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ABSTRACT

Reduction of computation effort in water resource optimization problems canbe made throughamodification of
the optimization technique instead of limiting development of the system models. Considerations are presented
herein which lead to the development of a heuristic application of deterministic optimization techniques. The
modification enables reduction of computation to take place while achieving results that approximate the optimum.
The modified application of dynamic programming is made for a single reservoir system problem, illustration the
technique and the achievement of near optimum performance.

Stochastic optimization techniques that are used in water resource systems enmgineering are presented. A
heuristic alternate stochastic optimization technique is then described and suggested asan improvement. Feasible
use of this alternate is possible since observations on planning horizons are employed in computation reduction.
For a single reservoir system, the techniques are applied and compared. Computation costs are reduced and system
performance is improved with the use of the alternate.

Several studies are outlined which illustrate changes in the technique results with changes in the problem

formulation. The techniques work well for all problem variations considered here and indicate the techiiques
rerform best for realistic problem formulations.
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* CHAPTER |
INTRODUCTION

Much work has been done in the past in developing
theory and methodelogies that arc necessary for analy-
zing water resource problems. Of concern here, is the
engineering application of various methods to such
problems. In the design of water resource projects,
the desire to achieve a "good" or "best" project has
been expressed in many ways. Various researchers (28,
35,36,39) have worked with the practical aspects of de-
signing a water resource project of optimum size using

specified operating rules. In the optimum design of a-

water resource project, determination of the optimum
configuration aud the optimum operating rules of the
project is necessary for both the design and the subse-
guent use of the project (2,21,40). Other researchers
(10,15,31) have concerned themselves with the aspects
of designing a water resource project of optimum size
and configuration which operates in an optimum manner.
Roefs (40} has reviewed the design procedure for finding
the optimum size and configuration and the optimum op-
erating rules for a water resource project. According
to both Roefs (40), Beard (2} and others (21), the
study of a system of a given size and configuration, to
determine its optimum operating rules, is a component
(most times) of the ahove design procedure. This sub-
problem, of finding the optimum operation for a water
resource system in a practical manner, has been of major
concern in recent yearsand is the subject of this study.

As pointed out by Labadie (24), "there are essen-
tially three approaches to the rational planning of
future control policies: deterministic, stochastic and

adaptive."  Although there are still some problems
solved deterministically (3,9,16), somctimes only for
purposes of illustration of a technique (12,18,33],

most problem solutions todav are in the stochastic
realm (1,10,15,22,23,26,27,41,47,48). In the adaptive
approach, effort ismade to incorporate new information
into the decision problem as it becomes available. For
example, in the monthly operation of a reservoir, more
data on inflows into the rescrvoir is available each
month.  This additional data can then be used in the
determination of future reservoir operation. Some
work has been done using (or at least concerned with)
the adaptive approach (17,20,24). Closely related to
the adaptive approach is work that has been done in the
field of forecast use and its effects on the determina-
tion of the optimum operation of a system (11,43.48).
The purpose of this study is to
methodologies (which are adaptive) for the determina-
tion of the water resource systems optimum operation,

The definition of the objective inan optimization
study has been different in various studies (40). Some
researchers (26,48) have optimized operations by mini-
mizing losses associated with failing to meet target
demands. Others (9,12,16) have optimized by maximizing
the net total benefit (or minimizing the net total
cost] realized from system outputs. Still others
(25,26,27,29) have optimized by maximizing the expected
value of the net total benefit for the system. Still
others (24,27,47) have optimized by maximizing the
expected value of the net total benefit possible in the
remaining stages of a system's operation, determining
the decision at each stage. In this study, the objec-
tive is to maximize the actual return (net total bene-
fit) for the system. From this point on, the net total
benefit will be referred toas simply the total benefit.

develop heuristic

Within the various metheds in use  today are
certain disadvantages (outlined in later sections)
which limit their applicability and/or results. In
this study. applicationsof optimization techniques are

introduced that are free of these disadvantages, for
many problems common to the water resource field. Other
methods are available which result in  problem reduc-
tion, simplification and approximation. thereby al-
lowing various optimization techniques to be applied
to obtain the optimum solution for the reduced problem
(2,40,43)}.  The methedology to be presented here will
accept a small deviation from the maximum total bene-
fit, to achieve results for more complex and detailed
problems than were otherwise possible with limited
computational facilities. At the same time the meth-
odology will allow for inclusion of more data as it
becomes available in real time.

The methodology to be presented consists of two
heuristic techniques: a modified application of de-
terministic optimization technigues which achieves
desired degrees of suboptimum performance without re-
ducing the problem, and an alternative stochastic op-
timization technique which does not have the disadvan-
tages of present stochastic optimization techniques.
The two techniques will be combined to provide an ef-
ficient method of estimating optimum operations for a
system.

The problems of concern here are those which are
represented by discrete variables. Most optimization
problems, both deterministic and stochastic, use dis-
crete representation in practice (1,2,12,15,17,18,21,
24,26.27,40,41,48]. It is desired to develop methods
which compete with existing methods in analyzing the
same complex systems. Therefore, discrete representa-
tion is made part of all the following definitions.
The writer is aware of the controversial problem of
selecting discrete variables to represent continuous
variables and of the loss of information which is con-
sequent.  That problem is not treated in this study.
The study presented herein deals with the problem so-
lutions after the discretizationhas already been made.

As mentioned again later, this study is concerned
with the design and/or operation of a water resource
system assuming that the stochastic hydrology is ade-
quately represented. For comments and studies where
imperfect modelling of the stochastic hydrology affects
the system design, see (4,7,11,34,44).

The two heuristic developments for the determin-
istic and stochastic problems are presented respec-
tively. First, necessary definitions, theory and ap-
plication are presented for the deterministic case.
These results are utilized in the stochastic case.
Further definitions, discussion, development and ap-
plication are presented for the stochastic case. Qb-
servations on how the techniques perform are presented
in a study to find the adequacy of the methods for
various reservoir problems. Finally, suggestions,
conclusions and a discussion are presented.



CHAPTER 1

DETERMINISTIC OPTIMIZATION

Computer simulation has grown to play a large part
in the optimum planning and operation of water resource
systems.  As planning and operating needs for more
complex systems grow, the demand on computational fa-
cilities will increase. There are computation require-
ments associated with the application of optimization
techniques to system models. When these requirements
exceed the facilities, the techniques cannot be applied.
Instead, a limitation on the development of the system
models has to be affected tomake the solution feasible.
Thus, a loss in model representation of the system is
traded for computational feasibility. However, if a
reduction in the computational requirements can be made
by modifying the optimization technique, then the so-
lution may become feasible without limiting the models.
There are numerous examples in water resources of prob-
lems where reduction in computation was achieved through

"modification of the optimization technique (25,40).
For dynamic programming examples, see (13,18,32). The
modifications in each case are particular to the opti-
mization technique involved.

There are considerations that would enable a mod-
ified application of any optimization technique to
various water resource problems, to reduce required
computations without simplifying the problem. In addi-
tion, these considerations also result in several
specific advantages associated with particular optimi-
zation techniques. This chapter gives some theoretical
insight into these considerations, some resulting mod-
ifications to be made to applications of optimization
techniques, an application to a tvpical problem and a
discussion of advantages associated with different op-
timization techniques.

