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ABSTRACT

The subject matter of this paper is the generation of 20 samples, each 50 years long. of three variables
related to water inputs into and retardation of flows in connecting channels of the Great Lakes: (1) Mean
monthly net basin water supplies of five lakes; (2) Mean quarter-monthly net basin water supplies of two
smaller lakes (Ontario and Erie); and (3) Flow retardations in connecting channels because of freezing and weed
effects. The methods of obtaining the net basin water supplies and channel flow retardations are described as
developed by the Great lLakes various committees. For each of series of the above three variables, first the tests
of homogeneity (trends) in data have been performed, basically by using the t-statistic and Student t-distribution.
The Lake St. Clair mean monthly net basin supplies have been found to have a trend. Also the two connecting
channels (the St. Mary River, the St. Clair-Lake St. Clair-Detroit Rivers Systems) had decreasing trends in flow
retardation series. All series are studied further with the trends in parameters removed.

Periodic parameters in all three variables are found to be the mean and the standard deviation. The auto-
correlation coefficients and the skewness coefficient are found not to be periodic. The stochastic components,
after the periodic mean and standard deviation are identified and removed, are found to be greatly autocorrelated.
The simple first- and second-order autoregressive linear models are found sufficient to describe these dependences.
For the resulting white noise (independent, identically distributed stochastic components) of all series, the
three-parameter lognormal distributions have been found as good approximations.

The principal component analysis has been used in generating the new samples of the mean monthly net basin
supplies. The approach of generating first the monthly values, and then superimposing the generated four dif-
ferences of mean quarter-monthly values was shown to be difficult to apply, because both the conservation of mass
(sum of four differences to be zero) and the autoregressive model could not be satisfied simultaneously. For
small number of series of the same variable, the sample correlation between the independent stochastic compenents
was used in generating new samples.
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PART I
INTRODUCTION

This part relates to two aspects of generation of
new samples of a set of station series, namely (1) The
reduction of periodic-stochastic time processes to nor-
mal, independent, identically distributed random vari-
ables, space dependent, as an n-dimensional process,
transformed to n principal components; and (2) The
description of the Great Lakes data used in simulating
the various series of net basin supplies of these lakes
and flow retardations in connecting channels.

Chapter 1

GENERAL APPRCACH TO GENERATION OF SAMPLES OF A SET OF
STATION SERIES

1.1 Baste Character of Hydrologic Area-Time Processes.
In sampling area-time hydrologic processes by various
data collection services, the most current practice is
in approximating the areal variation by a set of points,
and in observing the variation of particular variables
in time either as continuous recordings, discrete time
observations, or the cumulative values over the speci-
fied intervals. The general area-time process x{X,Y;t},
as a three-dimensional process, is then separated in
n time processes, such as: xl{xl,Yl,t}; xz(xz,YZ;t];

i xn{Xn,Yn;t], where (Xi,Yi) are the coordinates of

n points, i =1,2,...,n, and t
intervals or continuous time.

are either discrete

The basic character of nearly all hydrologic pro-
cesses, for small At (say At smaller than a year),
is that they are periodic-stochastic processes depen-
dent over the area. Mostly the station random vari-
ables X sXys.e0,X  aTe of mixed distributions, be-

cause the parameters (mean, variance, autocovariances,
skewness, etc.) vary periodically over the year (or in
case of At smaller than a day, also often over the
day). These mixed variables most often have skewed
distributions with a kurtosis coefficient different
from three of the normal distribution.

1.2 Generation of New Samples. To simulate m sam-
ples each of the size N for all n stations, by pre-
serving the time structure and areal dependence, if n
is not too small (say five or more), the best presently
available approach is to use the stationary multivari-
ate normal distributions of n identically distributed
components, time independent and areally dependent, and
the principal component analysis. By removing the pe-
riodicity in parameters of time series, the stationary
dependent stochastic components are obtained. By in-
ferring the proper dependence model for the stochastic
component, the independent, identically distributed
process in time (the noise) can be singled out. If
this noise is not normally distributed, a further trans-
formation (logarithmic, cubic root, and similar) may be
used to arrive as close as practically feasible to nor-
mal independent identically distributed stochastic com-
ponents along the time intervals, as the white noise.
The n mutually dependent components then represent
the multivariate normal distribution as the starting in-
formation for the use of principal components analysis.

By using the nxn covariance matrix, or for stan-
dardized normal variables the correlation matrix, the
well known procedures of transformation of n mutually

dependent normal variables to n mutually independent
normal variables, or the principal components, can be
used. Computer oriented procedures and programs are
available currently for this analysis.

For principal components as the normal, identi-
cally distributed random variables, indepéndent both
in time and in area, it is then simple to generate by
the Monte Carlo or experimental method the m samples,
each of the size N (or several sizes Ni if this is

needed), for each of n components. The inverse pro-
cess then transforms the generated samples of principal
components into themultivariate normal components, de-
pendent among themselves but independent in time. This
means a preservation of areal dependence specified by
the correlation matrix. Applyingto each component the
corresponding time dependence model, inferred in the
structural analysis of time series, the n time depen-
dent stationary stochastic components are produced.
The superposition of inferred functions for periodic
parameters then produces the n components, which pre-
serve both the time structure and areal dependence.

The method described has been used to generate the
net basin supplies and channel flow retardations for
the system of Great Lakes.

1.3 Procedure Follcwed. The three parts, II, III and
IV, which relate to generation of samples for monthly
net basin supplies to five of Great Lakes, quarter-
monthly supplies to two lakes, and the flow retardations
in channels connecting the lakes, because of the winter
ice cover, explain the procedures used in details.

Chapter 2
DESCRIPTION OF GREAT LAKES AND VARIABLES TO GENERATE

2.1 The System of Great Lakes. The data on Great
Lakes in this paper and various descriptions are taken
from official reports [1 through 6] and published pa-
pers. The total area of Great Lakes is about 95,000
square miles, with the drainage area approximately
203,000 square miles. The basin map is given in Fig.
2-1. Principal hydrologic data for five of the Great
Lakes are shown in Table 2-1.

The immense storage capacity of the lakes repre-
sents a large natural regulating water system. The
ratios of the maximum to minimum flows at the lake
outlets are only two to three. Lake Superior, com-
pletely regulated, is the uppermost and largest of the
Great Lakes with the outflow through the St. Mary
River into Lake Huron. Lakes Michigan and Huron are
at the same level since they are connected by the broad
and deep Straits of Mackinac. They are hydrologically
treated as one lake. The outflow from these lakes is
through the St. Clair River, then Lake St. Clair and
the Detroit River into Lake Erie. The outlet from Lake
Erie is through the Niagara River into Lake Ontario
Lake Ontario, the lowest of the Great Lakes, is the
smallest. Following the construction of the St.
Lawrence Seaway and Power projects, the outflows from
Lake Ontario are also regulated.

2.2 Regulation of Great Lakes. At the request of the
Governments of Canada and the United States, the



Fig. 2-1 The Great Lakes basin, with the
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subbasins (The map of the Great Lakes Basin Commission).

TABLE 2-1
DATA ON THE GREAT LAKES (1860-1972), ACCORDING TO IGLLB STUDY
Drainage Area Mean Outflow
Storage Range Depth
Water Capacity Average of on
Lake Land Surface Per Foot Eleva- Monthly Outlet (cfs) Total
Area Area of Stage tion Mean River Drainage
(Square (Square of Lake (above Stage Basin
Miles) Miles) {cfs for m.s.1.) " (ft.) (inches)
one month) (IGLD,1955)
(1) (2) (3) (4) (3) () €D] (8) (9)
Superior 49,300 31,700 337,000 600.4 3.8 St. Marys 75,400 12.6
St. Clair
Michigan- 45,600 22,300 481,000 578.7 6.6 Lake St. 187,900 11.6
Huron 51,800 23,000 Clair
st. Clair 6,100 400 5,000 $73.1 5.8 Detroit | 188,900
Erie 23,600 9,900 105,000 570.4 5.3 Niagara 202,300 10.6
Ontario 27,200 7,600 80,000 244.6 6.6 St. Law- 239,700 11.1
rence
*International Great Lakes datum, 1955 - elevation in
TOTALS 201,500 94,600 1,003,000 feet above Father-Point, Quebeé.




International Joint Commission has undertaken an inves-
tigation to determine whether it would be feasible and
in the public interest to regulate further the levels
of the Great Lakes soas to reduce the extremes of stage
which have been experienced in the past and bring about
a more beneficial range of stage for the various water
users. The Commission established the International
Great Lakes Levels Board on December 2, 1964 to under-
take, through appropriate agencies in Canada and the
United States, the necessary investigations and studies

and to advise the Commission on all matters which it
must consider in reporting on this matter.
In 1965 the Working Committee, which was estab-

lished by the Levels Board, appointed a Regulation Sub-
committee composed, in part, of members of the U. S.
Lake Survey, Corps of Engineers and the Inland Waters
Branch, Canada Department of Energy, Mines and Re-
sources. The Regulation Subcommittee, and in partic-
ular, these two agencies, were assigned the task of com-
puting and coordinating the water supply data required
for the development of regulation plans and to derive
the basis of comparison for these plans. Preliminary
water supplies and comparison data, covering the period
January 1900 through December 1964, were issued in April
1967. Subsequently, final water supplies and the basis
of comparison data, covering the period January 1500
through December 1967, have been developed and coor-
dinated.

2.3 Methods Employed to Obtain the Final Data. The
historic or recorded data from which the required water
supplies for the regulation plans have been developed,
were themselves developed, in part, by another inter-
national committee known as the Coordinating Committee
on Great Lakes Basic Hydraulic and Hydrologic Data.
The Committee developed data on water levels, river
flows and physical characteristics of the Great Lakes
system.

Because of their large areas, the levels of Lakes
Superior and Michigan-Huron respond to changes in out-
flow much more slowly than do the levels of Lakes Erie
and Ontario. The lake regulation studies are conducted
on a monthly basis for Lakes Superior and Michigan-
Huron and on a quarter-monthly basis for Lakes Erie
and Ontario. Monthly data are also used for Lake St.
Clair.

The quarter-monthly periods consist of seven or
eight days sub-divided as:
Months of Months of

Quarter Month 28 or 29 days

30 or 31 days

First 1-7 1-8
Second 8-14 9-15
Third 15-21 16-23
Fourth 22-28 or 29 24-30 or 31

The data used for obtaining net basin water sup-
plies and winter and weed retardations are: beginning-
of-period lake levels, recorded outflows, and recorded
diversions.

2.4 Net Basin Supplies. The net basin supply isa term
used to describe the water which a lake receives from
precipitation on both its surface and its drainage basin
less the net evaporation and condensation on the lake
surface. Some of these factors cannot be determined
accurately. The net basin supplies were computed by
employing reliable lake level and flow records for the

required monthly and quarter-monthly periocds. The re-
lationship used is
AS=P+R+U-E+I-0=z0D (2-1)

where AS = the change in amount of water stored in the
lake (positive if supplies exceed outflows; negative
if outflows exceed supplies), P = the precipitation
on the lake's surface, R = the runoff from the lake's
land drainage area, U = the ground-water contribution
(considered positive in the aggregate), E = the evapo-
ration from the lake's surface (net of evaporation and
condensation), I = the inflow from the lake above, O =
the outflow from the lake through its natural outlet,
and D = the diversion (positiveif into lake; negative
if out of lake).

The changes in storage, inflow, outflow and diver-
sion are determinable directly from reliable lake level
and flow records, while the precipitation, runoff,
ground-water contribution and evaporation cannot be de-
termined accurately with presently available data and
techniques. The first four terms of the right-hand side
of the equation are combined in a single term which is
called the net basin supply to the lake, Q, and the
equation written as:

Q=a85+0-1%D, (2-2)

with all terms expressed in units of cubic feet per
second for the period. The sum of AS and 0 ({in-
cluding any outflow diversion) represents the net
total supply to the lake.

The distribution of average water supply to lake
in percent of average outflow is given in Table 2-2.
The values for changes in storage, outflows and inflows
are determined directly from the recorded values of
lake levels, river flows and diversions.

TABLE 2-2
DISTRIBUTION OF AVERAGE WATER SUPPLY TO LAKE
IN PERCENT OF AVERAGE OUTFLOW

Lake
Lake Michigan- Lake Lake

Superior Huron Erie Ontario
Inflow from
upstream lake (I) 0 46 86 86
Precipitation on
lake surface (P) 38 59 12 8
Evaporation from
lake surface (E) -55 -57 -13 -7
Net (P-E) +33 +2 -1 +1
Runoff from
land basin 62 49 12 13
Percent of total
outflow accounted
for 95 97 97 100

2.5 Winter and Weed Retardations. The freezing over
and weed retardations for connecting channels are de-
termined as follows. The level of Lake Superior and
the outflow through the 3t. Marys River are regulated
by the International Lake Superior Board of Control by
a dam at the head of the $t. Mary Rapids. Under pre-
sent regulation conditions, the winter effect on the
discharges is virtually zero for all months.



Lake St. Clair normally freezes over in the early
winter. Subsequently, heavy runs of Lake Huron ice in
the St. Clair River jam in the channels through the St.
Clair Flats and upstream, to the extent that the river
flow is reduced. Ice jams seldom occur in the Detroit
River, although the river is frequently frozen over in
its lower reaches. Winter retardation in the St. Clair
River was estimated by subtracting the coordinated re-

corded flow from the corresponding discharge based on

the two-gauge open-water stage-discharge relationship
for the Harbour Beach-Grosse Pte. reach.

In order to avoid ice problems in the Niagara River,
an ice boom has been placed across the head of the Ni-
agara River by the Power Entities for each winter season
commencing in 1964. The presence of this ice boom has
reduced the retardation of Niagara River flow by ice to
a very small amount which can be considered insignif-
icant. However, since the outlet conditions of 1953
were adopted as the basis to be used for comparing reg-
ulation plans, average winter retardation was assumed
for the Niagara River over the period of record.

Lake Ontario is at present regulated by the Inter-
national St. Lawrence River Board of Control. There-
fore, direct estimates of winter retardation could be
made only for the period prior to commencement of the
St. Lawrence project in 1955. For the period 1900-1955
retardation values were calculated as the difference
between the outflows resulting from the open-water Os-
wego stage-discharge relationship, and the recorded
outflows.

Reduction in the winter flowat the outlet of Lake
St. Louis was calculated directly as the difference be-
tween the discharge derived from the appropriate open-
water stage-discharge curves and the recorded discharge.

The determination of winter flow retardation val-
ues are based on the following relationship:

I=q,-Q (2-3)

where I = the winter flow retardation in cfs-months,
QA = the adopted flow through connecting channel in

cfs-months and Q. = the flow computed from the open

water stage-discharge relationship in cfs-months. In
the aforementioned relationship QA represents the mu-

tually accepted values among the agencies of bothU. S,

and Canadian Governments and are tabulated in the report
on coordinated basic data.

8.6. Generation of Samples of Net Basin Supplies and
Flow Retardations. The U. §S. Army Corps of Engineers,
North Central Division, Chicago, Illinois, and the
writer of this paper concluded an agreement for the
writer to analyze data and to generate 20 samples each
50 years long of:

(1) Monthly net basin supplies of five lakes;

(2) Quarter-monthly net basin
lakes; and

supplies of two

(3) Winter flow retardations of the outflows at
four connecting channels.

Thése three items are covered in Parts II, III and IV
of this paper, respectively. The two reports, sub-
mitted to North Central Division of U. S. Army Corps
of Engineers, Chicago, Illinois, namely in August 1972
and September 1972, respectively, have served as the
basic material in shaping this paper, with modifications.

The following data, in the form of punched cards
have been supplied by the Corps of Engineers for the
generation of the new samples:

1. Lake Superior monthly mean net basin supply

2. Lake Michigan/Huron monthly mean net basin
supply

3. Lake St. Clair monthly mean net basin supply

4. LakeErie quarter-monthly mean net basin supply

5. Lake Erie monthly mean net basin supply

6. Lake Ontario quarter-monthly mean net basin
supply

7. Lake Ontario monthly mean net basin supply

8. Winter retardation of the outflow from Lake
Michigan/Huron

9. Winter retardation of the outflow from Lake
St. Clair

10. Winter retardation of the outflow from Lake
Ontario

11. Winter retardation of the outflow from Lake
S5t. Louis

Dr. Jose Salas-La Cruz assisted the writer in all com-
putations of sample generations; this help is appreciated
and acknowledged.



