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ABSTRACT

The structural analysis and mathematical models used for evaluation and removal of the periodicity and
dependence from the hydrologic time series are reviewed, summarized and discussed. Records of daily runoff for
seventeen river basins in the United States are used as the basic research data and mathematical models were
applied to analyze their periodicity and dependence. Periodicities in serial correlation coefficients, L

of the stochastic components are also analyzed and found to be not negligibly small. Independent stochastic
components (or the residuals) are obtained by removing the perjodicity and dependence from the daily runoff
series. Methods of testing the distributions of the tails of empirical frequency distributions are developed.
Tails do not seem to belong to the class of heavy tails. Seven groups of probability distribution functions:
classical, Pearson's family, probability density functions modified by polynomials, Weibull, double-branch
gamma, mixture of probability functions, and family of stable distribution functions, are applied to fit the
frequency distributions of the independent stochastic variables. The same techniques of removing periodicity
and dependence were applied to series with larger time intervals, such as the 3-day, 7-day, 13-day and monthly
series, which are derived from the daily runoff series, and the distributions of these variables are compared.
It was found that the 3-parameter Tognormal function fits well the frequency distributions of monthly indepen-
dent stochastic variables. Since the frequency distributions of variables with small time intervals are more
skewed than for the large time interval series and since they have sharper peaks and longer tails, the probabil-
ity distribution functions with more parameters should be used to fit these empirical distributions. For 13-day
variables, the 3-parameter lognormal and the 3-parameter gamma functions are found to fit the frequency distri-
butions quite well, while for 7-day and 3-day variables the double-branch gamma function with six parameters is
found most applicable. However, no distribution is found to fit consistently the frequency distributions of
daily variables, because of the sharp peak and high skewness of these empirical distributions; hence, an
empirical method of fitting is suggested.

PREFACE

The hydrologic time processes, either continuous or discrete for time intervals of a fraction of the year,
are composed processes (with periodic parameters, non-homogeneous and/or inconsistent parameters, and a stochastic
component). When a sample of such a process is mixed by using known deterministic and stochastic components, its
decomposition (disegregation, separation, structural analysis) never leads to exact characteristics of the indi-
vidual components. Therefore, even if one starts with a normal independent process for the stochastic component,
and mixes it with the periodic and/or trend parameters, the analysis of the sample rarely produces a conclusive
evidence that the resulting stochastic residuals of the sample decomposition are normally distributed. There-
fore, determination of probability distributions of obtained residuals in the form of independent stochastic com-
ponent of complex hydrologic series is subject to bias and/or incorrect conclusions due to difficulties inherent
in the decomposition.

The following paper had as an objective the analysis of stochastic residuals in their two aspects: (1)
the complete distribution of residuals, and (2) the character of distribution tails. It was shown how difficult
it is to fit simple probability distribution functions to residuals, because the inference on periodicity of
parameters, on dependence model of remaining series after periodicity is removed, with an eventually unremoved
nonhomogeneity and inconsistency in data, all lead to a mixed distribution of complex analytical expressions for
residuals and not to simple functions as expected in practice. Stochastic residuals of daily flow series showed
to be the most difficult to fit by simple probability distribution functions.

The analysis of tails showed, regardless of above difficulties in fitting residuals by simple probability
distribution functions, that they are exponential. The over-removed and/or under-removed harmonics of periodic
parameters tend to make tails heavier and peaks sharper, than the true distribution would show. Regardless of
this, one may conclude from the research results given in this paper, that hydrologic independent stochastic com-
ponents, represented in the paper by the independent residuals of daily runoff series, are e;ponential,‘and both,
for the sharp rising left tail and the slow decreasing right tail of frequency density functions of residuals.
This result does not support the theory of so-called heavy tails of stable distributions as the true character-
istics of stochastic component of hydrologic time processes. Therefore, mathematical models based on the heavy-
tail concept may be nothing else than a fit to biased estimations of independent stochastic components.

Vujica Yevjevich
January 1976 Professor-in-Charge
Fort Collins, Colorado Hydrology and Water Resources Program
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Chapter 1
INTRODUCTION

The prediction of future water supply is one of
the basic goals of a program of water resources manage-
ment. In the absence or inadequacy of physical theory
concerning the atmosphere-earth water cycle relation,
hydrologists are predisposed to use statistics and
simulation.

The analysis of observed chronological sequences
of physical phenomena lies within the time series anal-
ysis. The process could be either probabilistic in
nature, or deterministic with stochastic components
superimposed [35]. The deterministic and stochastic
components of the process could be statistically anal-
yzed using historical records.

In this chapter, general properties of a
hydrologic process are briefly reviewed. The objec-
tives and the procedures of this study are outlined,
and the research data used are briefly described.

1-1 General Composition of Hydrologic Time Series.

The characteristics of hydrologic time series
[34, 35] can be divided into long-range trends and
other long-range persistencies, periodicities of the
year, and randomness with time dependence in the sto-
chastic variation. These characteristics are consid-
ered as basic components of hydrologic time series.

Long-range trends and other long-range
persistencies. Trend is defined as a systematic
and continuous change over an entire sample in any
parameter of a series. Inconsistency (systematic er-
ror) and nonhomogeneity (changes in nature by either
man-made or natural processes) are the main causative
factors for the long-range trends or eventual long-
range persistencies. They must be identified and re-
moved before hydrologic structural analysis is initi-
ated. Trends and cyclicities may often result from
sampling fluctuations in short time series. When cy-
clicity is only a result of sampling variations, it is
called the sampling cyclicity. For a regional study
it is necessary to determine whether there is any sig-
nificant trend or cyclicity to be assigned to a par-
ticular series in the area. In addition, different
hydrological, meteorological and geophysical time
series may be compared. Without such a broadly based
confirmation the apparent long-range trends and cy-
clicity should not be considered as permanent proper-
ties of any series of annual values of a hydrologic
variable, even though the factors of the known non-
homogeneity and inconsistency are removed. Conse-
quently, those factors which are the result of sampling
variation, should not be perpetuated in structural
analysis and mathematical description of time series.

Within-the-year periodicity. Astronomic cycles
produce the periodicities in various hydrologic time
series. In a given river basin, for example, high
precipitation in summer seasons and low precipitation
in winter seasons, or vice versa, may be expected.
River flows are high or low in different seasons.
Means and variances of stream flows are large in wet
seasons and small in dry seasons. This phenomenon
indicates the within-the-year periodicity in the means
and variances. Usually, periodicities in a hydrologic
time series would appear in one, two or several of its
parameters, especially in the means, standard devia-
tions and autocorrelation coefficients. Periodic com=-
ponents are deterministic properties of time series
and their parameters.

Randomness and time dependence. Randomness of
hydrologic time series is caused by such factors as
turbulence, large-scale vorticities, heat transfer,
air opacity for radiation waves and ather sources of
randomness of atmospheric, oceanic and continental air
and water movements. Time dependence in stochastic
variation is created or increased by water storage of
various types in hydrologic environments. A station-
ary stochastic process is assumed superimposed on a
periodic or deterministic process in a given manner
which can be described by an algebraic equation of
time series composition. Therefore, hydrologic time
series are basically nonstationary and could be decom-
posed into deterministic components and a stationary
stochastic process.

Definition of independent stochastic components.
The above assumption of periodic components in a
hydrologic time series being deterministic parameter
processes implies that they can be removed by means of
appropriate mathematical models. The remaining sta-
tionary stochastic component is in general sequen-
tially dependent. This dependence is often found to
be approximately Tinear. Linear models such as the
autoregressive type are commonly used in hydrology.
Residuals in mathematical models of sequential depen-
dence of statjonary stochastic series are called the
independent stochastic component, the £ variable.
For a discrete time series, the independent stochastic
components are designated by gp o for which p and

t indicate the <-th discrete time interval position
from a total of w positions in one cycle for the
p-th period. One calendar year is, for example, one
period; w is the number of interval subdivisions of
the year, i.e. w = 365 for daily series, w = 12 for
monthly series, etc., with =t = 1,2,...,u, as discrete
values of the basic period; p = 1,2,....n, is the
successive year number and n is the number of years
in the sample. The gp y variables are assumed ini-

tially to be 1ndependen£ and identically distributed
at all positions 1 of the period w. These Ep .

variables should be nearly stationary and sequentially
independent for subsequent analysis and statistical
inference.

1-2 Study Objectives.

The objectives of this study are:

1. To select mathematical models with the re-
lated error analysis to be employed in the structural
analysis of hydrologic time series.

2. To condense the information in the data of
the independent stochastic component by fitting appro-
priate probability distribution functions to their
frequency distributions.

3. To study the extreme or unusual events of
hydrologic time series, which affect the selection of
probability distribution functions for the independent
stochastic components. An exceptionally high flood,
for example, may produce a correspondingly very high
value in the sample data of independent stochastic
components. One of the objectives of this study is to
find the best way of treating these extreme values of
the independent stochastic components, by a proper
selection or a modification of the probability distri-
bution functions selected to fit their frequency dis-
tribution curves.



4, To apply the central 1imit theorem so that
the sums of random variables become asymptotically
normally distributed, and in such a way that the prob-
ability distribution functions selected for the small-
interval independent stochastic variables converge to
the normal function as the at-interval increases. For
the random variables following a stable distribution
with the characteristic exponent, z, the distribution
of sums of these random variables is also a stable
distribution with the same characteristic exponent,

a. For the variables to follow a stable distribution
requires that an independent stochastic variable

has the same characteristic exponent, o, for all
interval values of at. Another objective of this
study is to investigate jointly the applicability of
the central 1imit theorem and the stable distributions
to hydrology.

1-3 Procedures of Investigation.

The approach for this investigation is to study
both the structure of deterministic components and
the sequential dependence of resulting stochastic
series. Statistical tests are used to infer the inde-
pendence of resulting stochastic variables, to allow
testing the adequacy of mathematical models used. In
studying the frequency distribution of the independent
stochastic variables, seven groups of probability

distribution functions are studied and tested:
classical probability distribution functions, Pearson's
family of probability distribution functions, Weibull
probability distribution functions, classical proba-
bility distribution functions modified by the polyno-
mials, double-branch gamma functions, and a mixture of
some probability distribution functions and stable
distributions. The procedures used are shown schemat-
ically in Fig. 1-1.

1-4 Research Data.

The data used in this study [29] contain
seventeen sets of daily runoff series, with the 3-day,
7-day, 13-day, and monthly runoff series derived from
the daily series by taking averages of the daily
values over the intervals of 3 days, 7 days, 13 days,
and one month.

These 17 daily runoff series are from the records
published by the U.S. Geological Survey under the con-
dition that the flows are virgin or have not been al-
tered by significant man-made diversions or flow regu-
lations. Minor diversions, up to a maximum of one
percent of the average annual flow, are tolerated.

The names of stations selected are given in Table 1-1,
with the approximate geographic location of stations
shown in Fig. 1-2.

RAW DATA

USE OF
LOGARITHMIC
ITRANSFORMAT IONS

USE OF NON-
TRANSFORMED
VARIABLES

REMOVAL OF WITHIN-THE-YEAR
CYCLICITY IN PARAMETERS

REMOVAL OF WITHIN-THE-YEAR
CYCLICITY IN PARAMETERS

USE OF NON- LOG TRANSFORMATION
TRANSFORMED OF DEPENDENT
VALUES STOCHASTIC VARIABLES

INFERRING AND REMOVING
STOCHASTIC DEPENDENCE

TEST INDEPENDENCE
IN RESULTING
INDEPENDENT
STOCHASTIC SERIES

|

FITTING INDEPENDENT STOCHASTIC
COMPONENTS BY VARIOUS PROBABILITY
DISTRIBUTION FUNCTIONS

TEST OF GOODNESS OF FIT

Fig. 1-1

Schematic flow chart of investigations.



Table 1-1 STATIONS SELECTED FOR INVESTIGATION.

Lﬁtat 1on Location i Area Records Mean Standard Remarks on s
umter River Latitude | Longitude | (5q. Mi.) | Available Daily Flow | Deviation Accuracy of Record
i Excellent. Fair during
18.5255 ! Tioga near Erwins, N. Y. 42%07* 77°08" 1370.0 1921-1560 1378.6 2777.8 periods of ice effect.
i Good, Fair during
14.6710 | Cconto mear Gillett, Wisconsin 44752 88°18" 678.0 1921-1960 543.5 441.0 perinds of ice effect. |
Good. Poor during
| 7.0670 Current at Yan Buren, Mo. 31"00° 2101 1667.0 19221960 1821.0 2694.3 eriods of ice effect.
14,1590 Mckenzie at Mckenzie Br., Ore. 44°11" 122°08" 345.0 1924-1960 1638.2 744.4 Excellent
|5.0335 | ieches near Rockland, Tex. 3%z 94724 3539.0 1924-1960 2385.2 3813.0 Good
i Excellent. Good during
13,1850 | Beise near Twin Springs, Idaho 43%0" 115744" 830.0 1921-1960 1n72.7 1458.6 periods of ice effect.
: Good.  Fair during
(11.2750 : Falls Creek near Hetch-hetchy, Cal. 37°58" 119%88" 45.2 1923-1960 | _141.2 234.2 periods of ice effect. |
Good. Poor during
34.1835 | Greenbrier near Algerson, W. Va. 3raer 80”38" 1357.0 1921-1960 1885.5 3053.4 periods of ice effect. |
N Good. Fair during
63.5905 Delaware at Valley Falls, Kansas 39°21° 95°27" 922.0 1923-1960 375.9 1617.7 periods of ice effect.
Exceilent. Good during,
64.C375 | Madison near W. Yellowstone, Mont. 343" 111704 419.0 1924-1960 458.6 190.7 periods of ice effect.
!_3,5320 Powell rear Arthur, Tenn. i 36"32" 83°38' 683.0 1921-1960 11161 1739.0 Good
’ ’ Gond.  Poor during
12,4150 | St. Maries near Lotus, Idaho 4715 116"38" 437.0 1923-1960 515.0 762.3 periods of ice effect.
Zn 0167 Cowpasture near Clifton Forge, Va. 377a8" 79%46" 456.0 1925-1960 515.6 762.3 Good
34.2695 | Mad near Springfield, Ohio 555" 83°s2" 1474.0 1921-1960 457.2 686.7 Good
Herced at Pohone Br.,
11,2665 Yosemite, Cal. 37743 119%0" 321.0, 1921-1960 595.7 975.4 Good
Good, Fair during
1B.32%5 Batten kill at Battenville, N. Y. 43%08" 73°25" 354.0 1923-1960 722.9 722.9 periods of ice effect.
| Good. Fair during
1 5.3620 | Jump near Sheldon, Wisconsin a5™1g" 90°s7"* 574.0 1921-1960 505.0 1162.0 periods of ice effect.

*According to U.5.6.5., the classification of the records are excellent, good, fair, or
or 15 percent or greater than 15 percent, respectively.
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Chapter 2
BRIEF REVIEW OF PERTINENT LITERATURE

The first part of this chapter includes the
mathematical models used for identifying and describ-
ing the deterministic characteristics of the hydrologic
time series. The second part involves the probability
distribution functions applied to fitting the indepen-
dent stochastic hydrologic components of time series,

2-1 Mathematical Models of Periodicity and Dependence

in Hydrologic Time Series.

Early attempts of modelling the hydrologic events
were made by Sudler [32] and Barnes [2]. Sudler's
model was simply to collect all the historical annual
series followed by a random rearrangement of the order
of these events in order to obtain a sequence of new
combinations of the original series. Barnes assumed
the observed annual flows were normally distributed.
He used a table of random numbers to synthesize the
annual flows with the same mean and standard deviation
as the original record. Although Barnes' work made
an improvement on Sudler's procedure, it still ne-
glected the serial correlation that usually exists in
annual flows.

Thomas and Fiering [19] used the first-order
autoregressive linear model to approximate the persis-
tence in the series of monthly runoff. In providing
a justification for the application of autoregressive
linear models to hydrologic series, Yevjevich [34]
showed that, if a simple exponential function will fit
the recession curves of the runoff, the persistence
among the annual runoff values follows the first-
order Tinear autoregressive model. However, recession

—ctn
curves following the form; Qi = Qo e et (with ¢ and
n constants, Qo the initial runoff of the recession
curve, and Qt the recessioh'discharge at the time

t) will be fit better by the second-order or third-
order autoregressive linear models. Chow and
Ramaseshen [6] found that autoregressive linear models
were applicable to storm rainfall.

A1l these applications of the autoregressive
linear models are-valid under the assumption that the
processes studied are stationary stochastic processes.
Since the solar radiation input to hydrologic environ-
ments is periodic, the periodicity in the environmen-
tal hydrologic inputs and outputs cannot be avoided.
For example, the correlogram of monthly stream flows
is often periodic. Yevjevich [17] showed that for the

monthly stream flow transformed by ep ™ (Qp 5 =
QT}/ST. (with Qp . the stream flow of month 1, and

S, the standard &eviation of the month t stream
flow), the corretogram of e may not be periodic.
Quimpo [28] used the model of Q, = P, + ¢, (with P,
the periodic component; and €4 the stochastic com-

ponent) to approximate a periodic hydrologic process
Qt' He found that an approximate second-order sta-

tionary stochastic series is usually obtained by iden-
tifying and removing the periodicities in the mean and
standard deviation. The dependence of stochastic com-
ponents of daily flows could be approximated well by
the second-order autoregressive linear model.

In order to identify and remove the periodicities
in parameters, the harmonic analysis is commonly used.

In spite of availability of some statistical methods
for testing the significance of harmonics, these
theoretical test methods show difficulties when ap-
plied to complex hydrologic time series. Quimpo [28]
assumed that only the first six harmonics are poten-
tially significant, and used the variance explained
by each of these six harmonics as a criterion to de-
termine how many harmonics are necessary to approxi-
mate the periodic components. Yevjevich [36] improved
this procedure of testing the significance of har-
monics by using the sum of the explained variance of
all harmonics and two predefined critical values, as
an empirical method for testing the significance of
harmonics,

2-2 Probability Distribution Functions for Fitting
Frequency Distributions of Hydrologic Stochastic

Components.

The normal density function has been used for
centuries as the theoretical probability distribution
of error residuals. The gamma and lognormal proba-
bility density functions are widely used in hydrology
and related fields. Markovic [20] investigated the
distribution of annual precipitation and runoff series
and pointed out that their frequency distributions may
be fitted by normal, lognormal and gamma probability
density functions. Matalas [22] assumed the histori-
cal series to follow either gamma or lognormal distri-
butions and developed the simulation schemes with the
condition that the residuals of the dependence models
are normally distributed. Attempts were made by Bonne
[3] to use the lognormal, Pearson Type III (gamma
probability density function), and logarithmic Pearson
Type III distribution functions to fit the frequency
distributions of monthly runoff. Normal variates are
often obtained by various transformations which depend
on the original distributions of stream flows.