DEFINITIONS

The System Model - Consider a system (one or more
reservoirs) operating over a period of time (the oper-

ation horizonl) of N stages. At each stage, the system
has inputs into it and owtputs from it which determine
the state of the system at that stage. Part or all of
the outputs are determined as the system decisions at
each stage. The system state may be a function of
inputs, outputs, decisions and states at any stages
previous to that stage. In the definitions here, the
state at each stage may not be a function of any vari-
ables whose values occur in future stages. Thus, as the
system operates there will be vectors of inputs, out-
puts, states and decisions occurring at each stage.
Over N stages, the systems operation will be charac-
terized by the matrices of inputs, outputs, states and
decisions which occur. The system will be considered
to operate, on a stage by stage basis, by going through
the following steps in order: i) at the beginning of
the jth time interval, the stage is j and the state
vector is sj, ii) the input vector, Ij occurs imme-

diately after the beginning of the jth time interval,
i1i) the decision vector dj then occurs, determining

the output vector, Oj and the new state vector s

j+l

The system must operate according to its inmherent
vehavior (expressed by suitable models) subject to 1ts
set of constraints and boundary conditions. Some sys-
tems definitions (19) regard the input matrix as part
of the constraint set, but the above definition is most
convenient for the purposes here.

The Optimization Problem - System performance at
each stage may be evaluated by assignment of a »alue
funetion at each stage to the decision, output, input
and state vectors which occur at that stage and previous
stages. For example, a reservoir operation at a stage
might be judged in relation to the economic benefit
realized from irrigation. Such a benefit might depend
on the reservoir outflows and inflows of the present
and several past stages. In this presentation, such
values are regarded as being functions of only the
present and past system state and decision vectors,
past input and output vectors and past values them-
selves. Thus, at each stage, givenall past conditions,
the value at that stage is a function only of the pre-
sent stage decision. As the system operates over the
operation horizon, there will be a value vector gener-
ated. The system performance over all N stages may
be evaluated through the use of an oijective Funciion
which assigns a single total velue of system perfor-
mance to every possible value vector. The objective
functions considered here (see (8,30,37)) are restricted
to those which are separable, i.e.:

By ()5 vy () sees v (#)) = 8y Dvg (o) 85(v (45
Volsdseeos vy (4111 (1)
and in which By is a monotonically nondecreasing

function of B8, for every VV(~]‘ These two conditions

imply (37) that the N be decom-

posed, i.e.:

stage problem can

max B (vy(d;5°);-..; vyldy;e)) = gax 8y vyldys)s

dl,...,dN N
max B, (vy(dy3e)se.as v (dy 1501)] (2)
.

In  the above equations, B
function and Vi( )

represents the objective
represents the value function at

the ith stage.  The above assumptions are not as re-
strictive as they might seem for practical objective
functions which usually involve a sum of terms.

Sptimization means  the selection of a decision
matrix (designated as an optimm decision matrie) which
results in a  value vector with a highest (or lowest)
total value uas given by the objective function (as-
suming  that a highest or lowest value exists). This
selection is made  through the use of a deterministic
b fmisiaf fon k Sz Optimization is constrained to
only those jUqsfide decision matrices which result in
system state and output matrices and operations which

Eoeonin

at the end of the jth time interval and the beginning satisty the syvstems inherent  behavior and set of con-
of the j+I1th time interval. straints and boundary conditions,
The operation of a system in practice may often cxtend over the original desien period.  For the purposes

here, the system is considered as operating only over its aperation horizon after which the system is defunct.

Extensions of operation beyond the operation horizon

General Comments.

are discuised in Chapter Voin the section entitled:



An optimization of system performance has meaning
only for a givem 1input matrix. For different input
matrices, an optimization will result in the selection
of different optimum decision matrices and different
maximum total values. It is assumed here that a "tie-
breaking" procedure exists within the optimization
process when more than one optimum decision matrix
gives the highest total value. Thus, the optimization
procedure results in the specification of a unique
optimum decision matrix for each input matrix.

The First Stage Decision as ¢ Random Variable -
The above definitions and concepts may be regarded as
follows. The system formulation, objective function,
system value functions and deterministic optimization
technique operate as a vector valued function. The
"domain" of this function is the set of all possible
input matrices. For every element (input matrix) in
this domain, the function assigns a unique '"point" in
its range. Each "point" is an optimum decision matrix
of real numbers and the range of this function is the
set of optimum decision matrices.

If only the first stage decision vector was de-
sired, an optimization could be performed, the first
stage decision vector noted and the rest of the optimum
decision matrix disregarded. This optimum initial
decision vector from an N stage optimization is real
valued and is given uniquely according to the prior
definition of optimization. Thus, the determination of
the optimum initial decisionvector operates as a vector
valued function also.

The domain of input matrices may be regarded as a
sample space. The time series structure of the inputs
defines a probability measure assigned to each element
(input matrix) within the sample space.

There is now defined, a sample space with a
probability measure defined over it and a function
which assigns a unique set of real numbers (an optimum
initial decision vector) for each element in the sample
space. For all practical purposes (measurability not
shown but accepted), this function 1is a random vari-
able (38).

Optimization Over a Reduced Operation Horizon -
When considering a given system and only the first
stage optimum decisions are required, it may be desir-
able to consider less than the entire operation horizon
in the optimization. To reduce computation time and

the overall problem dimension, the system formulation,.

objective function, system value functions and deter-
ministic optimization technique may be defined over a
reduced operation horizon, k stages long, k<N.  When
considering the 'smaller'" problem to determine the
optimum initial decision vector, the result is termed

the k stage optimum initial decieion vector. Both the
k stage and N stage optimizations start from the
same initial stage in the operation horizon; however,

the k stage optimization considers only the first k
stages of the horizon. The value functions for the
first k stages in both problems are the same. Both

problems use the same input matrix, although the smaller
optimization considers only the first k input vectors.
A k stage optimization, as considered here, will use
an objective function which 1is obtained from the N
stage objective function through a reduction in dimen-
sion. The k stage objective function will be the
original N stage objective function with the last N-k
stage values set equal to predetermined constants. The
constants will depend upon the form of the objective
function. For example, if the N stage objective
function is simply the sum of the benefits (values)

w

over the N stages, then the k stage objective func-
tion would be the sumof the benefits over the first k
stages. The constants mentioned above are all zero in
this case.

Applying the deterministic optimization technique
over a shorter problem is similar to its application
over a longer problem. For every input matrix in the
sample space, a random variable (defined by the system
formulation over k stages, objective function and
system value functions over k stages and the deter-
ministic optimization technique applied over k stages),
assigns a unique k stage optimum initial decision
vector. For any value of k, smaller than N, there
is a corresponding random variable similar to that
described above. Considering these definitions, it is
possible to represent an optimization over k stages
as a random variable with the following notation:

w & @

K _ Gk
1 = 51(.}

(3)

d (4)

gk =

1 ﬁf{w}, Yuwef

(%)

is the random element from the
representing an entire input matrix; &

In these equations, w
sample space,

input matrices; d?

is the random variable representing the optimum initial

is the sample space containing all

decision vector for a k stage optimization; 6?[-] is
the functional notation for the random variable, d%,

and d?
Using this convention, it is now possible to make prob-
ability statements about different aspectsof optimiza-
tion.

is an outcome of the random variable, d?.

THEORY

The above presentation has established a framework
for considering the optimization process. Considera-
tion of the first stage decision as a random variable
will enable constructive statements to be made which
suggest a modified application of techniques. Several
results follow which are illustrative rather than de-
finitive and which proceed toward and investigate a
modified application of deterministic optimization
techniques.