PART Il
GENERATION OF SAMPLES OF MEAN MONTHLY NET
BASIN SUPPLIES OF GREAT LAKES

This part refers to the structural analysis of
historic data, made available by the U. S. Army Corps
of Engineers, North Central Division, Chicago, of the
five mean monthly net basin supplies--in further text
abbreviated as NBS--of Lake Ontario, Lake Erie, Lakes
Michigan/Huron, Lake Superior and Lake St. Clair, and
the generation by the experimental (Monte Carlo) method
of 20 samples each 50 years long of each of these five
mean monthly net basin supplies. It contains the fol-
lowing: tests of homogeneity of the above five NBS
time series, structural analysis of these series found
or made homogeneous with their mathematical descrip-
tion, generation of samples for four series (all ex-
cept NBS of Lake St. Clair), analysis of generated
samples, development of a multiple linear regression
for Lake St. Clair NBS series to the other four series,
generation of samples for NBS series of Lake St. Clair,
and analysis of these generated samples.

Chapter 3
TESTS OF HOMOGENEITY OF NBS SERIES

3.1 BSelection of Test Statistics. Tests of homogeneity
are carried out by the split-sample approach in ascer-
taining whether differences between the means of the
two unequal subsamples (36 and 33 years in the case of
four series) are or are not significantly different
from zero on the 95 percent probability level of sig-
nificance. Only if the probability is less than 5 per-
cent that a difference is greater than the critical
value of these differences are the two subsample means
considered not to be from the same population, or the
series considered to be nonhomegeneous.

The t-statistic is used for testing whether the

difference of the two means, ii and X is signi-
ficant with - ==
Xl = X2
s e, (2-1)
moE oo,
2 n LI 1 )
1 2
and = =
1 2 §
¥ 32 72
1-21 & ‘21 by )
5= n, + 1 J- 2 2 (2-2)
1 2
where ny and n, are subsample sizes, x; are val-
ues of the series in the ny subsample and xj in the
n, subsample. This t has the Student t-distribution.

The critical value, tc , for the significance proba-

bility level of 95 percent was then taken from the

Student t-distribution tables.

also
stand-
of two subsamples are sig-

Similar equations to Eqs. 2-1 and 2-2 are
used for testing whether the differences of

ard deviations Sy and S,

nificantly different, with ii and X, in Eq. 2-1
replaced by Ei and Eé , and s

value of s of Eq. 2-2.
averages of s

of Eq. 2-1 1is the

These E& and Eé are the
of each year for the two subsamples.

3.2 Results of Homogemeity tests. Table 2-1 gives the
results of tests of homogeneity in the subsample means,
with only the series of monthly mean NBS of Lake St.

" Clair found to be nonhomogeneous. The monthly mean_ NBS

series for Lake St. Clair is then corrected with x =
5.24 of the last 26 years of records also being the
mean for the first 43 years. In fact all values of the
first subsample are increased by the difference X, -

Ei . The new series of NBS for Lake St. Clair is 2then
further analyzed as a homogeneous series.
TABLE 2-1
ANALYSIS OF DIFFERENCE IN TWO SUBSAMPLE MEANS
Subsample Sizes Statistic t(95%)
i From t- Change in
" Lake 1 2 Tables Computed  the Mean

Ontario 36 33 2.0 0.299 No
Erie 36 33 2.0 0.635 No
Superior 36 33 2.0 1.525 No
Michigan 36 33 2.0 0.866 No
St. Clair 43 26 2.0 4.477 Yes

The tests of homogeneity in the standard devia-
tion of the NBS series are presented in Table 2-2 in a
similar manner to the presentation of results of tests
of the two subsample mears of Table 2-1. All five ser-
ies are found to be homogeneous in the standard devia-
tiom.

Usually and under the natural conditions, when a
hydrologic series has no significant trend or slippage
(positive or negative jump) in the mean and the stand-
ard deviation, the entire series may be safely inferred
as being homogeneous. No tests were considered neces-
sary to determine whether the difference of two sub-
sample statistics of other parameters are or are not
significantly different from zeros,or for such periodic
parameters as monthly means m, monthly standard devi-

ations S_ s monthly autocorrelation coefficients

T
k,r
of the stochastic dependent component, or monthly skew-

ness coefficient TC of the independent stochastic
component.
TABLE 2-2
ANALYSIS OF DIFFERENCE IN TWO SUBSAMPLE STANDARD
DEVIATIONS

Subsample Sizes  Statistic t(95%)

n n From t- Change in
1 2 Tables Computed  the St.

Lake Deviation
Ontario 36 33 2.0 0.598 No
Erie 36 33 2.0 0.992 No
Superior 36 33 2.0 1.748 No
Michigan 36 33 2.0 0.269 No
St. Clair 43 26 2.0 1.056 No

The four major historic series of mean monthly NBS
(Ontario, Erie, Superior, Michigan) are used in the



further investigations as made available by the
of Engineers,

Corps
while the Lake St. Clair NBS series is

used with a mean of the second subsample of the last
26 years of data, with the monthly average x = 5.24 .
Figures 2-1 through 2-5 give the series of the

mean annual NBS at the lake outlet flow gauging sta-
tions (Fig. Z-1 - Ontario, Fig. 2-2 - Erie, Fig. 2-3 -
Superior, Fig. 2-4 - Michigan, and Fig. 2-5 - St.
Clair). These figures also show the two selected sub-
samples in testing whether the difference of their two
means or the difference of their two standard devia-
tions are or are not significantly different from :ze-
ros. A visual inspection also shows that the first
four lakes, Figs. 2-1 through 2-4, either do not show

a trend in mean annual NBS, or that the trend is so
mild that it can be safely attributed to sampling
fluctuations.
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Chapter 4

STRUCTURAL ANALYSIS AND MATHEMATICAL DESCRIPTION OF
MONTHLY MEAN NET BASIN SUPPLY

4.1 General Structural Analysis and Deseription. The
structural analysis and mathematical description are
based on the following four concepts:

(1) A relationship is established between the pe-
riodic parameters of the monthly means and monthly
standard deviations, and the dependent stochastic com-
ponent in the form

=t = (2-3)

in which x is the observed mean monthly NBS; [
is the fitted periodic function to the estimated 12

average monthly values, m_; g, is the fitted perio-
dic function to the 12 monthly standard deviation, S5

p is the year of the NBS series with
and n the sample size in years; T

p=12,...,n,
is the month of



the year with = 1,2,...,12, and ¢

p,r 1S an approx-

imately standardized but dependent stochastic component.

T

(2) The mathematical description of m_ and s
[

by the periodic functions e and aT is achieved by

selecting a given number of harmonics out of maximum

six harmonics of the monthly series, with
m

u_=Xx+ ] (A.cos 2rj £t + B, sin 2nj £ 1) ,
j=1 3 J
(2-4)

where X is the mean of m_, A, are Fourier
L

and B,
a

coefficients for the j-th harmonic, and f = 1/12 is
the ordinary frequency of the 12-month harmonic. A
similar equation is obtained for o, , with X repla-
ced by the mean of the twelve estimdted monthly stan-
dard deviations S and the corresponding A, and

Bj are Fourier coefficients. The Fourier coefficients

for u_ are estimated by
1 12 _
Aj = E--El (m_-x) cos mjt/6 (2-5)
and
1 12 _
Bj e g [mT-x) sin wjt/6 (2-6)
=1
For j = 6, the Fourier coefficients are Ag = A2,
< J
and B6 =0 .
(3) The dependence model of the dependent sto-

chastic component Ep = is found in the analysis to

Ed
be well approximated by the second-order linear auto-
regressive (Markov) model of the type

€ (2-7)

Pt “1 ®p,1-1 oy €p,1-2 * Ep,r %

where Ep _ is the independent,assumed also to be the
s £

second-order stationary stochastic component, @y and
», are the population autoregressive coefficients (es-
timated by the sample values a

and a related to

1 2],
the first two population autocorrelation coefficients

Py and Py (estimated by the sample first two serial
correlation coefficients, T, and rzj, or
2
g6y - PL0 0 - D
a =¢ , and o, = 2 1 (2-8)
1 1-p2 2 1 - p?
1 1
By replacing Py and Py in Eq. 2-8 by T and T,
and @y and x, by 2 and a, then a, and a,
are computed from Eq. 2-8.
(4) A probability distribution function is fit-

ted to the empirical frequency distribution functionof

EP»T , either separately for each EP-T of the NBS

series, or when shown feasible for all series. In this
later case a probability distribution function is fit-
ted to the frequency distribution of gp < of all NBS

series put together, representing now a unique sample.

4.2 Periodic Components.  Fourier coefficients are
computed from the 12 values of n_, and the 12 values

of S, and for all six harmonies, j = 1,2,...,6 (or

12-month, 6-month, 4-month, 3-month, 2.4-month, ard 2
-month harmonic). The amplitudes of these six harmon-
ics are computed by

C. = (A2 + /2
it

2-9
3 ( .)

The four harmonics with the highest Cj values are

considered as having amplitudes significantly differ-
ent from the amplitude values which series of m_ and

s, would have if they would not be periodic.

Table 2-3 presents Fourier coefficients of ur and
o for the five NBS series,and for the four harmonics

for each series (given as j in Table 2-3) found sig-
nificant by the approximate procedure of testing this
significance. The harmonics j are sorted in the de-
creasing order of their amplitudes.

Figures 2-6 throurh 2-10 give graphs for each of
the five NBS series and each graph has four lines: (1)
the estimated monthly means, mno, (2) the fitted peri-

odic function Hoos with four significant harmonics;
(3) the estimated monthly standard deviations, So» and

(4) the fitted periodic function o with four signi-

ficant harmonics. The study of these five figures
leads to the following conclusions:

(1) Periodic components u_ and 9 have simi-
lar patterns but do not seem proportional for  these
five series of the mean monthly NBS;

(2) Though a parallelism of o and uo are

expected for each NBS series, the sampling fluctuations
(and maybe some other factors] produce this non-
proportionality;

70
60

50

1 2 3 4 5 6 7 8 8 10 11 2

Periodic mean fitted (1)and computed (2)
and periodic standard deviation fitted (3)
and computed (4) for monthly net basin sup-
ply of Lake Ontario.
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Fig. 2-7 Periodic mean fitted (1) and computed (2) Fig. 2-8 Periodic mean fitted (1) and computed (2)
and periodic standard deviation fitted (3) and periodic standard deviation fitted (3)
and computed (4) for monthly net basin sup- and computed (4) for monthly net basin sup-
ply of Lake Erie. ply of Lake Superior.
TABLE 2-3

FOURIER COEFFICIENTS OF FITTED HARMONICS TO MEANS AND STANDARD DEVIATIONS
OF MONTHLY MEAN NET BASIN SUPPLIES

Mean Mo St. Deviation 9.
harmonic A. . B. harmonic A. B.
Lake j ] J j ] ]
1 -13.162 32.586 1 -0.166 6.608
Ontario 2 -3.048  -10.522 2 0.024  -2.987
6.398 -3.169 4 -0.312 1.238
4 0.398 5.079 3 1.213 0.160
1 -11.062 41.503 1 3.732 T-761
. 3 4,780 -2.611 3 0.721 2.681
Erie
2 -1.371 -5.022 4 0.023 2.329
4 4,250 2.751 5 -0.829 0.259
1 -94,327 -0.243 1 -11.270 -2.557
: 2 5.407 -23.493 2 -2.006 -9.090
Superior
3 2.930 10.799 4 2.404 -0.912
4 -8.776 -1.776 3 -0.343 2.487
1 -93.848 84.036 2 -2.364 -14.685
g 2 8.191 -34.842 1 -6.062 3.574
Michigan
5 -8.567 -9.185 3 3.638 1.990
3 9.792 -0.353 5 0.656 2.590
1 -0.415 3.148 1 0.408 2.361
4 0.068 0.276 3 0.514 0.437
Sk ke 3 0.251 0.043 4 20.330  0.319
2 -0.227 0.050 5 0.210 -0.056




Periodic mean fitted (1) and computed (2)
and periodic standard deviation fitted (3)
and computed (4) for monthly net basin sup-
ply of Lake Michigan.

el

2 1 1 1 1 F

2 3 4 5 6 7 8 9 10 Il 12
Periodic mean fitted (1) and computed (2)
and periodic standard deviation fitted (3)
and computed {4 ) for monthly net basin sup-
ply of Lake St. Clair.

(3) Excellent fits of u_ to m_
L

T

and of o_ to

s_ point out that for all practical purposes in this

T

case there is no significant difference whether cp

of Eq. 2-3 has been computed by using m_ and s, in-
stead of the fitted u_ and o and
(4) The use of

remove the major periodicity in the monthly mean NBS,
so that it is only necessary to check whether the auto-
regressive coefficients a, and a, are periodic or

Mo and o_ in Eq. 2-3 should

1
not by testing whether the serial correlation coeffi-
cients T and r, are periodic or not, as well as

whether the skewness coefficient of the Ep s series

2

is periedic or not.

4.3 Dependence model for the Dependent Stochastic Com-
ponents. The computed dependent stochastic components
ap ? by Eq. 2-3 are first tested for periodicities by
determining whether their first three serial

i ffici T and T
tion coefficients rl,r’ 2,1 3,1

not periodic. Figures 2-11 through 2-15 show the mon-
thly values of these coefficients,with 1 = 1,2,...,12,
for e of the five NBS series, together with the

correla-
are or are

means of these 12 monthly values. They are eolumn ser-
ial correlation coefficients,which means they are com-
puted for each month by using the appropriate autoco-
variances for n years of data. The serial correla-
tion coefficients of L. for the Lake St. Clair NBS

series are computed with the nonhomogeneity removed.
Shapes of 15 graphs in Figs. 2-11 through 2-15 show
that--for all practical purposes--no periodicity or
systematic changes in the column serial correlation co-
efficients could be detected. There is neither a par-
allelism of 1-1 . T, o5 and r3 " of Figs.2-11 through

3
2-15 with the m and S. of Figs. 2-6 through 2-10,
respectively for each mean monthly NBS series, nor
there is an opposite pattern, namely that T Ty

and T large or

3,1
vice versa. Taking into account a high sampling vari-

ation of r s Ty _, and T , particularly when the
1,1 2t Sow

series is dependent, so that Ty T's

E)

it can be safely assumed that

are small when m_ and s are

€ are also
P.T
dependent in sequence,

the column serial correlation coefficients are not

periodic. Because the average Ty is greater than

— . ’ —

Ty and this latter is greater than Tz oo for all
<y )

series, the autoregressive models (Markov models) of

time dependence in = are indicated. Besides, T, _
° £ L]
is very close to-zero for all series, so the study of

T T's, with k > 3, was not considered necessary.
L
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Fig. 2-15 Variation of the monthly first (1), second
(2), and third {3) autocorrelation coeffi-

Table 2-4 presents a comparison of rl, T and

2 2
Tz, OF of the first three serial correlation coeffici-

ents of the entire ¢ series, and T, _, T, _, and

By P.T 1,t 2,t

Ty ., OF the averages of column serial correlation co-
Ll

efficients of Figs. 2-11 through 2-15. The correspon-
ding differences between these coefficients are rela-
tively small. Therefore, there is no practical dif-
ference whether the dependence model of the ¢ ser-

3

and T or on the co-

2517 3.t

r, of the entire ¢
3 P:T

series is found to be the second

El

-order stationary process (after u.

ies is based on r, _,
1,t
2 and

Because the ¢

T

efficients T, series

and UT are re-

moved, and after r ,and T are found not

1yx? rz,r 3, T

to be periodic), and because there are no significant
differences between the mean column serial correlation
coefficients and the serial correlation coefficients
of the entire ¢ series, these latter coefficients

T k=1,2,3,

sive coefficients of the inferred order of the autore-
gressive or Markov linear dependence models.