Distribution functions of more complex forms have
been used in fitting the fregquency distributions of
hydrologic variables, when a simple probability den-
sity function fails. The normal function, modified by
using the Hermite polynomials given by Edgeworth [23],
and the gamma function modified by using the Laguerre
polynomials investigated by Llamas and Siddiqui [18]
are examples of more complex probability functions.

The mixture of two or more probability density
functions, under the assumption that the variables
result from two or more populations, is also used to
fit the frequency distributions. The mixture of two
normal density functions was first studied by Karl
Pearson in 1894, while the parameter estimation for
this mixture was improved and summarized by Cohen [7].

Bryson [5] suggested that a probability density
function becomes "heavy-tailed" when it converges to
zero less rapidly than an exponential probability den-
sity function. He also found that some hydrologic
variables may follow the probability distributions
which fall within the heavy-tailed category of functions.

Mandelbrot [21] and Fama [9] applied the stable
probability distributions to economic variables such
as the stock prices. Since the independent stochastic
components, derived for the daily flow series, may have
the similar properties as the stable distributions
with heavy tails, the stable distributions are inves-
tigated also in this study.



Chapter 3
MATHEMATICAL MODELS USED FOR OBTAINING INDEPENDENT STOCHASTIC
COMPONENTS, AND RELATED ERROR ANALYSIS

Mathematical models used for the periodic
components of hydrologic time series and the time de-
pendence of the stochastic components are summarized
in this chapter, which served to obtain the indepen-
dent stochastic variables. Even though the parameters
of mathematical models are estimated from the sample
data series by the best available estimation methods,
they are inevitably subject to various sources of
errors. Therefore, the analysis of these errors and
their propagation through each step in obtaining the
independent stochastic components is also presented in
this chapter.

3-1 Removal of Periodicity in Parameters.

Two practical methods (nonparametric and
parametric) may be used to remove the periodic compo-
nents from a time series. The errors involved in the
harmonic analysis of these periodic components are
discussed.

The symbol Qp P stands for discrete values of

;]
an observed hydrologic time series with t and p
previously defined. The symbol %, denotes any

periodic parameter to be estimated from the Q
series.

The nonparametric method. The removing of

periodicities in the mean and variance of Qp . is by
QE e QT
E = ] (3'1)
PsT ST

in which €yt
QT and s, are the sample mean and sample standard
deviation uf Qp,r at the position 1. QT and S,

is the stochastic component of Q

are computed by

T |J=] .t s {3"2}
n
_| _ 2
Se *[aT :f-; (Qp,c - Q) (3-3)
The nonparametric method of removing the periodicities
in Q and S, by Eq. 3-1 is equivalent to the
standard1zat1on of Qp variable. It requires 2 w
statistics: o of Q and w of St The nonpara-

metric method is usefu] in any preliminary analysis
when  1is small. For monthly series, Eq. 3-1 is
often used because 2 w = 24 is not a very large number
of statistics. However, there are two major drawbacks
in using the nonparametric method:

1. In case of daily series, the number of
statistics of Eq. 3-1 becomes 2 w = 730. When some
other parameters of daily series, such as the auto-
correlation coefficients, or the skewness coefficients
are also periodic, and the periodicities must be iden-
tified, described and removed to obtain a second-order
or third-order stationary stochastic component of

daily values, the total number of statistics in
nonparametric approach js drastically increased.

Since it is impossible to estimate so many parameters
accurately from a limited size of sample series, these
parameters must be subject to large sampling errors.

2. Sampling errors are propagated by the
nonparametric method.

The general objectives of mathematical modelling
of the deterministic-stochastic process are: (a) To
effectively separate the deterministic and stochastic
components; and (b) To condense the information by
employing such models which use the number of parame-
ters parsimoniously. Since the nonparametric method
does not satisfy these objectives, at least for large
values of w, this method, therefore, is not used in
the further investigations.

The parametric method. Two types of periodic
functions can be used in the description of periodic
parameters, v with the Fourier coefficients of sig-

nificant harmonics either constants or also random
varijables, The first is

m
= 2njt
v o +ZCJ. ::os(LLJ +ej),

5=

(3-4)

and the second is

v @ +ECJ

in which vy Vi Cj and aj the
constant amplitude and phase of the j-th harmonics,
J J
Cp and ep "
of the j-th harmonic, and j =1 2, ...m and j =
T525. ..,m0 the number of harmonics in the two cases.
Once Vs Cj, and ej, with j = 1.2,..

mated from the sample series, Eq. 3-4 uniquely defines
the V. values at any 1. However, vy is the only
constant of the whole process in Eg. 3-5, with the m
pairs of random amplitudes and phases for My har-
monics. and eg’ may

not only be serially but also mutually correlated.

cos(—lil + Bg’ ) s (3-5)

is the mean of

the random amplitude and random phase

.,m, are esti-
Ll

[}

The random variables Cg .

The first periodic function, Eq. 3-4, is based on
the assumption that the deterministic periodic param-
eters of the process can be separated, with the resid-
uals considered as the stochasticity of the process.
The second periodic function, Eq. 3-5, means that
nearly all the information is conta1ned in various
stochastic parts, such as the random Fourier coeffi-
cients and the random variable of the stochastic part.

The hypothesis that all of the earth's hydrologic
processes are composed of deterministic-periodic pa-
rameters and stochastic component seems supported by
the basic periodic influx of solar energy. The envi-
ronmental responses to solar energy input modify cer-
tain properties of input cyclicity without changing
the cyclicity itself, adding randomness to the output.



It seems logical on the basis of geophysical evidence
to conceive the responses of hydrologic environments
as producing the outputs which are composed of peri-
odic parameters and a stochastic component than to
conceive that the responses produce only a set of sto-
chastic variables in output. Therefore, Eq. 3-4 is
used to describe the periodic parameters of hydrologic
time series.

An alternative form to Eq. 3-4 is

A AT N

T X (3-6)

m
+ 2 (A. cos 2HT 4 B. sin 2_17,]’1)’
j=1 J w J w
with m the number of significant harmonics, and Aj
and Bj the Fourier coefficients estimated from the

w values of VT (with ¥ sample values), by

w

Aj -2 V_ cos 2njt (3-7)
w ‘{:] T w
w
2 . 21]
Bj e ; vV, sin —E’l , (3-8)

with the amplitude and phase

B.
,f? 2 . R Ve ;
cj Aj + Bj ; and 85 tan ( R ) . (3-9)

J

The empirical method is used in selecting the
significant harmonics. Let sz(vt) be the variance of
computed v For a harmonic j, var h:j = (A? + agyz,
with Aj and Bj, computed by Eqs. 3-7 and 3-8. The
ratio

var h,

P, =

j (3-10)

s (vt)

represents the part of the variance of Y. explained
by the j-th harmonic. These ratios an are then
ordered in a descending sequence, and summed to

3
P. = AP, , for J=1,2.3,....m , (3-11)
J 4 i

with max(m) = w/2. The harmonics of any parameter of
hydrologic daily series, such as the daily mean, daily
standard deviation, or daily autocorrelation coeffi-
cient, are usually not significant beyond the first
six harmonics. The critical values of the sequence

P:j are two empirical constants, Pm1n and P

max”
With the critical values Pmin and Pmax selected,

the criteria used to determine the significant har-
monics are: (a) if Pﬁs Pmin’ no harmonic is signif-
as a constant; (b) if Poii ® Pﬁs
Pmax, all six harmonics are significant; and (c) if
P6 )Pmax’ the first j harmonics, whose PJ

icant, or U‘I: 3 vx

values
first exceed Pmax’ are considered as significant.
The empirical expression of Ppip and Ppay are:

x W L
Pmin = avﬁ;: Y (3-12)
and
max 1- Pmin 2 (3-13)
in which ¢ 1is the order of the highest moment used

in estimating the parameter Vs w and n are the

length of basic period and the number of years in
record, and a is a constant (with the suggested
value a = 0.033).

With the periodic mean My and the periodic

standard deviation 9 the model for Qp . is

B,r = B, ®o0 5 (3-14)

T Sp,t
with p,t the stochastic component, which is sta-
tionary at least in the mean and standard deviation.

The procedure for inferring the periodic mean and
standard deviation and removing them from the sample
Qp,r series, is as follows:

a. Estimate the sample means Qr and the sample
standard deviations 55 m® 1,2,...,w, by using Qp,T
and Eqs. 3-2 and 3-3, respectively.

b. Replace ¥ in Egs. 3-7 and 3-8 by m and
S and compute the Fourier Coefficients Aj and Bj’
for j=1,2,...,6, respectively.

c. Use the empirical test for the significant
harmonics in m and S_-

d. Denote by M and o the periodic parts in

m_ and s_, respectively, the equations to estimate
T T
Mo and o are

m
1 i
2rti . 2mti

wo = m *’)%: (A,] cos ST+ By sin == ), (3-15)
and

m

- 2nti F m ¥

o, =8 + Z? (Ai cos ==+ By sin = ) (3-16)

with my and Sy

m and m, the number of significant harmonics in

o and o respectively.

e. The periodic components are removed from
by

the averages of m_ and See and

P.‘r

Yo ™" g . (3-17)

Equation 3-17 is similar to Eq. 3-1 with the periodic
models having a limited number of harmonics, as the
parametric method. The y . variable of Eq. 3-17 is

approximately standardfzed., With a further
transformation,

, (3-18)



the standardized variable ep .
and
%y

is obtained, with “y
>
the mean and standard deviation of y

Pt
variable.

Error analysis. Since the true number of
harmonics, necessary to describe the periodicity in
Vs 1s unknown, and since the Fourier coefficients

estimated by Egs. 3-7 and 3-8 are subject to the
sampling errors in Vo the harmonic analysis in in-
ferring the periodic components produces the following
errors:

a. The number of significant harmonics inferred
may be either underestimated or overestimated in com-
parison with the number of harmonics necessary for de-
scribing the true periodicity in v This kind of

error results from the deficiency in the testing meth-
od for significant harmonics, and the sampling errors
in Vo which distort the test decisions.

b. Due to the sampling errors in Vs any

inferred significant harmonic may either underestimate
or overestimate the explained variance of v_ by that
harmonic. LS

Considering the two sources of errors, Eq. 3-6
can be modified as

m
v By =y o+ EE% (Aj cos g%§3-+ B, sin g%flﬁ
k 2 oni
:Z (A; cos SHdE + B, sin 1T
- w 1 w
i

m . .
* 3 (xA4 cos %LT-: 8B sin 2—':31},

3-1
2 (3-19)

with m the inferred number of significant harmonics,
k the number of harmonics which should or should not
be included into m selected harmonics, 2A. and

AB; the errors in the Fourier coefficients of se-
lected significant harmonics, and tav_ the total
error in v The errors made in the harmonic anal-
ysis greatly affect the accuracy of v for example,

if a harmonic explains only one percent of the total
variance of Yok and were incorrectly treated by the

test of significance, such as

- 2nkt 27kt
by =% (Ak cos ==+ Bk sin 'TE_J
and
1 /.2 2 2
7 (Ak + Bk) = 0.01 o, s
with 02 the variance of v . If A, and B, are
v T k k

equal, then Ak = Bk = 0.1 o, when 2rkt/w = n/4, and
av, will be equal to 0.14 o The errors made in the

estimated harmonics are propagated into the stochastic
component.

3-2 Dependence Models of Stationary Stochastic
Components.

The L. variable obtained by removing the

L]
periodicities in the mean and standard deviation from

Qp < is approximately a second-order stationary time

3

series, provided the autoregression coefficients are

not periodic. The dependence models for ©p,1 may be
L]

autoregressive of the moving average type, a combina-
tion of the two, and of other schemes, even of a non-
linear regression. The autoregressive linear models
are found to be most useful in hydrology.

Moving average and linear autoregressive schemes.
Two types of linear equations, or their combinations,
are used to describe the dependence in hydrologic sto-
chastic series such as ep " variable. It is assumed

that each value of ¢ is only a combined effect of

previous values of the’independent stochastic compo-
nent, ap . Symbolically,

DI

i | p,t-i  ?

=

£

PsT = gp,'l: (3-20)

is the scheme of moving averages, or the linear auto-
regression

EPsT = E ai Ep,t-'l + E"P,T ) (3-21)

Theoretically, an infinite sum of Eqs. 3-20 and 3-21
may be needed. However, as the effect of previous
values on the current value decreases with time in all
processes, a finite sum is often sufficient to approx-
imate the dependence process. In other words, if the
degree of required precision is fixed, only a finite
number of terms in Eqs. 3-20 and 3-21 are necessary,
with the alternative representation

q
Ep,'l' = ip,t = -i;‘l b'i ED,‘E-'i s (3-22)
and
p
D + g , (3-23)

Pt 17 % fpyr-i T Gpye

with p and q finite. The bi coefficients of
Eq. 3-22 are related to coefficients a; of Eq. 3-23

with one set defining the other [28]. It is easy to
show that a finite scheme of the moving average pro-
cess can be converted into an infinite autoregressive
process and vice versa.

Sometimes, both the autoregressive and moving
average terms are combined in a model

a
Epot - oyt iz:, % Epye-i T JZ; b5 fpyr-j * (3-24)

as a mixed autoregressive-moving average scheme of the
order (p,q), abbreviated by ARMA (p,q) [4].



The application of autoregressive linear models.
The dependence of the stochastic hydrologic series can
be approximated by various orders of linear autoregres-
sive models. The first-, second- and third-order auto-
regressive linear models are most commonly applied
rather than the higher-order models. These higher-
order models may show advantage only in case of very
long sample series. Short samples hardly justify the
application of higher-order autoregressive linear mod-
els [36]. Linear models seem sufficiently accurate
for all practical purposes even though the true phys-
ical stochastic dependence may be nonlinear.

The general
model is

PsT k=1 ak’r Epyf'k * UE:T Epsr =

m-th order autoregressive linear

(3-25)

with L the autoregression coefficients as func-

tions of serial correlation coefficients , either

I:’k,-r

periodic or nonperiodic, o the standard deviation

EST
of Ep . which is periodic if a .oare periodic,
with sp . a standardized variable. The serial cor-

reiation,coefficient Okt of lag k, is

cov (e ,e )
Pyt - varpi:p’fiT+k (3-26)
The coefficients O 1 and S with k = 1,2, and
3, are: For the first order model,
e T Pl,e-l (3-27)
with
L “ﬁ,r =~ "1,:-1}si : (3-28)
For the second order model,
_— Plye-1 ” °1ET-2 P2,12 (329
’ k= 1,:-2
and
- F’z,r-::. _ :12,:-1 Pl (3-30)
1,1-2
with
2

a T=('|+u

£ Tox T 9,0 " 29,0 P1,e-1 " 29,0 P02

(3-31)

+2a.|,1_a

L
2,1 91,1-2) ”

For the third order model,

2
P20, 240,000 10 2%3,0-371 1272, 0-2702,1-3%3,1-3
=t
1420y 1-292,7-371,1-3P171-37°1,7-27°2,1-3

[+
Tt

Y 1,1-372,7-2°2,7-3

2 2 F K
1420y 1 292 £-3°1,1-371,1-37°1,1-27°2,1-3 (3-32)

2
T T Ve PO T T PO PO B W Ly B

a.
2,1 o2 i _.2
14-29] b1=272,1-3F1,7-37P1,1-37P1,1-2772,1-3
+ ’1,1-392.1-391.7-12 . (3-33)
W20y 122,2-3°1,4-37P1,1-3701 222,23
and
p (1- e Yo P ? - -p
I IR MR O S O RS 1,1-3°2,1-27P2,7-3°1,1-1
3.8 142 T -
P1,1-272,7-371,1-37"1,7-3771,1-2772,1-3
i P,7-2°2,7-272,1-3 (3-34)
V2 z g g g i
1,1-272,7-371,1-37P1,7-3771,1-2772,1-3
with
2 2 2
= (1+ + + - -
GE’T ( a]:T ast 63’1 zalan]gT'] 2a2,T923T—2

s T L (L

+2G'| sTa3,TD2sT'3+2a2>Tu3 71 s‘f'3} i3-35)

The serial correlation coefficients Pk, are
estimated from the sample series by

n n
1 wili
ML= p')-:l [ p.t M é tp,.t]_. [‘p.ﬂk Py 1;?1 p.r+k|_
T n n n
. e 2] 1 2] %
[p_ ley = p; €0} ] [pl-'l lep, ok = 1 1?;1 ‘p,nk) ]

when n the number of years of record, and k the
lag. When the index t 1is equal to (w~k+1), the con-
stant n in Eg. 3-36 is replaced by (n-1) and €0, r+k

is replaced by Epﬂ,k‘

If estimated P values are analyzed for

periodicity by using the harmonic analysis, and are
found to be periodic, the periodic function Pkt
3

ki values. If no
periodicity is found in rk’T, the mean of rk’t,
denoted by e is used instead of Flo or Pp..
Consequently, T is replaced by @y and o by

s T

o in all previous equations, Eqs. 3-27 through 3-26.

should be used to replace the r

The statistical test of the adequacy of
autoregressive Tinear models for large samples is
given by Quenouille [27]. This technique is a labo-
rious method which includes computations of two sets
of constants and a test parameter. Another approach
is on the assumption that the model is of a given or-
der. It is then performed by estimating the parame-
ters and the computation of the presumed independent
stochastic component. This component is then tested
for independence. If the hypothesis of independence
is accepted, the hypothesis that the model is of a
given order is also accepted. This approach does not
compare the various models, and may require large
computations.



A simplified, practical method for determining
the order of the autoregressive linear model to be
used is suggested by Yevjevich [36]. The measure of
the goodness of fit of the model used in this method
is expressed by the determination coefficients, Di’

i=1,2,3,..., which give the percentage of the total
variance of ap . explained by the i-th order term

of an autoregressive equation, while the remaining
portion of the variance of % is explained by
(Ug,t gp,r)-term.