An Optimization Suggestion - Bellman's Principle
of Optimality (17,37) states that no matter what has
occurred up to the present stage, all remaining deci-
sions must be optimum to yield the maximum total value
from that stage on. The decomposition assumptions on
the objective function imply that Bellman's principle
applies (37). Hausman (17) presents a good discussion
of application of the principle for systems possessing
a Markovian or Quasi-Markovian property in the state
variable. It may be restated as follows. If the first
1 stage optimum deecision vectors from an I stags
optimization avz known, then an N-i stage optimiza-

tion over the remaining N-i stages yield the same
last N-i optimum decision vectors that are obtained
in an N stage optimization. The only requirements

are that the initial state vector for the N-i stage
optimization must be that which results from the first
i optimun decision vectors. Also, the objeetive func-
tion for the N-i stage optimization must be the same



as that for the N stage optimization with the [irst
1 values being those that result from the first
optimum deeision vectors.  Although this may appear
obvious, it is not. If the system state or values at
each stage were functions of variables other than those
outlined in the preceding definitions, then this prin-
ciple would not apply. Additional illustration of this
principle is presented in Appendix A.

The above statement is true for any i, given an
input matrix and initial system state vector, . By
applying the corollary N times for each value of i,
i=l,...,N, the following sets of decision vector values
are determined to be identical.

(dT;a“g_l;dg'z;-..;dg_z;di_l;di) = (d;;af;;---;a‘;_l;rﬁ;J
(6)
In Eq. 6, d§_i+1 is the value of the ith stage decision
vector resulting from an N-i+l1 stage optimizatien
from ‘sfages i through N given that s; =8 and
d:.| = ?-J+1, 0<j<i (which determine the ith stage state

*
value); also, di is the value of the ith stage optimum

decision vector from the optimum decision matrix ob-

tained from an N stage optimization, given that
S, = &.
1
It is interesting to note that if the systems

definition presented above is restricted so that the
state and value function at each stage are functions
only of variables of the last and present stage, then
conventional dynamic programming can be applied as an
optimization technique. The single reservoir problem
is an example of this (12,13,16,18,48). More impor-
tantly, Eq. 6 suggests a forward lockimg approach to
decision making that is sequential and that uses any
suitable deterministic optimization technigue (includ-
ing those other than dynamic programming). Inspection
of Eq. 6 reveals that the systems optimum decision
vectors may be found one stage at a time in the fol-
lowing manner. For a given input matrix, an optimiza-
tion over N stages vyields the N optimum decision
vectors. Only the initial optimum decision vector is
noted. The second stage state vector is found and the
second stage value function determined as a function
of the second stage decision only. An optimization
over the N-1 stages from stage 2 through stage N
yields the second stage optimum decision vector. The
process is repeated over and over for each stage until
aone stage optimization yields the Nth stage optimum
decision vector. Of course, such a procedure is largely
redundant and gives the same optimum decision vectors
as obtained by the first N stage optimization
(see Eq. 6). llowever, a modification of this procedure
may be used. One might assume that a k stage opti-
mization, k<<N, can be used to approximate an N-i
stage optimization to find the optimum decision vector
at each stage 1i. To find each decision vector at each
stage, only k stages into the future are used in the
optimizations. The decision vectors given by this
technique are termed the k stage optimum decision
vectors given by an optimization over a reduced opera-
tion horiaon at each stage (RCHAES) of k stages. The
last k decision vectors are determined by optimiza-
tions over just the remaining stages. Three questions
which arise are: 1) can one make the above assumption;
2) how "well" does this procedure estimate decisions,
and 3) what are the advantages of this procedure? The
following section attempts to answer the first two
questions; the third is saved for a discussion.

An pprocimating Deviee - It
Virious

has been noted by
researchers that there are two factors which
operate to make the length of analysis in an optimiza-
tion problem shorter than the operation horizon for
many water resource problems.  The first and most im-
portant factor is that the larger the period of analy-
sis is, the higher 1is the likelihood of an event or
combination of events that will cause previous opera-
tional policy to he irrelevant to the future state of
the system (40,41). The second factor is discounting
of the value of future production relative to current
production, which is incorporated within some objective
functions (41). These factors have been used exten-
sively in the past as justification for analyzing very
short periods of time to determine system operations.
These factors are the result of extensive computational
experience and cannot be proved in general for a water
resource system. However, the validity may be checked
with statistical tests; this is illustrated in a fol-
lowing section entitled: Application.

If one or both of these factors is operating in a
system under consideration, then the optimization pro-
cess may give the same or similar values for the de-
cision vector at the first stage as the length of the
operation horizon increases. The assumption made here
is that one of these factors is working for a suffi-
ciently large class of input matrices to make the fol-
lowing true for the discretized problem:

k_ N . L _ N B . L
P[d1 = d1|sl =98] > P[d; = dl|51 = g]; all s; large &
Nxk>£ (7)

Equation 7 states the assumption that the probability
is greater (or at least equal), for a k stage opti-
mization to give the same value for the first stage
decision vector as the N stage optimization, then it
is for an % stage optimization, when HN>k»L. The
validity of this assumption depends upon the above two
assumptions and upon the degree of discretization.

From the previous definitions, if the first 1i-1
input and decision vectors and the initial state vector
are given, then the system over the remaining operation
horizon could be treated as a separate problem as shown
in Appendix B. The ith stage state could be determined
and the ith stage value function could be expressed as
a function of ith stage variables only. All other j
stage value functions, j*i, could be rewritten as
functions of variables between stages 1 and j only.
Therefore, the optimization over stages 1 through N
given the first i-1 1input and decision vectors and
initial state vector could be regarded as an optimiza-
tion over the N-i+l stages, from stage 1 through
stage N-i+l (see Appendix B). Now, all statements
regarding the optimum initial decision vector apply to
stage 1 of this transformed problem.

N-i+l— N=-1i+1 ,—
e AR ERE I B €

P(D 3

- - ol E’ -
1° 0] - ai] > P[D1 =1

N-i+l>k=%; all s;; large &

In Eq. 8§, D? is the random variable which assigns a

unique value
for a k

for the optimum initial decision vector
stage optimization for the transformed prob-

lem; Dk % d%. Here dk
i i i

cision

is the optimum ith stage de-

vector given by an optimization over the k



i to i+k-1. Also, g& is the initial state

vector for the transformed problem.
former notation:

stages,

Returning to the

B Bsislpens e 1
l"[di = di ]{:]i_l,[a]i_l,sl = 2] E_P[di
\ i+l
111, 51, 35, = o] ()
N-i+1>k>%; all g; all [I]i_l; large &; all [rf]l_l
= a feasible set
In the above equation, [I]i-l denotes a matrix of

values for the first i-1 input vectors and

[d]5.4

denotes a matrix of values for the first i-1 decision

vectors.