>
are used in estimating the autoregres-

Figures 2-16 through 2-20,
correlograms of the ¢

upper graphs, give
series for the five mean

monthly NBS. They all show a dampening effect with the
absolute value of r, decreasing with an increase of

k
the lag k . All these graphs for their first 5-6val-
ues of T, show the fitted first-order autoregressive
linear model of the type
= 2-10
Ep,r P1 Ep,T-l T zp,r ( )
with
k
P =0 (2-11)
and the second-order autoregressive linear model, as
given by Eq. 2-7, with the correlogram
Pr = %Px.1 * “2Pko2 o G=lng
where and Py are the popu-

Gl’ 0.2, F—‘l, pk—l' Dk_zs

cients of the standardized series e ; for lation parameters estimated by the sample values a;
Lake St. Clair. P
TABLE 2-4
COMPARISON OF FIRST THREE SERIAL CORRELATIONS COEFFICIENTS OF S SERIES
— E
FOR THE FIVE LAKE NET BASIN SUPPLIES: (1) MEANS Ty, e r2 . AND Ty . OF
Ll
COLUMN VALUES, AND (2) Ty Ty, AND r, OF ENTIRE ep = SERIES.
Ontario Erie Superior Michigan St. Clair
?i . 0.273 0.205 0.247 0.140 0.317
T 0.256 0.19%6 0.229 0.134 0.308
?é 2 0.129 0.108 0.133 0.121 0.201
r2 0.134 0.111 0.135 0.130 0.199
?3 . 0.064 -0.001 0.066 0.021 0.110
3
Ty 0.065 -0.001 0.061 0.038 0.108

10



az, Ty rk-l’ rk-z’ and Ty - The visual comparison

of the fitted first-order and second-order linear mo-

dels with the estimated correlograms show that the

second-order model fits better the estimated correlo-

grams. When the independent and second-order station-

ary component gp . is computed either by Eq. 2-10 as
E]

EP,T = tPnT - rlap,r—l (2-13)

for the first-order model, or by Eq. 2-7 as

£ =g - a.e - a.e 2-14
P,T p,T 17p,t-1 27p,t-2 ( )
x
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Fig. 2-16. (a) Correlogram of the standardized series

Ep 3 and expected correlograms for the
El

1st and 2nd order Markov models. (b).

Correlograms of the independent series

Ep . after fitting the Ist (1) and 2nd

(2) order Markov models, Lake Ontario.
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Fig. 2-18. (a) Correlogram of the standardized series

s and expected correlograms for the
1st and 2nd order Markov models. (b).
Correlograms of the independent series
£ , after fitting the 1st (1) and 2nd

P
(2) order Markov models, Lake Superior

for the second-order model, the correlograms of £

P,T
of Eqs. 2-13 and 2-14 are plotted in Figs. 2-16 through
2-20 as the lower graphs. The 95 percent tolerance

limits for the correlograms of independent series show
that about 95 percent of T values are confined

within these tolerance limits for the second-order mo-
del,while this is less true for the first-order model.
In general, the second-order model shows a better fit,
so that it is selected for all five € series of
the monthly mean NBS. P.T

Table 2-5 gives the autoregressive coefficients 2

and a,, computed by Eq. 2-8 in wusing the first two

serial correlation coefficients, r, and r,, alsogiv-
. 1 2
en in Table 2-5.
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Fig. 2-17 (a) Correlogram of the standardized series
G and expected correlograms for the lst

3
and 2nd order Markov models. (b). Correlo-
grams of the independent series £ - after

fitting the 1st (1) and 2nd (2) order Markov
models, Lake Erie.
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Fig. 2-19 (a) Correlogram of the standardized series

Ep,r and expected correlograms for the lst

and 2nd order Markov models. (b). Correlo-
grams of the independent series ¢ . after

»
fitting the 1lst (1) and 2nd (2) order Markov
models, Lake Michigan.
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Fig. 2-20 (a) Correlogram of the standardized series

Ep . and expected correlograms for the lst
’

and 2nd order Markov models, (b) Correlo-
grams of the independent series £ after

fitting the 1st (1) and 2nd (2) order Markov
models, Lake St. Clair.

TABLE 2-5
AUTOREGRESSIVE COEFFICIENTS OF THE SECOND-ORDER LINEAR
MARKOV MODEL, FOR THE Ep T DEPENDENT STOCHASTIC

COMPONENT 2

Serial Correlation Coeff. Autoregressive Coeff.
Lake ! T2 | *2
Ontario 0.256 0.134 0.2375 0.0732
Erie 0.196 0.111 0.1809 0.0756
Superior 0.134 0.130 0.1183 0.1142
Michigan 0.229 0.135 0.2091 0.0870
St. Clair 0.308 0.199 0.2726 0.1150

4.4 Analysis of Skewness Coefficients of
Stochastic Components. Figure 2-21
monthly skewness coefficients,

Independent
represents the
TCs, of the independent

second-order stationary stochastic components, £

p)T
with 12 Li2iea 32, for the five series of the mean
monthly NBS.

The fluctuations of rcs around their

E}

average values seem not to have any clear periodicity,
though this coefficient should fluctuate in arelative-
ly large range because of sampling variation.The large
fluctuation of TCS for Lake St. Clair may be explained

by a relatively nonhomogeneous sample size of this
series.
The entire x_ , € and £ series, neglect-
P,T  P,T P,T

ing in which month of the year they occur, have the
skewness coefficients as given in Table 2-6. The av-
erages of 12 values of monthly TCS of the gp £ series

are also given in Table 2-6. The differences of these
averages and the Cg values of entire Ep . series
2

are relatively small.

12
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Fig. 2-21 Monthly skewness coefficients, C_ of

TS
Ep = series of monthly mean net basin of

Lake Ontario (1) , Lake Erie (2), Lake
Superior (3) , Lake Michigan (4) , and
Lake St. Clalr (5).
TABLE 2-6
SKEWNESS COEFFICIENTS FOR x , € and E SERIES

el i
OF MEAN MONTHLY NET BASIN SUPPLIES FOR FIVE LAKES

C_  for Series Average C_ Average C

s s s

of 12 C_ . v
Lake = = G for E t's for 20simu-
PsT P,T Pt T lated xp %

2

Cntario 1.005 0.776 0.765 0.760 0.882

Erie 0.648 0.785 0.728 0.730 0.563

Superior 0.489 0.341 0.312 0.310 0.496

Michigan 0.597 0.413 0.443 0.450 0.594

St. Clair 1.052 0.461 0.408 0.405

0.817

values of C

The average
TS

are computed for the

purpose of analysis whether Cs is or is not a perio-

dic parameter. Because C_ is concluded not to he

periodic, it can be assumed for all practical
poses that the £ series are also

]
stationary

pur-
approximately

the third-order
variables.

independent  stochastic

The skewness coefficients of the entire

£
= . p.T
series of five mean monthly NBS vary between 0.31.

(Lake Superior) and 0.765 (Lake Ontario). It is dif
ficult to conclude whether these five values of ¢

0.765, 0.728, 0.312, 0.443 and 0.408 are only the sam-
pling variations, or whether they represent the
differences because of different populations.
the five EP

1rue
Becayuze
series are mutually highly correlatad,

their sample skewness coefficients are also mutualty

dependent statistics. It is then not simple to tont



whether all five Cs values are or are not from the

same population,
fied. Namely, Ep &

though this assumption may be.justi-
represents mainly the <Independent

elimatic noise introduced into the NBS series. There
is not a sufficient justification for the general cli-
matic patterns to differ significantly over the five
basins for which the monthly mean NBS are obtained,
though the periodic patterns, the time dependent para-
meters, the general mean (X) and the general standard

deviation (s) change from one basin to another be-
cause of differences in basin factors.
Table 2-6 shows that Cs of gP . series is

smaller for large lake basins (Superior, Michigan) and
larger for small lake basins (Ontario, Erie),while Cs

value of Lake St. Clair can not be compared with the
other four lakes because of built-in nonhomogeneity in
data of the St. Clair mean monthly NBS.

A hypothesis is advanced here, namely that the
method of computing NBS may be partly responsible for
the differences in Cs of the EP . series of the

2

four major lakes. The greater a lake surface the less
accurate is expected to be the mean monthly NBS, espe-
cially their extreme values, because of errors in de-
termining the mean lake levels. Also, the ratio of the
lake to land surfaces of each basin may affect the ex-
treme values of NBS, because of evaporation part in the
water balance producing each value of NBS. The lack

of a small number of extreme high values of Ep . in
NBS of Lakes Superior and Michigan would reduce signi-

ficantly the values of Cs of their EP . series,

3

while the opposite is true for Lakes Ontario
for which a couple of extreme high values in
would increase significantly the CS values

Ep,r

ly conclude whether

and Erie,
NBS series
of their
Therefore, it is difficult to definite-
C
5 >

in Table 2-6 are siginficantly different or not among
themselves.

series.

values of the Ep 5 series

4.5 Fitting of Lognormal Probability Density Function

to Frequency Distributions of Ep = Because of an
3

easy transformation of generated independent standard

(0,1) normal random numbers into the independent ran-

dom numbers which follow a lognormal distribution, the

lognormal probability density function is used for all

Ep % series of the five lake NBS. Because all Ep s
series have negative values, a lognormal probability
density function with three parameters is considered
as the most feasible to use, or
- —eY-m 127762
£(g) = — L . (InlE-gl-m I%/288 (o 4y
(E-g)sn/f?

where g is the lower boundary, n is the mean of

In(g-g) and Sh is the standard deviation of In(£-g).
The estimates of mo» S and g of Eq. 2-15 are given

in Table 2-7. First, values of estimates of parameters
of Eq. 2-15 are given for the Ep 3 series of the four
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major lakes. Figures 2-22 through 2-25 give the fre-
quency density curves of Ep . and the fitted three-
parameter lognormal probability density curves. Be-
cause frequency density curves look much less smooth
than their corresponding cumulative frequency distri-
bution curves, the fit looks excellent for all four

gp 3 variables. Only for Lake Superior is the cri-

tical chi-square value (35.20) approximately equal to
computed chi-square values of a fitted lognormal func-
tion. The other three Ep " variables pass well the

»
chi-square test of the goodness of fit.

f(£)

os}t

o4

03

0.2

olb

L 4
o -3 : !2 3
Fig. 2-22 The fit of three-parameters lognormal prob-
ability density function (smooth solid line)
to the frequency density curve (broken line)
of Ep . variable of monthly mean NBS of
3
Lake Ontario.
163}
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Fig. 2-23 The fit of three-parameters lognormal prob-
ability density function (smooth solid line)
to the frequency density curve (broken line)
of Ep T variable of monthly mean NBS of

Lake Erie.
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Fig. 2-24 The fit of three-parameters lognormal prob- Fig. 2-25
ability density function (smooth solid line)
to the frequency density curve (broken line)
of Ep - variable of monthly mean NBS of
Lake Superior.
TABLE 2-7

I 2 3

The fit of three-parameters lognormal prob-
ability density function (smooth solid line)
to the frequency density curve (broken line)
of gp = variable of monthly mean NBS of

Lake Michigan.

CHARACTERISTICS OF THE FITTED LOGNORMAL DISTRIBUTION FUNCTIONS TO
FREQUENCY DISTRIBUTIONS OF THE INDEPENDENT STOCHASTIC COMPONENT Ep .

Chi-square (95%)

Estimates of Parameters

From
Fitted Tables = ¢
Lake Function (critical) Computed n n g
Ontario  Lognormal-3 35.20 25.840 1.5969 0.1883 -5.0272
Erie Lognormal-3 35.20 24.402 1.7454 0.1655 -5.8079
Superior Lognormal-3 35.20 36.366 2.1801 0.1102 -8.5020
Michigan Lognormal-3 35.20 24.859 1.7787 0.1608 -6.0000
Four
Series
Combined Lognormal-3 35.20 39,195 1.8016 0.1572 -6.1354
St. Clair Lognormal-3 35.20 22.960 1.7791 0.1584 -5.000
f(€)
.51
Because the parameters of Table 2-7 are rela-
tively close, it was feasible to consider all four
EP . series as belonging to the same population. By 041
E]
putting together in one sample all four EP & series,
a new frequency density curve is obtained and plotted 0.3+
in Fig. 2-26 and a lognormal function is fitted. A
visual inspection gives the conclusion of a very good
fit. Estimated parameters are given in Table 2-7.
Though the chi-square test shows the computed value 0.2f
(39.196) to be greater than the critical chi-square
value (35.20), this test may be somewhat in question
because all four EP % series are highly mutually ol
£
correlated. This fit,however, passes well the Smirnov-
Kolmogorov test. The parameters of fitted function €
are very close to those of & _ for the Lake Mich- o—1 L = d = =
igan NBS. Ps
Fig. 2-26 The fit of three-parameters lognormal prob-

Figure 2-27 gives the frequency density curves
for 5p % series of NBS of the four major lakes (the

lines of Figs. 2-22 through 2-25) and the fitted log-

normal-3 probability density function of Fig. 2-26

(fitted to all the gp < variables put together).This
3

14

ability density function (smooth solid line)
to the frequency density curve (broken solid
line) of four EP . series put together in

one sample (of NBS series of Lakes Ontario,
Erie, Superior and Michigan).



visual test also shows a relatively good fit, and the
fluctuations of four frequency density curves around
the fitted probability density curve may be assigned
mainly to sampling variations.

Figure 2-28 gives the fit of lognormal
to the frequency density curve of &

function
series of the

3

f(£)
0.5
0.4
0.3
0.2+
0.1

L

L

Fig. 2-27 The comparison of the fitted three-parameter

lognormal probability density function of

Fig. 2-26 with the four individual frequency
density curves of Figs. 2-26 - 2-29 of gp "

series (NBS series of Lakes Ontario, Erie,
Superior and Michigan].

Lake St. Clair NBS, while Table 2-7, last row, gives
the estimated parameters. The chi-square test is sat-
isfactory, while the three parameters show their esti-
mates to be very close to the parameters of the over-
all fitted lognormal-function to the frequency curves

of four EP,T series put together.
f1€)

0.5

0.4

0.34
o.2-

0.l F

oy et
Fig. 2-28 The fit of three-parameters lognormal prob-

ability density function (smooth solid line)
to the frequency density curve (broken line)
of EP @ variable of monthly mean NSB of

Lake St. Clair.

Chapter 5
GENERATION OF NEW SAMPLES OF MONTHLY MEAN NET BASIN SUPPLIES

The
four

5.1 Generation of Samples for Four Major Lakes.
method of multivariate normal distribution of

random variables is used in generating the new samples.

Because the three-parameter lognormal probability den-
sity function has been shown to fit well both the four
mutually dependent gp _ series, or their joint sample

(all four series put together as a new sample), it is
easy to transform a lognormal fourvariate probability
distribution into a normal fourvariate distribution.
For that purpose the parameters mes Sos and g of

lognormal probability function,fitted to the frequency
density curve of the four combined gp r series, are

used, Furthermore, the transformation of each of the
four ¢ series is made by
B,T
in (B, _-g) -m
_ D, T n ¥
S : ; (2-16)

n

with mos oS, and g given in Table 2-6 for the fit

of four combined series,estimated for use in Eq. 2-15.
The new four Cp < series are approximately normal,

»
uncorrelated in sequence;
standard deviations
respectively,

however, their means and
are mnot exactly zero and unity,
though they are close to these values.

The standardization is then made by
By g8
y, .=, (2-17)

p,T SC

with E and s the mean and the standard deviation

for each of the four ¢ series. The four ¥y

P,T P,T
series are normal, standardized independent components
but mutually dependent (correlated) random variables.
The normalization and standardization of the three-
parameter lognormal independent stochastic components
gp > into the four yp . series enable the use of the

classical normal multivariate method of principal com-
ponents in generating the new samples. The generation
of samples in this report follows the procedure which
is described in the paper by G.K. Young and W.C. Pi-
sano [8].

