -.3T48 8293 .2893 .6797 3180 -1692 - 293 - 1356 15.006 13.647 3.714 -2.397
2256 675 - 99 (11)
5798 - 13
1829
181-212 -.4639 .8136 .2748 .6122 3197 -1821 - 267 - 7 13.923 12,340 3.755  6.231 -6.464
2222 586 - 217 (10)
5816 - 26
1462
213-240 -. 4605 7334 2317 .6094 3289 -1991 - 270 198 5.812 7.324 3,228 -5.787
2347 558 - 518 (8)
7427 - 42
1751
241-272 -.5317 .8373 .3968 .5987 3938 -2252 - 477 18 12.114 26.198 5.217 5.632 -5.714
2632 903 - 242 (1))
5201 - 52
1515
273-300 -.7495 9162 ,2436 .6227 7525 -4685 - 546 156 2.574 6.481 1.292 -4.766
4611 886 - 371 (8)
9345 - 54
2244
301-332 -, 4271 .7066 .3644 5781 2645 -1543 - 347 162 13.029 21.736 1.902 4.720 -7.979
19207 J05 - 453 (9)
5322 - 56
1378
333-360 -.4745 .65955 4420 .5866 3502 -2124 - 584 335 15.226 28B.613  2.668 -6.278
2485 1023 - 677 7
5744 - 110
1778
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Appendix B-3

Results of the Application of the Model
to the Raleigh-Durham Precipitation Series
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Table B-3-1. Results Obtained in Case the Year is Divided in Twelve Seasons,
for the Raleigh-Durham Station
ASYMPTOTIC
PARAMETERS i T5.1 T.5.2 T.5.3 T.S.4 T.55
PERIOD o ® a x 1075 @.£.)  (1d.£.) (4d.£.) (4d.£.) N(O,1)
001-032 -.3736 6950  .2862 .6505 2436 -1393 - 247 126 8.118 13.211 3.204  4.495 -5.214
1212 571 - 484 (9
6050 - 43
1768
032-060 -.2535 .6452  .2164 .7514 1872 - 985 - 139 29 24.353  7.282 571
1482 406 - 524 (%)
6401 - 21
2349
061-092 -.2998 .6339  .3228 .7352 1850 -10l4 - 219 126  6.417 18.498 1.035  6.059 -1.990
1450 550 - 581 (8)
5384 - 50
2153
093-120 -.3590 .6592  .2513 .7530 2550 -1526 - 285 271 11.755  B8.584 2.093 -2.160
1978 S8l - 78S o2
7271 - 54
2710
121-152  -.3467 .6944  .2101 .6681 2221 -1260 - 156 82 6.529 7.0} 5.431  2.689 -4.3987
1683 403 - 440 (9)
6284 - 24
1781
153-180 -.4193 .7565  ,3156 .6643 3413 -1924 - 354 69 4,845 13.796 2.173 -4.313
2425 T84 - 432 9
6788 - 49
2138
181-212  -.2985 .7620  .3029 .6816 2357 -1186 - 203 - 97 17.880 17.017 1.149 628 -3.365
1708 578 - 180 (12)
5071 - 34
1686
213-240  -.3537 .8015  .2735 .6255 3172 -1678 - 261 - 109 17.650 11.246 4.383 -3.234
2278 664 - 152 (10)
6356 - 24
1685
241-272  -.8665 1.0351  .4521 .6518 10116 -6125 -1197 =~ 200 17.382 26.576 3.922 12.059 -4.112
6003 1709 17 (9)
6545 - 80
2440
273-300 -.B053 .9473 4502 .6897 9917 -6033 -1290 134  6.383 22.644  6.498 -2.932
5893 1822 - 397 (8)
7651 - 130
3187
301-332  -.4739  .7305  .3322 .6469 3350 -2010 - 407 240 19.083 16.201 2.735  9.362 -3.706
2355 776 - 573 (8)
6459 - 70
1956
333-360 -.4387 6600 3212 .7907 3357 -2025 - 418 530  4.237 12.551 2.550 .002
2398 800 -1055 M
7639 - 121
3444
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Appendix B-4