In particular, if the feasible set of decision
vector values is taken as the first i-1 optimum de-

cision vectors from an N stage optimization,
(dN'"\I ki .'ds 'dz ‘dl} (see Eq. 6) then:
1’ R I e VS T = :
k _ N i+l . 2
P[d] = |71, _,3d1} 55, = 8] > Pldj
N-i+l . o
= Nz 5l g3y = e (10)
N-i+1zk>1; all g; all [I]i_l; large %
In Eq. 10, Id]?_l denotes the matrix of values for the
first i-1 optimum decision vectors from an N stage
optimization. By either summing or integrating both
sides of Eq. 10 with respect to all [I]i_l, after

multiplying by P[[I]i_ll, the following is evident:

k N-1+1 _ L
P[di = I[d] _1i8%p < 5] z_P{di
_N-i+1 N
= di |[a?]i_1,s1 = g] (11)
N-i+l>k>4; all &; large &
N-i+1 | . 3 y
Now, di is the optimum ith stage decision vector
from an N stage optimization (see Eq. 6) if the first

i-1 decision vectors were also froman N
mization. Therefore, Eq.
a k stage optimization

stage opti-
11 expresses how ''well' that
at the ith stage, given the

first i-1 optimum decision vectors from an N stage
optimization, probably approximates the ith stage de-
cision vector from the N stage optimization.
Equation 11 was developed for arbitrary i and there-
fore is true for all i, i=l,...,N-k.
Let:
k _ k _ N-i+l N oL
p; = Pldj = d; ,|[d]1-1'51 = 8] (12)

The N-k equations then represented by Eq. 11 can then

be combined with Eq. 12 to prove:

kX kk _ K-1 k-1 k-1 k-1 ..
PN-iPN-k-10P2PL 2 Py Py eoP2 P (9
N > k; all g; larpe k-1
Note that,
kN, B, o0 k-1 . 1
P[BN = BN;S1 o 3] = P[(d],uz,.. - L+]’“N k+2° .,dNJ
S N [ S B U
= [ﬁ]N|$ = 6] = Pld) = d5d, = dy 5epdy
ok k-1 k-1 . 1 1. _
= dy papidnken T Iuikezieooidy = dylsy = el
= koo L+1 d] i
% Bl g = | d 5, = U]P[dN i
k+2 4N

H
[a"

i . kK _ Neljc N
N-k-11 [N 238y = 1.+ Pldy = 7| [d]y3s,

N k k k k
= S]P[d = dllsl = 8] = pN-kPN-k-l"'Pzpl {14J
In Eq. 14, B§ is the random variable representing the

total value (expressed by the objective function) re-
sulting from the sequential optimization procedure de-
scribed in the previous section (the applicationof the
optimization technique over a ROHAES of k stages to

determine the single stage decision vector at each
stage for the first N-k+1 stages and a ROHAES of
N-i+l stages for the last k-1 stages). Thus, when
k = N, BE s B; = the maximum total value obtainable in
an N stage optimization (see Eq. 6). Combining

Eqs. 13 and 14 leads to the following:

k N ) N
P[By = Byls; = ¢] > P[By = BN|sl = g]; all s; large &
N>k>g (15)
Furthermore, if we assume that:
k N = ] )
P[By = BN|s1 = 3] # 1; some k<N (16)

then it can be shown (see Appendix C) that:

K N L N
P[By > aBy|s, = &] > P[By > aBN|sl = s]; large %;
some k; all s (37
O<a<l
N=k>L

Equations 15 and 17 give some indication as to the
suitability of the suggested procedure. Equation 15
suggests that as the ROHAES used in the procedure in-
creases, the probability of obtaining the optimum deci-
sion matrix may increase but never decreases for a
sufficiently large ROHAES. Equation 17 suggests that
as the ROHAES increases, the probability of obtaining
a decision matrix which gives a total value within any

desired range (o) of the maximum (B; > aBﬁ), may in-

crease but never decreases for some sufficiently large
ROHAES.



These results indicate that the suggested procedure
may be highly desirable, but they do not prove it.
They are merely extensions of the assumption of Egq. 7
to systems defined here which possess the property of
Eq. 6. To utilize this suggested procedure, the system
at hand will have to satisfy the system definitions
given above. Tests will have to be made to ascertain
the existence of the above results. Then, the suggested
procedure may be used with some confidence to estimate
optimum decision matrices.

APPLICATION

It would be difficult to find to what extent the
assumption of Eq. 7 applies to all systems. The gen-
eral definition of the system, value functions, objec-
tive functions, and optimization technique allow too
many variables to be present for general assumptions.
The assumptions veracitymay be affected by many things:
the system characteristics, the exact formof the value
functions, and the objective function, the number and
character of input, output, decision and state vari-
ables, the number of values allowed to each of these
variables in a discrete representation, the systems
inherent behavior, the type of optimization technique
used, etc. These are just some of the factors to be
considered.

In several studies (6), the assumptionwas checked
for variations of the single reservoir problem. In all
trials, Eqs. 7, 9, 11, 15 and 17 were found to apply
with only a very small ROHAES required in each case.
The validity of the assumption has been recognized in
the past (as previously mentioned) and is believed here
to apply to many other water resource systems. The
example studies are too lengthy to include here, but,
the following reservoir system problem is presented to
illustrate the assumptions validity. The application
procedure and its advantages are also illustrated.

Problem - The system used in this study is a single
reservoir with one inflow, one outlfow and benefits
(system value functions) representing one demand placed
upon the reservoir. The determination of the release
(outflow) in each month is the set of decisions and
the amount of water in storage at the beginning of the
month is the state variable. Note, the input vector,
the output vector, the state vector and the decision
vector at each stage in the general systems definition
are now degenerate to single variables. The system is
to be operated over N months (the operation horizon)
so that each month represents a stage. The systems
inherent behavior is represented by the following
system equations:

S, =5, + I,
i

- dg; isl,...,N (18)

The constraint set for the system is determined by the
following set of constraint equationms.

0 <55 < §; i=1,...,N+l (19)
0<I,<I _;i=l,....,N (20)
= "i — "max

The boundary condition is:
= 21
s, =& (21)
In the above equations, s; is the storage (state) of
the reservoir at the beginning of stage i, Ii is the
inflow (input) into the reservoir in stage i, d. 1s

L

]

the outflow.release (decision) to be made in stage i,
S is the reservoir size (upper limit on the state
variable), & is the initial storage at the beginning

of stage 1, and Imax is the upper limit on the inflow

variable selected to give the problema known dimension
for computation purposes.

In the reservoir system defined here, no effort
was made to represent actual values of storage, inflows
or outflows. Instead the problem solution dealt with
the indices of storage, inflow and outflow. The in-
dices for all quantities were defined such that each
quantity between consecutive indices was the same for
all indexed variables. For example, an inflow index
of 3 and an outflow index (decision index) of 2 create
a change 1in the storage index of 1. Representing a
discrete system in terms of these indices allowed for
more efficient computer programming, permitted easy
manipulation of numbers and provided for a general
representation. Any size reservoir, with its inflow,
outflow and storage can be represented easily by the
same model which considers indices. The degree of
refinement depends upon how finely the values of the
indexed variables are represented as indexed quantities.
values for inflow

There are 26 discrete at any

stage, 0, 1, 2,..., 24 or 25; also, the capacity of
the reservoir has an index of 25. There is then a
possibility that the decision (release) at any stage

could be 50. The initial condition for the amount in
storage in the reservoir is set at s = 10. The inflow
time series is represented by a data generation model
which is a Markov model of order two (see Eq. 22 below)
where the present value depends upon the previous two

values. The model has periodicities over the year (12
months) in the mean, standard deviation, first and
second order serial correlations and first and second

order Markov model coefficients.

2 ]
= o = ) =
B \/{ By 51 ~ % gun B 2By 3u9P) a0

4 P1,5-1 = P1,5-272,5-2
1,j-1 - ol
1,j-2
Py s - P . D, -
2,j-2 = P1,j-1°1,j-2
242" o2 =

T P1,5-2

In Eq. 22, My and g, are monthly mean and standard

deviation respectively for month i, Pp ik is the
»
ith order correlation coefficient between the stan-
dardized values of month i-k withmonth i-k+%, Sy ik
3
are corresponding Markov model coefficients and £,

is the independent stochastic component (random value)
for month i. Values of inflow were generated according
to Eq. 22 between zero and 7000 and transformed into
discrete values for inflow with 6720 to 7000 considered
as avalue of 25. The parameter values needed in Eq. 22
are given in Tables 1 and 2. The length of the opera-
tion horizon is set at 10 years with each month con-
sidered as a stage. Thus, the operation horizon is
120 stages long.