The standard normal independent yp . components
3

mutually correlated are further transformed into the
new standard normal independent np . components which
L]

are mutually uncorrelated random variables. The n

P,T
series are then the four principal components of  the
yp . normal fourvariate distribution. To obtain np %

1 >



components, the transformation is made by

E)rp’TJi = B(np’,_Ji (2-18)
in which i = 1,2,3,4, (yp T}i represent the four
components of Eq. 2-17 as a 4 x 1 matrix, [np r}i are

the four transformed normal standard components both

serially and mutually uncorrelated, also as a 4 x 1

matrix, and B is a 4 x 4 matrix to be estimated from

Eq. 2-18. The matrix B is obtained by post-multiplying

[ 8] both sides of Eq. 2-18 by the transpose matrix of
)., given as

T .
[YP,T i {Yp,r)i’ and by taking the expected
values of both sides. This leads to

T Ty
B B -E{{yp,,r}- (v, ).}l =M,

iYp,a'a o (213

where BT is the transpose of B and MO is the 1lag-

zero cross-correlation matrix of the four standardnor-

mal vy components, and given in Table 2-8.  The
values of the matrix in Table 2-8 are the pairwise
correlation coefficients between the yp , components.
Then Eq. 2-19 and Table 2-8 permit the estimate of
matrix B  (the lower triangular matrix), which is

given in Table 2-9.

The generation of new samples of mean monthly NBS
for Lakes Ontario, Erie, Superior and Michigan then
follows the procedure,which is the inverse operation of

all above structural analysis and mathematical
description:
(1) The standard, normal and independent random

numbers are first generated for each of the four np .
series. A total of 20 samples, each sample 50 years
long (or 20 x 600 monthly values), of each component

are generated. This represents a total of 4 x 20 x
600 = 48,000 standard normal random numbers divided
into 20 samples each consisting of four series, and
each series containing 600 random numbers. :

TABLE 2-8
CROSS CORRELATION MATRIX (MO} OF FOUR STANDARD NORMAL

INDEPENDENT yp . SERIES OF NBS SERIES OF FOUR LAKES

Lake Ontario Erie Superior Michigan
Ontario 1.000 0.608 0.246 0.541
Erie 0.608 1.000 0.191 0.487
Superior 0.246 0.191 1.000 0.444
Michigan 0.541 0.487 0.444 1.000

(2) Using the matrix B of Table 2-9 and Eq.

2-18, 20 samples each 600 long for each of four series
yp . are then obtained from the above np _ series.

] s T

(3]
each of the four y_ series the corresponding T and

Using Eq. 2-17, the yp . series, and for

S.s the 20 samples (each 600 long) of the four series

of ;P ., are obtained by

2

Loow=0 (2-20)

P,T T P ta
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TABLE 2-9
ESTIMATED B MATRIX (LOWER TRIANGULAR MATRIX) BY EQ.
2-19 IN USING Mo MATRIX OF TABLE 2-8

Lake Ontario Erie Superior Michigan
Ontario 1.000 0.000 0.000 0.000
Erie 0.608 0.794 0.000 0.000
Superior 0.246 0.051 0.968 0.000
Michigan 0.541 0.199 0.510 0.756

(4) The 20 samples of each of the four Cp "

series are then transformed by using Eq. 2-16 into the
20 samples of the four £ series (each 600 values
long) by ?

m + 5_

£ s b oD n 'p,T

2-21
p,T el

with m.s . and g the same values for all 20 samples

of each of the four E series.

(5) Using the second-order autoregressive linear
model, with proper values of autoregressive coeffi-
cients a, and 2, for each of the monthly mean NBS

(Ontario, Erie, Superior and Michigan), the 20 samples
(each 600 long) of each of the four dependent stochas-
tic ¢ series are produced.

s b

sl

(6) Adding the corresponding periodic components
L and o for each of the four series by

=y + 0

xp,? T P T Ep,T E (2-22)

the 20 samples of each of the four series are

E
p)t
transformed into the 20 samples of generated mean mon-
thly net basin supplies of Lakes Ontario, Erie, Super-
ior and Michigan, with each series 600 months long (or
50 years of data in monthly values).

These generated samples of NBS for each of the
four lakes are then printed and reproduced in the form
of punched cards for further use. The size of samples
of 50 years for monthly values is selected by assuming
that the life of any lake regulation project should be
50 years. Any 50-year regulation plan will then pro-
duce 20 results, one for each of the 20 generated sam-
ples, so that a frequency distribution of the 20 regu-
lation values may be determined. The resulting 20-value
frequency curves will then enable statements on proba-
bilities of exceedences of lake levels during a given
time period.

5.2 Analysis of Gemerated Samples for Four Major Lakes
The basic approach in this generation of new samples
is the preservation, in the limits of sampling varia-
tion, of the basic parameters of historic samples. Some
statistics, as sample properties, have very large var-
jation from one sample to another. Attempting to re-
produce all these properties as exactly the same values
as in the historic samples would run against the basic
objective, namely the obtaining of potential  future
samples of relatively sufficient probability to occur.
The future will produce some extremes and new proper-
ties in samples, which have not been experienced inthe
observed data. The approach used here is based on the
concept of producing the new samples which preserve



the most reliable properties and parameters, namely:

the general mean, the general standard deviation, the

periodic monthly averages and standard deviations, the

autoregressive coefficients of selected dependence mo-

del, and the basic parameters of selected probability
- distribution of independent stochastic components.

Tables 2-10 through 2-13 give the threeparameters
of 20 generated samples_of the mean monthly NBS of the
four lakes: the mean x, the standard deviation s

x
and the skewness coefficient xCS . At the top of each

table these three parameters are given for the histo-
ric data. At the bottom of each table the means of the
20 values of each parameter are also given. The best
preservation is in the mean x , the second best is in
the standard deviation s, » and the skewness coeffi-

5
X s

is least well reproduced. This should be expected.
5.3 Generation of New Samples of Monthly Mean NBS of
Lake St. Clair. Because Lake St. Clair is a small lake,
its monthly mean net basin supplies may be more in er-
ror than for other lakes. Already it is shown that
its NBS series is nonhomogeneous, and this nonhomoge-
neity was corrected by adding to the first part of 43

TABLE 2-10
GENERAL STATISTICAL PROPERTIES OF ORIGINAL AND GENERA-
TED MEAN MONTHLY NET BASIN SUPPLY FOR LAKE ONTARIO

years of series data [xp " series) the difference

»
between the means of the second part (26 years) and the
first part (43 years).

It was concluded from the analysis
eventual use of Lake St. Clair data
normal distribution of the Yp =

)

of these data would decrease the reliability of the 20
generated samples of the mean monthly NBS series of the
four major lakes. Therefore, a different procedure is
used to generate the 20 new samples of NBS for Lake St.
Clair.

that in the
in a fivevariate
series, the effect

A linear multiple regression equation is develop-

ed for the independent stochastic component Ep _ of
the NBS of Lake St. Clair to the four series Ep _ of
,L
NBS of Lakes Ontario, Erie, Superior and Michigan, in
the form:
85078 * 2 fonr * 3 fpr t 23 Sgup *

3 PMrcH * Vp,t TREER

In this equation up . 1s a new independent stochastic

3

TABLE 2-11
GENERAL STATISTICAL PROPERTIES OF ORIGINAL AND GENERA-
TED MEAN MONTHLY NET BASIN SUPPLY FOR LAKE ERIE

Mean, x

St. Deviation, s Skewness, C Mean, X St. Deviation, s Skewness, _C
Coeff. *°% Coeff. *°%
Tstoric 5, geo e 1.005 istorls  paey 40.122 0.648
Sample Sample
Generated Samples Generated Samples

1 33.986 33.563 1.005 1 16.898 41.875 0.546
2 34.048 34.055 0.817 2 16.417 40.398 0.652
3 34.306 35.568 1.041 3 17.268 42.357 0.647
4 34.239 34.571 0.957 4 17.157 41,401 0.414
5 33.488 32.043 0.874 5 16.558 39.237 0.721
6 34.016 32.819 0.642 6 17.090 40.467 0.473
7 33.744 32.563 0.820 7 16.557 39.598 0.490
8 34.101 33.639 0.752 8 16.994 39.979 0.541
9 34.065 33.879 0.940 9 17.019 40.175 0.604
10 34.046 33.349 0.867 10 17.060 42.238 0.670
11 33.784 35.095 0.897 11 16.842 40.100 0.628
12 34.225 35.584 1.012 12 16.932 40.849 0.558
13 33.900 34.077 1.024 13 16.994 41.152 0.464
14 34.140 34.359 0.776 14 16.692 39.771 0.469
15 33.967 32.719 0.896 15 16.818 39.750 0.553
16 33.633 32.548 0.912 16 16.924 39.048 0.511
17 33.504 32.441 0.962 17 16.305 38.920 0.614
18 33.616 32,262 0,767 18 16.690 39.460 0.614
19 33.960 33.201 0.789 19 17.027 40.701 0.465
20 33.940 33.911 0.895 20 16.731 39.721 0.631
Mean of Mean of

20 values 33.935 33.512 0.882 20 values 16.849 40.360 0.563

17



TABLE 2-12
GENERAL STATISTICAL PROPERTIES OF ORIGINAL AND GENERA-
TED MEAN MONTHLY NET BASIN SUPPLY FOR LAKE SUPERIOR

TABLE 2-13
GENERAL STATISTICAL PROPERTIES OF ORIGINAL AND GENERA-
TED MEAN MONTHLY NET BASIN SUPPLY FOR LAKE MICHIGAN

Mean, x St. Deviation, s Skewness, C_ Mean, x St. Deviation, s_  Skewness, C
Coeff. Coeff. .
Historic - Historic S
Sample 71.932 82.160 0.489 Sample 109.787 114.599 0.597
Generated Samples Generated Samples
1 71.861 82.534 0.523 1 110.230 117.066 0.694
2 71.429 80.368 0.465 2 109.521 114.763 0.689
3 71.912 83.005 0.482 3 110.371 122.401 0.501
4 72.828 84.521 0.602 4 109.733 111.4594 0.532
5 72.181 82.933 0.466 5 109.683 113.540 0.608
6 71.546 79.440 0.483 6 109.813 110.261 0.499
7 72.481 82.042 0.416 7 110.052 116.044 0.540
8 71.800 31.416 0.496 8 109.872 116.196 0.753
9 717511 80.457 0.419 9 109.912 116.199 0.488
10 72.357 82.478 0.436 10 110.130 115.777 0.546
11 71.560 81.160 0.451 11 109.071 111.406 0.596
12 71.922 83.157 0.484 12 110.149 118.418 0.726
13 72.029 85.011 0.544 13 110.090 118.049 0.622
14 72.406 83.493 0.4053 14 111.083 116.636 0.627
15 72.519 85.262 0.649 15 109.812 116.544 0.630
16 72.343 84.889 0.599 16 109.003 111.569 0.586
17 71.711 78.496 0.431 17 109.692 114.247 0.451
18 71.973 83.051 0.589 18 109.535 L1767 0.499
19 72.212 82.151 0.482 19 109.834 114.081 0.623
20 71.243 80.263 0.507 20 110.564 117.055 0.664
Mean of Mean of
20 values 71.991 82.206 0.496 20 values 109.900 115.176 0.594
component for Lake St. Clair, which is independent of
the independent stochastic components of the other four fle)
lakes, while a_, a,, a,, a, and a, are the multi- 08~
o 1 2 3 4
ple regression coefficients to be estimated from data. _ \
They are obtained from the five &P . series, and they sl
i .
are: a = - 0.00065, al = 0.12580, a2 = 0.16721, az =
- 0.04994 and a, = 0.19315.
4 0.4r
The historic sample variable v is then com-
puted from the five & series and the above coef- -
ficients by using Eq. 2-23. The frequency density ‘
curve of the v variable is plotted in Fig. 2-29
together with the fitted three-parameter lognormal 0.2¢
probability density function of Eq. 2-15,with the fol-
lowing parameters: mn = 2.4821, sn = 0.07197, and g =
- 12.00. The critical value of chi-square, on the 95 o
percent probability level,for this fit is 35.20, while
the computed chi-square is 31.04, showing the goodness
of fit to be sufficient and to be accepted. § | f ! 1 h ¥
-3 -2 - 0 [ 2 3
_The generation of the 20 new samples was as fol- Fig. 2-29 Frequency density curve (broken line) of the
Lows: independent stochastic variable v_ _ of NBS
(1) The 20 samples, each 600 values long, are series of Lake St. Clair, and the fitted

generated for the Vo, 1 series by first generating the

ST
standard, normal and independent random numbers tp =
>
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three-parameter lognormal probability densi-
ty curve (smooth line).



and by transforming them to v

b
e

2.4821 + 0.07197 t

v = -12.00 + e 2

B, (2-24)

(2) Using Eq. 2-23 and the four generated series
gp = {Ontario, Erie, Superior and Michigan) for each
E

of the 20 samples, together with v of each of the

20 samples, the new & series of NBS for Lake St.
Clair are generated. P
(3) Following then the same procedure as it was

done for the other four lakes, namely performing the
transformation of the second-order autoregressive lin-

ear model to the sp . series, and adding periodici-
»

ties to obtain the x series, the 20 new samples of

k]
the mean monthly NBS of Lake St. Clair are produced.

Table 2-14 gives the comparison for Lake St.Clair

of the three parameters (x, Sy and sz) of histor-

ic sample and of the means of these parameters for the
20 generated samples. The same conclusion can be drawn
for the generated mean monthly NBS of this lake as
for the other four lakes.

A much better way of testing how well the estimated
parameters of generated samples reproduce the parameters
estimated from the historic series, 1is by using the
sampling distributions of these estimated parameters.
Then the chi-square test may be used to find how well
the twenty estimates of generated samples conform with
the expected sampling distributions. Difficulties arise
because the determination of exact or good-approxima-
tion distributions of parameter estimates of periodic-
stochastic processes is not simple. Reasons are that
several parameters are periodic, while the stochastic
component is only approximately stationary and is highly
time dependent process.

19

TABLE 2-14
GENERAL STATISTICAL PROPERTIES OF ORIGINAL AND GENERA-
TED MEAN MONTHLY NET BASIN SUPPLY FOR LAKE ST. CLAIR

Mean, x St. Deviation, s, Skewness, C_
Coeff.
gi;;‘l’zic 5.245 5.190 1.052
Generated Samples
1 5.273 5.273 0.877
2 5.273 5.306 0.707
3 5.357 5.308 0.816
4 5.281 5.317 0.731
5 5.215 5.233 0.791
6 5.162 4.967 0.544
7 5.212 5.191 0.943
8 5.256 5.271 0.887
9 5.101 4.980 0.730
10 5.197 5.282 1.070
11 5.275 5.136 0.774
12 5.258 5.413 0.891
13 5.248 5.292 0.935
14 5.288 5.016 0.725
15 5.246 5.238 0.685
16 5.134 5.059 0.757
17 5.318 5.260 0.603
18 5.215 5.16% 0.842
19 5.464 5.557 0.867
20 5.275 5.451 1.155
Mean of
20 values 5.252 5.236 0.817




PART Il
GENERATION OF SAMPLES OF MEAN QUARTER-MONTHLY
NET BASIN SUPPLIES OF LAKES ONTARIO AND ERIE

. This part refers to the structural analysis of
historic data, made available by the U.S. Corps of
Engineers, Chicago ivision, of the mean quarter-monthly
net basin supplies--in further text abbreviated as NBS
--of the Lakes Ontario and Erie, and also the genera-
tion by the experimental (Monte Carlo) method of 20
samples each 50 years long of each of the two mean
quarter-monthly NBS. It contains the following: tests
of homogeneity of the two discrete NBS time series,
structural analysis and mathematical description of
these two series found homogeneous, generation of 20
samples each 50 years long for the two series, and anal-
ysis of the generated samples.

Chapter 6
BASIC APPROACH IN GENERATING SAMPLES

8.1 Tests of Homogeneity of NBS Series. Tests of ho-
mogeneity of mean quarter-monthly NBS series of Lakes
Ontario and Erie are made by using the split-sample
approach and by ascertaining whether differences be-
tween the means of the two unequal subsamples (36 and
33 years) are or are not significantly different from
zero at the 95 percent probability level of signifi-
cance. The t statistics of Eq. 2-1 is also used in
this test, namely now as Eq. 3-1,

1 2
t = (3-1)
’“1 il
SJT o
1 2
As is true for the mean monthly NBS, it is also

found for the mean quarter-monthly NBS series of Lakes
Ontario and Erie, that these two series are homoge-
neous, so that the original data are used for the struc-
tural analysis &nd mathematical description of these
two series.