Since Dm F w2 D3 > Dz > D], a criterion can
be developed su that a model of the given order could
be selected in comparison with the higher order mod-
els. For the purpose of this study, and with the
first three autoregressive models used, the criteria
are:

a. If Dz - D1 < 4D, and D3 - 01 < 2 4D, the
first-order model is selected;

b. If D2 - D] > £D, but D3 - D2 < aD, the
second-order model is selected; and

c. If D2 - D] > 4D, and D3 - Dz > £D, the

third-order model is selected, in which (Dj - Di)’

with j > i, is the difference between the percentages
of the explained variance by the j-th and i-th

order terms of the model, 4D is a constant (suggested
value is 2D = 0.01, or one percent of the total vari-

ance). The determination of coefficients for the
first three order models are:
a il
D,l E r] i (3‘37]
r? + rg - Zr? ry
D, = —=———"=, (3-38)
2 1 2
- r\T
and
_ .2 2 2 3 2.2 2
D3 = (r] + r + r3 + Zr] rs + Zr1 ry + ZP] ry T3
2 q 4 2 2
-Zr'.I Py~ 4r.l Ty Py =Ty -Ty-T] rs)f'
2 2 2
(1 - 2ry - ry + Zr] rz) (3-39)

in which rps Too and ry are the mean values of

" i rZ!T, and r3’T, respectively.
A test parameter of independence of the

independent stochastic component, obtained by sub-

tracting the terms of the autoregressive scheme from

the stochastic components Ep _ provides a measure of
Ly

the adequacy of autoregressive schemes. The two-tail
test for the autocorrelation coefficients for signif-
icant differences from the expected values at a given
significant level is given by Anderson [1]. This is
derived for a circular time series. However, it may
also be applied to an open series if the sample is
sufficiently long which is the case in a dajly series,
bearing in mind other possible limitations [29]. Usu-
ally, the first autocorrelation coefficient is of the
greatest importance. The tolerance limits (u,1) at

95 percent level of significance are

_-1+1.96 /-3
Ust N'z

S (3-40)

with N the number of observations. By applying an
open series approach, Siddiqui (unpublished study in
1357) gave the distribution of r for normal inde-
pendent variables

(],r‘l}(N'l]/z (]+r._!){N'3)/2
2N-1 B (N+1 N-1)

2 2R

N4 N-T
TS ) the beta func-

f(r)) = 0 (), (3-4)

with N the sample size, B(
tion and 0{-%0 a small quantity decreasing rapidly

as N increases. The mean and variance of r] are
w
E(ry) = -y (3-42)
and
3 2
var(r)) = 3 24 (3-43)
NS (N°-1)

With sufficiently large N(N = 30), Eq. 3-41 is
well approximated by a normal function. When N is
very large and k 1is very small, Egs. 3-41 through
3-43 may be applied to the distributions of " [37].

The tolerance limits for r
cant level are

3.2

1 IN3-3n2+a

§ =.b.q.gg /N3N
et N NE(N2-1)

If Fisher's z-transformation of "
N Tlarge (N > 30) and k relatively small, the trans-

K at 95 percent signifi-

(3-44)

is used with

formed v is normally distributed with mean equal to
zero and variance equal to 1/n. The z-transform is
T+r
w il k
Z =5 In ]‘rk (3-45)
The tolerance limits for z, at 95 percent signifi-
cant level are
= + _.I_ -
Su,i =+ 1.9 e (3-46)
!’N
Error propagations. Let =+ e, and + e denote

the error terms in Eg. 3-19 corresponding to the peri-
odic mean and periodic standard deviation, respec-

tively. If these error terms enter the stochastic
component of Qp _, then
s T
Q. -(u =e)
+ = = il T X -
ED,T + Ae o = es > (3 47)

with 2e the error in the stochastic component. For
a Taylor's series expansion applied to the denominator
of the right hand side of Eq. 3-47 and if all the sec-
ond or higher order error terms are negligible, the
total error 4e of the stochastic component becomes

de = IS X (3-48)

Equation 3-48 shows the error in the stochastic com-
ponent to be proportional to the stochastic component
itself but inversely proportional to the standard



deviation 9. If e, are of the same
order of magnitude and both proportional to . in

a stan-

and e
X

the order of 5 percent of O while ep Z

dard normal variable, then Ae = + 0.148 for the
95 percent confidence interval.

Since the serial correlation coefficients, L
computed by Eq. 3-36 are scale and location invariant,

the Y T-va1ues are the same as those estimated

direct]} from Q i Consequently, the errors in
]

the periodic mean and standard deviation do not
affect the estimates of rk o However, the gen-

;]
eral autocorrelation coefficients (computed for
the total series and not for each t separately)
of the stochastic variable will be smaller by
1/[1 + var(ae)].



; Chapter 4
THEORETICAL DISTRIBUTION FUNCTIONS, TESTS OF GOODNESS OF FIT, AND HEAVY

4-1 Selection of Theoretical Distribution Functions
with Estimation of Their Parameters.

In this study, the probability distribution
functions (abbreviated in the further text as PDF)
selected to fit the frequency distributions obtained
for the independent stochastic components are classi-
fied into seven groups. There are some other common
PDF's such as Cauchy PDF, Pareto PDF, beta PDF,...,
etc., which are not used in this study either because
they are not suitable for fitting the frequency dis-
tributions of the independent stochastic components or
they are special cases of the seven groups. The clas-
sification of these seven groups depends mainly upon
the characteristics of the PDF's selected for the
analysis. Based on the properties of an independent
stochastic component, the theoretical probability dis-
tribution function of best fit to an observed fre-
quency distribution should have the following proper-
ties: (1) it is continuous and defined for all
positive and negative values of the variable; (2) the
upper tail is unbounded; (3) the density curve is
asymptotic to the axis on the positive side and is
also asymptotic on the negative side in case the lower
tail is unbounded; and (4) it should be representative
of a large range of skewness and kurtosis coefficients.

Classical PDF's. The commonly used PDF's in
hydrology include the normal, lognormal and gamma den-
sity functions. A voluminous literature related to
these three probability density functions is available.
Therefore, only the functions and their parameters are
summarized here.

a. MNormal PDF

2
1 {x-u)
fx) = _p-e’ s —XEXE @

20 (4-1)
with x the variable, u the population mean, and o
the population standard deviation. The maximum Tike-
lihood estimates of . and o, with N the sample
size, are

WL (8-2)
- x 3 -
N
and
5'['1 ZE: (xs-u) ] (4-3)
N
b. Lognormal PDF
2
{ln{x-xo)-lnu ]
f(x) = W S 202 S
(x-xo)cJﬁF (4-4)

with u the population geometric mean of (x-xo). g
the population standard deviation of 1n{x-x0), and
%o the lower boundary. Equation 4-4 is a three-

parameter lognormal function. It becomes a two-
parameter function for x_= 0. The Tower boundary

X 1is the maximum likelihood estimate of X, and is
obtained by solving the following equation by an

TAILS

iteration procedure:

il N N )
| i ¥ 1 ﬂ
1‘):='| X=X {N é:] n® (x;-%)) '[N Z n (xi'xo)]

1=

N n 1n(x.—; )
LS a1+ Y —-
Nimil L s A

° (4-5)
The maximum 1ikelihood estimates of 1nu and o
are
~ i} %
T = 1; In (x5-x) > (4-6)
and A
N
% = 2 |
o ={1F 1§| [m(xi%) - 1nu] } (4-7)
c. Gamma or Pearson's Type III PDF
a~1 X=X
- 1 x-xﬂ - —2 § X < X< @
f(x) = oy |\ 3 " £ o= (4-8)
with « the shape parameter, 8 the scale parameter,

X5 the location parameter of the lower boundary, and

r{a) the gamma function of «. The maximum 1ikelihood
estimate of the lower boundary is obtained by solving
the following equation by an iterative procedure

'H-(]+%F\};5 . q N )
—_— e (X - %) 1 e (4-9
T+(1+3A)5-4A o 1);5 X;%, ’

in which
—_ A 'l N -~
A=1n(x-%)-§ Ei In (x5-x,) (4-10)

with X the mean of N values of x. Once x_ is

0
determined, the parameter o is estimated by
1
RS V5
ﬂ‘—“—4A—"—'ﬁCﬁ » (4-11)

with A given by Eq. 4-10 and aa approximated by

A o = 0.04475 (0.26)% (4-12)
The parameter g 1is then estimated by
B= L (%% (8-13)
o 0

Pearson's Family of PDF's. From the general
class of functions originated by Karl Pearson [8],
Types IV, VI and VII were selected for application.
The parameters of these three selected functions are
estimated by using the method of moments, with the
highest order of moment being four. It was not prac-
tical in this study to use the maximum 1ikelihood
method for estimation of parameters because it




requires the solution of simultaneous nonlinear
equations.

a. Pearson's Type IV PDF

-m -1 x v
fx) =y, [0+ 5-92] e i G- P a1
with
6(82—31'1) 1
"7 26, 38,6 sm=5(r+2);
r(r-2) /&
Y= F
J;gir-l)-sl(r-Z}z
-1
13 J&2[16(r-1)-81(r—2)q » and
L -1
¥ = [a f cos” 5 VO de] (4-15)

=m

Five parameters in Eqs. 4-14 and 4-15 are functions of
the first four central moments of x. The curve of
Eq. 4-13 is skewed with unbounded range on both tails,
and v and My have opposite signs. The origin of

the curve is at the mean, with the mode at x = va/r.
b. Pearson's Type VI PDF
-q q
= 2. X 42
f(x) =y, (1 + A, ey A, ) € (4-16)
with
By
q _r=2 , r(r+z
1 2 2 32(r+2)2+16(r+1]
a(g;-1)
9 = a9 * (r-2) 5 Ay = Tﬁ;:TT_:_TEE:TT ;
a(qz'l)
A2 = W ; and
q q,-9
(a,+1) 2(qy-9,-2) | 2r(qy)
o g 172 1
yO = q » (4'17)
a(gy-1)" r(qy-a,-1) T(gy*1)
in which
6(8,-8,-1)
271
r=————, and
6+3B-|'282
a-= 1 J (8 (r+2}2+16(r‘+1]] (4-18)
2z Y2 !

These five parameters are functions of the first four
central moments of x. The curve of Eq. 4-16 is
skewed within the range -A to +=. If M3 is

12

“boundary.

negative, the range is from ﬂ] to -=. The origin

of the curve is at the mean with the mode at x =
-a{q1 -1)/ {q] = Rgy= 2). For q = 2 and q, < Ty

Eq. 4-16 becomes the Pareto distribution.

c. Pearson's Type VII PDF
x2 -m
fla) =95 (1% a—z) , (4-19)
58.-9 2u,B
; = 2 o gl 272
with m §T§£:37 ; a 82-3 , and
_ 1 T(m
y =— 7-(—1T_ (4-20)
R T(m-%
Weibull probability distribution function. The

distribution of a random variable is a Weibull distri-
bution [16] when y = [(x—xo)/a}c is exponentially
distributed with ¢ > 0, o« > 0, and x5 the lower

The probability density function is

A=X

C
i X - 0
£0x) =§ (x:o)_ 1 . ( = )

The maximum 1ikelihood estimates ¢, &, and X = of
should satisfy the three equations

(4-21)

c, a, and Xo

X N . zlse
i= 12;,1 (x;-%5)° , (4-22)
i kol - & - 1 8 s 3171
g = Z (xi-xo) 1n (xi-xo] M E In (x1-x°] ,
i=1 Z (xi_iojc i=1

i=1
and (4-23)

PTU SIS REPTS- g . (81
(e-1) 1{;1 (x;-%5)"" -ca 1-; (x%)™ =0 s (4.24)

Since min(x1,x2,...,xn) is a maximum 1ikelihood
estimate of Xy? the practical way of solving for io’

a and ¢ in the above three equations is by the
following four steps: (a) Let =

min(x1,x2,...,xn} - ax, with ax a small positive

quantity, like 0.0001; (b) Solve & from Egq. 4-23
by an iterative procedure; (c) Substitute Ko ¢

into Eq. 4-22 and compute a; and (d) Substitute io’

¢, and & into Eq. 4-24. If the absolute value of
the left side of Eq. 4-24 is not sufficiently close to
zero, another value of aAx in the step (a) should be
selected and the above procedure repeated.

It is difficult to find physical reasons for

using the Weibull probability distribution function

to fit the frequency distributions of independent sto-
chastic components. However, this function gives a
power transformation of the original variable, and
becomes a practical and convenient way of introducing
the flexibility in the fitting model which leads to

an exponential probability distribution.
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Probability distribution functions modified by
polynomials. With a given density function, f(x),
another density function, g(x), might be expressed as

a product of f(x) and a series expansion of x in
the form

k
9(x) = flx) X a; (x) (4-25)
=0

with qj(x} a function of x, and k finite or

infinite number of terms. Two methods are used in
solving Eq. 4-25. The first method restricts the
polynomial qj{x), J =1.2,...,k, to the orthogonal

relations, namely

djrqi(XJ qj(X) f(x) dx

The second method uses the Edgeworth series [23],
s?a;ting with the characteristic function ¢g(t) of
g x L]

o, if i#d
 (4-26)

1, if =)

o0 T om kj‘l
¢g(¢l= fesxg(X)dx=e[J§1(Ja“)]

-

*(4-27)

with s = it, i = /=T, kj the j-th cumulant of
g(x), assuming that all kj (j = 1,2,...) exist. If
all cumulants n; of f(x) exist, f(x) has the char-
acteristic function

(3 (. 63/i)1
(=T
¢f(t] =g 5 - (4-28)

which can be written as

N .
(X (kyeng) 03731
0(t) = e 371 0(t) . (4-29)

Using the inverse Fourier transform of o.(t),

o

t0 = f et a (4-30)

=0

and assuming it differentiable under the integral
sign, then

o0

{-D)‘j f(x) = f gd o70X oglt) dt . (4-31)

]

in which D = d./dx, j = 1,2,.... Since all the
cumulants exist, one may combine Eqs. 4-29 through
4-31 and take the inverse Fourier transformation of
¢g{t) giving

g(x) = [1 + 2% 3 (—D)j/j!] f(x) , (4-32)
J=
with aj depending on kj and "j'
The normal density function modified by the
Hermite polynomials [23] is derived from this second
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method. The gamma density function modified by the

Laguerre polynomials [30] is derived by the first
method. They are

a. Normal function modified by Hermite
polynomials.

Y Y
f(x) = N(u,0) {‘ * 37 Hyx) + g Hy (x) + "‘}’(4-33}

with x the standardized random variable, of the
normal probability density function, N(u,s) defined by
Eq. 4-1, T the m-th cumulant of x, and Hm the

Hermite polynomial terms of order m, given by

2 m 2
Ho= (-1 et X 4 (X (4-34)
m m
dx
For m = 3 and 4, Eq. 4-34 gives H3 = x3 - 3x, and
H4 = x4 -5x2 43
b. Gamma function modified by Laguerre
polynomials.
bl d X=X
2 mir(a) “m  (a-1) 0
f(x) G(a,B,XO) mz=[]. [T—(m(_gg‘ 5“‘ Lrn (—“—8 )J y
(4-35)

with G(u,a,xo} the gamma probability density function
defined by Eq. 4-8, L;(y} the Laguerre polynomial
terms of order m, given by

L;(y) = ﬁ (WC) -(—1)—3!3 , and

j=0 \™J
m fm=-1+x i i Il
d = . - “ i
s ;E% i (-1)9 (s) 3§ . with
- = 90 ,
Y; = E(x - x )7 . (4-36)

With the above polynomial modifications,“only the
first few polynomials are important. As a general
rule, the order of the last polynomial term considered
must be such that: (a) no significant oscillations
occur in the probability density function; (b) the

coefficient with the x" term should be very small in
comparison with the coefficients of the lower order
terms. Considering the above two conditions, the

probability density function of x 1is usually trun-
cated with m=3 or m= 4.

Double-branch gamma probability density function.

X_-X
flg) s sk {xa-x}“l" e’ _2_1 I )
B-T] E‘(r::-l) ==Xy
X=X
1-P an-1 S
o—_— (x-x_)"2 e ) I
332 T(E!.z) o] 2 (xO' ) )
(4-37)



with P defined as P=Pr(xsx0) and 1-P =

Pr{x>xo], Xo the mode, o, and BI the parameters of

1
the left branch, and oy and 52 the parameters of

the right branch [36]. The mode X5 is best esti-

mated by selecting the class interval ax, like 0.001
or smaller, which has the largest frequency, and is
approximately computed by Xo = XL + Ax/2, in which

x, is the lower bound of the interval ax with the

L
largest frequency. The parameter P is determined by
P= n]/N, with n the number of x values satis-
fying 5K The parameters * and 3 of the
left branch are estimated by using only the n

ues with XiSX s while oy and 52 of the right

branch are estimated by using the remaining n, sam-

val=-

ple values with n, = N-n], for X3>X e The param-
eters o and 31 are estimated by

A
o = g - 0.04475 (0.26)11 (4-38)
1
with
1 i 1 L)
Ay =1n [xo "o xi] " A 1Z=1 n (%,-%;) >
(4-39)
and
-~ 'l e ] n
B =5 Koy Zi ST (4-40)

Similarly, parameters %y and B, are estimated by
using Eqs. 4-38 through 4-40 with the term Xo™%s
substituted by X{7Xg and " by Ny- The shape

parameters o, and oy of the two branches should be

agual to or less than unity. If Eq. 4-38 gives a val-
ue greater than unity, the one-peak gamma function
should be replaced by a j-shaped exponential function.

Mixture of probability distribution functions.
Distributions resulting from mixing of two or more
component distribution functions are denoted as the
mixed distributions. Intuitively, a mixture may be
conceived as two or more populations of random vari-
ables, physically mixed but neither the population
distribution nor the proportion of the component pop-
ulation distributions of the mixture are known. Dif-
ficulties arise in parameter estimations of these dis-
tributions. Karl Pearson attempted the estimation of
parameters in a mixture of two normal populations,
considering two means, two variances, and a proportion
factor. He equated the first five moments with their
sample values. In order to solve these equations for
five unknown parameters, a ninth-order polynomial
equation is required. The computations are not dif-
ficult with a digital computer, but more than one real
root may exist in the ninth-order polynomial, which
demands a correct selection between two or more sets
of estimates [7]. The estimation procedures for pa-
rameters of the mixture of k normal functions by the
maximum likelihood method results in (3k - 1) non-
linear equations involving the (3k - 1) unknown param-
eters [15]. This is an obstacle to both the general
and practical applications of the mixture of distribu-
tion functions. However, the problem may be
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simplified by assuming that some properties of these
mixed functions are known. Three examples are given
here.

a. Mixtures of two normal density functions with
the same means.

2 2
p o Axew)” 1-P o (xew)
f(x) = e 2 e 2

UIVEF 20] UE/EF 202

. (4-41)

with P the parameter of the proportion of the two
normal functions, p the population mean, o and 9,

the populations standard deviations of these two nor-
mal functions. The parameter yu is estimated by u_
given by Eq. 4-2, a5 Tpo and P by 8], Iy and P,

respectively, by the following equations [7]:

= t] + 62 » Oy T t2 + 52 , and

o B )
p=-2 4-42
4t

with 6 the sample standard deviation given by

Eq. 4-3, t.J and t2. with t2 > tT’ the roots of
quadratic equation
k k
2 6 4 _
Y© - EEI Y - 3 0, (4-43)

and k4 and k6 the 4-th and 6-th sample cumu-

lants, respectively.

Equation 4-41 is appiicable for fitting the
frequency distributions of x under the conditions
that the distributions are symmetrical in respect to
their means, and the kurtosis coefficients are greater
than three.

b. Mixtures of normal and gamma density

functions.
(x-x )2
£(x) P —3—1
x =
A B e

x=1
1-p x-xo - x-xo
Wt ( B ) © 5 Lix,) (4-44)

with Xo the mode defined by Eq. 4-37, P the

weighting factor denoting the proportion of the two
functions, estimated by P = 2n1/N, with n the
number of all values of X and X5 S Xgs 04 the
standard deviation of the normal function computed by

n-|| I
A -.l_- ~ 2 .
o = s E] (%5-%,) (4-45)

o and 8 the parameters of the gamma function esti-
mated by

(4-46)

o L::;'m

v
,and B = Eﬁ ;
g



with

! S TELE I B
,and V. = —————- A",

g 1-P q 1-P g

1P x

(4-47)

with » and & the mean and standard deviation of x.