Results of the Application of the Model
to the Austin Precipitation Series

The Periodic

Pe and o

Table B-4-1. Results Obtained in Case the Year is Divided in Twelve Seasons,
for the Austin Station
ASYMPTOTIC
PERIOD PARAMETERS VARIANCE-COVARIANCE T.5.1 T.5.2 T.5.3 T.5.4 T.5.5
i g [ a x 10'6] (d.£.) (1d.f.) (4d.f.) (4d.f.) N(0,1)
001-032 -.4589 6432 .4417 .5723 B4l - 482 = 124 99 34,283 93.511 6.071 7.810 -14.807
559 234 -195 (11}
1683 - 19
495
033-060 -.4906 ,7326 .3905 .5753 113 - 628 - 133 59 2;.749 65.116  1.842 -12.879
731 270, -15% (13)
2045 - 18
543
061-092 -.6050 .7568 .3571 .5929 1345 - 791 - 146 108 23.074 52.826 7.211 7.991 -10.963
819 259 -187 (13
2229 - 23
580
093-120 -.6060 .9293 .3835 .5601 1902 -1112 - 207 - 43 21.488 64.543 9.426 -11.141
1265 384 - 12 (18)
2049 - 15
501
121-152 -.6270 .9511 .3765 .5952 1792 -1065 - 192 - 52 26.883 70,383 .584 1.505 - B.761
1201 349 5 (20)
1829 - 12
499
153-180 -.8966 1.0167 .4861 .6171 4410 -2933 - 660 - 17 26.069 B84.268 7.783 - 7.695
2813 828 - 48 {16}
2236 - 40
802
181-212 -,.9792 .9902 .4937 .5731 4545 -2961 - 667 108 16.346 B7.787 7.580 ;4 -11.752
2635 772 -154 (15)
2208 - 52
702
213-240 -1.0460 .9695 4263 .6171 5859 -3720 - 735 285 B8.120 48.091 7.908 - 8.147
3083 813 310 (12)
3362 - 73
1048
241-272 -.7895 .9902 .4545 5814 2804 -1795 - 387 - 34 25.744 90.777 5.555 8.703 -10.748
1830 551 - 18 [18)
1872 - 24
559
273-300 -.9755 1.0664 4596 .5600 5980 -4174 - B9S - 70 21.779 71.480 8.772 -10.504
3888 1042 14 un
2530 28
688
301-332 -.6761 .B256 .4767 .5908 1770 -1045 - 248 B9 11.971 99.947 4.469 3.409 -10.580
1071 385 -164 (14)
1787 - 33
601
333-360 -.5951 .7980 .4799 5587 1620 - 929 - 230 &7 32.065 97.713 4.105 -13.726
1013 a8 =154 {14)
1850 - 30
564
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Appendix B-5