6.2 Two Procedures for Generating Samples of Mean
Quarter-Monthly Net Basin Supplies. Two procedures are
considered in generating samples of mean quarter-
monthly net basin supplies:

(1) Generating the samples of the monthly NBS
series, and then superimposing the generated samples of
four values for each month, which four values repre-
sent the differences between the mean quarter-monthly
NBS values and the mean monthly NBS value, these lat-
ter means being the averages of the four mean quarter-
monthly NBS values; and

(2) Generating the mean quarter-monthly NBS val-
ues, and then by averaging the four consecutive values
produce the corresponding mean monthly NBS series.

The first approach permits the use of the pre-
viously generated mean monthly NBS series (20 series
each 50 years long) of Lakes Ontario and Erie, and by
superimposing the generated four differences for each
month between the mean quarter-monthly NBS and the
mean monthly NBS values for each month, the new sam-
ples of mean quarter-monthly NBS series are obtained.
This approach assumes simple characteristics of dif-
ferences to be superimposed on the mean monthly NBS
values. However, it was found that the structure of
the four differences, and for each month of the year,

20

is not so simple as to promise their reliable genera-
tion. This difficulty is demonstrated later in this
text, as support for the decision why this first pro-
cedure should not be used and should be replaced by
the second procedure.

The second procedure of directly generating the
mean quarter-monthly NBS samples is based on the fol-
lowing two factors:

(1) The Ontario and Erie Lakes are relatively
small to re-regulate outflows from the upstream lakes;
it can be assumed that they are assigned only to regu-
late their own mean quarter-monthly NBS, or the com-
bined Ontario-Erie supplies. In other words, the out-
flow from the upstream lakes is passing through these
two lakes without being re-regulated.

(2) The generation of the mean quarter-monthly
NBS series and the computation of corresponding mean
monthly NBS series are intended basically to determine
whether the use of mean quarter-monthly series is more
appropriate for the regulation of these two lakes than
the use of the mean monthly NBS series. Therefore, it
is not necessary to use the same monthly series for
this objective as for the monthly series generated for
regulating all five lakes jointly, in preserving the
mutual correlation between the independent stochastic
components of the mean monthly NBS of these five lakes.

The first procedure should be used if the mean
quarter-monthly NBS series of Lakes Ontario and Erie
would be used in conjunction with the mean monthly NBS
series of the other three lakes (Superior, Michigan-
Huron and St. Clair). When the study of selecting the
quarter-monthly or the monthly time interval of NBS
series for the regulations of Lakes Ontario and Erie is
a primary objective, as postulated in this analysis,
then the generation of samples by the second procedure
is appropriate, as a more accurate procedure. Namely,
in generating the mean quarter-monthly NBS series (20
samples each 50 years long) and from them by summing
the four consecutive values, the corresponding mean
monthly NBS series are obtained. Therefore, by select-
ing the second procedure, the problem of the Great
Lakes regulations are divided into two:

(1) The study of the selection of the time in-
terval of a discrete time series, which is mainly a
problem of flow regulation by Lakes Ontario and Erie;
and

(2) The general study of the Great Lakes regula-
tions by using the mean monthly NBS series of all five
lakes.

If the selection of the mean monthly NBS series
for Lakes Ontario and Erie comes out to be a suffi-
ciently accurate alternative, then the use of the mean
monthly NBS series, as generated, may be used for all
lakes. If, however, the comparison of regulations of
Lakes Ontarioand Erie with quarter-monthly and monthly
series shows significant differences in the extreme
levels of these lakes, then these results must be com-
pared and taken into account. Namely, the five lakes
can be studied in their water regulations by using the
monthly series, and then the above differences should
be added in a proper way for results of regulations of
Lakes Ontario and Erie. The third alternative, namely
to use in regulation studies the monthly series for the
three lakes (Superior, Michigan-Huron, and St. Clair),
and the quarter-monthly series for Lakes Ontario and
Erie, though possible, would be less convenient.



First, the second procedure as used in the final
analysis is described in Chapter 7. Here, the proper-
ties of the first procedure are discussed to show the
reason for not using it.

6.3 Use of Differences between Mean Quarter-Monthly
and Mean Monthly Net Basin Supplies to Generate New
Samples of Mean Quarter-Monthly Series. A method, often
suggested or sometimes used in generating new samples
of discrete series with the time intervals less than a
month, is as follows. First, the monthly series is
analyzed and the new samples are generated. From his-
torical data the differences are computed between the
series for the interval or the intervals less than a
month and the corresponding monthly series. These dif-
ferences are then separately analyzed and then their new
samples are generated. By superimposing the generated
differences to generated new samples of monthly series,
the new samples of discrete series with intervals less
than a month are obtained.

This method of superimposing the differences, namely

Mp,t = {xp,T)m - {xp,t]d’ [3'2}
with t =1,2,...,12 and 1 =1,2,...,48, and where
[xp,t)m is the monthly series, and (Xp,t}d the series
with an interval less than a month, has difficulties

which are briefly shown here. Only the mean quarter-
monthly NBS and the mean monthly NBS of the Lake Ontario
are used to demonstrate these difficulties. The NBS
series of the Lake Erie gives the same results as ob-
tained for the NBS series of the Lake Ontario.

of the Ax

]

(x ), beingthe mean quarter-
p.t’d 4

Figure 3-1 gives the 48 means m
series of Eq. 3-2 with

monthly NBS values.
properties of m,

(1) There of
leading to the conclusion that the periodic com-

This figure shows the following

is no evident periodicity in mt
ﬂxp,t’
ponent of the mean monthly NBS, described either by the
computed m  or by the fitted periodic function M

of mean monthly and mean quarter-monthly values, takes
care also of the periodicity.

(2) The wvariance of axp g changes with the
position t, as is shown in Fig. 3-2.
(3) The constraint is imposed that the four val-
ues of Ax of each month must sum to zero, or
p,t+4
Ax o 0, (3-3)
p,t+1 P
with (p,t+1) and (p,t+4) designating the first and

the fourth quarters of each month. If the first three
values of each month followa given structure of depen-
dence, the constraint of Eq. 3-3 requires the fourth
quarter to disrupt the dependence pattern. By using
the fourth quarter value of the previous month, the
first quarter value ﬂxp 257 of the next month may be

s
developed to follow the dependence structure. For a
more complex structure depending on several previous
values, the constraint of Eq. 3-3 introduces still fur-
ther biases.

(4) On the average, every fourth value is either
the peak or the trough in the sequence of m, with an

artificially built-in four -value (monthly) cycle, as
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periodic function, o (smooth line).




shown by Fig. 3-1. This cycle does not exist in nature,
and is basically due to the constraint of Eq. 3-3.

Figure 3-2 gives the 48 standard deviations S, of

the Ax series of Eq. 3-2. This figure shows the

3

following properties of S

(1)  There is a clear 12-month cycle inside the
s_ series, which leads to the conclusion that the
monthly and quarter-monthly series did not take into
account the complete periodicity in the standard devia-
tion.

(2) The artificial cyclicity of one month (four
values of the quarter-monthly series), created by the
constraint of Eq. 3-3, is also present--on the average,
but less clearly evident for s, than for mT--in the

of the &x series of

3

48 standard deviations sT
Fig. 3-2.

(3) For any generationof new samples of the mean
quarter-monthly NBS series, a periodic function should
be fitted to the 48 values of S, of the Ax series.

E

Figure 3-3 gives the correlogram of the ﬁxp .
series of Eq. 3-3 and the first parts of correlograms

of the residual Ep 5 series when the first-order and

£}

second-order linear autoregressive models are fitted to
the axp s series (the remaining partsof correlograms
]

are nearly the same as the computed correlogram ). These
correlograms show the significant negative values for
T through r_. in caseof both the Ax series and

5 P.T
the two Ep . series of the two autoregressive models.
3

It may be safe to postulate that the constraint of Eq.
3-3 has made a significant influence on the AXx

series. The derived Ep z series by the autoregressive
»

21,

models are not the independent stochastic series. The
correlograms of e_ _, (1) in Fig. 3-3, and the cor-

P.T
series, (2) and (3) of Fig. 3-3--

relogramof the £
s
(not shown in Fig. 3-3), are relatively well confined
within the tolerance limitsof the 95 percent probabil-
ity level of an independent series; however, only from
the serial correlation coefficient T, on.
Figure 3-4 gives the skewness coefficients of the

axp . series for the 48 quarter-monthly intervals.
£

This figure shows the following properties:

(1) There is a very large variation in the skew-
ness coefficient along the 48 positions of t1; and

(2) There is no evidence of annual cyclicity in

C_ of the &x series of Eq. 3-2.
5 P-T

For all the reasons discussed, the procedure of
generating the new samples of the mean quarter-monthly
NBS by first generating the new samples of mean monthly
NBS and then by superimposing on them the generated
differences axp " of Eq. 3-2, shouldnot be used until

Ll
further investigations show how to avoid
bias in using the constraint of Eq. 3-3.

the built-in

Chapter 7

STRUCTURAL ANALYSIS AND MATHEMATICAL DESCRIPTION OF
MEAN QUARTER-MONTHLY NET BASIN SUPPLIES OF LAKES ONTARIO
AND ERIE

7.1 The Approach to Structural Analysis. The  four
concepts for structural analysis and mathematical de-
scription of monthly mean NBS as given in Part II are
also used for the analysis of the mean quarter-monthly
NBS series of the two lakes.

95% T.L.
Y
95% T.L.
k
=2 L 1 1 1 1 1 ] 1 i
0 1;'V 10 20 30 40 50 60 70 80
¢
Fig. 3-3 The correlogram (1) of differences between mean quarter-monthlynet basin supply and mean monthly £p,T,

net basin supply of Lake Ontario (solid line), with the correlograms of residuals,

when the first two

autoregressive linear models are applied to above differences: (2) first-order model: (3) second-order

model .
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Fig. 3-4 The 48 skewness coefficients, Cs, for the 48

quarter-monthly intervals of the differences,
between the mean quarter-monthly and the mean
monthly net basin supplies of Lake Ontario.

7.2 Structural Analyeis and Mathematical Description.
The mean values of the mean quarter-monthly NBS series
are: Lake Ontario X = 33.93, Lake Erie x = 16.89,
in units as given by the U.S. Corps of Engineers for
the original historic series.

The Fourier coefficients for the four to six har-
monics of the quarter-monthly means (48 values of mTJ,

found significant, and of six harmonics of quarter-
monthly standard deviations (48 values of sT), found

significant, out of the possible 24 harmonics for the
fit of periodic functions to w = 48 values of m_ and

S by using the functions of the type of Eq. 2-4, are
presented in Table 3-1 for Lakes Ontario and Erie.

The means and variances of the fitted periodic
functions Mo and o, are:

For Lake Ontario: u_= 33.93, Sz(pr) = 784.13
G = 28.65, s°(6.) = 52.60
T 5

For Lake Erie: ET = 16.89, szfur] = 1087.03
o = 40.02, s°(0 ) = 137.59
57 T

Figures 3-5 and 3-6
monthly means m (1)

(2), the computed quarter-monthly standard deviations
s (3), and the fitted periodic standard deviation o,

T
(4), with the first figure referring to the Lake
Ontario, and the second figure to the Lake Erie. These

figures lead to the following conclusions:

give the 48 computed quarter-
the fitted periodic mean o

TABLE 3-1
FOURIER COEFFICIENTS OF FITTED HARMONICS TO MEANS AND STANDARD DEVIATIONS
OF MEAN QUARTER-MONTHLY NET BASIN SUPPLIES OF LAKES ONTARIO AND ERIE

Mean ¥ St. Deviation 0
Lake Haernic Aj Bj Harm?nic Aj Bj
J J
1 -6.72912 35.10671 1 2.80829 7.58073
2 -7.28315 - 8.67878 2 -2.73167 -1.34601
Ontario 3 3.72747 - 7.46954 5 1.82896 2.38898
4 5.29405 3.22931 3 1.20795 -1.43560
5 -2.01569 3.28203 6 -1.59427 0.78324
6 -2.81477 - 0.47560 4 -1.56599 -0.24596
1 -3.59848 43.55893 1 8.18817 9.88355
3 3.65264 - 6.79597 4 4.44852 1.21878
Erie 4 7.35812 - 1.03199 3 2.92948 -0.25768
2 -3.92515 - 4.76208 5 0.97925 2.10916
2 -2.20833 0.13688
6 -1.27545 1.06196

23
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Fig. 3-5 Periodic mean, computed m (1) and fitted
[ (2), and periodic
(3

computed s,
the quarter-monthly net basin
Lake Ontario.
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(1) and fitted
standard deviation,

Fig. 3-6 Periodic mean, computed m

v (2), and periodic

computed s, (3) and fitted o (4), for
the quarter-monthly net basin supplies of
Lake Erie.

(e

a general parallelism but seem not to be proportional
for these two quarter-monthly net basin supplies;

(2) Sampling fluctuations may be the reason for
the nonparallelism between Ho and o but some other

Fitted periodic components v and 9. have

factors may be also responsible (such as combined snow,
rain, evaporation and evapotranspiration effects on the
net basin supplies);

(3) Only 4-6 harmonics out of the 24 possible
harmonics, in case the periodic functions would pass
through every point of m and s, series, are suf-

ficient to fit well the periodic movements in the mean
and the standard deviation; this is a large saving

24

(parsimony) in the number of parameters in comparison
with the use of all m_ and s_ values (96 values);

of Figs. 3-5 and

3-6 is expected to remove the major periodicity in the
mean quarter-monthly NBS series;

(5) Because it
autoregressive coefficients o

(4) The wuse of v and 9.

was found 1in Part II that the

and a, of ¢ of
1 2, P,T
the monthly series of five lakes are not periodic, it
is implicitly concluded that o az,...autoregressive

coefficients of ep % of the mean quarter-monthly NBS

“
series of Lakes Ontario and Erie also are not periodic;
and

(6) Because the skewness coefficient of the inde-
pendent stochastic series Ep ” of the mean monthly

NBS series for five lakes is found in Part II not to
be periodic, it is assumed implicitly that the skewness
coefficient of the Ep + series of the mean quarter-

monthly NBS of Lakes Ontario and Erie also is not
periodic.
The dependence model of the ep .  component,

obtained by Eq. 2-3is found to be well approximated by
the second-order linear autoregressive (Markov linear)

model of Eq. 2-7. The ®p, 1 series is first standard-
ized before Eq. 2-7 is used, as applied to ep ¥ series
in Part II.

The autoregressive coefficients &y and ay of
Eq. 2-8 are estimated by

r, - T.T r, - 2
a ek M2 and a, = 2 1, (3-4)
1 2 2
l-rl I-rl

in using the historic data of the «¢ component of

the mean quarter-monthly NBS series of Lakes Ontario
and Erie. Table 3-2 gives the estimates of the first
three serial correlation coefficients, T Ty and L

with T and T, used in Eq. 3-4 to compute a, and
a. as the estimates of o, and a,.
2 1 2
TABLE 3-2
ESTIMATES OF FIRST THREE SERIAL CORRELATION
COEFFICIENTS OF THE Ep = COMPONENT
Lake ) T, r,
Ontario 0.283 0.098 0.050
Erie 0.353 0.226 0.141

By using a; and a, in Eq. 2-8, the independent

second-order stationary stochastic component Ep = is
obtained. It was also shown that the first-order linear
autoregressive model of dependence, Eq. 2-10, and the

third-order linear autoregressive model, in the form

€ + £ s

PaT
(3-5)
with % estimated by T of Table 3-2, and a1, %ys

Pt Gt Ep,'r-l * i ep,r-Z x o5 EP,T-3



and oy estimated by using T Tys and Ty of Table

3-2 in the appropriate equations connecting al, 32,

and a did produce a less good

3 <)
fit for the dependence of €5

to Ty Tps and T

than the second-order

E]

linear autoregressive model.