Equation 4-48 is valid to fit the frequency
distribution of x under the conditions that N>2n1,
Vg computed by Eq. 4-47 is positive, and the statis-
tic

1 2 b 9 G S e s w@]®
%=WE“W)/WEW%) (4-48)

is close to three.

c. Mixtures of Pearson's Type VII and gamma
density functions.

x2 -m
f(x) =P Yo 1+—§- I(_m'+m)
a

1o (xxN e - 2

- e

m—r( so) T, (48)
with Yo» @ and m the parameters of Pearson's

Type VII function, to be estimated by using Eqs. 4-20
and 4-48, for m, az, Y52 and Bos respectively. The

other parameters in Eq. 4-49 can be estimated by using
Eqs. 4-46 and 4-47. Equation 4-49 is appTicable under
the conditions of N>2n] and 82>3.

Family of stable distributions. The family of
stable distributions [9,12] is defined as the loga-
rithm of their characteristic functions which have
the general form

In [, (£)] = Tn [E (e™%)]

ist-y |t|® [1+ig ‘T%T’ w (t,a)]l,  (4-50)

with x the random variable, t any real number, i =

¥=1, and
tan 3¢ for x#
wit,a) = 2 (4-51)
;—1n|ti , for x=1
The stable distributions have four parameters: o, B,

&, and .

The parameter o is called the characteristic
exponent of the distribution determining the rate of
convergence of the extreme tails of distributions. It
can take any value in the interval 0 <o < 2. For
o =2 and a =1, the stable distributions are the
normal and Cauchy distributions, respectively. For
0 <a < 2, the extreme tails of stable distributions
are higher than those of the normal distribution.

The larger the total probability in the extreme tails
for given x, the smaller the value of «. The vari-
ance only exists in a 1imit case for a = 2. The
mean exists for a > 1.

The parameter 8 1is an index of skewness taking
any value in the interval -1 < 8 < 1. The distribu-
tion is symmetric for 8 = 0 and positively skewed
for 8 > 0, with the positive skewness increasing as

g increases. Similarly, for g < 0 the distribution
is negatively skewed, and the absolute skewness in-
creases as the absolute value of g increases.

“The parameter & is the distribution location
parameter. For « > 1, 6 is the expected value, or
the mean of distribution; however, for a« < 1, the
mean is not defined. In this case & is some other
parameter that describes the location.

The parameter vy defines the scale of a stable
distribution. For example, if « = 2, y 1is one half
of the variance. For o« < 2, the variance of the dis-
tribution is finite. In this case a finite y param-
eter still defines the scale of the distribution, how-
ever, y is not one half of the variance.

The three most important properties of stable
distributions are: the extreme tail areas follow the
asymptotic form of the Pareto law; they are stable or
$nvariant under addition; and these distributions are
the only limiting distributions for sums of indepen-
dent identically distributed random variables.

a. Asymptotic form of the Pareto law. Because
the tails of stable distributions follow a weak or
asymptotic form of the Pareto law, then

1-F(x) »¢; x%, for x - = (4-52)
and

F(x) > c, X1, for x »-=, (8-53)
with x the random variable, and S and c, con-
stants. This implies that if 1n[1-F(x)] is plotted -

against 1Inx for the right tail, or In[F(x)] is
plotted against In(-x) for the left tail, the re-
sulting curve should be asymptotic to a straight Tine
with the slope equal to -o, as x approaches
infinity.

b. Stability or invariance under addition. The
distributions of sums of independent, identically dis-
tributed stable variables are themselves stable with
the same distribution as the individual variables.

The logarithm of the characteristic function of the
sum of independent, identically distributed stable
variables is

n 10 Do (8] = i(ne)t - (ny) [¢]* [1+ispe w(tsx)],
(4-54)

with n the number of variables in the sum and
1n[¢x{t)] the logarithm of the characteristic func-

tion of individual variables. Equation 4-54 is the
same as Eq. 4-50, except that the parameters & and
vy are multiplied by n. Except for the origin and
the scale, the distribution of the sum is exactly the
same as that of individual variables. Briefly, the
stability means that the parameters « and B8 re-
main constants after addition.

c. Limit distributions. Stability or invariance
under addition is related to an important corollary
property of stable distributions, namely, they are the
only possible limiting distributions for sums of




independent, identically distributed random variables.
If these variables have the finite variance, the
limiting distribution for their sum is a normal dis-
tribution. If their sum follows a Timiting distribu-
tion, the limiting distribution must be stable, with
0<asé.

In summary, the sum of independent identically
distributed stable variables is also a stable varia-
ble, with the samg characteristic exponent as the dis-
tribution of the.individual variables. The process of
taking the sum changes only the scale of the distribu-
tion. To find a constant weight each variable in the
sum so that the scale parameter of the distribution of
the sum is the same as that of the individual vari-
ables, the constant b must satisfy

ny ]btld = v itfu . (4-55)

giving

(4-56)

This implies that each of the component variables must

be divided by n]fa. The converse proposition is that

the scale of the distribution of an unweighted sum is
n1 % times that of the individual variables.

For example, the interquartile range (0.75
fractile to 0.25 fractile) of the distribution of the

sum of n independent, identically distributed stable
variables will be n'/® times that of the individual
variables. This property provides the basis of the

spacing of the order statistics approach to the esti-
mation of «. It is not possible to express the
stable density function in a closed form except for
the cases of a« = 1/2, « = 1, (Cauchy), and o = 2,
(normal). However, Bergstrom, Fama and Roll [10],
present the expansions series capable of approxi-
mating the stable functions. Since the parameter
estimations of stable distributions for both the sym-
metric and asymmetric cases are of importance, they
are discussed below.

a. Symmetric stable distributions. The
logarithmic characteristic function of symmetric

stable distributions is given by setting 8 =0 1in
Eq. 4-50 so that
Ino (t)=16t-y [t]® (4-57)
Considering the transformation by
o Gl i
B ms 5 (4-58)

with ¢ = y/®, then for Eq. 4-57 (with the applica-

tion of properties of the characteristic function, u
is stable with the parameters o, unaffected by the
transformation, 6§ =0 and y = c = 1), the logarith-
mic characteristic function of the symmetric stable
variable is

In g (t) = -[t]" . (4-59)

Bergstrom presented the series expansions which can be
used to approximate functions as given by Eq. 4-59.
For a > 1, his results yield the series
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I
flu) = Te EE%('l) (2x)1 (4-60)
For a > 1, he also provided a 1imit series for
u > 0, namely
n k
f(u) = - 1; 2 L—LL]. Elakit) iﬂd sin (k—’zrg) + R(u)
k=1 : u (4-61)
with the remainder term
R(u) = 0 [u(™1)-Tg (4-62)

Term by term integrations of Egs. 4-60 and 4-61 yield
series for the cumulative distribution function F{u)
of u with « > 1. Using the cumulative distribution
function, Fama and Roll [10] tabulated the values of
this function for twelve different values of a in
the interval 1 < o < 2.

With the help of the tabulated values of F(u),
an estimate of the parameter c can be obtained from
the sample fractiles. The 0.72 fractile of the sym-
metric stable distribution with 6 =0 and c =1, is
located at the interval 0.827:0.003 for 1 s a s 2,
which is a minimum error value of 0.003 among all the
fractiles [10], given a random sample of size N.

Therefore, as a special case an estimate of ¢ is
" 1 - _ i
¢ = 3r0.8277 Ro.72 ~ %p.28) (4-63)

with X0.72 and X0.28 referring to the (0.72)

(N+1)-st and (0.28)(N+1)-st order statistics, re-
spectively. To estimate X0.72 and X5.28° the 0.72

and 0.28 fractiles of the distribution of x are
used. This estimate has an asymptotic bias less than
0.4 percent [11].

The characteristic exponent o can be estimated
from the sample by

»

- X=X
S FX9-f

I . U R o . S ¢ -
o ge X0.727%0.28

with the suggested values for f from 0.92 to 0.99.
Since x has a symmetric stable distribution with the
characteristic exponent o, the scale parameter y =

c®, and the location &, ﬁf is arr estimate of the

f-fractile of the symmetric stable distributions with
the characteristic exponent o, of the scale parameter
y =c =1, and the location parameter & = 0. There-
fore, an estimate of a can be obtained by searching
from the tables of F(u) for the value, Ges with its

f-fractile most closely matching Ug. Since different
f values will give different &f, Fama and Roll [11]
suggested using the equation

a = (g g3 * p.99)/2 > (4-65)

Finally, the location parameter & can be estimated
by the sample mean of x under the condition 1 < a <
2

b. Asymmetric stable distributions. Press [26]
proposed a procedure to estimate the parameters «,




g, &, and vy of the asymmetric stable distributions
by using the method of moments approach on the charac-
teristic function. The procedure is as follows. From
Eq. 4-50 for all «

In [ex(t)]| = -y |t]®. (4-66)
Replacing ¢x{t) by the sample characteristic
function,

- 1 & itk

o (t) =g ¥ e, (4-67)

X N =1

after selecting the two nonzero values of t (like t
and t2’ with 1:.I = tz). For o # 1, v |t]ig =
-1n Iéx(tT){ and v |t2|El = -In Jo (t,))] . By

solving these two equations simultaneously for o and
v, then

-

(4-68)

and

Il [InCeTnl, () [ 1-Injty | L-Infé, (8)) |3
ny = .

t‘i ]
In|+— (4-69)
5|

The imaginary part of logarithms of the characteristic
function of Eq. 4-50 is defined by Z(t) =

st-y|t]® 8 w(t,a).
again selected as t

a#1 and,

The nonzero values of t are

3 and t4, with t3 # td; far

v~ NH |tk|°‘ tan Té“l s Z(E

" N N
Since ¢ (x) = %- 3 cos tx. + i L+ > sintx: ,
= 3N g J
which in polar coordinates is px(t) = p(t)exp[is(t)],
where
2(¢) (1 > cost )2 (‘ 3 )2
o = [ cos tx.| + [ sin t x ,
N i= 3 N J
and

N N
tan [s(t)] =<Z sin t x.)/ ( 2. cos ‘tx‘) )
j=1 J 4 J

Hence 1n$x(t} = p(t) + ie(t), and

2(t) tan'l[( f& sin t / ﬁE ost
= mn X C Xz i
j=1 J) <j=1 J)] (4-71)

Replacing Z(tkj in Eq. 4-70 by its estimated

value from Eq. 4-71, and solving the two implied equa-
tions simultaneously for g and &, the estimates are
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2ty Ilty)
t t
- 3 4 ;
T R | RN (4-72)
1ty -lt3] v tan 5=
and
. Lty) oy Lty
I i e e A
p 4 3 4 (4-73)
It |x-1 = he je-1 %
4 3!

The above estimates are the consistent estimates, i.e.
estimates that converge to correct as n-+=, since
both are based on ¢x(tJ, which is a consistent esti-

mate for ¢x{t)'

El

However, the rate of convergence to

the population parameters varies depending on the
selected values of tT through t4.

The above equations used for estimating
parameters are applied to the independent stochastic
variables, but with different sets of t1, t2, t3 and

t4. Thus, the complete different values of estimates

for &, v, B, and & are obtained. Since the proba-
bility density functions of asymmetric stable distri-
butions are not available, the optimal choice of t

'[5
t2, t3 and t4 is not defined.
4-2 Test for Goodness of Fit of Frequency
Distributions.

Several methods can be used for testing the
goodness of fit of a probability distribution function
to frequency distributions. Such methods are the chi-
square test, the likelihood ratio test (which is
equivalent to chi-square test [35]), and the
Kolmogorov-Smirnov distribution free test. The chi-
square test is selected for this study because this
test is well known and frequently applied both in
statistics and hydrology.

The basic properties of the chi-square test are
summarized as follows [20]. The total range of sample
observations is divided into k mutually exclusive
and exhaustive class intervals, each having the ob-
served class probability Oj and the corresponding

1,2,....k). The
is used as the norm of any class
interval and the quantity ({Jj-EJ.)2
sure of departure from the norm. The (DJ.-EJ,)2 val-

expected class probability Ej{j =
expected value Ej
is used as a mea-

ues cannot be compared from one class to another if
the scale of each class interval is not nearly propor-
tional to the expected value Ej. Therefore, a more

suitable measure js obtained by using (Oj-Ejlsz..

The measure of total discrepancy, x~, between the
observations and the expectations becomes

2
B ﬁi (OJE‘ Ey)
i=1 g

(4-74)



This statistic is asymptotically distributed as the
chi-square distribution with k-1 degree of freedom
for the case of population parameters are estimated
from the sample data, the number of degrees of free-
dom is further decreased by the number of estimated
parameters. For m parameters, the total number of
degrees of freedom is
f=k-1-m . (4-75)

The number of class intervals k has to be first
selected for the application of chi-square test. If
too many classes are used, the obtained frequency dis-
tribution will be very irregular. If there are too
few classes, with large portions of frequencies
falling in one or two classes, much information is
lost. Sturges [31] gives the empirical expression for
the number of class intervals k as

k = 1+43.3 TnN , (4-76)

with In N the natural logarithm of the sample size.
For N = 14,600, k = 33 for 40 years of daily values.
For N = 480, k = 22 for 40 years of monthly values.

Since Eq. 4-75 is empirical, no generally
accepted method for determination of the number of
class intervals exists. The number of class intervals
selected for this study is 30, because it is conve-
nient and lies between 22 and 33 for the cases of
monthly and daily values, respectively.

Equal probability class intervals are used for
the chi-square test in this study. The probability
of each class interval is then determined by:

Py Lo owith §=1,2,....k. (4-77)
With these equal probabilities, the corresponding
lengths of class intervals are obtained from the
c.d.f. The percentages of the chi-square distribu-

tion with (k-1-m) degrees of freedom at F(XZJ = 0.95,
0.99 and 0.995 are summarized in Table 4-1.

Table 4-1 PERCENTAGES OF CHI-SQUARE DISTRIBUTION.
Degrees of Freedom
£68) T
30 29 28 27 26 25 24 23 22
0.595 43.8 | 42.6 | 41.3 | 40.1 | 38.9 | 37.7 | 36.4 | 35.2 | 33.9
0.99 50.9 | 49.6 | 48.3 | 47.0 | 45.6 | 44.3 | 43.0 | 41.6 | 40.3
0.995 |53.7 | 52.3 | 51.0 | 49.6 | 48.3 | 46.9 | 45.6 | 44.2 | 47.8

4-3 Confidence Limits to Test for Departures from
Exponentiality in Frequency Distributions.

Ordinarily it is difficult to select the
theoretical probability density functions that will
suitably model the heavy tails and the center parts of
some frequency distributions of hydrologic random
variables. Since the number of observations in the
tails of these frequency distributions is usually
small, the chi-square test may not adequately distin-
quish the goodness-of-fit for a selected probability
density function. Because the cumulative probability
distribution functions have values of zero and one at
the tails, the Kolmogorov-Smirnov test also fails to
determine how good this fit is [5]. Failure to find
the proper theoretical density function which fits
the frequency distribution of independent stochastic

component in its tails results in a failure to
preserve the properties of its extreme values. Conse-
quently, it becomes difficult to generate new samples
by the Monte Carlo method which possess the same or
similar characteristics of extremes as the historical
sample. :

As reviewed in Chapter 2, Bryson [5] gives the
definition of heavy-tailed probability distributions
as distributions that converge to zero much less
rapidly than an exponential function. Using the mean
residual 1ife time theorem, and the likelihood ratio
approach, he derived the expression for the T-statis-
tic in terms of exponentially distributed random vari-
ables. The expression for the T-statistic may be used
for the test of hypothesis of how heavy the tails are
in a distribution from a set of samples of random

variables, at the given significance level. This
expression is
X x
Pom (N) ; (4-78)
N . 2/N
(N-1) T [x. + —i%l
=\ N

with X5 the exponentially distributed random

variable, x the mean of x., N the sample size, and
X{N) the largest observed value of xi's.

Unfortunately, the distribution of the
T-statistics cannot be found in an explicit form. The
10, 5, and 1 percent critical values can be estimated
only by simulating many T values, and taking the
90-th, 95-th, and 99-th percentiles of the frequency
distribution of simulated values of T. Each T
value is obtained by generating N exponentially dis-
tributed random variables X5 and substituting them

into Eq. 4-78. These critical values of percentiles
cannot be accurate without simulating a large sample

of T wvalues. Using both a large number of T
values and a large N, this method then becomes
applicable.

Because of the need for generating large samples,
a simpler method of testing the heavy tails was ob-
tained by Tao [33] by deriving the tolerance limits
for the tail from an exponential function.

The exponential cumulative distribution function
(c.d.f.) is of the form

=A%

Fe(x) = 1-e (4-79)

Plotting T-Fe{x) against x on a semi-logarithmic

paper produces a straight line from the origin with
the slope -i. For a heavy-tailed c.d.f., the same
plotting technique will not show the linearity;
instead, the curve will be concave upward. In the
opposite case, for the light-tailed c.d.f., the
plotted graph will be concave downward. These tails
are illustrated in Fig. 4-1, with the light-tailed
distribution in the case of normal c.d.f., heavy-
tailed distribution in the class of stable c.d.f.,
and the tail of the exponential c.d.f.

The tolerance 1imits for the tail of an empirical
frequency distribution are derived as follows: assume
the empirical distribution denoted as FA(x} is

exponential with the scale parameter &, then the
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Fig. 4-2 Graphical representation of distributions
with different types of tails: (1) standard
normal c.d.f., 1ight tail; (2) symmetrical
stable c.d.f., with a = 1.5, v = 0.5, and
s = 0, heavy tails; (3) exponential c.d.f.,
F(x) = 1 - 3 1*15%; and (4) 90 percent
tolerance 1imits for the exponential tail in
case of sample size 500.
relationship between 1n[T-Fh(x)] and x is linear,
the probability P that 1n[1-Fl(x}] is within cer-
tain limits is
p = Pr{e](x} S0 (0T s 8,00} . (4-80)
with &, and 8y the functions of x and the lower

and the upper tolerance limits, respectively. Sub-
stituting Eq. 4-79 into Eq. 4-80 for Fh{x) and re-

arranging,

-8, (x) -8,(x)
P=Pr[ L Zx],

X X

(4-81)

with x = 0. The parameter » 1is estimated from the
random variables X; with sample size N by

NiE (4-82)

1
.I %
= X,
LI T

Substituting Eq. 4-82 into Eq. 4-81 and rearranging
it,

P = pr -Nx < % Xi < _=Nx (4-83)
1 = ez(x} ®

B1(x) " 1=

With the estimate A and the random variable Xis the

probability P of Eq. 4-83 is egual to or smaller
than 1. If X is exponentially distributed,

N
E X3 has a gamma distribution with the shape param-
i=1 .

eter N and the scale parameter . For a large
shape parameter, the gamma distribution converges to

a normal distribution with the mean N/, and the

variance N/3% [24]. The application to Eq. 4-83 at
the 90 percent tolerance level results in

o
1]
"
=)

|
— =
x =
—
[ SS—)

N
Nx
0.90 = Pr |- £ 3
[ o, (x) * 4 T

1]

2

N
Pr[i- 1.685 [ < 2ov. <
A i i=1

==

+ 1.645{%].
)
(4-84)
After rearranging, the tolerance limits for

]n[T-Fe(x)] at 90 percent level become, for the lower
and upper limits are

_ =X o =X
oy () = =75 » 3¢ &(X) = 7 gas
™ N (4-85)
where 1 is estimated by Eq. 4-82 and N is the

sample size.