Results of the Application of the Model
to the Rapid City Precipitation Series

Table B-5-1. Results Obtained in Case the Year is Divided in Twelve Seasons,
for the Rapid City Station
ASYMPTOTIC
PERIOD PARAMETERS COVARIANCE MATRIX T.5.1 T.5.2 T.5.3 T.5.4 T.5.5
M a 0 a (x 10'63 (d.£f.) (1d.£.) (4d.f.) (4d.£.) N(0,1)
001-032 =.1457 .1640 .3687 .8567 906 - 884 - 489 1979 1.033 13.310 7.286 3.798 -2.133
994 638 -2319 ()
9736 -1060
6610
033-080 -.1402 .27339 .3707 .6928 642 - 586 - 225 569 2.131 17.827 1.373 =5.179
1037 476 -1472 )
7041 - 222
3134
061-092 -.2012 .3383 .4050 .6514 1022 - B84 - 355 750 4.347 22.344 1.570 11.446 -6.466
1316 629 -1435 (2)
6357 - 269
2613
093-120 -.2123 .4596 3848 .6510 1358 - B44 -285 357 5.330 20.015 7.545 -5.248
1389 655 -1059 4)
6457 - 108
2349
121-152 -.1592 .5292 .3549 5899 1211 - 569 - 178 24 5.591 22.304 J3.717 13.269 -7.355
1058 513 - 525 6)
5118 - 31
1431
153-180 -.0903 .5274 .2486 .5994 1136 - 454 - 103 - B85 4.235 9.858 4,585 -5.611
974 382 - 459 n
5839 - &
1501
181-212 -.3232 .5551 .2561 .5915 2033 -1320 - 263 399 7.339 8.339 3.574 4,545 -6,81B
1745 533 - 68 (5) i
7700 - 68
1800
213-240 -.3269 .4754 .2105 .6825 2223 -1628 - 273 915 3.693  4.247 5.594 -2.881
2012 496 1503 (3)
10444 - 129
3057
241-272 -.4190 .5220 .3795 .6344 3228 -2325 - 686 1164 3.249 15.584 1.903 3.506 -5.665
2552 994 -1574 4)
8536 - 250
2764
273-300 -.5795 .5066 .4446 6793 9256 -6436 -2007 4068 2.984 12.595 2,251 -4, 344
5401 2121 -3706 {1)
13814 - 910
5867
301-332 -.2467 .2B4B .3264 .6964 1785 -15B6 - 595 1845 7.061 10,171 9.074 2.980 -6.396
1741 ‘766 -2187 2)
10178 - 600
3985
333-360 -. 1678 .2034 2139 .83030 1049 -101& - 319 1764 5.039 3.808 9.341 -2.902
1193 459  -2216 (2)
12452 - 505
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Results of the Application of the Model
to the Flagstaff Precipitation Series
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Results Obtained in Case the Year

ASYMPTOTIC
PER10D PARAMETERS COVARIANCE MATRIX T.5.1 T.5.2 T.5.3 T.5.4 T.5.5
u @ ) & [¢.4 10“] (d.£.) (1d.£.) (4d.f.) (4d.£.) N(0,1)
001-032 - .5328 .6354 .6656 .7497 5036 -3295 -1139 1242 5.492 60.055 2.067 3.840 -1.321
3552 1544 1734 (5]
3876 - 335
4272
033-060 - .5328 .6802 .5605 7234 5556 -3513 -1153 045 3,735 35.279  3.187 .1.592
3841 1685 -1468 (5)
6106 - 280
3987
061-092 - .3965 .5364 .5364 .7739 2928 -2007 - 736 1095 6.226 37.810 7.361 5.261 -1.677
2385 1138 -1697 (5)
5458 - 290
3971
093-120 - .5836 .5730 .2416 .B133 7472 5218 - 925 3076 3.546 3.791 1.118 - 697
4663 1105 -3152 )
16024 - 467
6542
121-152 - 6252 .4912 .6284 .8227 14284 9750 -3451 8118 L1790 29.006 11.251 1.881 =~ .74l
7504 2985 6534 m
8610 -1640
10728
153-180  -1.0089 .7884 .628B .S757 27036 -16681 -4414 4133 3.165 25.922 2.515 -6.504
12492 3987 -3410 2)
9481 - 690
5194
181-212 - .1950 .4943 .3625 .6654 1205 - 665 - 213 175 5.409 20.816 39.621 T.685 -4.714
1150 5% - 779 (6)
5522 - 54
1985
213-240 - .1770 .4978 .2337 .6674 1255 - 678 - 134 134  12.934 T.442 6.750 -4.730
1205 391 - 799 (8)
12 - 26
2146
241-272 - .5968 .7217 .5098 .6275 779 -3632 -1042 746 14.631 30.172 14,230 1.702 -6.567
5793 1526 -1101 6)
6481 - 207
2736
273-300 - .B045 7253 5145 .7108 14155 -9116 -2546 3008 3.551 19.096 5.374 -2.975
7614 2717 -2890 (3)
10953 - 597
5852
301-332 - .7056 .7354 .5235 .6798 8255 -5279 -1475 1376 5.183 27.546  .701 -3.578
4960 1871 -1629 (5} ;i
7421 - 318
3834
353-360 - .6828 .B00S 5768 .6917 8820 -5493 -1612 812 6.445 35.404 4.035 -3.270
5540 2154 -1210 (6]
6371 - 268
3875
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Appendix B-7