Figures 3-7 and 3-8, respectively for the Lake
Ontario and the Lake Erie, give the comparison of the
results of these two models in fitting the time depen-
dence of the ¢ component of the mean quarter-

monthly NBS series. Lines (1) in Figs. 3-7 and 3-8 are
correlograms of Ep T, while the lines (2) and (3)

give correlograms of Ep " of the two models of Eqs.

2-3 and 2-10. The tolerance limits for the variation
of serial correlation coefficients T on the 95 per-

cent tolerance level, are drawn in Figs. 3-7 and 3-8

for the case of independent time series, enabling the

comparison of the two linear models to ascertain which

of them produces the stochastic component gp - which
k]

is best confined within the tolerance interval.

4ror,

For all practical
chastic components EP

purposes, the dependent sto-
of the mean quarter-monthly

H]

NBS series of the Lakes Ontario and Erie follow well

the second-order linear autoregressive model of depen-

dence. This model was used in the form of Eq. 2-7 in

computing the independent stochastic component, gp e
3

The three-parameter lognormal probability density
function of Eq. 2-15 is fitted to the frequency dis-
tributions of the Ep " series of mean quarter-monthly

£l

NBS of Lakes Ontario and Erie,
for the gp -

as was done previously
series of the mean monthly NBS series

»
of five lakes. The main reasons for using the three-
parameter lognormal probability function are:

(1) The £

£}

variable, by its definition and by

the way of its computation, has anegative lower bound-
are, so that only the three-parameter lognormal or the
three-parameter gamma (Pearson Type III) probability
functions, as simple functions with a minimum number of
parameters to estimate, can meet this requirement.

95% T.L.

_'2 1 1 1 1

0 10 20 30 40

components of mean quarter-monthly net basin
series of Eq. 2-10; (2) for the gp .

Fig. 3-7 Correlograms of stochastic
(1) computed for ¢

s T
regressive model; and (3) for the Ep <

50 60 70 80

supplies of Lake Ontario:

series of the fitted first-order auto-

series of the fitted second-order autoregressive model.
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Fig. 3-8 Correlograms of stochastic

(1) computed for ¢

components

regressive model; and (3) for the Ep .

3

of mean quarter-monthly net basin
series of Eq., 2-10; (2) for the gp & series of the fitted first-order auto-

supplies of Lake Erie:

series of the fitted second-order autoregressive model.



(2) To preserve the dependence among the Ep %

series of these lakes, it is easy to transform the
three-parameter lognormal distribution into a normal
distribution in cases when the multivariate normal ap-
proach to generating new samples is used.

(3) The generated independent standard normal
random numbers are easily transformed into the indepen-
dent three-parameter lognormal random numbers, with
given parameters.

The parameters of the three-parameter lognormal
probability function, estimated from historic data on

the gp - series of the mean quarter-monthly NBS series

of Lakes Ontario and Erie, are given in Table 3-3.

TABLE 3-3
PARAMETERS OF THREE-PARAMETER LOGNORMAL PROBABILITY
DISTRIBUTION FUNCTION OF INDEPENDENT STOCHASTIC
COMPONENTS OF MEAN QUARTER-MONTHLY NET BASIN SUPPLIES
OF LAKES ONTARIO AND ERIE

Mean of Standard Deviation Lower
Logarithms of Logarithms Boundary
Lake m s g
n n
Ontario 1.7974 0.1529 -6.1046
Erie 1.6271 0.1766 -5.1695

Figure 3-9 for the Lake Ontario, and Fig. 3-10 for
the Lake Erie, give the frequency density curve, the
fitted three-parameter lognormal probability density
function, the cumulative frequency distribution and
the fitted lognormal probability distribution for the
independent stochastic components Ep . of the mean

quarter-monthly NBS series. The reasons for presenting
the fits of probability functions not only as the den-
sity curves, similar to the method used in Part II, but
also as the cumulative distribution curves are two:

e8]
usually assessed from the cumulative curves
than from the density curves; and

By a visual inspection the goodness of fit is
rather

10 e
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Fig. 3-9 Frequency density curve (1), the fitted

three-parameter lognormal probability demsity
function (2), the cumulative frequency dis-
tribution curve (3) and the fitted three
parameter lognormal distribution function
(4), for the independent stochastic component
of the mean quarter-monthly net basin series
of Lake Ontario.
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Fig. 3-10 Frequency density curve (1), the fitted

three-parameter lognormal probability density
function (2), the cumulative frequency dis-
tribution curve (3) and the fitted three
parameter lognormal distribution function
(4), for the independent stochastic component
of the mean quarter-monthly net basin series
of Lake Erie.

(2)
simple Smirnov-Kolmogorov
goodness of fit.

The cumulative curves enable the use of the
statistic for the test of

The Smirnov-Kolmogorov tests show that the fit is
acceptable because the test statistics are as follows:

0.0238 from the table and 0.0175 from Fig. 3-9 for
the Ep - series of the Lake Ontario, and 0.0243 from
the table and 0.020 from the graph of Fig. 3-10 for
the Ep . series of the Lake Erie. In both cases the

critical values for the 95 percent probability level of
the test statistic are larger than the maximum dif-
ference between the two cumulative distribution curves
of Figs. 3-9 and 3-10. The fits are acceptable, al-
though the test statistics are close tocritical values.

By using the chi-square statistic the results of
the tests are as follows: for the Lake Ontario, the
chi-square from the tables and for the 95 percent prob-
ability level is 35.20, while the computed value is
40.26; and for the Lake Erie the tables give 35.20 while
the computed value is 66.82. Regardless that the
critical values are smaller, Figs. 3-9 and 3-10 show a
relatively acceptable fit of the three-parameter log-
normal probability function to the frequency distribu-
tion curves. It is likely that the three-parameter

lognormal probability function does not give a very
good fit at the extremes, thus making the chi-square
statistic relatively ‘large.

Table 3-4 gives the skewness coefficients C

5

and £ of the
P.T P,T

historic mean quarter-monthly NBS of Lakes Ontario and
Erie. This table shows that the skewness coefficient

decreases from X to € and from e to .
» Pyt PsT B,T

for the three variables, xp o €
LS

When the periodic components e and B are removed

from xp » the dependent stochastic component sp .
E »

When the

has a lower skewness coefficient than xp =

L
second-order linear autoregressive model is used to

compute the Ep = series from the ep = series, the
kS L
skewness coefficient of gp % becomes smaller than the
3

skewness coefficient of &

P,T'



TABLE 3-4
SKEWNESS COEFFICIENTS OF THREE TYPES OF SERIES OF
HISTORIC MEAN QUARTER-MONTHLY NET BASIN SUPPLIES OF THE
LAKES ONTARIO AND ERIE

Skewness Coefficient

Lake X £ £
P,T PsT P,T
Ontario 1.122  0.862 0.768
Erie 1.269 1.031 0.936
Chapter 8

GENERATION OF SAMPLES OF MEAN QUARTER-MONTHLY
NET BASIN SUPPLIES

8.1 Regional Dependance of Two Series.
generation of new samples of the mean quarter-monthly
NBS of Lakes Ontario and Erie, the dependence among
their two independent stochastic components ¢ must

In the

s

be preserved. When there are only two regional random
variables for which new samples must be generated by
preserving the dependence between their series, a simple
regression analysis is sufficient. The new samples of
the independent stochastic component of one variable
may be first generated independently of the other vari-
able. Then the residual term of the regression equa-

tion of the second variable gp s against the first
is generated for computing the stochas-
2

tic independent component of the second variable. The
use of the regression equation produces the new samples
of the independent stochastic component of the second
variable. The first variable is selected to be £

variable §
P,T

ont
of the Lake Ontario, so that its new samples are inde-

pendently generated. The second variable, Eer of the
Lake Erie, is obtained by
Cepdpyn = &% WEanedy o ¥ My - (3-6)

The estimated regression coefficients are: a = (0 and

b = 0.4784, while the correlation coefficient between
E and £ is r = 0.467. With a and b given,
er ont

the ”p % series of Eq. 3-6 is computed from the al-

ready available Eer and gont series.
Figure 3-11 gives the frequency density curve, and
the fitted three-parameter lognormal probability dis-

tribution of np < The critical value of the Smirnov-
E

Kolmogorov test statistic is 0.0243, as obtained from
the table and for the 95 percent probability level,
while it is 0.0180 in Fig. 3-11, showing an acceptable
fit. However, the critical value of the chi-square
statistic for the 95 percent probability level is 35.20,
while the computed value from data is 54.19. Regardless
of the fact that the computed chi-square statistic is
greater than the critical wvalue, Fig. 3-11 shows a
relatively acceptable fit of the lognormal probability
function, at least for the central part of the function
(say from 1-99 percent of probability). The deviations
at extremes are the main reason for the difference in
the two values of the chi-square statistic.
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Fig. 3-11 The frequency density curve (1), the fitted
three-parameter lognormal probability density
function (2), the cumulative frequency dis-
tribution curve (3), and the fitted three-
parameter lognormal probability distribution
function (4), for the Np,r Series of Lake
Erie, computed by Eq. 3-6.
8.2 Generation of New Swmples. The generation of the

new 20 samples, each 50 years long (a total of 20 x 50
x 48 = 48,000 values) of the mean quarter-monthly NBS
has followed the same procedure of generation as was

described in Part II for the mean monthly NBS. First,
two series, each 48,000 values long, of the normal
standard, independent random numbers are generated.

One series is transformed into the lognormal distribu-
tion with the three parameters (mn, B g) of the ¢ .

on
series of the Lake Ontario. The other series is trans-
formed into the lognormal distribution with the three

parameters of the np i series of Eq. 3-6 for the Lake

By using Eq. 3-6 and the two generated series,
and np _, the 48,000 numbers of the ¢ series
L er

Erie.

gont

are obtained. By further applying the corresponding
autoregressive linear model of Eq. 2-7 to both ¢
P.T

series, and them by using Eq. 2-4,

and taking into
account the standardization of ep o the 48,000 numbers
of «x o the mean quarter-monthly NBS series are ob-

tained for Lakes Ontario and Erie. Dividing the 48,000
numbers into 20 consecutive groups, eachof 2400 values

of xp o the 20 new samples, each 50 years long, are
obtained.
8.3 Analysis of Generated Samples. The basic param-

eters: the mean, the standard deviation and the
skewness coefficient of each sample of the x series

P
for the Lake Ontario are given in Table 3-5, and for
the Lake Erie in Table 3-6. The average of means of the
20 samples is 33.92 for the Lake Ontario, the same as
the mean of the historic sample. Similarly, the aver-
age of means of the 20 samples is 16.94 for the Lake
Erie, while the mean of the historic sample is 16.89.
This shows a good preservation of the mean. Tables 3-5
and 3-6 give the average of standard deviations as
40.42 and 52.39, respectively. They cannot be compared
with the mean standard deviations o, of 48 quarter-

monthly because of different definitions of standard
deviations, and built-in differences between these two
parameters. The average skewness coefficients in




Tables 3-5 and 3-6 are 0.912 and 0.660 while the orig-

inal samples of xp . had the corresponding values
1.122 and 1.269. This is a decrease in the skewness
coefficients of generated samples in comparison with

the original data. The relatively smaller value of the
average skewness coefficient for generated samples in
case of the Lake Erie may be the result of the use of
Eq. 3-6. Summing the two lognormal variables, £
and np,w’ produces
skewness

ont

a variable, Eer’ with a lesser

ficien if and were
coefficient than gont n Eer

first transformed to normal variables, and the two
transformed normal variables then correlated. However,
it is considered that the above differences in skewness
coefficients are not crucial. The sampling errors in
the skewness coefficients are very high. The second
reason for the deviations between the skewness coeffi-
cients of the generated samples and the historic sample
likely comes from the fact that the lognormal probabil-
ity function may not be the best function to fit the
extreme tails of frequency distribution curves. The
differences in chi-square statistics, as shown above,
also support this assertion.

TABLE 3-5
PARAMETERS OF 20 GENERATED SAMPLES, EACH 50 YEARS
LONG, OF MEAN QUARTER-MONTHLY NET BASIN SUPPLIES OF

8.4 Conelusion and Recormendation. The following
conclusion and recommendation can be drawn for the use
of the new generated samples of the mean quarter-monthly
NBS of Lakes Ontario and Erie. If the lake regula-
tions--carried out by using both the new generated sam-
ples of the mean quarter-monthly and the corresponding
mean monthly NBS series, as analyzed in Part II and as
generated--show substantial differences in extremes of
lake levels, with the somewhat larger probabilities for
a high lake level to be exceededor for a low lake level
not to be exceeded in the use of the mean quarter-
monthly series than in the use of the mean monthly
series, a refinement of generating technique then would
be warranted. Namely, the fit of probability density

functions to the Ep " series, or to the ”p . series
of the Lake Erie, as defined above, should be refined.
It may be shownby additional attempts, that some other
functions may fit better the tails of frequency distri-

butions of £ and n than does the three-param-
P,T P,T

eter lognormal function. Repeating the regulation
procedures with a new set of 20 generated samples of
the quarter-monthly and the monthly NBS series by this
refined technique, the differences in properties of
extreme levels of the two lakes, in using the quarter-
monthly and the monthly NBS series, may then be more
accurately determined.

TABLE 3-6
PARAMETERS OF 20 GENERATED SAMPLES, EACH 50 YEARS
LONG, OF MEAN QUARTER-MONTHLY NET BASIN SUPPLIES OF

LAKE ONTARIO LAKE ERIE
Standard Skewness Standard Skewness
Sample Mean Deviation Coefficient Sample Mean Deviation Coefficient

1 33.90588 40.43557 .89378 1 16.91320 52.59721 .58602
2 33.51754 38.36393 .94793 2 16.82120 52.07000 .64685
3 34.07477 41.12573 1.00206 3 17.08726 52.98467 . 66651
4 33.71370 39.98800 . 84853 4 16.58983 52.21053 .69666
5 34.20152 41.13454 .97354 5 17.31193 53.81653 .73299
6 33.96379 40.37421 .91199 6 16.95504 53.04667 . 71606
7 33.72621 40.48558 .93618 7 17.14300 52.87276 .64686
8 33.78266 40.40658 .81592 8 16.57884 51.59427 . 70001
9 34.21029 42.04338 .97776 9 16.95450 51.66996 .65689
10 33.34848 38.43994 .86102 10 16.85595 50.65117 .49309
11 33.94721 41.63354 .89228 11 16.99510 53.66775 .62276
12 34.03116 39.31787 .76881 12 16.85785 51.65828 .63080
13 33.94093 40.94372 1.02243 13 17.03101 52.51445 .66985
14 34.00472 40.35714 .85794 14 16.85268 51.98974 .66893
15 33.95356 40.76450 .94466 15 17.08246 52.94295 .68316
16 34.14399 40.96988 .94850 16 17.28940 52.11988 .69848
17 33.89417 39.72068 . 80185 17 16.75696 51.76269 . 70377
18 33.91233 40.31172 .84379 18 16.62019 52.30916 .64904
19 34.17697 41.05916 .97847 19 17.12422 52.45803 .71294
20 33.90994 40.63312 1.00667 20 17.06847 52.87705 .62630
Average 33.917491 40.425439 .911706 Average 16.944455 52.390688 .660398
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PART IV
GENERATION OF SAMPLES OF MONTHLY WINTER FLOW RETARDATIONS
IN THE CONNECTING CHANNELS OF GREAT LAKES

This part refers to the structural analysis of
historic data, made available by the U.S. Corps of
Engineers, Chicago Division, of the monthly winter flow
retardations in the connecting channels of the Great
Lakes (the St. Mary's River, the St. Clair-Detroit
River, the Niagara River, and the St. Lawrence River),
and the generation by the experimental (Monte Carlo)
method of 20 samples each 50 years long of each of the
four series of water flow retardations. It contains
the following: tests of homogeneity in the mean and
standard deviation of the four series, removing trends
in the mean and the standard deviation when they are
found to be nonhomogeneous, structural analysis and
mathematical description of the four series found or
made homogeneous, generation of 20 samples each 50 years
long for the four flow retardation series, and analysis
of generated samples.