With these tolerance limits for the exponential
tail and a given significance level, the test of the
hypothesis that the probability distribution of a
variable has the heavy tail can then be made.

Fig. 4-1 gives three types of tails: for the standard
normal ¢.d.f., curve (1); for the symmetric stable
c.d.f., curve (2); and the exponential c.d.f.,

curve (3). Curve (4) gives the tolerance limits for
the exponential tail at the 90 percent level, and the
sample N = 500. To make the tails comparable, two
conditions are designed for c.d.f.'s:

a. A1l three c.d.f.'s should satisfy F(0) = 0.5
and F(=) = 1; and

b. Since the variance of the stable distribution
does not exist, it is not possible to compare these
three c.d.f.'s with equal variance. Therefore, all
three c.d.f.'s should intersect at an arbitrarily
selected point, 1ike the 85 percent percentile. For
the first condition, the exponential c.d.f. should be
in the form of Fe(x} =1 - % andX
condition, the scale parameter of the exponential
c.d.f. should be x = 1.155, while the parameters of
the symmetric stable c.d.f. should be: location,

8§ = 0; scale, y = 1/2, (note that for standard normal
function, « =2, 6 =0 and y = 0.5), and the charac-
teristic exponent o equal approximately 1.5.

For the second

With the above conditions for plotting the c.d.f.,
Fig. 4-1 shows that the tail of the normal function
converges to zero much faster and is significantly
higher than that of the exponential function for
X z 1.2. The tail of the stable function is much
heavier than that of exponential function, for x 2
2.8. The tolerance limits are rather narrow because



a](x) and ez(x} are estimated under the assumption

that the random variable x are exponentially dis-
tributed and al(x) and az(x) are good for every x

but not simultaneously for all x. It is easy to use
the tolerance limits a]{x] and ea(x], derived for

the exponential tail, to test the empirical tail dis-
tribution of the independent stochastic variables in

order to show how rapidly this tail converges to zero
in comparison with the corresponding exponential tail.

4-4 Use of Gnedenko's F-Criterion Statistic to Test
the Nature of the Tails of Frequency
Distributions.

The generalized exponential cumulative
distribution function is of the form

1 - e-k(x-a) For

_ >
Fx) = 0 for x <

: . (4-86)

Here, » and a are constants. The hypothesis
that a sample of data is part of an exponential popu-
lation against an alternative hypothesis that A is
not a constant but a function of x could be tested
using the F-criterion test suggested by Gnedenko [13].

If Xi» i=1,2,...
data, with Xy as the lowest, a new variable Si may
be defined as

.n, form an ordered sample of
S'i = (n"i+])(xi'x1_])’ XO = 0, is= 1,2,...,“.

After dividing the S,
r and

into two groups of length
n-r, the following random variable, known as
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Gnedenko's statistic, is obtained:

>

=r+

§
Q(ron-r) = 3 (S;/r)/ (S;/(n-r)).  (4-87)
i=1 i=r+l

This statistic has the F-distribution with 2r
and 2(n-r) degrees of freedom under the null hypo-
thesis, Ho’ which is that x 1is exponentially distri-

buted. This means that, if o« is the level of
significance,

Q(r,n-r) < f(]—a/Z)(r’n-r) (4-88)
and

Q(r,n—r)-1 < f(]_ufz)(n-r,r) . (4-89)

The alternative hypothesis is that i is either an
increasing or a decreasing function of x.

If either constraint does not hold the null
hypothesis is rejected at the level of significance o
and the given division of the sample into segments of
length r and n-r. It is obvious that in every case
at least one constraint is satisfied. If constraint
of Eq. 4-88 does not hold, one concludes that i is a
decreasing function of x and that the tail is light.
On the other hand if Eq. 4-89 does not hold the con-
clusion is that A 1is an increasing function of x
and that the tail is heavy. In the terminology of
failure rates [Fercho and Ringer, 13], the first of
these nonconforming conditions signify that the
failure rate decreases and the second that the failure
rate increases. The null hypothesis corresponds to a
constant failure rate.



Chapter 5
EMPIRICAL RESULTS AND THEIR DISCUSSION

Seventeen daily runoff series are used as the
basic research data in this study. Patterns of these
runoff series vary depending on the geographic loca-
tion and climatic conditions of the river basin.
Figures 5-1 and 5-2 show two selected years of daily
flows, the daily flow means and daily flow standard
deviations for the Tioga and Boise Rivers. It is
obvious from the curves of the Tioga River that highly
fluctuating runoff series result in highly fluctuating
daily means and daily standard deviations. The
smoother daily runoff series of the Boise River result
in smoother daily means and standard deviation curves.
This pattern should be expected taking into account
the sampling variations.

Removal of periodicities from the daily means
and daily standard deviations, followed by removing
the dependence from the remaining series, produce the
independent stochastic component. Frequency distri-
butions of independent stochastic variables of the

daily runoff series are of interest in this study.
Frequency distributions of these seventeen daily
series are plotted in Fig. 5-3. A general pattern

of these curves is that the peaks are high and sharp
at the center while the tails are long. Daily runoff
series and the 3-day, 7-day, 13-day and monthly
average runoff series are processed by using the same
technique.

5-1 Procedure Used in Producing the Independent

Stochastic Components and Their Properties.

The procedure used. The procedure and equations
used to obtain the independent stochastic components
from the observed series are summarized in the form of
the flow chart.

The independent stochastic component obtained by
the above procedure is denoted as the c-variable.
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Fig. 5-1 (1) Daily flow series for the dry year,

(3) daily means; (4) daily standard deviations, with (a) the computed values, and

1926; (2) daily flow series for the wet year, 1929;

(b) the

fitted periodic function, for the Tioga River (1921-1960).
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Fig. 5-2 (1) Daily flow series for the year 1926; (2) daily flow series for the year 1933; (3) daily means;
(4) daily standard deviations, with (a) the computed values, and (b) the fitted periodic function,
for the Boise River (1921-1960).
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STEP 1

STEP 2

STEP 3

Prepare the series

T = 1:25...50. QP,'(’ P=12,...50,

Compute means Qt, standard deviations
So» by Eqs. 3-2 and 3-3.

Substitute QT series into Eq. 3-6, and

compute the first six harmonics; determine
the significant harmonics by using the
empirical test method; compute the
periodic component in QT by using

Eq. 3-15.
sT series.

Apply the same procedure to
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STEP 4

STEP 5

STEP 6

STEP 7

Use Eq. 3-17 to remove periodicities in
the mean and standard deviation.

Use Eq. 3-18 to standardize the remaining
series of Eq. 3-17.

Compute serial correlation coefficients

rl’T, rz’T and r3’t by Eq. 3-36.

Apply the harmonic analysis to L
r, ,and r series, following the
2;1 3,T

procedure of STEP 3.



STEP 8 Compute the determination coefficients

D1, DZ’ and D3 by Egs. 3-37 through

3-39, and determine the order of the
autoregressive linear model.

STEP 9 Estimate the parameters of the
autoregressive linear model by using
Eqs. 3-27 through 3-35.

STEP 10 Compute the independent stochastic

component by using Eq. 3-25.

In case the logarithmic transformation is used in the
form of:

y. _=n(y. _-¥)

P>t PsT
with yp 7 obtained in STEP 4, and y the lower
3

boundary of yp o2 @ new STEP 4a is included with all

other steps remaining unchanged. The independent sto-
chastic component obtained by the logarithmic trans-
formation of Eq. 5-1 is denoted as the z-variable.
Since there are no negative observations in Qp o it

(5-1)

follows that min(Qp T) = 0. Consequently,
Q _-u in
= 1 = 3 __E?L...—T- = - X
vy = min (yp,T) min A max el I

This transformation is approximately equivalent to
substituting the autoregressive linear model of
Eq. 3-25 by a dependence model of the form

= ﬁ [(E )qi,‘r g 2 (5-2)
Ep!'[ i=1 P,T-] ] e EsT "Pat

In the application of the logarithmic transformation
to Q in STEP 1, for Qp " 0, Op " in STEP 1 is

replaced by 1n(0p’1). For Up'T = 0, any small value

such as 0.01, 0.001, or 0.0001 may be assigned to
Qp . in order to permit the logarithmic transforma-

tion, all other steps remaining unchanged. By this
approach the resulting independent stochastic compo-
nent is denoted as the n-variable.

Characteristics of independent stochastic
components of seventeen daily flow series. The basic
statistical characteristics of the &, ¢z, and n
variables of the selected daily flow series, each with
approximately 40 years of data, are given in
Tables 5-1 through 5-3, respectively.

Since the independent stochastic components are
derived from the standardized dependent stochastic
variables, e _, as demonstrated by STEP 5, the mean

and the variance of these independent stochastic com-
ponents should be zero and one, respectively. Tables
5-1 through 5-3 show that the means of &, ¢, and n
variables for all 17 daily runoff series are
practically zero. However, the variances of the
n-variable are closest to unity. In addition, the
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n-variable has the smallest skewness and kurtosis
coefficients, and the absolute values of extremes.
The ¢-variable has the largest parameters.

When the standard deviation is proportional to
the mean, the use of logarithmically transformed vari-
ables leads to the more consistent results for the
independent stochastic component than the use of the
original variables, because the transformed variable
has a constant standard deviation over the t posi-
tions. Although the application of Togarithmic trans-
formation does not convert the standard deviations to
constants for all the 17 daily runoff series, this
transformation still produces a substantial improve-
ment. In addition, the logarithmic transformation has
the advantage of not generating negative values when
the new samples are generated.

The correlogram of independent stochastic
components of 17 daily flow series up to 200 lags are
given in Fig. 5-4. In order to test the independence
of these variables, the tolerance limits of e given

by Anderson and computed by using Eq. 3-40, and
-0.1629 and +0.01615 for samples of 40 years, at the
95 percent significance level. With the same sample
size and the same significance level, the tolerance
Timits of B given by Siddiqui, are computed by

using Eq. 3-44. These results are practically the
same as the Anderson's. The tolerance limits of the
Fisher's z-transformation of e computed by Eq. 3-46

are x0.01622.

The tolerance intervals of these three tests were
found to be too narrow for practical use. Since '

is asymptotically normally distributed with mean and
variance given by Eqs. 3-42 and 3-43, respectively, an
alternative test of r —may be formulated by testing

the frequency distribution of "k If the hypothesis
that the frequency distribution of 'k is normal with

the mean and variance given by Eqs. 3-42 and 3-43 is
accepted, then the hypothesis of the independence of
the tested stochastic component is also accepted.

The chi-square statistic may be used to test the
goodness-of-fit of the theoretical rormal function to
the frequency distribution of ke Three stations

passed this test at 99 percent significance level (the
Tioga, Mckenzie, and Falls Creek Rivers) and two sta-
tions passed this test at 99.5 percent significance
level (the St. Maries, and Merced Rivers). If this
test is applied to the theoretical normal function

for fitting the z-transform of e five stations

passed the test at 99 percent significance level (the
Tioga, Mckenzie, Falls Creek, Greenbrier, and Powell
Rivers) and three stations passed the test at

99.5 percent significance level (the St. Maries,
Cowpasture, and Merced Rivers).

The models for the periodic-deterministic
components. The three main sources of stream runoff
are groundwater effluence, rainfall, and snowmelt. In
areas where runoff is produced predominately by rain-
fall, the runoff is highly irregular because of
randomness in rainfall. On the other hand, when the
groundwater or snowmelt have large influences on run-
off, the runoff is more regular because of the water
storage of these two factors.

The daily runoff series of the Tioga River is
used as an example to demonstrate the above points.



Table 5-1 BASIC CHARACTERISTICS OF THE DAILY £-VARIABLE FOR SEVENTEEN RUNOFF STATIONS IN USA.

Skewness Kurtosis Observed Second Min. (g) Observed Second Max. (&)

River Mean Variance Coefficient Coefficient Min. (&) Observed Max. (&) Observed

1 Tioga -0.00005 1.0000 12.47 292.10 -13.32 -10.22 32.45 30.42
2 Oconto 0.00013 0.9999 36.63 4130.09 -46.10 -26.37 86.18 14.33
3 Current -0.00003 1.0000 29.15 2329.47 -36.53 - 7.67 74.48 20.71
4 Mckenzie -0.00013 1.0000 4.96 203.57 -29.38 -12.66 31.33 19.58
5 Neches 0.00005 0.9999 5.53 322.69 -32.62 -17.73 36.26 23.18
6 Boise -0.00021__1.0000 3.82 210.34 -25.65 -18.53 30.25 26.78
7 Fall Creek -0.00001 1.0000 5.89 196.08 ~17.39 -14.22 35.93 16.37
8 Greenbrier -0.00001 1.0000 8.26 156.35 -18.41 - 7.33 32.04 19.15
9 Delaware -0.00001 _1.0000 8.10 115.59 -10.55 - 9.94 20.23 17.69
10 Madison -0.00009 1.0000 0.43 160.40 -28.64 -21.04 27.23 19.50
11 _Powell 0.00007 1.0000 4.68 80.32 -17.72 -10.20 20.53 18.18
12_St. Maries  0.00000 1.0000 47.62 4490.51 -34.83 -16.30 88.16 21.23
13 Cowpasture -0.00001 1.0000 8.66 140.80 -10.27 - 9.75 26.45 20.16
14 Mad -0.00003 1.0000 8.47 149.67 -12.91 -10.10 28.12 24.02
15 Merced 0.00000 1.0000 21.31 555.57 -14.15 - 2.43 38.29 31.76
16 _Batten Kill 0.00004 1.0000 18.26 772.26 -21.66 -11.32 49.77 42.73
17 _Jump -0.00000 1.0000 10.44 211.37 -11.24 - 9.86 29.70 23.04

Table 5-2 BASIC CHARACTERISTICS OF THE DAILY

t-VARIABLE FOR SEVENTEEN RUNOFF STATIONS IN USA.

Skewness | Kurtosis | Observed | Second Observed Second
River Mean Variance Coeff. Coeff. Min. (z) | Min. (z) | Max. (z) Max. (z)
Observed Observed

1 Tioga -0.0022 1.340 1.51 49.99 -5.67 -5.62 26.8 8.93
2 Octonto 0.0004 1.087 0.96 14.03 -5.20 -5.17 10.0 12.84
3 Current -0.0007 1.578 -0.01 45.24 -7.76 -7.69 17.8 11.08
4 | Mckenzie -0.0005 1.240 0.92 20.75 -5.95 -5.90 14.7 12.09
5 | Neches 0.0003 1.094 1.45 13.19 -4.33 -4.31 8.3 7.91
6 | Boise -0.0005 1.189 0.36 35.14 -4.98 -4.96 18.9 11.86
7 Falls Creek| -0.0013 1.457 1.97 61.32 -6.65 -6.61 30.4 14.39
8 Greenbrier 0.0089 1.354 1.78 19.93 -4.94 -4.93 16.4 11.62
9 Delaware -0.0039 1.336 1.16 28.92 -6.59 -6.48 12.8 11.56
10 | Madison -0.0003 1.114 0.41 15.57 -5.30 -5.27 11.6 10.93
11 Powell 0.0058 1.401 0.67 21.26 -6.00 -5.94 13.4 12.06
12 St. Maries 0.0019 1.142 1.46 15.00 -4.83 -4.79 11.2 8.52
13 Cowpasture 0.0048 1.550 1.06 23.25 -6.67 -6.61 15.3 12.82
14 | Mad -0.0018 1.279 2.03 28.87 -5.70 -5.64 17.7 11.93
15 | Merced -0.0000 1.357 -1.51 56.19 -5.81 -5.74 14.6 12.22
16 | Batten Kill| -0.0013 1.166 1.85 15.69 -4.11 -4.07 13.5 11.39
17 Jump 0.0053 1.476 0.93 33.48 -6.41 -6.35 17.4 17.08

In Fig. 5-1 the daily series of two typical years,

dry and wet, (1) and (2), are given together with the
365 daily means, (3), and the 365 daily standard devia-
tions, (4). Periodic functions used for daily means
and standard deviations are the deterministic periodic
components of the series. Because of large variations
in the runoff process, daily means and its inferred
periodic function depart significantly from the series
of individual years. Under this high fluctuation, the
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estimated periodic function of parameters must deviate
highly from the true population periodic component.

The opposite example is the daily flow series of
the Boise River. The daily series of two years, and
daily means and standard deviations are shown in
Fig. 5-2. Fluctuations are much less than for the
Tioga River. The daily flow series of individual
years of the Boise River have similar general patterns



Table 5-3 BASIC CHARACTERISTICS OF THE DAILY

n-VARIABLE FOR SEVENTEEN RUNOFF STATIONS IN USA.

Skewness | Kurtosis | Observed | Second Observed | Second
River Mean Variance Coeff. Coeff. Min. (n) | Min. (n) Max. (n) | Max. (n)
Observed Observed
1 Tioga -0.2011 1.104 2.09 13.74 -5.75 -5.69 15.22 7.26
2 Oconto 0.0003 1.066 0.83 11.92 -7.56 -6.82 7.49 11.92
3 Current -0.0001 1.214 1.47 19.32 -12.25 -8.75 14.42 8.71
4 Mckenzie -0.0006 1.150 1.11 14.71 -8.46 -7.63 10.84 8.71
5 Neches -0.0000 1.068 1.43 10.40 -6.77 -6.11 6.59 6.45
6 Boise -0.0008 1.080 0.74 11.19 -9.05 -8.78 8.62 7.58
7 Fall Creek 0.0006 1.072 0.92 10.14 -7.32 -6.99 7.00 6.76
8 Greenbrier 0.0057 1.113 1.67 9.50 -6.53 -5.53 7.27 6.52
9 Delaware 0.0000 1.080 1.30 10.76 -6.87 -6.21 6.74 6.63
10 Madison -0.0009 1.092 0.30 13.69 -12.59 -10.66 8.69 8.24
11 Powell 0.0041 1.146 1.38 10.54 -7.88 -6.23 13.12 7.88
12 | St. Maries 0.0005 1.078 1.38 11.28 -7.37 -5.79 11.21 8.11
13 Cowpasture | -0.0020 1.138 1.66 13.08 -11.74 9.86 7.45 7.17
14 Mad -0.0004 1.100 1:52 18.66 -17.32 -6.85 10.58 8.37
15 Merced 0.0000 1.110 0.63 12.63 -9.85 -8.62 8.26 7.65
16 Batten Kill| -0.0009 1.077 1.86 9.15 -4.81 -4.34 7.55 7.01
17 Jump -0.0003 1.072 1.29 9.20 -6.53 -6.22 7.01 6.86
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Fig. 5-4 Correlograms of the n-variable of daily runoff series (to continue).
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Fig. 5-4 Correlograms of the

as the means and standard deviations. The periodic
mean and standard deviation are, therefore, subject to
smaller sampling errors than for the Tioga River.