TABLE 1

DATA GENERATION PARAMETERS FOR MODEL OF EQ. 22

Month i My %5 P1,i-1  P2,i-2
JAN 1 302.5 79.1  0.4160  0.3375
FEB 2 386.0 149.4  0.4829  0.5032
MAR 3 684.5 235.9 0.3179 0.0966
APR 4 1836.0 912.8  0.6696  0.3617
MAY 5 3368.8  1397.1  0.6210  0.4128
JUN 6 4543.2 2012.8 0.7962 0.6460
JUL 7 1349.7  1063.1  0.7503  0.4740
AUG 8 520.1 267.3  0.5507  0.2689
SEP 9 302.5 161.7  0.7712  0.7409
ocT 10 392.2 238.1  0.9132  0.5803
NOV 11 291.4 136.2  0.6904  0.3559
DEC 12 346.9 101.2 0.5723 0.5254

TABLE 2

INDEPENDENT STOCHASTIC COMPONENT DISTRIBUTION
FOR MODEL OF EQ. 22

£ F(E) £ F(£) 3 F(&)
-2.000 0.00 -0.355 0.34 0.290 0.68
-1.285 0.02 -0.320 0.36 0.335 0.70
-1.140 0.04 -0.280 0.38 0.380 0.72
-1.045 0.06 -0.245 0.40 0.430 0.74
-0.965 ~0.08 -0.210 0.42 0.485 0.76
-0.905 0.10 -0.175 0.44 0.535 0.78
-0.840 0.12 -0.140 0.46 0.595 0.80
-0.790 0.14 -0.100 0.48 0.660 0.82
-0.745 0.16 -0.060 0.50 0.725 0.84
-0.690 0.18 -0.020 0.52 0.800 0.86
-0.640 0.20 0.010 0.54 0.890 0.88
-0.595 0.22 0.045 0.56 0.990 0.90
-0.555 0.24 0.085 0.58 1.100 0.92
-0.510 0.26 0.120 0.60 1.240 0.94
-0.475 0.28 0.160 0.62 1.420 0.96
-0.440 0.30 0.205 0.64 1.730 0.98
-0.395 0.32 0.245 0.66 5.000 1.00

The system performance is measured with a benefit
function which assigns values to decisions at each
stage. The benefit at each stage is given in Table 3.~

TABLE 3

BENEFIT, bi FOR DECISION, di

Decision 0 1 2 3 4 5 6 7 8 9 10
Benefit 0 23 45 81 125 143 162 175 203 225 243

Decision 11 12 13 14 15 16 17 18 19 20 21
Benefit 250 260 282 297 301 307 311 312 310 307 299

Decision 22 23 24 25 26 27 28 29 30 31 32
Benefit 288 281 272 258 250 237 220 213 200 187 180

Decision 33 34 35 36 37 38 39 40 41 42 43
Benefit 157 141 125 107 73 42 25 16 8 0 0

Decision 44 45 46 47 48 49 50
Benefit 6 o0 o 0 0 0 O

The system performance over the entire operation horizon
is measured by the following objective function.

N
B= J by (23)
i=1

In the above equation, bi is the benefit

stage i1 and B 1is the total benefit (total value)
obtained from the system. There is no salvage value
assigned to the system and no end condition on storage
in the reservoir.

obtained in

The deterministic optimization technique used here
is dynamic programming. It is particularly well suited
to the simple reservoir system outlined above (40,42,48).
Description of this application and its use is presented
elsewhere and will not be repeated here; see (3,9,15,
16,17,18,19,21,27,31,35,40,46,48).  When dynamic pro-
gramming is applied over a smaller number of stages
k<<N to determine the single stage decision, the fol-
lowing objective function is used:

B =
i

b. (24)

1

Il 15

1

In the event that more than one decision at a stage is
optimum, the smaller one is chosen. Thus, a unique
decision is given in the optimization.

The above single reservoir problem definition is
within the general systems definitions of the previous

sections. The results of these sections are expected
to apply for this problem if the assumption of Eq. 7
is valid.

Testing - To ascertain whether or not the assump-
tion made previously 1is good for this system, a sta-
tistical test was made. Also, the generated data was
used to give indications of how well the new procedure

works. For the system at hand, Eq. 17 is used as the
'null hypothesis. More specifically, the following
hypothesis was tested:

2

P[Bk > uBN] > P[B

N
N N > aBN], k»2; all o

N (25)

An equivalent statement for k <5 is:

HU: Fs(u) & F4{aj < ija} i.Fz(“) j_Fl{a); for all a

Hl: Fk(u) > FE(G); for some k>& and for some o« (26)

In this statement of the hypothesis, F, (a) = P[BE/BE <a].

To test this hypothesis, 150 input realizations
of 120 stage length were generated independently, 30
for each value of k (k = 1,2,3,4, and 5). Using k
stages for the ROHAES, optimizations were performed on

each of 30 realizations for.each value of k to obtain
values for the random variable, BS. Also, 120 stage
optimizations were performed on each of the 150 real-
jzations to obtain values for the random variable,
Bﬂ. Values of BngE were then calculated for each

for each k. These ordered values
appear in Table 4. Since the input realizations were
all generated independently, then the five samples of
size 30 are random samples and are mutually independent.
The one-sided, five-sample, Smirnov test is therefore

30 realizations



TABLE 4

ORDERED VALUES OF RELATIVE TOTAL BENEFIT (RELATIVE TO
MAXIMUM TOTAL BENEFIT) OBTAINED WITH THE MODIFIED
APPLICATION WITH ROHAES = k, FOR 150 RANDOM INPUT

REALIZATIONS
k HE 2 3 4 5

L7366 . 8285 .9118 .9534 L9783

L7445 .8331 .9140 L9535 L9809

L7451 .8338 L9152 .9603 .9820

L7452 . 8353 L9153 .9623 .9832

L7460 . 8391 L9181 L9632 .9839

L7477 . 8359 L9191 L9632 L9840

L7483 . 8400 . 9193 L9651 L9844

. 7492 .8416 .9209 .9654 .9845

L7494 .8429 .9228 L9660 .9852

.7497 .8434 . 9251 . 9668 L9871

L7499 .8442 .9253 L9673 L9878

.7513 . 8458 . 9255 . 9682 L9883

L7520 L8477 . 9257 L9687 L9895

L7522 . 8512 .9261 .9692 .9899

.7524 .8512 .9271 .9698 .9913

7 h2T .8513 .9279 L9704 .9915

L7530 . 8515 .928% .9715 .9932

L7532 L8537 .9293 L9719 .9936

L7537 . 8546 9300 L9720 .9939

. 7561 .8547 .9303 L9724 .9549

L7568 . 8547 .9310 .9730 . 9950

L7573 . 8559 .9320 .9756 .9952

L7584 .8562 L9331 L9760 L9957

L7600 . 8564 .9331 L9773 .0958

L7602 .8593 .9334 .9780 .9962

L7608 . 8600 .9339 L9808 .9972

.7642 .8608 .9357 .9828 .9975

L7651 . 8632 .9358 .9857 .9978
. 7682 .8662 .9370 .9858 .9992
i s .8673 . 9468 .9882 L9993