Chapter 9
CORRECTIONS FOR NONHOMOGENEITY

9.1 Tests of Homogeneity of Winter Flow Retardation
Series. Tests of homogeneity are made inmonthly series
of winter flow retardation in the conmecting channels
of the Great Lakes. The names of channels in this text
are used interchangeably as: the 5t. Mary's River or
Michigan-Huron, the St. Clair-Detroit Rivers or St.
Clair, the Niagara River or Ontario, and the St. Law-
rence River or St. Louis. The tests are made by using
the split-sample approach and by ascertaining whether
differences between the means of the two subsamples are
or are not significantly different from zero at the 95
percent probability 1level of significance. The t-sta-
tistic of Eq. 2-1 is used.

Figure 4-1 presents the series of the total annual
retardations X (obtained by summing all monthly val-
ues of winter retardation in any given year) for the
connecting channel of the St. Mary's River; it shows a
clear downward trend. The split-sample test shows the
difference between the means of two subsample to be
significantly different from zero. Also, the test shows
that the slope of the trend line is significantly dif-
ferent from zero on the 95 percent probability level.
Similarly, Fig. 4-2 gives the change with time for every
consecutive two-year period of the standard deviation
of monthly winter retardation in the St. Mary's River.
This series of S, values is obtained by finding the

mean of nonzero values of monthly series for each two
years in sequence, and then the standard deviation is
computed. Two years are used instead of one year, be-
cause any year has only 4-5 nonzero values. The s,

series is, therefore, a measure whether there is also
a trend in the standard deviation, when it is found to
be present in the mean of annual retardation series.
Figure 4-2, and tests, particularly that the trend slope
is significantly different from zero, confirm that the
trend is also significant in the standard deviation for
the connecting channel of the St. Mary's River.

4-3 and 4-4 show the same graphs as Figs.
only in this case the winter retardations
connecting channel of St. Clair-Detroit
Rivers. The linear trends in both series, the annual
retardation series and the series of consecutive two-
year standard deviation of monthly winter retardations,

Figures
4-1 and 4-2,
are for the
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have the slopes which are significantly different from
zeros on the 95 percent probability level of significance.
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4-1 Series of annual retardations in the con-
necting channel, St. Mary's River (Michigan-
Huron), with fitted downward significant lin-

ear trend.

Fig.
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Fig. 4-2 Series of consecutive values of two-year

standard deviation of monthly winter retar-
dations in the lakes connecting channel of
St. Mary's River (Michigan-Huron).
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Fig. 4-3 Series of annual retardations R in the con-

necting channel, St. Clair-Detroit Rivers,
with fitted downward significant linear trend.
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values

of consecutive
standard deviation of monthly winter retar-

Fig. 4-4 Series of two-year

dations in the lakes connecting channel of
St. Clair-Detroit Rivers.

Figures 4-5 through 4-8 give the same series as
Figs. 4-1 and 4-2 except that they refer, respectively,
to the Niagara River (Ontario) and the S5t. Lawrence
River (St. Louis). These four figures do not show the
significant trends in the series analyzed.

®1

O 1 L 1 L 1 1 * i
o] 10 20 30 40 50 60 70
Fig. 4-5 Series of annual retardations in the con-

:ecting channel of the Niagara River (Ontario,
in this paper), with no significant trend
in the series.

Two cases out of four show the significant down-
ward trends in monthly series of winter flow retarda-
tions in connecting channels of Great Lakes. The most
attractive explanation--without a special study of this
phenomenon--is the heat release by man-made uses, ei-
ther into the air or into the water, or both. The anal-
ysis of factors which have produced a steady decrease
in flow retardations may show a different cause (say
the decrease of the average water levels during the
winter by the way lakes were operated), or the combi-
nation of several factors. This analysis is outside
the scope of this text.
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Fig. 4-6 Series of consecutive values of two-year
standard deviation of monthly winter retar-
dations in the Niagara River (Ontario, in
this paper), with no significant trend,
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Fig. 4-7 Series of annual retardations in the con-
necting channel of the St. Lawrence River (St.
Louis, in this paper), with no significant
trend in the series.
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Fig. 4-8 Series of consecutive values of two-year

standard deviation of monthly winter retar-
dations in the St. Lawrence River (St. Louis,
in this paper), with no significant trend.

9.2 Removing Trends in Mean and Standard Deviation of
Winter Flow Retardation Series. The generation of new
samples of monthly series of winter flow retardation
of the St. Mary's and the St. Clair-Detroit Rivers by
using the properties of historic data would over-esti-
mate the future winter flow retardations. The trend in
a hydrologic time series must be removed if it is not
expected either to be repeated, or if it will not occur
at all in the future. Three practical solutions seem



attractive in this case:

(1) To extrapolate the trend into the future, and
when it hits the zero value, to consider that there is
not a winter flow retardation from that time on;

(2) To neglect completely the future winter flow
retardations, particularly for the connecting channels
of the St. Clair-Detroit Rivers; and

(3) To remove the trend from both series (from
the mean of the annual series and from the series of
the two-year standard deviation), and to use the general
mean and the standard deviation of historic monthly
series of winter flow retardation of the last 20 years
or so, as the expected values of these two parameters
in the future samples of 50 years.

"This third alternative has been suggested to the
U.S. Corps of Engineers, Chicago Division. It is used
in the following procedure of removing trends and making
the time series homogeneous.

Only the linear trends are used, because any non-
linear trend though easy to fit may have small justifi-
cation, and because the difference between the non-
linear and linear trends may be partly or fully the
result of sampling variations.

The trend in the monthly means of the St. Mary's
River is

X = 27.049 - 0.234 t , (4-1)
with the correlation

being T = -0.474.

coefficient

Similarly the trend in the two-year standard devi-
ation series is

52 = 25.878 - 0.308 t , (4-2)
with the correlation coefficient between s, and t
being r = -0.555. For this case, and as an example,
the computed t-statisticof Eq. 2-1is t = 5.458, while

the t-critical value for the nonsignificant difference
of the two standard deviations is L 2.000.

The general mean and the general standard devia-
tion of the monthly series of winter flow retardations
of the St. Mary's River for the historic period are:
X = 19.108 and s = 21.156. The last 20 years of data
give these parameters as: X = 12.741 and s = 15.401
in the units of original data, supplied by U.S. Corps
of Engineers, Chicago Division. The removal of the two
trends and reducing the historic series to the new mean
of 11.840 and the standard deviation at 16.196 is by

X, - 27.049 + 0.234 t
17 25878 - 0.308 t

x x 15.401 + 12.741 ,  (4-3)

in which X, is the original historic series, t is

the position of each month with winter flow retardation,
and x; is the new homogeneous historic series, reduced

to the mean and standard deviation of the last 20 years
of historic data.

Figures 4-9 and 4-10 give the annual series of
winter flow retardation and the series of two-year stan-
dard deviation, of the new x: monthly series of winter

flow retardations of Eq. 4-3, after the two trends are
removed and the mean and standard deviation of the last
20 years added.

between X and t.
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Fig. 4-9 Series of annual flow retardation for the new
homogeneous historic monthly series of winter
retardations of St. Mary's River (trends re-
moved) .
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Fig. 4-10 Series of two-year standard deviation for
the new homogeneous historic monthly values
of winter retardations of St. Mary's River
(trends removed).

Similarly as for the St. Mary's River, the trends
in the monthly series of winter flow retardations of
the St. Clair-Detroit Rivers are removed and the homo-
geneous series is adjusted to have the mean and stan-
dard deviation of the last 20 years of historic data.
The trend in the mean is

x = 10.849 - 0.154 t , (4-4)
with r = -0.493, and the trend in the standard devia-
tion, s,, is

2

S, = 12.172 - 0.329 t , (4-5)

with 1 = -0.566. The general mean and standard devi-

X = 5.600 and s =
values for the last 20 years are:

ation for the historic series are:
9.451, while these

X =2.001 and s = 3.281. Then the new homogeneous
series is

X, - 10.849 + 0.154 t
XX =313 - 0359 ¢t x 3.281 + 2.001 , (4-6)

or it is homogeneous with the trends removed and with
the basic parameters (X,s) of the last 20 years of his-
toric data. Figures 4-11 and 4-12 give the same graphs
for St. Clair-Detroit Rivers as Figs. 4-9and 4-10 give
for St. Mary's River.

;, of winter flow retar-

dation for the St. Mary's and St. Clair-Detroit Rivers,
as homogeneous, are used with the two historic monthly
series, X, of winter flow retardation of the Niagara

The two monthly series, x

River and the St. Lawrence River, in the basic struc-
tural analysis, mathematical description, and the gen-
eration of new samples of winter flow retardatioms.
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Fig. 4-11 Series of annual flow retardation for the

new homogeneous historic monthly series of
winter retardations of St. Clair-Detroit
Rivers (trends removed).
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Fig. 4-12 Series of two-year standard deviation for
the new homogeneous historic monthly values
of winter retardations of St. Clair-Detroit
Rivers (trends removed).

Chapter 10

STRUCTURAL ANALYSIS AND MATHEMATICAL DESCRIPTION OF
MONTHLY SERIES OF WINTER FLOW RETARDATION FOR FOUR CON-
NECTING CHANNELS OF GREAT LAKES

10.1 Analysis and Description. The structural analysis
and mathematical description of the monthly series of
winter flow retardations follow approximately the same
procedure as was used for the monthly and quarter-month-
ly NBS series of Great Lakes, as described in Parts II
and III. The only major modification is that the month-
ly series of winter flow retardations have only either
four or five winter months with the mean flow retarda-
tions greater than zero, the remaining eight or seven
months being zero values. These series are intermittent
processes, with a run of nonzero mean values for 4-5
winter months, and a run of zero values for the next
8-7 months. Only the Niagara River has four nonzero
mean monthly values, though in some of the years there
are zero flow retardations even during these four months.
The_other three monthly series (St. Mary's River, St.
C%azr-Detroit Rivers, St. Lawrence River) have five
winter months with nonzero mean flow retardatioms.

Figures 4-13 and 4-14 give the mean monthly winter
flow retardations, m_, and the monthly standard devia-

tions, 5. for five months of nonzero mean monthly val-

ues for all the connecting channels except the Niagara
River, for which only the four winter months have non-
zero mean monthly flow retardations, and respectively

for the Lakes Michigan-Huron, St. Clair, Ontario, and
St. Louis.

10.8 Periodicity in Parameters. The m_ and s

ues of Figs. 4-13 and 4-14 may be used directly in a
nonparametric method to obtain the corresponding e

series by

val-
T
>

(4-7)
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However, in order to be consistent with the previous
work on the analysisof the mean monthly and mean quar-
ter-monthly NBS series, the periodic functions Mo and

g_ are series. Because of

T
only 4 or 5 values of mT

fitted to m_ and s
T T

and S, available for any

one individual year, only the two harmonics are suffi-
cient in fitting M, and T, to mT and S, This

is equivalent of the periodic functions passing through
all points m, and A In other words, if Eq. 4-7

computer program in fitting
to S, this is equivalent to using

is used with the standard
H to m and o
T e T

Eq. 4-7 from the beginning.

St
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Fig. 4-13 Means, m_ (1) and standard deviation s

+
(2) for the St. Mary's River (Michigan-Hu-
ron), and means, m_ (3) and standard devi-

ation S, (4) for the St. Louis River, of

the monthly series of winter flow retarda-
tions for these two comnecting channels.

10,3 Time Dependence of Stochastie Compeonent. The
serial correlation coefficients, Tis Ty and Ty of

the four e
P,T

E
in Table 4-1. Because of intermittent series, the com-
putation of these three coefficients did use the pairs
of the e values only inside eachuninterrupted run

series, obtained by Eq. 4-7 are given

3

of nonzero values of ¢ .
P,T
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Means, m_ (1) and standard deviation s,
(2) for Niagara River (Ontario) and means,

m (3) and standard deviation s. (4) for

st. Clair-Detroit Rivers (St. Clair), of the
monthly series of winter flow retardations
for these two connecting channels.

TABLE 4-1
FIRST THREE SERIAL CORRELATION COEFFICIENTS OF THE
Ep . SERIES OF FOUR MONTHLY WINTER FLOW RETARDATION

SERIES OF CONNECTING CHANNELS OF GREAT LAKES

Serial Correlation Coefficients

Connecting

Channel rl r2 I3
St. Mary's

River 0.286 0.085 0.030
St. Clair-

Detroit

Rivers 0.448 0.112 0.043
Niagara

River 0.374 -0.009 -0.073
St. Lawrence

River 0.229 0.137 0.064

The first-order and the second-order autoregressive
linear models are tested for the Sp 5 series of the
]

monthly winter flow retardation, using either Ty of
Table 4-1 and Eq. 2-10 with Py estimated by Ty, OF
r, and T, of Table 4-1 and Eq. 2-7 with @y and o,
of Eq. 2-8 estimated by replacing p, and Py by T

and 1,. Both the first-order and the second-order

2

models are used in order to compute the EP z series,
E

for each of the four monthly winter flow retardation
series. The test whether the first-order or the second-
order model fits better cannot be performed by using a

33

long correlogram, because the truncated series has the
correlogram also truncated, and makes it unfeasible to
study the correlogram with more than four Ty values,

with k = 1,2, 3, and 4. The correlograms of the Ep 4

series, computed both by using the Markov I (first-or-
der autoregressive) model and the Markov II (second-
order autoregressive) model, for the four monthly win-
ter flow retardations show that only Ty of the EP :

»
Mary's River

No other rl, r2, or

3 value exceeds the tolerance limitson the 95 percent

series of both Models I and II of the St.
is outside the tolerance limits.

T

probability level of significance. The first-order lin-
ear autoregressive model is selected, and the four EP

»
series are computed byusing it, because no substantial
improvement was shown in correlograms of the £ se-

>
ries when computed by using the second-order model in
comparison with the computation by the first-order model.

10.4 Probability Distribution of Independent Stochastic
Component. The next step in the analysis of monthly
winter flow retardation series was the fit of probabil-
ity density functions to the four independent stochastic
components EP . of these series, computed by the

£}

first-order autoregressive model from the Ep
or by Eq. 2-13.

series,
»

Table 4-2 gives the estimated parameters of the
three probability functions: normal, three-parameter
lognormal, and three-parameter gamma. The alpha (shape)
parameter of the three-parameter gamma function of
£, in the case of the first three connecting chan-

Pt
nels, is very high (a = 295, 326, and 302). Therefore,

these values show that the distribution is normal. There

was no point in testing the goodness of fit of the gam-
ma function. The tests for the fit of the normal and
the three-parameter lognormal functions are then carried
out by using the chi-square statistic. For these two
probability functions the fits to the Ep < series in
H]
the cases of the first three connecting channels are
not especially good, because the computed chi-squares
are much greater than the critical chi-square values
on the 95 percent probability level of significance,
with the computed chi-squares ranging from 142 through
248, while the critical chi-squares values are either
22.36 or 21.00 for these two functioms. The fourth
case, the St. Lawrence River, shows an acceptable fit,
particularly for the three-parameter lognormal function.