Results of the App

lication of the Model

to the Seattle-Tacoma Precipitation Series

Table B-7-1. Results Obtained in Case the Year is Divided in Twelve Seasons,
for the Seattle-Tacoma Station
ASYMPTOTIC
PARMMETERS COPARLANGE MatIx T.S.1  T.5.2 T.53 T.S.4 T.S.5
PERIOD u ° 0 @ (x 107% (d.£.) (1d.f.) (4d.f.) (&d.f.) N(O,1)
001-032 -1706  .4655 4602 6299 601 - 62 - 19 - 265 9.980 62.657 5.574 1.156 -1.62I%
345 327 - 126 (10)
2400 - 89
1048
033-060 L0453 .4593 -4172  .6089 689 - 133 - 77 - 206 11.589 40.589 13.064 -4.875
517 391 - 303 (8)
" 3414 - 41
1207
061-092 .0704  .3525 -4375  .6882 34 - 9 - 25 -39 4.708 54.015 11.180 .538 -1.325
316 265 - 385 (&)
2668 - 77
1407
093-120 -.0423 .3720 .3893  .6778 493 - 159 - &2 - o4 B.122  31.782 1.341 -2.988
576 340 - 632 (5)
4065 - 41
1755
121-152  -.2146 .4192  .3273 .6688 942 - 663 - 198 393  7.048 17.716 11.644 7,808 -4,925
1047 430 - 934 (4)
5603 - 99
1948
153-180 -.1885 .3725 .3502 .6778 B97 - 692 - 250 519 4.547  18.280 2.848 -4.708
1132 502 -1179 (3}
6204 - 156
2370
181-212 -.4345  .4316 L5197  .7257 3893 -2944 -1101 2432 2.147  30.143 8.387 3.78% -2.344
2813 1286 -2533  (2)
6910 - 629
4430
213-240 -.3873 4975  .5622 .6450 2808 -2006 - 751 1098  2.505 41.227  6.219 -4.886
2339 1122 <1577 (4)
5108 - 290
2912
241-272 -.2306  .4611 .5423 L6770 1155 - 716 - 303 335 1.397 59.112 19.301 4.139 -4.270
1161 643 - 914 (5)
3496 - 136
2102
273-300 -.0384 .4677 L4438 7187 785 - 234 - 109 - 141 9.338 42.042 1.532 -1.378
679 460 - 496  (8)
3605 - 59
1867
301-332  .0947  .4987  .3704 6391 661 - 119 - 44 - 216 16.982 37.029  3.583 7.279 -3.064
437 314 - 174 oy *
3025 - 43
1081
333-360 .1816 4326 L3430 L6504 566 - 36 1 -319 25.928 30.622 1.962 -2.155
320 270 - 172 (10)
3217 - 90
1246
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Appendix C

Critical Values for the Chi-Square Probability Distribution

Degrees of 5 Percent 1 Percent
Freedom Significance Level Significance Level
1 3.84 6.63
2 5.99 9.21
3 7.81 11.3
4 9.49 13.3
5 11.1 15.1
6 12.6 16.8
7 14.1 18.5
8 15.5 20.1
9 16,9 21.7
10 18.3 23.2
11 19.7 24.7
12 21,0 26.2
13 22.4 27.7
14 23,7 29.1
15 25.0 30.6
16 26.3 32.0
17 27.6 33.4
18 28.9 34.8
18 30.1 36.2
20 31.4 37.6
21 32.7 38.9
22 33.9 40.3
23 35.2 41.6
24 36.4 43.0
25 37.7 44.3
26 38.9 45.6
27 40.1 47.0
28 41.3 48.3
29 42,6 49.6
30 43.8 50.9
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The basic assumption is that the rising and falling limbs of
discharge hydrographs can be modeled individually as two differ-
ence, intermittent processes, also physically different. The
rising limb process is mainly due to factors external to water-
sheds. It is modeled similarly as the intermittent precipi-
tation process. The falling limb is conceived as governed by
regularities of water outflow from watersheds, with the water-
shed storage and outflow represented by two linear reservoirs.
The model is tested for a case study. Results are satisfactory
in reproducing the combined process.

Reference: Kelman, Jerson; Colorado State University, Hydrology
Paper No. 89 (February 1977), Stochastic Modeling of Hydrologic,
Intermittent Daily Processes.
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