5-2 Periodicities in Serial Correlation Coefficients.

The serial correlation coefficients, L with

k=1, 2, and 3, computed by Eq. 3-36 are independent
of the removal of periodicities in the mean and stan-
dard deviation from the original variable, Qp .

These coefficients indicate the correlation between
the +t-th and the (t+k)-th values for the available
sample series. The periodicity may exist in L

Figure 5-5 shows periodicities in the 13-day, 7-day,
and 3-day values of ™. However, ™o of daily

series has a high fluctuation so that the periodicity
must be inferred by an objective test, and not con-
cluded by a visual inspection. Figures 5-6 and 5-7
show the Fo and rs . series, for the Tioga River,

]

respectively, and Figs. 5-8 through 5-10 the ok
2k and '3k series for the Neches River.

The fluctuations of a daily runoff series is
somewhat decreased by averaging the flows of at con-
secutive days. This may be the reason why the period-
icity in the serial correlation coefficient becomes
more obvious for larger values of at.

For a better insight into the periodic parameters,
the cumulative periodograms of k.o are plotted in

)
Fig. 5-11 for the daily runoff series of 17 stations.
Figure 5-11 shows the sums of explained variance of
the first m harmonics versus m for "1 Tos

o, 148, 128, 140, VEO. TEA. 204,

n-variable of daily runoff series.

and r3 o with m the sequential index of harmonics.
3

The frequency of the m-th harmonic is m/w, and for
the daily series, w = 365. The shape of P = f(m) is
convex upward as shown for all 51 curves plotted in
Fig. 5-11. A sudden rise of the cumulative periodo-
gram of T o for a few harmonics with lowest fre-

quencies indicates periodicities in autocorrelation
coefficients. In the application of empirical tests
to determine the significant harmonics in "’

k =1,2,3, the critical value, Pmin = 0.071, as given

by Eq. 3-12, with ¢ =2, a = 0.033, and n = 40.
Only three stations show the sum of the explained
variances in . by the first six harmonics to be

smaller than the critical value P i,: the Oconto (2),

Neches (5), and Mad (14) Rivers. In general, the
rivers with the runoff predominately produced by rain-
fall demonstrate less periodicity in serial correla-
tion coefficients than rivers with runoff produced by
both rainfall and snow accumulation and melt.

The P = f(m) curves for Py o
curves for s . and r
is below that for ry

are below the

3 while the curve for r
3T 2.1
- These are the general pat-

terns for all 17 daily series. One of the reasons for
this pattern may be that the autocorrelation of suc-
cessive values (ep . and & r+l) is affected by more

sampling variation’than the autocorrelation for the
lags 2 and 3 (Ep,r and €0, 142° Sp,1 and Ep,r+3)'

For the daily series of the Tioga River, the
total explained variance of the first six harmonics of
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Fig. 5-11 Explained variances, P, by m harmonics in et Toe and '3 of the logarithmically
transformed 17 daily flow series, with m ranging from 1 to 182.

r
1,1

is greater than P = 7.1 percent.

min
It seems desirable to use the mean daily values
of " because of its high fluctuation over 365

values of 1. Figure 5-11 shows for most cases that

the first six harmonics explain only a small portion

of variances of e ol and r3 . Hence, the
3 ’ ]

use of mean values (rz, ros r3) is justified. If

, as shown 1in Fig. 5-5, is about 12 percent, which
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these means replace r

o of Eqs. 3-27 through 3-35,
the constant values of N should also be used to
replace the periodic autoregressive coefficients S o

and the constant value of o_ should also be used to

replace the periodic standard deviation Of 1+

The effect of using the constant autoregressive
coefficients may be tested by finding whether they
still yield satisfactory results in removing the



dependence from stochastic variables, 01" However,
Ll

o. _ 1is highly sensitive to variations in r

55T K.t’
Taking the Tioga River as an example, the first-order
autoregressive linear model is found appropriate to
describe the dependence of the stochastic component
with the maximum and minimum of - for the fitted

2
periodic function are approximately 0.95 and 0.85,
with the mean of 0.90. For the values 0.85, 0.90, and

0.95 of £l the L values of Eq. 3-28 are 0.316,

0.447, and 0.530, resﬁectively. For 365 values of
1. approximated by its mean value, the error in

is greater than =20 percent. This error may

GE:T
affect significantly the computation of the indepen-
dent stochastic component by Eq. 3-25.

5-3 Tolerance Limit Test of Tails of Frequency
Distributions of Independent Stochastic

Components.

The basic hypothesis in this text is that both
tails are well approximated by simple exponential
functions. Then the tails plot as straight lines in
graphs with semilogarithmic scales. Instead of using
the semilog graph paper for the independent stochas-
tic z-component, ordinary graph paper can be used for
the logarithmic transformation of the original vari-
able xp _» with the resulting independent stochastic

i

When

n-component, as described in the previous text.
testing the tails of distributions of the - and
n-variables, both cases should lead to the same infer-
ence for a particular series except that differences
may originate from the estimates of coefficients of
harmonics of periodic parameters because of the use of
xp . and log Xp,t’ respectively. However, the

effects of differences in estimates by using xp L on

the final conclusions for the tails should be negli-
gible. Therefore, the two approaches are applied in
this study: (i) the tests of tails to be exponential
by using the tolerance limits for the n-component, and
{i1) the tests by the Gnedenko statistic for tails to
be exponential for the z-component. The first ap-
proach is the subject of this section, and the second
approach is the subject of the next section of this
chapter.

Since either the right or the left tail of
probability distributions of independent stochastic
components is of interest, only the parts of tails
with large absolute values are tested to determine if
the tails are heave or not. The procedure for testing
the right tail to be exponential is as follows:

i. The largest 500 values of the n-component of
daily series are selected (approximately 3.5 percent
of the total sample);

ii. The mean and the lower boundary of n are
500
estimated by W =] n; and n = min(ni),
respectively; i=1
iii. Use of Eq. 4-85, with » estimated by » =

/(7 - no), and 01(“) and ez(n) computed as the

90 percent tolerance limits for the tails of the
exponential function;

iv. The 500 extreme values are sorted into 30
class intervals of equal length, with the relative
frequencies of these intervals denoted by On,

33

s...530, and their class marks denoted by
1,2,...,30; and

v. The tail distribution, based on the N3

s

values, is tested only by using these large Nk
k

values; for El(”k) < In[1- jz] Ojl < ez(nk), Ehe dis-

tribution has an exponential tail; for In[1- | Oj] z

J=1

ez(nk) the distribution has a heavy tail; and for
k

e(n.) 2 In[1- ‘g

Oj] the distribution has a light
tail. J

1

The same procedure is applied to investigate the left
tail by using the smallest 500 values of n, selected
from the entire sample.

As noted before, this is a test of the hypothesis
that the ”1I5 are exponentially distributed, with
the shape parameter & = 1/(;-noj.
limits By and iy depend on n and x, with 2

The confidence

estimated by using only the ny values. Therefore,

the confidence 1imits are subject to sampling errors
n ni.

The graphical representation of results of this
investigation for the 17 daily series of n are shown
in Fig. 5-12. The basic results, are:

1. For the right-tail test of the n-frequency
distributions of 17 stations, nine fall clearly into
the exponential tail category, while eight cross the
Tower 1imit into the 1ight-tail region. For the right
tails which fall intc the exponential tail category,
only the right tails of the Madison and Merced Rivers

(10, 15) closely follow the upper confidence limit.

2. For the left-tail test, the tails tend to be
close to the confidence Timit at the heavy tail side.
Only the Tioga, Current, and Boise River (1, 3, 6)
show the left tails clearly crossing the upper confi-
dence 1imit into the heavy tail region, but for a
limited range.

3. There is sufficient evidence in Fig. 5-12
to conclude that the frequency distributions of the
independent stochastic components possess the exponen-
tial tails.

4, The left tails are shorter than the right
tails. Therefore, the left tails seem to be heavier
and the right tails lighter. This fact may be ex-
plained as follows: (i) Theoretically, there is
always a lower boundary for the stochastic component
of a runoff series whereas the higher Timit is un-
bounded, and (ii) The positive extreme values of sto-
chastic components result from floods and the negative
values result from low flows. The variation of floods
is greater than of low flows.

5-4 Tests by Using the Gnedenko Statistic for the
Tails of the g-Freguency Distributions.

The relationship [1-F{g)] against [£-a] of
Eq. 4-86 is approximately linear, for £ > a, when
plotted on semilogarithmic paper, if the distribution
F(z) of the independent stochastic component is ex-
ponential. Therefore, in the first instance, it was
cecided to regraph the cumulative distribution of
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Fig. 5-12 Test of the left and right tail of the independent stochastic n-components: dotted line, the tails

of the frequency distributions; solid lines, the 90 percent confidence limits; with
the ordinates of the left tail, and

and F(n)

tails of the frequency distribution of standardized,
independent stochastic components of the 17 daily

series with more details than in Section 5-3 with the
n=component.

Three uncertainties are involved in tests based
on the Gnedenko statistic. The first is related to
the particular application of this paper. It results
from the choice of n, the length of sample or, in
other words, the selected value a at which the tail
begins. In an attempt to resolve this uncertainty,
the standardized independent £-variable of each series
was divided into six unequal class intervals (a total
ot 102 intervals for the 17 series). Contributions

n the abscissa
1-F(n) the ordinates of the right tail (to continue).

by values in each class interval to the total
coefficients of skewness and kurtosis of the data are
tabulated for all class intervals and all series. The
abridged results are given in Table 5-4. Within a
certain range of values of standardized variables,
such as between -5.5 and 5.5, it is seen that, if
somehow the values beyond these two limits did not
exist, the distribution would be nearly normal for
almost all 17 series. Admittedly, the truncated data
for the range -5.5 to +5.5 may conform with some other
type of symmetrical distributions, such as Pearson's
Type IV, Johnson's S,, [Pearson, 25]. However, with
these range limits, leaving on the left tail about

0.1 percent and on the right tail about 1.0 percent
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Fig. 5-12

of the total of about 14,000 daily &£-values, it was
thought that a study of the 0.1 and 1 percent parts
should form an important basis for the investigation.
In addition, because this choice of limits is too re-
strictive, extended tails formed from 5 percent of the
values were also investigated.

The second uncertainty comes from the division
of the sample into groups of length r and n-r,
which is arbitrary. However, if large values of r
say equal to n-1 or n-2 are chosen, the Gnedenko
statistic may have a large dependeiice on observations
at the extremity [Bryson, 5]. Accordingly, it was de-
cided to examine values of Q(1,n-1), G{2,n-2) and
reciprocals of the same. Nevertheless, in the program
r was decreased in steps of 1 from n-1 to n-16,
with Timitations according to sample length, but the
results of the tests were not significantly different.

Thirdly, one has to choose a Tevel of
significance «. For this two-sided test for exponen-
tiality in distribution, 95 percent confidence 1limits
or a = 0.025 may be considered. Because the deci-
sion rules given by constraints of Egqs. 4-88 and 4-89
depend on the choice of o, values of o/2 around
which the constraints are reversed should be known.
These are obtained from tables of the F-distribution
and are presented in Tables 5-5 and 5-6. Tables cor-
respond to constraints of Egs. 4-88 and 4-89,
respectively.

As discussed in connection with Fig. 4-2 light
tail functions would be concave downwards and heavy
tail functions would be concave upwards when [1-F(g)]
is plotted against &£ on semilogarithmic paper.
Figures 5-13 to 5-18 show the empirical cumulative
probability distributions or step functions of the
data from the tails of the frequency functions of
standardized independent £-residuals of daily flow
data. The curvatures corresponding to the cases where
there are significant heavy or light tails as noted in
the tables are clearly evident in most of the cases.
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Test of the left and right tail of the independent stochastic n-components:
of the frequency distributions; solid lines, the 90 percent confidence limits; with
and F(n) the ordinates of the left tail, and

* X [

Madison River
Powell River
St. Maries River

Tioga River 0)
2}
2
1) Cowpasture River
a3
8)
7)

1 {1
2) Oconto River 1
3) Current River éI
fdl Melenzie River (1
5} Neches River El Mad River

{6) 15) Merced River

s?] (18) EBatten Xill River
8 (17) Jurp River

(s)

Boise River
Falls Creek
Grevnbrier River
Delaware River

dotted line, the tails
n the abscissa
1-F(n) the ordinates of the right tail.

From Table 5-6 it is seen that the extreme
0.1 percent of the samples do not exhibit any signif-
icance regarding heavy tails. For the stations 2, 3,
5, 12, 15 and 16, it appears that the tails containing
1 percent or 5 percent of the total sample are heavy.
There is sufficient reason to suspect that this behav-
jor may arise from errors in the estimates of coeffi-
cients of harmonics used to form the standardized
t-residuals. It is noted that in the time series for
these 6 stations the periodicities in the standard
deviations need 2 to 5 significant harmonics for
representation.

In a separate study to be published, problems
arising from the estimation and removal of harmonics
in the standard deviation are presented. Part of the
same study is on generated autoregressive processes
with normally distributed random components and added
periodicities in the mean and standard deviation.

When the periodicities and linear dependence are esti-
mated and removed, the independent z-residuals exhibit
often the non-normal behavior particularly with
respect to the standardized third and fourth moments,
if the periodicity in the standard deviation is ini-
tially incorporated through two or more harmonics.

The departure from normality increases with an in-
crease of the number of these harmonics. Similar dis-
tortions arise in application when the autoregressive
structure is assumed to be linear but actually fluc-
tuates in a manner related to the periodicity in the
standard deviation.

Therefore, as a matter of interest, the tests
were repeated using a nonparametric analysis, without
harmonics, for the removal of periodicities. Results
in Table 5-5, within brackets, show that the tails are
now significantly 1ight and not heavy. This apparent
reversal in the nature of the tails shows the strong
effects which might arise from harmonics which are
not fully representative.



Table 5-4 COEFFICIENTS OF KURTOSIS AND SKEWNESS OF THE INDEPENDENT STOCHASTIC & COMPONENT

OF DAILY DATA

WITH CONTRIBUTIONS FROM VALUES WITHIN DIFFERENT CLASS INTERVALS.

Station

Number Descraiption
1 Range -13.32 =11.00 -5.50 5.50 11.00 32.45 Total
Kumber in interval 1 4 14,517 63 15 14,600
Coefficient of skewness a.16 -0.20 0.57 1.75 10.42 12.47
Coefficient of kurtosis 2.20 1.80 3.20 13.60 271.30 282.10
2 Range 46.10 -11.00 -B.00 8.00 11.00 B6.18 Total
Number in interval 2 1 14,590 4 3 14,600
Coefficient of skewness -7.97 -0.06 0.33 0.48 44.18 36.63
Coefficient of kurtesis 342.50 .70 2.40 1.20 3,783.30 4,130.10
3 Range -36.53 -11.00 =6.00 6.00 11.00 74.48 Total
Kumber in interval 1 3 14,187 39 7 14,237
Coefficient of skewness -3.42 -0.10 0.53 1.60 30.54 29.15
Coefficient of kurtosis 125.00 0.70 2.60 14.30 2,186.90 2,329.50
4 Range -29.38 -11.00 -5.50 5.50 11.00 31.33 Total
Number in interval 3 15 13,426 51 14 13,509
Coefficient of skewness -2.61 -0.51 0.36 1.89 5.38 4.96
Coefficient of kurtosis 58.70 4.60 3.30 16.30 121.00 203.60
5 Range =-32.62 -11.00 -5.50 5.50 11.00 36.26 Total
Nusber in interval 5 14 13,447 30 18 13,514
Coefficient of skewness -3.49 -0.45 0.26 0.97 8,24 5.53
Coefficient of kurtosis 98.10 3.60 2.60 B.10 210.30 322.70
6 Range =25.65 -11.00 -5.00 5.00 11.00 30.25 Total
Number in interval 8 8 14,324 40 11 14,351
Coefficient of skewness ~3.01 -p.09 0.22 0.90 5. 3.82
Coefficient of kurtosis 60.00 1.50 2.60 6.B0 139.40 210.30
7 Range -17.39 ~11.00 -6.50 6.50 11.00 35.93 Total
Number in interval 6 21 15,758 61 8 13,856
Coefficient of skewness -1.08 -0.96 -0.22 3.64 4.51 5.89
Coefficient of kurtosis 15.50 8.00 = 2.90 33.70 136.00 196.10
-] Range -18.41 =11.00 ~5.00 5.00 11.00 32.04 Total
Number in interval 1 5 14,489 87 18 14,600
Coefficient of skewness -0.43 -0.07 0.59 2.37 5.82 8.26
Coefficient of kurtosis 7.90 0.40 3.00 19.10 126.00 156.40
9 Range -10.55 -5.50 5.50 11.00 20.23 Total
Number in interval o 12 13,786 o4 28 13,890
Coefficient of skewness 0.0 -0.45 0.36 2.26 5.93 8.10
Coefficient of kurtosis 0.0 3.90 3.00 19.40 89.30 115.60
10 Range -28.64 =11.00 -5.50 5.50 11.00 27.23 Total
Number in interval & 15 13,187 12 6 15,246
Coefficient of skewness -3.29 -0.56 0.1% 1.18 2.91 0.43
Coefficient of kurtosis 77.50 4.50 3.20 10.10 65.10 160.40
11 Range =17.72 -11.00 -4.50 4.50 11.00 20.53 Total
Number in interval 1 31 14,457 93 15 14,597
Coefficient of skewness -0.38 -0.61 0.45 2.00 3.31 4.68
Coefficient of kurtosis 6.80 4.30 3.00 15.70 50.50 80.30
12 Range -34.83 -11.00 -7.50 7.50 11.00 BE.16 Total
Number in interval 3 L] 13,860 B 2 13,873
Coefficient of skewnsss -3.49 0 0.63 0.38 50.01 47.62
Coefficient of kurtosis 112.90 ] 3.00 3.50 4,370.70 4,490.05
13 Range -10.27 -5.00 5.00 11.00 26.45 Total
Nusber in interval ] 12,674 24 21 12,727
Coefficient of skewness ~0.42 0.50 2.01 6.57 B.66
Coefficient of kurtosis .50 2.70 15.10 118.50 140.80
14 Range i -12.91 -11.00 =5.00 5.00 11.00 28.12 Total
Number in interval 1 10 14,467 18 24 14,520
Coefficient of skewness -0.15 -0.29 0.43 1.50 6.78 B.47
Coefficient of kurtosis 1.90 2.30 3.00 15.10 127.40 149.70
15 Range -14.15 -11.00 11.00 38.29 Total
Number in interval 1 14,562 37 14,600
Coefficient of skewness -0.19 0.53 15.11 21.31
Coefficient of kurtosis 2.70 3.50 549.40 555.60
16 Range -21.66 -11.00 =5.50 5.50 11.00 49.77 Total
Number in interval 2 3 13,824 30 11 13,870
Cocfficient of skewness -0.84 -0.12 0.65 0.94 17.63 18.26
Coefficient of kurtosis 17.00 1.10 2.90 7.60 743.70 772.30
17 Range -11.24 ~11.00 -6.00 6.00 11.00 29.70 Total
Number in interval 1 16 14,517 33 33 14,600
Coefficient of skewness =0.10 =0.60 =0.10 1.56 9.68 10.44
Coefficient of kurtosis 1.10 4,80 3.00 14.70 187.80 211.40

It was also thought worthwhile to investigate the
stability of the tails of the distributions. As noted
before, the tails of stable distributions follow an
asymptotic form of the Pareto Law given by Egq. 4-52

1-F(x) - C]x'“, X >

Figures 5-13 to 5-17 were redrawn using the
logarithmic two-cycle paper. From these, the one per-
cent tail values are presented in Figs. 5-19 and 5-20.
If one ignores the effect of the last one or two
values which are outliers and hence subject to high
sampling bias, the slopes tend to some stable values
asymptotically with « close to 2. However, on
account of the finite sample sizes no useful infer-
ences could be made.
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Further investigations were made on whether the
law which represents the three-parameter family of
Weibull Distributions with its density function given
by Eq. 5-2, holds instead of a simple exponential law.
This is given by

o ey
1-F(x) = e Ax-a)" (5-3)
where p s a constant which is equal to 1 in the
exponential case. If this law holds, a plot of

[Tog log T:?%ETJ against (x-a) should show a linear

relationship for x > a provided that A 1is con-
stant. However, when applied to the tails of distri-
butions, the graphs showed that this law is not
applicable.