Figure 4-15 shows the cumulative frequency distri-
bution curves and the fitted normal probability distri-
bution functions for the Ep 2 series of monthly winter

flow retardations, with parameters given in Table 4-2.
The fits are relatively acceptable by a visual inspec-
tion. The major reason for the large deviations of
computed and critical chi-square values are not the
skewness factors, but rather the high frequency densi-
ties in the center of distributions. As an example,
Fig. 4-16 shows the absolute class frequencies for the
13 unequal class intervals, but with these intervals
having the same probability of 1/13 of the normal prob-
ability distribution function, in case of the gp .
»
series of the Niagara River. For the normal function
to be a very good fit, the 13 absolute class frequency

of the Ep g series should also be very close, fluc-

tuating about the average of the 13 values. The central
class interval for the case of gp " for the Niagara

-0.40 to £ =
large as the

»
River shows a particular spike at £ =
-0.50, which is nearly four times as



TABLE 4-2
PARAMETERS IN FITTING PROBABILITY FUNCTIONS TO FREQUENCY DISTRIBUTIONS OF THE ﬂp = SERIES OF MONTHLY WINTER

FLOW RETARDATIONS IN THE CONNECTING CHANNELS OF GREAT LAKES

St. Mary's St. Clair-Detroit Niagara St. Lawrence
Function Parameter River Rivers River River
Mean 0.000 0.000 0.000 0.000
Normal Standard Deviation 0.965 0.914 6.944 0.977
Chi-square critical 22.362 22.362 22.362 22.362
Chi-square computed 206.851 248.785 232.179 23.352
Lower Bound -15.997 -15.997 -4.212 -6.393
Three- Mean of Logarithms 2.770 . 2.771 1.415 1.844
Parameter St. Dev. of Logs. 0.057 0.055 ” 0.211 0.152
Lognormal Chi-square critical 21.000 21.000 21.000 21.000
Chi-square computed 176.379 141.704 213.313 13.227
Three- Lower Bound -15.988 -15.988 -4.529
Parameter Alpha (shape) 294.895 325.500 301.581 21.494
Gamma Beta (scale) 0.054 0.049 0.053 0.211
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Fig. 4-15 Fitting the normal probability distribution function (1) to the cumulative frequency distribution
(2) of the independent stochastic component, Ep < of the monthly winter flow retardation series of

3
the four comnecting channels: (I) St. Mary's River; (II) St. Clair-Detroit Rivers; (III) Niagara
River, and (IV) St. Louis River.
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Absolute frequencies, Ng’ for the thirteen

class intervals of equal probabilities fol-

lowing the normal distribution function, of

the independent stochastic component, Ep -
»

of monthly winter flow retardations of Ni-
agara River (Ontario).
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average of the other 12 values. Similarly, in other cases
the absolute frequencies for the unequal class intervals
of equal probabilities of the normal function, used in

computing the chi-square statistic of £ 7 show large
»

variations. As for the normal function, the results of
fits of the three-parameter lognormal function are shown
in Fig. 4-17, demonstrating to be close to those of
the normal function, though the lognormal function shows
better fits than the normal function.

The dilemma is then either to continue to search
for the new probability distribution functions, such as
the normal function transformed by using the orthogonal

polynomials, which would fit better the four Ep 5

series than the normal or the three-parameter lognormal
function, or to accept the fitsby this latter function.
The reasons for accepting the fits by the lognormal
function are:

(1) Significant errors must exist in the estimates
of monthly winter flow retardations, so that a high
level of goodness of fit cannot be justified.

(2) The goodness of fit is of the same order for
many currently used hydrologic frequency distributions.

{3) Uncertainties in future trends of ice effects
on flow retardations in the connecting channels of the
Great Lakes--as demonstrated by the trends in the mean
and the standard deviation of monthly winter flow re-
tardations of the St. Mary's River and the St. Clair-
Detroit Rivers--do not justify a close reproduction of
the four historic &£ . series in the generation of

5
new samples of monthly winter flow retardations.

In conclusion, the three-parameter lognormal dis-
tribution function is used for the four &£ series,

s T
with parameters as estimated and given in Table 4-2,
for monthly winter flow retardations in the connecting
channels of the Great Lakes.

1 .
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Fig. 4-17 Fitting the three-parameter lognormal probability distribution function (1) to the cumulative frequen-

cy distribution (2) of the independent stochastic component, Ep .

of the monthly winter flow retarda-

tion series of the four connecting channels: (I) St. Mary's River; (II) St. Clair-Detroit Rivers;
(ITI) Niagara River, and (IV) St. Louis River.
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Chapter 11
GENERATION OF NEW SAMPLES

11.1 Basic Approachin Gemerating New Samples of Winter
Flow Retardations. The basic concept in taking into
account the monthly winter flow retardations in the
connecting channels of the Great Lakes and in gener-
ating their new samples is to use the historic series
of flow retardations in these channels. These series
are then structurally analyzed and mathematically de-
scribed to produce the four mutually dependent but se-

quentially independent stochastic components Ep . of
»
the series of the four connecting channels. In this

concept the basic hypotheses are as follows:

(1) That the sequentially independent stochastic

components Ep & of winter flow retardation series of
,

the four channels are mutually dependent random vari-
ables, similarly as they were sequentially independent
stochastic components but mutually dependent random
variables for the five mean monthly NBS series of the
Great Lakes.

(2) That the sequentially independent stochastic
components of monthly winter flow retardations are not
dependent on the sequentially independent stochastic
components of the mean monthly NBS series of adjacent
lakes; and

(3) That the winter flow retardation series in
generating new samples are not dependent on the water
levels of the Great Lakes, in other words, on regulation
patterns.

The approach used in this Part IV in generating
the new 20 samples, each 50 years long, of the monthly
series of winter flow retardations has followed the above
three hypotheses. The first hypothesis is justified and
is easy to prove, because the general freezing conditions
usually occur all over the Great Lakes region, producing
the mutually dependent random variables of winter flow
retardations, in general, and of their independent sto-
chastic components, in particular. The second hypothesis
might not be fulfilled rigorously, for the simple reason
that large winter freezing conditions which produce
icing and flow retardations, may be associated with
very low NBS values, with a negative correlation coef-
ficient. However, it might come out that the dependence
between the sequentially independent stochastic compo-
nents of these two sets of random variables are rela-
tively small to be of a practical importance. These
eventual connections of negative correlation are not
tested. The third hypothesis may be crucial in as-
sessing how good the use of the generated new samples
of winter flow retardation series may be. It is safe
to assume that the winter flow retardations are a func-
tion also of the total discharge which would flow through
channels without ice. Therefore, the flow retardation
series in a connecting channel must depend on the levels
of upstream and downstream lakes, if the upstream lakes

are not controlled by regulating structures. This hy-
pothesis was not tested.
If it is found that the independent stochastic

components of winter flow retardation depend on: (1)
the freezing conditions (climatic random variables),
(2) the net basin supplies, and (3) the lake levels,
then the generation of new samples of winter flow re-
tardations should follow a different approach. There-
fore, the results of Part IV in the generation of new
samples of monthly winter flow retardations are based
on the above three fundamental hypotheses, and cannot
be better than the hypotheses.
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11.2 CGeneration of New Samples,

dent stochastic components gp .
dations of the four connecting channels of the Great
Lakes are mutually dependent random variables, the gen-
eration of new samples must preserve the regional de-
pendence in Ep . Table 4-3 gives the correlation

Because the indepen-
of winter flow retar-

E
matrix in the form of correlation coefficients. This
table shows that the cross correlation coefficients at
the lag zero between the pairs of the gp . series are

E]
relatively small, ranging from 0.072 through 0.220.

The lag-one cross correlation coefficients are still
smaller.
TABLE 4-3
CORRELATION MATRIX BETWEEN gp . SERIES OF WINTER FLOW
RETARDATIONS
5t. Clair-
Connecting St.Mary's Detroit Niagara St. Lawrence
Channel River Rivers River River
St. Mary's
River 1.000 0.072 0.220 0.220
St. Clair-
Detroit
Rivers 0.072 1.000 0.133 0.160
Niagara
River 0.220 0.133 1.000 0.179
5t. Lawrence
River 0.220 0.160 0.179 1.000

skewness coeffi-
relatively small, especially for

absolute values of
are

Because the
cients of £
Pt

the first three connecting channels of Table 4-3, it

is not necessary to transform the three-parameter log-

normal functions of gp " into normal, in order to use
E

the simple multinormal distribution approach in gener-
ating new samples.

The same procedure and the same equations are used
in the generation of new samples of winter flow retar-
dations as they were used for generating the new samples
of mean monthly and mean quarter-monthly net basin sup-
ply series. The differences, however, are as follows:

(1) Whenever a monthly value of winter flow re-
tardation comes out to be negative, it is replaced by
zero value, because by definition the flow retardation
cannot be negative, in contrast to the NBS values which
can be negative. The zero values of winter flow retar-
dations in months for which the mean winter flow retar-
dation is greater than zero are also a common occurrence
in the historic series.

(2) Because of intermittency of winter flow re-
tardations, the new generated samples do not carry the
dependence between the values of one year to values of
the next year.

11.3 Analysis of Generated Samples. The basic param-
eters of the historic series of winter flow retardations
for the four connecting channels of the Great Lakes are
given in Table 4-4. Table 4-5 gives the means and the
standard deviations of the generated new samples of the
independent stochastic components Ep 5 for the four

»



TABLE 4-4
BASIC PARAMETERS OF HISTORIC SAMPLES OF WINTER FLOW RETARDATIONS OF FOUR CONNECTING CHANNELS OF GREAT LAKES

St. Clair-
Parameters St. Mary's Detroit Niagara St. Lawrence
River Rivers River River
M ;
o £ . Revdus 0.000 0.000 0.000 0.000
Standard Deviation
0%, By S08008 0.967 0.916 0.966 0.979
Periodicity in the 1.174 2.126 0.493 11.403
Monthly Means of Winter 21755 5.496 6080 32,030
Flow iotardation 28.645 2.645 9,030 25.419
Saitas 10.524 1.230 4.791 8.134
1.606 0.514 - 4,940
g oEE 0% i 3.499 3.545 1.386 9.081
e 15.684 4.212 5.404 12.262
St = : 13.647 3.468 5.737 7.913
Deviation of Winter
Piow Retanlatton Series 10.136 2,194 3.578 5.030
7.310 1.393 2 4.546
TABLE 4-5

BASIC PARAMETERS OF gp E COMPONENTS OF GENERATED NEW SAMPLES OF WINTER FLOW RETARDATIONS IN CONNECTING CHANNELS
OF GREAT LAKES

St. St. Clair-

Mary's Detroit Niagara St. Lawrence

Sample River Rivers River River
Mean | St.Dev. Mean | St.Dev. Mean | St.Dev. Mean |St.Dev.
1 -0.018 0.967 -0.008 1.015 0.058 0.947 -0.069 | 0.998
2 -0.043 0.977 -0.055 | 1.047 -0.082 0.973 -0.090 0.982
3 0.141 | 0.966 0.093 | 0.924 0.050 | 1.014 0.053 | 0.%48
4 -0.023 1.007 -0.011 0.950 -0.077 1.024 -0.016 1.034
5 0.159 | 0.912 0.143 ] 1.069 -0.113 0.942 0.053 | 0.981
6 -0.056 1.002 0.011 0.976 -0.001 0.952 -0.000 | 0.970
7 0.083 0.978 -0.044 1.021 0.057 0.956 -0.009 0.997
8 0.064 0.965 0.054 | 0.917 -0.076 1.022 0.008 0.964
9 -0.047 0.972 0.052 | 1.124 0.053 1.036 -0.009 1.025
10 0.028 1.007 0.044 | 0.972 0.026 0.936 -0.093 0.984
11 -0.064 | 0.953 -0.053 | 0.984 -0.133 | 1.004 -0.149 | 0.983
12 -0.052 1.020 -0.054 1.060 0.064 0.920 0.049 1.014
13 -0.124 1.038 0.156 | 1.054 0.124 1.060 0.099 | 0.933
14 -0.053 1.058 -0.029 | 1.002 -0.015 1.056 -0.024 0.984
15 -0.016 1.059 0.058 | 0.992 -0.029 | 0.990 0.015 0.951
16 -0.064 1.034 -0.020 | 1.061 -0.227 0.955 -0.065 1.025
17 0.051 0.972 -0.118 | 0.956 0.093 0.994 0.028 0.961
18 0.136 1.066 -0.060 | 0.998 0.170 1.027 0.069 | 1.020
19 -0.008 1.001 -0.054 | 1.065 -0.121 0.928 0.041 0.916
20 0.027 1.033 0.043 | 0.989 0.008 1.015 0.181 0.988
Average 0.006 1.003 0.007}| 1.009 0.000| 0.988 0.003 | 0.983
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winter flow retardation series, Their average values
for 20 samples, each 600 monthly values long (50 years),
also given, should be close to zero and unity, respec-
tively. The differences are small. The generated EP .
series with mean zero and standard deviation unity are
used here to demonstrate the good reproduction of the

Ep > series. The standard deviations of historic se-
Ll

ries are smaller than unities, as Table 4-4 demonstrates.
The multiplication of generated values of gp " series
El

by these values makes the generated gp series com-

3
patible with the historic series. Performing the trans-
formation of gp = by the autoregressive model and
L]

adding the periodic components does not change the good-
ness of reproduction of the Ep 5 series,

3

Table 4-6 gives the general mean and the general
standard deviation for each generated sample of the

winter flow retardation series for the four connecting
channels of the Great Lakes, as well as their average
values. The next row gives the mean and the standard
deviation of the corresponding historic monthly series
of winter flow retardations. In the last row are the
differences between the averages of parameters of gen-
erated samples and of the historic sample. Because of
replacing the negative values by zeros in the generated
samples, the averages of means of generated samples for
all four series are somewhat greater than the means of
historic samples. The average standard deviations of
generated samples, for the same reason, are somewhat
smaller than the standard deviation of historic samples.
Regardless of these differences, it may be assuming that
the reproduction of parameters of historic samples is
sufficiently good, especially in light of several fac-
tors, but particularly because of errors in data of
historic samples, and because of trends in the winter
flow retardation series.

TABLE 4-6
COMPARISON OF MEANS AND STANDARD DEVIATION OF GENERATED SAMPLES AND THE HISTORIC SAMPLE OF WINTER FLOW RETARDA-
TION SERIES

St St. Clair-
Samp1d M?ry's D?troit Ni§%ara St. Pawrence
No. River Rivers River River

Mean | St.Dev. Mean | St.Dev. Mean | St.Dev. Mean | St.Dev.

1 13.469 | 14.222 2,317 | 2.512 4.301 | 5.193 16.477 | 12.976

2 13.339 | 15.315 2,550 | 2.812 3.974 | 4.841 16.499 | 13.418

3 13.459 | 13.980 2,537 | 2.983 4.173 | 4.940 16.659 | 13.298

4 13.816 | 14.872 2.549 2.753 4.276 5.326 16.529 112,869

5 13.998 | 15.304 2.580 2.745 4.217 4.944 16.491 | 13.083

6 13.343 | 13.823 2.454 | 2.729 4,131 | 4.911 16.613 | 13.172

7 13.198 | 13.694 2.502 | 2.822 4,150 | 4.900 16.348 | 12.701

8 14,222 | 15.170 2.481 | 2.983 4.200 | 4.954 16.256 | 12.685

9 14.087 | 15.946 2,466 | 2.830 4,269 | 5.200 16.607 | 13.654

10 13.881 | 14.563 2.558 | 2.779 4,278 | 5.102 16.642 | 13.974
11 13.379 | 13.880 2.496 3.055 4.126 5.063 16.710 | 13.592
12 13.190 | 13.839 2.482 2.821 4,083 | 4.848 16.305 | 13.152
13 13.922 | 14.3062 2.376 | 2.833 4,008 | 4.696 16.369 | 12.949
14 12,875 | 13.228 2.433 | 2.747 4.208 | 4.964 16.439 | 12.948
15 13.383 | 13.447 2.463 | 2.844 4,101 | 5.051 16.267 | 12.266
16 13.601 | 13.904 2.416 2.785 4,206 4.910 16.520 | 12.885
17 13.362 | 13.137 2.383 | 2.719 4,219 | 4.944 16.376 | 13.031
18 13.704 14.788 2.507 2.805 4.303 4,957 16.380 | 13.348
19 12.872 | 12.756 2.442| 2,710 4,229 | 5.045 16.365 | 13.188
20 13.946 | 15.222 2.434 2.671 4,245 5.082 16.574 | 13.527
Averagej| 13.553 | 14.272 2.471| 2.797 4,185| 4.994 16.471 | 13.161

Historic

Sample 12.741 | 15.401 2.001| 3.281 3.780 | 4.985 16.331 | 13.280
Difference 0.812 |- 1.120 0.470| -0.484 |[ 0.405| 0.009 0.1401]- 0.119
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models. For the resulting independent, identically distributed stochastic
component of all series, the three-parameter lognormal distributions was
a good approximation.

The principal component analysis has been used in generating the new
samples of the mean monthly net basin supplies. The approach of generating
first the monthly values, and then superimposing the generated four dif-
ferences of mean quarter-monthly values was difficult to apply, because
both the sum of four differences to be zero and the autoregressive model
could not be satisfied simultaneously.
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