. . k,,N .
applicable. Because the random variable, BN,’BN is
actually discrete, the test is likely to be conserva-
tive (5). This is a nonparametric test where the test

statistics distribution has been obtained by Conover (5)
as a mathematical function of the number of samples
and the mutual size of each sample. The test statistic
for this application becomes:

T = sup{[F (0)-F, (a)], [F; () -F5(@)], [F5(a)-F,(a)],
o

[F,(2)-F ()]} (27)

In Eq. 27, ﬁk{u] is the sample cumulative distribution

obtained from the order statistics, used to estimate
Fy (@)

The decision rule is to reject HO at the level
y if the observed value of T exceeds the 1-y quan-

tile of the distribution of T as given in the pre-
ceding reference. From inspection of the ordered values
of the data in Table 4 and from an auxillary plot in
Fig. 1 of the sample cumulative distributions, T = 0.
From the distributionof T, for vy .10, the critical
corresponds to values of T greater than the

region
.90 quantile, w g which 1is 0.8. Since T <w oo,
the null hypothesis is accepted. Inspection of the

data indicates that for high probabilities of rejection,
the test would still have indicated acceptance of HD.

Thus,

PIBY > aB)] > P[BL > aB)]; Srkorol; all e (28)
The results of the theoretical derivations and assump-
tions have been verified with a high degree of certainty
for the system considered here for ROHAES < 5.

Further inspection of Table 4 shows how well the
modified application performs in estimating decisions
which result in near optimum performance. For example,
with a high probability, the modified application with
ROHAES = 5 will give a total benefit at least within
98 percent of the maximum possible. Also, as the ROHAES
the procedure does consistently "better."
relative total benefit is

and continues to improve

increases,
The increase in the median
about 0.10 for k=1 and 2,
for higher values of k.

DISCUSSION

advantages of the modified
conventional applications that are
immediately apparent. All of these are computation
reduction advantages. The following sections present
various aspects of the resultant computation reductions
in various situations.

There are several

application over

The Modified Application and Systems of Equations-
When the optimization technique to be used involves the
solution of a system of equations such as linear or
quadratic programming, etc., then there is an advantage
to applying the technique over a ROHAES of k stages.
A reduction of stages in the optimization corresponds
to a reduction in the number of variables in a system
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FIG. 1. THE EMPIRICAL CUMULATIVE DISTRIBUTICN, fk(aj.

of equations and a reduction in the number of equations.
Therefore, there is a reduction in the computations
needed for each single stage decision. Depending upon
the problem at hand and the values for ROHAES and N,
then a search with N kxk systems of equations may be
easier than a search with an NxN systemof equations.
There is certainly a reduction in computation storage
and there may be a reduction in computation time.

The Modified Application and Exhaustive Search
Technigques - The optimization techniques to be wused
may cmploy the simple principle of enumerating every
feasible decision matrix and selecting the one which
yields the maximum total benefit for the system. In
some complex systems, this technique may be the only



one which can be used. The application of this technique
with a RONAES of Kk stages to determine each of
the entire sequence of decisions results in a drastic
reduction of computation time and storage compared to
the application of this technique over the entire
operation horizon. To illustrate, consider a system
with m possible values for the decision variable at
each stage and N stages in the operation horizon.

N 2 = 2y
There are then m" combinations of decision sequences
to investigate in the exhaustive search. If the modi-
fied application of the optimization technique is used,

k i i i
there are m combinations of decision sequences to
investigate at each stage for the first N-k+1 stages.

There are n*1 combinations of decision sequences to
investigate for the last k-1 stages; i = 1,...,k-1.
Therefore, there are Ml decision sequences to inves-

tigate for the exhaustive search technique and M

2

decision sequences to investigate for the modified
application of the exhaustive search technique, where:

M, = oY (29)
k-1 +
M, = (N-k+l]mk + ] me1 (30)
- i=1
= 50
For m =10, N = 50, and k = 3, then Ml = 10 and
M, = 48110. Of course the numbers, M, and My do

not truly represent the number of decision sequences to
be investigated in each case, the actual numbers are
smaller since only some of all possible decision
sequences will be feasible.

The Modified Application and a Single Stage
Deeision - When the optimization technique to be used
requires multiple evaluations of operating decision
sequences (such as dynamic programming), then there is

an advantage to applying the technique over a ROHAES

of k stages (instead of the entire operation horizon
of N stages). When just the single stage decision is
desired, then this application will involve less com-

putation time to determine the single stage decision.
This feature will be made use of in the development of
an alternate stochastic optimization technique in
Chapter III.

Furthermore, when only one stage decisions are
required (as in the practical operation of an existing
water resource system) themodified application enables
a reduction in the amount of future information re-
quired. When the future information is uncertain, as
in stochastic optimizations, then this feature is im-
portant. Forecasting reliability generally declines
as the length of time into the future for the forecast
increases. This is true for water Tesource projects
where forecasts are for precipitation, streamflow, etc.
If the modified application of the optimization tech-
nique is relevant for the system at hand, then fore-
casts may only have to consider a small number of
stages into the future. Now, forecasts are only made
for a small number of stages into the future in prac-
tice to avoid severely unrealiable results. Therefore,
an engineer may now be reasonably satisfied that he
has a certain degree of suboptimum performance, even
though he cannot forecast the entire planning horizon.

Determination of the Required ROHAES - In any use
of the modified application, there is a question as to
what length of the ROHAES is satisfactory. As the
length of the ROHAES is increased so are the computation
requirements, but sois the degree to which results ap-
proach optimum. To determine the acceptable value for
the ROHAES, a preliminary statistical study (similar
to the one above) will have to be made. It is not
necessary to generate so many points for analysis in
all cases, as will be seen later. The allowable com-
putation for determining the ROHAES will depend upon
the significance of the optimization results.



CHAPTER I

STOCHASTIC OPTIMIZATION

Of concern here, is the practical application of
stochastic optimization techniques to problems of find-
ing optimum operations sequentially for water resource
systems. There are attendant difficulties associated
with the various stochastic optimization techniques in
use today and there is a need for a sequential tech-
nique which surmounts these difficulties.

This chapter further defines optimization in the

stochastic realm by briefly condensing previous defi-
nitions and continuing them. Furthermore, this chapter
reviews existing techniques, identifies associated
difficulties, suggests an alternative sequential tech-
nique (which utilizes the technique of the previous
chapter) to overcome these difficulties, and compares
the alternative in a hypothetical example.
The following is mnot a bona fide operations
research development. It is a practical development
of a heuristic methodology which utilizes present prac-
tice and understanding and which enables operation of
reservoirs in ''near optimum'' manners. While not truly
optimum, it can be shown, for a hypothetical case, that
resultant benefits are generally 'closer" to optimum
with the use of the alternate technique than with the
use of an existing technique.

DEFINITIONS

The definitions given in Chapter II concerning the
optimization problem are continued here for discussion
of the stochastic optimization problem. These and the
following definitions are similar to those found in the
literature (19,40,46) and serve to give a nonrigorous
framework for considering stochastic optimization tech-
niques.

There are many methods available to determine the
optimum set of decisions for a given system with given

inputs, such as: linear, nonlinear, quadratic and
dynamic programming, (19,40,46). Depending upon the
characteristics of the system, one or more of these

deterministic optimization techniques may be suitable
for use in determining the optimum decision sequence.
The techniques are referred to as deterministic when
applied to a system for a known set of inputs. All of
these techniques require information concerning the
inputs into the system.