Table 5-5 SIGNIFICANCE LEVELS o/2 FOR EXPONENTIALITY IN THE DISTRIBUTION OF THE TAILS OF THE INDEPENDENT

STOCHASTIC ¢t COMPONENT OF DAILY DATA, ON THE SIDE OF LIGHT TAILS. VALUES OF o/2 < 0.025 ARE
EXTREME 0.1V EXTREME 1% EXTREME 5%
Station LEFT_TAIL WIGHT TAIL LEFT_TALL WIGH TAIL FTTRIL IGHT_TALL
Husber qil.m gié.n=1} FTEN] qlan-1] qli.nl Q-1 GrL,nt i o-1}) Qiln) QiZ.a-1) qil.nj GZn-T7
1 0.10 - 0.25 0.01 - 0.025 < 0.001 < 0.001 0.50 - D.75 0.25 - 050  0.025 - 005 0.05 - 0.10 0.75 - 0.90 0.75 - 0.90 0.2 - 0.50 0.50 - 0.75
2 0.50 - 0.75 0.90 - 0.95 0.75 - 0.50 0.90 - 0.95 0.50 - 0.95 0.99 - 0.995  0.95 - 0.875 0.975 - 0,99 0.95 - 0,975  0.995 - 0.999 0.975 - 0.99  0.995 - 0.9%9
(0.01 = 0.025 0.25 - 0,50 (0.005 - 0.03) (0.0 - 0.025) (0.10 - 0.25)  (0.75 - 0.90) (£.05 - 0.10) (0.10 - 0.25) (0.25 - 0.50)  (0-80 - 0.55) (0.25 - 9.50)  {0.50 - 0.75)
5 0.75 - 0.90 0.75 - 0.90 0.75 - 0.90 0.75 - 0.90 0.85 - 0.575 0.99 - 0.995 0,90 - 0.95 0.95 - 0.975  0.975 - 0.99 0.995 - 0.999  0.95 - 0,975  0.99 - 0.995
(0.01 - 0.025) (0.005 - 0.01) (2 0.001) (<_0.001) (0.05 - 0.10)  (0.95 - 0.10) (< 0.001) (< 0.001) (0.25 - 0.30)  (0.25 - 0.50) (0.035 - 0,05) (x_0.001)
4 0.50 - 0.75 0.25 - 0.50 0.5 - 0.50 0.05 - 0.10 0.75 - 0.90 0.75 - 0.50 0.50 - 0.75 0.25 - 0.50 0.90 - 0.95 0.95 - 0.975  0.75 - 0.90 0.75 - 0.90
s 0.25 - 0.50 0.25 - 0.50 0.25 - 0.50 0.10 - 0.25 9.75 - 0.90 0.75 - 0.90 0.50 - 0.75 0.50 - 0.75 0.90 - 0.95 0,975 - 0.99 0.75 - 0.50 0.50 - 0.95
6 0.10 - 0.25 0.025 - 0.05 0.01 - 0.035 0.05 - 0.10 0.50 - 0.75 0.25 - 0.50 0.10 - 0.25 6.50 - 0.75 0,75 - 0.30 0.75 - 0.90 0.50 - 0.75 0.75 - 0.90
7 0.025 - 0.05 0.005 - 0.01 0.50 - 0.75 0.25 - 0.50 0.15 - 0.50 0.10 - 0.25 0.50 - 0.75 0.50 - 0.75 0.50 - 0.75 0.75 - 0,90 0.90 - 0.95 0.95 - 0.975
5 0.50 - 0.75 0.50 - 0.75 0.25 - 0.50 0.10 - 0.25 0.75 - 0.80 0.75 - 0.50 9.50 - 0.75 0.25 - 0.50 0.50 - 0.55 0.95 - 0,875 0.75 - 0.90 0.75 - 0.90
# < 0.001 < 0.001 0.005 - 0.01 < 0.001 0.005 - 0.010  0.025 - 0.05 0.95 - 0.10  ©.025 - 0.05 0.25 - 0.50 0.50 - 0.75  0.I5 - 0.50 0.25 - 0.50
L] 0.10 - 0.25 0.10 - 0.25 0.10 - 0.25 0.025 - 0.05 0.50 - 0.75 0.50 - 0.75 0.50 - 0.75 0.25 - 0.50 0.75 - 0.50 ©.75 - 0.90 0.50 - 0.75 0.50 - D.75
1 0.25 - 0.50 0.10 - 0.25 0,005 - 0.00 < 0.001 0.50 - 0.7% 0.50 - 0.75 0.05 - 0.10  0.005 - 0.01 0.75 - 0.90 0,90 - 0.9% 0.25 - 0.50 0.10 - 0.25
12 0.50 - 0.75 0.75 - 0.90 0.75 - 0.90 0.75 - 0.90 0.50 - 0.95 0.975 - 0.99 0.90 - .95 0.975 - 0.99 0,85 - 0.975  0.995 - 0.99%9 0.575 - 0.99  0.985 - 0.999
(0.10 - 0.28)  (0.01 - 0.025) (0.DL - 0.025) (<_0.001) (0025 - 0.50)  (0.10 - 0.25) (0.05 - 0.10] (0.005 - 0.01) [0.50 - 0.7%)  (0.50 - 0.75) (0.75 - 0.50) (0.10 - 0.25)
15 < 0,001 < 9001 0.05 - 0.10 0.01 - 0.025 0.005 - 0.00 0.005 - 0.01 0.25 - 0.50  0.10 - 0.25 0.25 - 0.50 0.50 - 0,75 0.50 - 0.75 0.50 - 0.75
(0.001 - 0.005 (=_a.o01) (< 0.001) (= 6.600) T0.0L - 0.025) (< 0.0 (< 0.001) (< 0.001) (010 - 0.25)  (0.025 - 0.05) (9.005 - 0.01) (< 0.001)
14 0.10 - 0.25 0.025 - 0.05 0.025 - 0.05 0.025 - 0.05 0.25 - 0.50 0.25 - 0.50 0.10 - 0.35 010 - D.35 0.50 - 0.75 0.75 - 0.90  0.30 - 0.75 0.50 - 0.75
is 0,75 - 0.90 0.75 - 0.50 0.05 - 0.10 0.001 - 0.008 0.50 - D.95 0.85 - 0.575  0.25 - 0.50  0.25 - 0.50 0.95 - 0.975 0.99 - 0.995  D.75 - 0.90 0.95 - 0.9
(0.001 - 0.025) (0.025 - 0.05) (< 0.001} Z 0.000) {0.10 - 0.25] (0.25 - 0.50)  (0.01 - 0.025) < 0.001) (0.25 - 0.50) (0.50 - 0.75) {0.10 - 0.25) (0.0l - 0.025)
16 0.50 - 0.75 0.50 - 0.75 0.05 - 0.10 0.50 - 0.75 0.75 - 0.90 0.90 - 0.55 0.25 - 0.50 0.90 - 0.95 0.50 - 0.95 0,975 - 0.99 0.50 - 0,75  D.875 - 0.95
17 0.005 - 0.01 0.001 - 0.005 0.10 - 0.25 0,001 - 0.005 0.05 - 0.10 0.05 - 0.10 0.25 - 0.50 0.10 - 0.5 0.25 - 0.50 0.50 - 0.75 0.75 - 0,50 0.75 - 0.90
Normal
Taput < 0.001 <_0.001 < 0.001 < 0.001 < 0.001 < 0.001 < 0.001 + 0.001 < 0.001 < 0.001 < 0.001 < 0.001

Table 5-6 SIGNIFICANCE LEVELS

«/2 FOR EXPONENTIALITY IN THE DISTRIBUTION OF THE TAILS OF THE INDEPENDENT

STOCHASTIC & COMPONENT OF DAILY DATA, ON THE SIDE OF HEAVY TAILS. VALUES OF «/2 < 0.025 ARE
UNDERLINED.
g EXTREME 0.1% EXTHEME 1% EXTREME 5%
Station LEFT TAIL RIGH TAIL [EFT TAIL TG TAIL LEFT TAIL RIGHT TA
P gi1.m) qi2,n-1) " el aca-nl Qrlm) L Q(z,n-1} "L 9i1.m)" izt Qe Qiz,n-11" a(1,n)" QUz.n1) -
1 9.75 - 0.50  0.975 - 0.9 > 0.599 > 0.999 0.25 - 0.50 0.50 - 0.7% 0.95 - 0.975  0.90 - 0.95  0.10 - 0.25 0.10 - 0.35 0.50 - 0.75 0.25 - 0.50
5 0.25 - 0.50 0.05 - 0.10 0.10 - 0.35 0.05 - 0.10 0.05 - 0.10  0.005 - 0.01  0.035 - 0.05 0.01 - 0.025 0.025 - 0.05 0001 - 0.005  0.01 - 0.025  0.001 - 0.005
(0,975 - 0.99)  (0.50 - 0.75)  (0.9% - 0.595) (0.575 - 0.99)  (0.75 - 0.80)  {0.10 - 0.75)  (0.50 - 0.95) (0.5 098y [0.50 - 0,75)  (0.05 - 0.10)  (0.50 - 0.7%)  (0.35 - 6.
5 0.10 - 0.25 0.10 - 0.25 6.10 - 0.5 0.10 - 0.25  0.025 - 0,05  0.005 - 0.0 0.0% - 0.10  0.025 - 0.05  0.01 - 0.025  0.001 - 0,005  ©0.025 - 0.05 0005 - 0.01
(0.975 - 0.99)  (0.99 - 0.995) (> 0£.999) (> 0.999) (0.90 - 0.9§)  (0.90 - 0. (> 0.999) (» 0.999) (0,50 - 0. 70.50 - 6.75)  (0.95 - 0.975)  (* 0.999)
4 0.25 - 0.50 0.50 - 0.75 0.50 - 0.75 0,90 - 0.95 0.10 - 0.25 0.10 - 0,25 0.5 - 0.50 0.50 - 0.75 0.05 - 0.10  0.025 - 0.05 0.10 - 0.25 0.10 - 0.25
5 0.50 - 0.75 0.50 = 0.75 0.50 - 0,75 0.75 - 0.90 0.10 - 0.5 0.10 - 0.35  ©0.25 - 0.50  ©0.25 - 0.50  0.05 - 0.0 0.01 - 0.025 0.10 - 0.25 0.05 - 0.10
6 .75 - 0.90 0.95 - 0,975 0.975 - 0.99 0.50 - 0.95 0.25 - 0.50 0.50 - 0.75 0.75 - 0.90  0.35 - 0.50  0.10 - 0.25 0.10 - 0.25 0.25 - 0.50 0.10 - 0.25
T 0.95 - 0.975 0.99 - 0.995 0.25 - 0.50 0.50 - 0.75 0.50 - 0.7% 0.75 - 0.90 0.25 - 0.50 0.25 - 0.50 0.25 - 0.50 0.10 - 0.25 0.05 - 0.10 0.025 - 0.05
8 0.25 = 0.50 0.25 - 0.50 0.50 - 0.75 0,75 - 0.%90 0.10 - 0.25 0.10 - 0.25 0.15 - 0.50 0.50 - 0.7% 0.05 - 0.10 0.025 - 0.05 0.10 - 0.25 0.10 - 0.25
9 > 0.999 > 0.999 0.99 - 9.995 > 0.999 0.99 - 0.995  0.95 - 0.575  0.90 - 9.55 0.95 - 0.975  0.50 - 0.75 0.25 - 0.50 0.50 - 0.75 0.50 - 0.75
10 0.75 - 0.90 6.75 - 0.90 0.75 - 0.90 0.95 - 0975 0.I5 - 0.5D 0.25 -"0.50 0.25 - 0.50 .50 - 0.75 0.10 - 0.25 0.10 - 0.25 5 - 0.50 0.25 - 0.50
i 0.50 - 0.75 0.75 - 0,90 0.9 - 0,995 > 0.999 0.25 - 0.50 0.25 - 0.50 0.90 - 0.95 0.99 - 0.995  0.10 - 0.25 0.05 - 0.10 0.50 - 0.75 0.75 - 0.50
12 0.25 - 0.50 0.10 - 0.25 0.10 - 0.25 0.10 - 0.25 0.05 - 0.10 0.01 - 9.025 0.08 - 0.10 0.0L - 0.025 ©.025 - 0.05 0.001 - 0.005 0.01 - 0.025 0.001_- 0.005
(0.75 - 0.90) (0.975 - 0.99) (0.875 - 0.99) (> 0.999) (0.50 - 0.75) (075 - O, (0.90 - 0.95) (0.99 - 0.995) (0.25 - 0.50) {0.15 - 0.50) (0.30 - 0.78)  (0.75 - 0.903
i > 0.999 > 0.999 0.90 - 0,95  0.97% - 0.99 0.99 - 0,995  0.99 - 0.595  0.50 - 0.7§ 0.75 - 0.90 0.50 - 0.75 0.25 - 0.50 0.25 - 0.50 0.25 - 0.50
{0.995 - 0.999) {* 0.999) {» 0.995) (> 0.999) (0,975 = 0.99) (> 0.999) (> 0.999) (> 0.999) {0.75 - 0.90) (0.95 - 0.975) (0.99 - 0.995) (> 0.999)
14 0.75 - 0.90 0.95 - 0.975 0.95 - 0.975 0,95 - 0.975  0.50 - 0.75 0.50 - 075 0.75 - 0.50 0.75 - 0.90 0.25 - 0.50 0.10 - 0.25 0.25 - 0.50 0.25 - 0.50
i 0.10 - 0.28 0.10 - 0.25 0.90 - 9.95  0.995 - 0.999  0.05 - 0,10 0.025 - D.05  0.50 - 0.75 0.50 - 0.75  0.025 - 0.05 0.005 - 0.01 0.10 - 0.25 0.10 - 0.05
(0.975 - 0.99)  {0.95 - 0.975) (> 0.999) (* 0.999) {0.75 - 0.80)  (0.5C - 0.75) (0.975 - 0.99) (> 0.999)  [0.50 - 0.75)  {0.25 - 0.50)  (0.75 - 0.90)  (0.975 - 0.95)
16 0.25 - 0.50 0.25 - 0.50 0.90 - 0.95 0.25 - 0.50 0.10 - 0.5 0.05 - 0.10 0,50 - D.75 0.05 - 0,10 0.05 - 0.10 0.01 - 0.025 0.25 - 0.50 0.81 - 0.025
17 0.99 - 0,995 0.995 - 0.999 0.75 - 0.90 0.995 - 0.999 0.90 - 0.95 ©.90 - 0.95 0.50 - 0.75 8.75 - 0.90 @.50 - 0.75 0,25 = 0.50 0.10 - 0.25 0.10 - 0.25
r;:::l. » 0,999 » 0.999 + 0.999 > 0,999 > 0,998 > 0,959 > 0.999 > 0.999 > 0.999 > 0.999 » 0.999 > 0999

The conclusions which would be reached from the
results of this part of the study is that, as in the
previous section, there is insufficient evidence to
indicate that the tails of distributions of the inde-
pendent stochastic component differ from the exponen-
tial type on the side of heavy tails. Distributions
do not seem to conform with those of the Weibull
family.

5-5 Probability Distributions of Independent
Stochastic Components.

The seven groups of probability distribution
functions described in Chapter IV were used in fitting
the frequency distributions of the independent sto-
chastic components of daily flows. The group of
stable distributions possesses special characteristics
different from those of the other six groups. The
results of application of stable distributions are
presented and discussed in Section 5-6.

The goodness-of-fit of a theoretical p.d.f. to
the frequency distributions of a set of random vari-
ables is determined by comparing the chi-square value
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obtained by Eq. 4-74 with the critical chi-square
value for the given significance level. If the chi-
square value is smaller *.... the critical chi-square
value, this p.d.f. is accepted.

The frequency distribution of each set of random
variables is fitted using all the six p.d.f. groups.
In applying the chi-square test for goodness-of-fit
to all the p.d.f.'s, it is desirable to investigate
several p.d.f.'s., compare their characteristics and
then to select one which best fits the empirical
frequency distribution. The p.d.f. which possesses
the minimum probability of the chi-square statistic
should be selected as the function of best fit to the
frequency distribution. Since the chi-square proba-
bility density function with given degrees of freedom
is well defined, the chi-square probability was com-
puted by integrating the chi-square p.d.f., with the
lower and upper integration limits being zero and the
¢chi-square value, respectively.