The Stochastic Optimization Problem - In most
water resource problems the inputs into the system are
not known in advance. However, various statistical
aspects of the inputs are estimated from available
data and the problem then becomes a stochastic optimi-
zation problem. This study assumes that available data
exists and that the stochastic hydrology can be ade-
quately represented. For studies where imperfect mod-
eling of the stochastic hydrology affects the system
design, see (4,7,11,34,44). The deterministic optimi-
zation techniques available from the operations re-
search field are then employed in one of two basic
manners to determine the optimum decision sequence
(40,41,47). Implicit stochastic optimization deter-
mines the optimum decision sequence for each of many
possible realizations of system inputs. The inputs are
generated according to their assumed stochastic nature.
The optimum decision sequences are then studied and re-
lated to system variables that were found to have a
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bearing on the decision through the use of multivariate
analysis. These relations are then used to estimate
the optimum decision sequence for the system for use
in design or actual operation. FExplicit stochastic
optimization determines the "optimum decision probab-
ility" at each stage ofa system's operation based upon
the known probabilities of inputs.

Implicit Stochastic Optimization - The schematic
for this procedure 1is presented in Fig. 2. The pro-
cedure in implicit stochastic optimization (ISO) is as
follows (40,41,47,48). The system and the stochastic

r ESTIMATE INPUT MGDELS FROM AVAILABLE DATA ]

I

GENERATE AN ENTIRE RANDOM INPUT REALIZATION USING INPUT MODEL |

i

I DETERMINISTICALLY OPTIMIZE TO FIND ENTIRE CECISION SEQUENCE ]

!

DTORE ALL DECISIONS, INPUTS, STATES, ETC. 1

i repeat many times to cbtain
multivariate anciysis dota”

| PERFORM MULTIVARIATE ANALYSIS

I SELECT IMPORTANT "INCEPENDENT vnmnaLss“[

!

l SELEETDEU&ONFUNCTWN&LFOHﬂqJ

'

PERFORM MULTIVARIATE ANALYSIS TO FIT
FUNCTION TO DATA

I_Esmms "GOODNESS OF FITJ

{ repeat until suitable
} fit is found

USE BEST FUNCTICON, FIT TO THE DATA, AS THE DECISICH
ESTIMATOR - TO ESTIMATE OPTIMUM DECISIONS FOR SYSTEM CPERATIONS

FIG. 2. IMPLICIT STOCHASTIC OPTIMIZATION TECHNIQUE.
nature of the inputs are represented by suitable math-
ematical models. The models are then used to generate
time series realizations of the inputs (input realiza-
tions) over the operation horizon. A suitable deter-
ministic optimization technique is chosen, compatible
with the system models, and applied to find the optimum
decision sequence for each input realization. A record
is kept of the system states, outputs, inputs and
optimum decisions for all of the generated time series.
A multivariate analysis (usually aregression analysis)
is performed to determine the relationship between the
optimum decision at each stage and the other system
variables. This relationship will be used in subsequent
design and/or operation when the future is unknown.
Therefore, the multivariate analysis is used to find
the relationship between the optimum decision at each
stage and only those variables whose values are known
prior to that stage or those variables whose values
are estimated in a forecast. If the regression is made
using forecast variables, then the forecast variables
are generated along with the other regression data
although they do not enter into the optimizations.
Young (48) has studied reservoir operation rules and
their determination with forecasts.

One of the better known versions of ISO in Monte
Carlo Dynamic Programming (MCDP) proposed by Young
(47,48). The procedure in MCDP is identical to that



described above for IS0, but the deterministic
optimization technique used is dynamic programming.

The advantage of IS0 over explicit stochastic
optimization is that the results from IS0 represent
decisions obtained to achieve the maximum total bene-
fit for the system. Explicit stochastic optimization
involves adifferent type of "optimum' solution as will
be discussed shortlyv. IS0 is applicable to a wide
variety of problems. Its use of data generation tech-
niques means that the problem does not have to be solv-
able by analytical techniques as simulation and esti-
mation are utilized. Therefore, very complex systems
may be studied with this method where the limits on the
problem complexity are determined by the limits of the
computing facilities and available funds.

There are several
Some conflict exists

disadvantages to this method.

over what type of multivariate
analysis 1s most suitable to determine the desired
relationships. Very often, subsidiary studies must be
made to find the best function out of several and the
significant variables to use in the relationship. Alse
the reliability of the decision estimates may well be
different each time an estimate is made. Furthermore,
multivariate analysis techniques often give poor esti-
mates of the dependent variable at the extreme values
for the independent variables. Thus, the decision mav
be poor for extreme values encountered in practice.

IS0 may require a large amount of computation time
and/or storage inthe multivariate analvsis. The amount
of generated data required to give good estimates de-
pends upon the estimating function and the number of
variables considered important in it. For a given limit
on the computational facilities, it is obvious that the
larger the number of significant variables and discrete
values for these variables, the smaller is the amount
of generated data points for each variable which can be
analyzed. Thus, generally the number of significant
variables for use in the analysis is restricted for
practical considerations.

Perhaps the most important disadvantage of IS0 is
that the results may give very poor estimates of the
optimum decisions. Although any system can conceivably
be studied with IS0, themultivariate relationships are
only estimates of the true optimum decision at each
stage. How well such an estimate performs depends upon
the stochastic nature of the inputs, the system itself
and the dependence of the optimum decision at a stage
upon the future operations of the system. Thus,
estimate from the multivariate analysis may be impaired
if the optimum decision at each stage actually depends
upon many variables.

Finally, IS0 is not an adaptive procedure. If
ISO were to be used for the practical operation of an
existing system, then the analysis would be made once
to estimate the decision function. The decision func-
tion would then be used to operate the system. However,
as new data becomes available at each stage of the
system's operation, it is not utilized in the already
determined decision function. The exception to this
statement is when the decision function utilizes a
forecast variable. Then new data can be used to give
improved forecasts for use in the decision function.
However, the decision estimates relation with the fore-
cast variable has already been determined in the IS0
and the additional data available at later stages of
the operation were not wused in this determination.
Hence, regardless of the variables used in IS0, the
procedure is not adaptive.

the*
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xplicit Stochustic Opiimization - The schematic
for these procedures is presented in Fig. 3. The def-
inition given here for explicit stochastic optimization
(ESO) is identical to that given by Roefs and Bodin (41)
for explicit stochastic models. An explicit stochastic
optimization problem uses the probability distributions
of streamflow (inputs) at each stage directly in the
stochastic optimization rather thanusing samples drawn
in data generation procedures (I50). There are two main
problem types of concern here that fit into this
category.

ESTIMATE INPUT PROBASILITIES AT EACH STAGE FROM
AVAILABLE DATA =g P(I,i)

1

DEFINE BENEFIT FOR ALL SETS OF CONDITIONS eg Vid,s,1,i} ]

!

MAXIMIZE EXPECTED TOTAL BENEFIT FOR OPTIMUM PROBABILITIES
eg mox ZgZ E1ZivId,s,Lid P {d,s,1,i) st 4, Pld,s,1,i) = P(L,i)

CALCULATE CONDITIONAL DECISION PROBABILITIES
eg Pldls,L,i) = Pld,s,1,i)/ Z4P1d,5,L,1)

| USE TABLE AS THE DECISION ESTIMATOR - TO ESTIMATE

PROBABILITIES FOR ALL SETS OF CONDITIONS

[ FORMULATE TABLE OF DECISIONS OR DECISION
OPTIMUM DECISIONS FOR SYSTEM OPEZRATIONS

ESQ Type 1 (e.g stochastic linear programming

ESTIMATE INFUT PROBABILITIES AT EACH STAGE FROM
AVAILABLE DATA eq P{L,ill%)

.