Based on the chi-square test, the acceptance of
each p.d.f. used to fit the frequency distributions of
the independent stochastic components is shown in



Trrr
B
n

7 ki Ll R el T

PR |

LEW_-Z?“‘Aﬁ s B o W S W

Fig. 5-13 Empirical distribution, Log (1-F) versus &£ of the left extreme 0.1 percent of the distribution of
independent stochastic components.
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Fig. 5-14 Empirical distribution, Log (1-F) versus ¢ of the right extreme 0.1 percent of the distribution of
independent stochastic components.
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Fig. 5-15 Empirical distribution, Log (1-F) versus & of the left extreme 1 percent of the distribution of
independent stochastic components.
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5-16 Empirical distribution, Log (1-F) versus
independent stochastic components.
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Fig. 5-17 Empirical distribution, Log (1-F) versus ¢
independent stochastic components.

Tables 5-7 through 5-12. The number of times of
successful and unsuccessful fits are given in these
tables. If a p.d.f. is applicable for all the 17 sets
of series, the sum of numbers of successful and unsuc-
cessful should be 17; however, for the p.d.f.'s such
as Pearson's family functions, the good fit is deter-
mined only by certain criteria; therefore, the sum of
the number of successful and unsuccessful fits is less
than or equal to 17. By examining Tables 5-7 through
5-12, the results can be summarized as follows:

1. Lognormal and gamma functions best fit the
frequency distributions of monthly series. The normal
function modified by the three- or four-term Hermite
polynomials also gives a good fit.

2. For the 13-day series, the frequency
distributions of the n- and z-series are fitted well
by the lognormal, gamma, and normal, modified by
three- and four-term Hermite polynomials, as shown in
Tables 5-7 and 5-8. For the £-series, the

0
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f the left extreme 5 percent of the distribution of

double-branch gamma and the mixture of Pearson's Type
VII and gamma are shown in Table 5-11 to be best
applicable.

3. For the 7-day series, the frequency
distributions of the c- and g-series are difficult
to fit by any of the p.d.f. studied except the double-
branch gamma and the mixture of Pearson's Type VII and
gamma functions, as shown in Tables 5-9 and 5-11. In
the latter case, the fit is good in 9 out of 17 series.
For the fregquency distributions of the n-series, the
lognormal, the normal modified by three- or four-
term Hermite polynomials, and the gamma modified by
three-term Laguerre polynomials, fit well about one
third of all 17 cases, while the double-branch gamma
function fits well 10 series, and the mixture of
the normal and gamma functions applies to 8 out of 9
cases.

4, For the 3-day values, the double-branch gamma
function fits well 9 out of the 17 n-series; however,
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Fig. 5-18 Empirical distribution, Log (1-F) versus & of the right extreme 5 percent of the distribution of
independent stochastic components.
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Fig. 5-19 Empirical distribution, Log (1-F) versus Log & of the left extreme 1 percent of the distribution of
independent stochastic components.
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Table 5-7 RESULTS OF FITTING VARIOUS PDF TO FREQUENCY DISTRIBUTIONS OF THE n-SERIES, WITH THE LEVEL OF
SIGNIFICANCE 99 PERCENT; S = SUCCESSFUL FITS, F = UNSUCCESSFUL FITS.

ElieE Monthly series 13-day series 7-day series 3-day series Daily series

unction No. of |No. of No. of [No. of No. of [No. of No. of|No. of No. of|No. of
S F S F S F S F S F

Normal 16 1 3 14 0 17 0 17 0 17

Normal with

Hermite-3 terms 17 0 15 2 1 16 0 17 0 17

Normal with

Hermite-4 terms 17 16 1 7 10 0 17 0 17

Lognormal 17 0 16 1 6 11 0 17 0 17

Type IV 2 0 6 0 12

Type VI 0 1

Gamma 17 0 15 2 3 14 0 ¢ 16 0 13

Gamma with 1

Laguerre-3 terms 17 0 16 1 7 10 0 16 0 13

Gamma with

Laguerre-4 terms 17 0 16 0 13

Weibull 15 2 4 13 17 16 0 13

DoubTe-Branch

Gamma 1 16 2 15 10 7 9 8 0 17

Mixtures of

Normal and Gamma 8 1

Mixtures of

Type VII and Gamma 11 1 4 4 1 7 0 17

no p.d.f. studied fits well the frequency distributions
of the - and g-variables.

5. When the six p.d.f. groups are applied to
frequency distributions of the daily values of n, z,
and £ variables, with their sample sizes approxi-
mately 14,600, none passes the chi-square test with
the critical chi-square value 43.0 at the 99 percent
significance level. However, the double-branch gamma
functions have the smallest chi-squares. For the fre-
quency distribution of daily values of the z- and
g-variables, the double-branch gamma functions have
the chi-square values in the range of 200 to 3000,
having the smallest chi-squares for the n-series.
an example, the frequency distribution of n of the
Falls Creek and the Merced Rivers were fitted by the
double-branch gamma functions with chi-squares of 79.1
and 79.8, respectively. However, even with these
lowest chi-squares the fit is rejected. Frequency
distributions and the fitted double-branch gamma prob-
ability density-and cumulative functions of the daily
n-series of the Falls Creek and the Merced Rivers are
shown in Figs. 5-21 and 5-22, respectively. Frequency
distributions of n for all 17 series are plotted in
Fig. 5-3. The daily series has a large sample size.
Statistical parameters estimated from a sample of
large size should be close to population values, with
the tolerance interval of these parameters inverseiy
proportional to the sample size. Given the narrow
tolerance interval, the goodness of fit tests fail
even at a high level of significance.

As

Since no probability density function can
adequately fit the frequency distributions of inde-
pendent stochastic components of daily flow series, an
empirical method was attempted and is presented here.

A11 values were sorted into certain class
intervals of equal length and frequency densities of
each class interval computed. When these relative
frequencies became highly irregular, a moving average
was used to smooth them. The tails of frequency dis-
tributions were approximated by two exponential den-
sity functions. Parameters of the two exponential
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density functions were estimated from the values as
the respective tails.

An example of this approach is given in Fig. 5-23.
The maximum and minimum 500 values of the series for
the Neches River were fitted by the exponential den-
sity functions. The center part of the frequency dis-
tribution was divided into 45 equal length class
intervals, with the relative freguencies computed and
smoothed.

5-6 Fitting of Symmetric Stable Distributions.

The symmetric stable distributions were fitted to
frequency distributions of independent stochastic com-
ponents of daily series of the Madison and Batten Kill
Rivers, for the purpose of demonstrating their use in
comparison with the use of the other distribution
functions. Parameters of symmetric stable distribu-
tions were estimated by techniques described in
Chapter IV, with the transformation of the original
series into the wu-variabie by Eq. 4-58. Cumulative
frequency distributions of wu, and the fitted symmet-
ric stable distributions are shown in Fig. 5-24 for
the Madison River and Fig. 5-25 for the Batten Kill
River. For the Madison River, the parameters of the
stable distribution, estimated by percentiles, are

¢ =0.337, « = 1.264, v = 0.253 and & = 0.0067. For
the Batten Kill River, parameters are: ¢ = 0.338, a =
1.255, v = 0.257 and § = 0.0425. Using the transfor-

mation by Eq. 4-58, the u-varjable has ¢ = y =1,

6§ =0, and o the same as for the untransformed
series. For the Kolmogorov-Smirnov test used for the
goodness-of-fit test, the symmetric stable distribu-
tion fails to fit the frequency distribution of the
u-variable even at the 99 percent confidence level,
with the critical value of 0.0136.

Several factors limit the fit of stable
distributions to frequency distributions of indepen-
dent stochastic components of daily runoff series:

1. Density functions of stable distributions are
not available in closed forms;




Table 5-8 PROBABILITY DISTRIBUTION FUNCTIONS OF BEST
FIT FOR FREQUENCY DISTRIBUTIONS OF THE

Table 5-10 PROBABILITY DISTRIBUTION FUNCTIONS OF BEST
FIT TO FREQUENCY DISTRIBUTIONS OF THE

n-SERIES.
RIVER Mon;hly l3-nEIay 7-d§y 3-d§y Daily
series | series | series | series | series
Tioga GL3 GL3 MNG MPG
Oconto LN LN MPG DBG
Current LN MNG
[McKenzie GL3 LN DBG
Neches GL3 G MPG
Boise GL3 LN MPG DBG
Falls Creek LN LN MNG DBG
Greenbrier GL3 GL3 MNG MPG
Delaware GL3 LN DBG DBG
Madison NH3 DBG DBG DBG
Powell GL3 G MNG
St. Maries GL3 LN MNG
Cowpasture GL3 LN MNG
Mad LN LN DBG
Merced GL3 NH4 DBG DBG
Batten Kill | GL3 GL3 MNG DBG
Jump GL3 LN NH4 .
Abbreviations: LN, lognormal; G, gamma; NH3, normal

modified by 3 terms Hermite polynomials; NH4, normal
modified by 4 terms Hermite polynomials; DBG, double-
branch gamma; MNG, mixture of normal and gamma; MPG,
mixture of Pearson's Type VII and gamma; PIV, Pearson's
Type IV; GL3, gamma modified by 3 terms Laguerre

polynomials.

Table 5-9 RESULTS OF FITTING VARIOUS PDF TO FREQUENCY DISTRIBUTIONS OF THE ¢-SERIES, WITH THE LEVEL OF

SIGNIFICANCE 99 PERCENT;

£-SERIES.
RIVER 13-day 7—d§y 3-c}ay Dai‘l_}
series series serijes Series
Tioga NH4
Oconto NH4 MPG
Current MPG
McKenzie MPG DBG
Neches DBG DBG
Boise DBG DBG DBG
Falls Creek DBG DBG
Greenbrier DBG
Dalaware DBG
Madison LN MPG
Powell MNG DBG
St. Maries DBG DBG
Cowpasture DBG
Mad MNG MPG
Merced DBG DBG
Batten Kill MNG DBG
Jump DBG
Abbreviations: LN, lognormal; NH4, normal modified by

4 terms Hermite polynomials; MNG, mixture of normal
and gamma; MPG, mixture of Pearson's Type VII and
gamma; DBG, double-branch gamma.

S = SUCCESSFUL FITS AND F = UNSUCCESSFUL FITS.

13-day series 7-day serizs 3-day series Daily series
Function No. of [No. of No. of | No. of No. of | No. of No. of [No. of
S F S F S F S F
ormal 1 16 0 17 0 17 17
Normal with
Hermite-3 terms 6 11 0 17 0 17 0 17
Normal with
Hermite-4 terms 10 7 0 17 0 17 0 17
{ ognormal 8 9 0 17 0 17 0 17
Type IV 0 1 0 3 0 8 0 12
Type VI 0 4
Gamma 6 11 0 17 0 17 0 17
Gamma with
Laguerre-3 terms 6 11 0 17 0 17 0 17
Gamma with _
Laguerre-4 terms 0 17 0 17 0 17
Weibull 0 17 0 17 0 17 0o | 17
ouble-Branch
amma 14 3 9 8 1 16 0 17
ixtures of
Normal and Gamma 5 0 0 1
Mixtures of
Type VII and Gamma 5 3 7 5 0 17 0 8
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Table 5-11 RESULTS OF FITTING VARIOUS PDF TO FREQUENCY DISTRIBUTIONS OF THE E-SERIES, WITH THE LEVEL OF

SIGNIFICANCE 99 PERCENT:

S = SUCCESSFUL FITS AND F = UNSUCCESSFUL FITS.

] Monthly series 13-day series 7-day series 3-day series Daily series
Function No. of [No. of No. of|[No. of No. of|No. of No. of [No. of No. of[No. of
S F 5 F S F S F S

Normal 1 16 1 16 0 17 0 17 0 17
Normal with

Hermite-3 terms 15 2 1 16 0 17 0 17 0 17
Normal with

Hermite-4 terms 11 6 1 16 0 17 0 17 0 17
Lognormal 16 1 2 15 0 17 0 17 0 17
Type IV 1 0 0 1 0 10 0 8
Type VI 0 2 0 3
Gamma 14 0 1 11 0 17 0 17 0 17
Gamma with

Laguerre-3 terms 14 0 2 10 0 17 0 17 0 17
Gamma with

Laguerre-4 terms 0 17 0 17 0 17 0 17
Weibull 0 12 0 17 0 17 0 17
Double-Branch

Gamma 12 5 3 14 0 17 0 17
Mixtures of
Pormal and Gamma 3 1

ixtures of

ype VII and Gamma 7 1 9 5 0 14 0 15

2. Parameters of symmetric stable distributions
must be estimated by percentiles; no method is yet
available for a successful estimation of asymmetric

cases;

3. Distributions of independent stochastic
components do not possess heavy tails, particularly

the right tails, while the stablg disttibutions may
fit well only when such heavy tails exist;

4. When

1 < @ < 2, the second and higher-order
moment of stable distributions do not exist; for

a <

1, the moments do not exist, while generally the inde-
pendent stochastic components are standqrd1zed with
the mean of zero and the variance of unity.
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Fig. 5-21 Fitting the frequency distribution of the n-series of the Falls Creek River by the double-branch

gamma densit,

function:

(1) frequency distribution, (2) fitted double-branch gamma density

function, (3) cumulative frequency distribution and (4) fitted cumulative double-branch gamma
distribution function.
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Table 5-12 PROBABILITY DISTRIBUTION FUNCTIONS OF BEST FIT TO FREQUENCY DISTRIBUTIONS OF THE £-SERIES.

RIVER Man'gh]y 13—qay i ?-da_y 3-da_y Daﬂ_y
series | series | series | series| series
Tioga LN MPG MPG
Oconto LN MPG MPG
Current LN MPG DBG
McKenzie G MPG
Neches LN DBG DBG
Boise LN DBG
Falls Creek NH4 DBG MPG
Greenbrier LN DBG
Dalaware MPG
Madisaon LN MNG MPG
Powell LN " MPG* MPG
St. Maries LN DBG DBG
Cowpasture LN MNG MPG
Mad LN MPG MPG
Merced NH4 DBG
Batten Kill LN MPG MPG
Jump LN _L

Abbreviations: LN, Tognormal; G, gamma; NH3, normal
modified by 3 terms Hermite polynomials; NH4, normal
modified by 4 terms Hermite polynomials; DBG, double-
branch gamma; MNG, mixture of normal and gamma; MPG,
mixture of Pearson's Type VII and gamma; PIV, Pearson's
Type IV; GL3, gamma modified by 3 terms Laguerre
polynomials.

Fig. 5-22 Fitting the frequency distribution of the n-series of the Merced River by the double-branch gamma
density function: (1) frequency distribution, (2) fitted double-branch gamma density function
used, (3) cumulative frequency distribution and (4) fitted cumulative double-branch gamma distri-
bution function used.
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Fig. 5-23 (1) Empirical frequency density curves; (2) smoothed frequency density curves; (3) f(n) =
0.0370 e-]‘333(1'538'“ fitted to the negative tail, and (4) f(n) =
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Fig. 5-24 Fitting the cumulative frequency distribution of u-series of the Madison River by the symmetric
stable distribution: (1) cumulative frequency distribution and (2) stable distribution fitted, with

a=1.264, 6 =0, and v = 1.
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Fig. 5-25 Fitting the cumulative frequency distribution of u-series of the Batten Kill River by the symmetric
stable distribution: (1) cumulative frequency distribution and (2) stable distribution fitted, with
«a=1.255, § = 0, and y = 1.
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Chapter 6
CONCLUSIONS

The following conclusions were drawn from the
results of this study, namely:

1. To infer the periodicity in parameters from a
series, harmonic analysis is used and the significant
harmonics are identified. Errors in determining the
number of significant harmonics and errors in estimat-
ing their coefficients greatly affect the accuracy of
inferred periodic functions. For example, if a har-
monic explains only one percent of the total variance
of a parameter of its estimates over the discrete
value of the basic period, and is incorrectly either
accepted or rejected by the usual tests of signifi-
cance, the maximum error in the inferred periodic
function may be as high as 14 percent of the standard
deviation of the periodic parameters.

2, Although high sampling fluctuations always
exist in the estimated serial correlation coeffi-
cients, the periodicity in these series should be
tested. Since the standard deviation of the indepen-
dent stochastic component, as the residuals of the
Tinear autoregressive models for stochastic variables,
are highly sensitive to errors in the estimates of
serial correlation coefficients, a careful investiga-
tion of the periodicities in these coefficients is
necessary for more realistic models.

3. The logarithmic transformation provided
improvements by assigning different weights to values
(by decreasing the weights of high values in compari-
son with the weights of low values) and by reducing
flow fluctuations in comparison with the original
series. Consequently, the transformed data produced
somewhat better results than the original series in
fittino the independent stochastic component by se-
Tected probability distribution functions.

4. Distributions of independent stochastic
components tend to have very long tails especially in
series with small time units such as daily series.
However, the evidence in this study suggests that the
tails are not heavy. Exponential functions are found
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to be good approximations for the tails of frequency
distributions in a large majority of cases.

5. Frequency distributions of the independent
stochastic components cannot be adequately fitted by
stable distributions with heavy tails and an infinite
variance.

6. Independent stochastic components obtained
for the logarithmically transformed monthly runoff
series were found to be approximately normally dis-
tributed, while the frequency distributions were found
to be skewed but bell-shaped for the 13-day series.
The normal function, modified by Hermite polynomials,
the Tognormal, and the gamma probability distribution
functions are found to fit well these frequency dis-
tributions. As the discrete time interval (in which
the year is divided) becomes smaller, such as the 7-
day and 3-day series, the well-rounded, bell-shaped
distributions of independent stochastic components
change to highly skewed distributions with a sharper
peak and the longer tails. Mixed Pearson's Type VII
and gamma functions and the double-branch gamma func-
tion are more suited for modeling this kind of distri-
butions.

7. Frequency distributions of independent
stochastic components for different intervals At in-
dicate that the distributions become closer to normal
when At increases. The central limit theorem is
then useful in modeling probability distributions of
hydrologic independent stochastic components.

8. For the independent stochastic components of
the daily flow series, none of the probability distri-
bution functions studied for fitting the frequency
distributions could pass the chi-square test, even
with the significance criterion of 99 percent. The
double-branch gamma function had the smallest chi-
square values. The Kolmogorov-Smirnov test also re-
jects the hypothesis of good fit for any probability
distribution function used. This difficulty results
from very large samples with the resulting very narrow
tolerance limits. This problem regquires a special
attention in future studies.

:
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those modified by polynomials, Weibull, double-branch gamma,
mixture of functions, and family of stable distribution
functions, were applied to fit frequency distributions of
independent stochastic components. The same techniques were
applied to the 3-day, 7-day, 13-day and 30-day monthly
series. It was found that the 3-parameter lognormal func-
tion fits well the frequency distributions of monthly in-
dependent stochastic components. Since frequency
distributions for small time intervals were skeded, with
shapr peaks and long tails, probability distribution
functions with more parameters must be used to fit these
distributions.

Reference: Tao, Pen-chih, V. Yevjevich & N. Kottegoda,
Colorado State University, Hydrology Paper No. 82,
January (1976), Distributions of Hydrologic Independent
Stochastic Components.
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