[ DEFINE BENEFIT FOR ALL SETS OF CONDITIONS eg V(d,s,)) ]

!

DETERMINE RECURRENT RELATION FOR CURRENT STAGE (i)
eg. fils,1)= max[Vid,s, i)+ Zpe PULIIT® ) (%, T%)]
Y
[ MAXIMIZE SENEFIT FOR REMAINING STAGE(S) |

T
jrepeat, starting a* lost stoge
ord proceeding toward first

I FORMULATE TASLE OF DECISIONS FOR ALL SETS OF CONDITIONS -I

]

USE TABLE AS THE DECISION ESTlI!V.\'-\TOR -TC CSTIMATE
OPTIMUL DECISIONS FOR SYSTEM OPERATIONS

ESO Type 2 (eg stocrostic dynamic progromming)

FIG. 5. EXPLICIT STOCHASTIC OPTIMIZATION TECHNIQUE.

The first type of ESO problem was proposed by
Manne (29) and used by others (14,16,27,40). The goal
of the optimization is to maximize the expected total
benefit for the system. Probabilities are assigned to
each of the possible inputs at each stage of the plan-
ning horizon. A benefit function is defined which
gives the benefit obtained for being in any state at
any stage with any input and making any decision. The
objective function is the sum over all states, stages,
inputs and decisions of the benefit function multiplied
by the probability that these conditions occur. Thus,
the objective function represents the ezpected total
benefit for the system. A suitable optimization tech-
nique is applied to find that set of probabilities
(for being in each state at each stage with ecach input
and making each decision) which maximizes the expected
total benefit. These probabilities arc then used to
calculate the conditional probabilities of making a
decision given that the system is in a given state at
a given stage receiving a given input. Ideally, these
conditional probability distributions assign a probab-
ility of unity to a particular decision and values of



zero to all other decisions for each set of conditions.
This represents a pure strategy (26,45), i.e., there
is no question of what decision tomake for a given set
of conditions. Unfortunately, pure strategies are not
always obtained. For complex, practical problems,
mixed" strategies are obtained and used in some suit-
able manner to determine the decisions. In this ESO
problem definition, if the optimization technique used
is linear programming, then this problem is known as
stochastic linear programming (14,26,40).

The second type of ESO procedure finds the decision
at each stage which maximizes the expected total bene-
fit in the remaining stages. This procedure is applied
successively at each stage going backward in real time.
This procedure has been called stochastic dynamic pro-
gramming in the past (14,41,47).

A third type of ESO problem is not easily distin-
guished from the first two types. Its inherent feature
is that, instead of a probability distribution for
inputs at each stage, an analytical model (such as the
Markov chain) is specified for inputs and the distribu-
tion of states or decisions then found analytically

(22).

The advantages of these procedures over IS0 1is
that the results obtained from ESO represent the con-
ditional probability distribution for the optimum de-
cision at each stage for any conditions. There is then
more information utilized for the choice of the deci-
sion at each stage. Instead of justasingle estimate,
the probability distribution is given; although, the
problem of selection of the decision may still remain.
A table of decisions or decision probabilities is ob-
tained, indexed by the state of the system, inputs,
stages, etc., which gives the maximum expected total
benefit for the system. These values are obtained
considering the probabilities of inflow, values of
benefit, etc., which can occur in the future and they
reflect the dependence that the decision probabilities
have on these future probabilities. There is no multi-
variate anlaysis and no conflict over the different
forms of analysis within ESO. There are none of the
other difficulties mentioned above, which are associated
with multivariate analysis in this method.

There are several disadvantages to this method
however. The method involves a great deal of computa-
tion time and storage. Therefore, its application to
complex systems is severely limited. In most problems,
simplifying assumptions are often made to reduce the
problem. Among the most prevalent assumptions made are
those of an unchanging (steady-stage) probability dis-
tribution for inputs at each stage, that the system can
be represented by a cyclic (repeating) operation and
so only one c¢ycle needs to be analyzed and that the
system can be represented wusing a small number of
discrete values for the states, inputs and decisions
(14,27,40,41). Methods have also been developed to
decrease the dimension of reservoir operation problems
by reducing some of the decision and state variables to
parameters (16,22). Analysis in the past has been
limited to simple reservoirs or simplified systems of
reservoirs in the water resources field. Even in these
situations, the results are limited in practical ap-
plications. In general then, ESO can be applied only
to much simpler systems than can ISO0. Also, usually
much more problem reduction and simplification is nec-

essary to apply ESO than is necessary to apply ISO
(40,41).
The ‘“optimum" set of decisions (or decision

probabilities) obtained through the use of this method
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are not the same as the optimum decision sequence
defined in section 1 of this chapter. If a system can
be investigated using ESO and the results applied for
a given input realization, then the total henefit ob-
tained would not necessarily be the maximum total bene-
fit. This is true even though the expected total bene-
fit has been maximized as defined above {see Appendix I).
It may be desirable to operate the system in a way
which gives the highest (or close to the highest) return
possible for the input time series realization which
will acutally occur. This has been impossible todoup
until now unless we are concerned only witha determin-
istic future. IS0 at least uses maximum total benefit
as the objective for many such "futures'" and obtains an
estimate of the decision function. ESO does not solve
for this set of decisions. It only finds that set of
decisions (or decision probabilities) which optimizes
performance by maximizing the expected return of the
system. Like, I50, ESO is also not an adaptive pro-
cedure in that new data available at each stage of the
systems operation is not utilized in determining the
the decision table.

PROPOSAL

An Alternate Stochastie Optimization
Because of inherent disadvantages of limited
in ESO, ISO has found a great amount of use
few years as reflected in the literature. Since this
type of analysis only gives an estimate of the optimum
decision function for use in practice, the results have
been used to indicate general guidelines or operating
rulze for systems. Operating rules are not to be con-
fused with sets of decisions. A set of decisions (e.g.,
specific releases from a reservoir over its operating
horizon) may be obtained from the operating rules
(decision function). Of course, for a given situation
with a particular input realization, it is more desir-
able to know the optimum set of decisions to use in-
stead of the general operating rules which may not be
close enough to the optimum decision sequence.  Then
the maximum total benefit can be realized for the sys-
tem for that input realization.

Technique -
feasibility
in the past

A new method of applying optimization techniques
to stochastic optimization problems was desired that
would be sequential (allowing an adaptive approach),
that would have none of the disadvantages associated
with ESO or 150, and that would be most suitable in
determining the optimum decision sequence and not just
the general operating rules. Emphasis is placed upon
engineering application and not onmathematical sophis-

tication.  Such a heuristic method was found to be a
combination (at least in principle} of the above two
techniques. This alternate stochastic optimizatien

technique (ASO) is a form of ESO employing data genera-
tion techniques common to ISO. The procedures involved
in this alternative are described below.

Instead of performing a preliminary ISO or ESO to
obtain the operating rules, and then using the results
in design or actual operation, the ASO is performed
directly in the design or actual operation. Basically,
the procedure involves the empirical transformation of
the probability distribution for inputs into that for
optimum decisions at each stage similar to ESO analysis.
However, instead of maximizing the expected total bene-
fit by selection of the probabilities of the decisions
at each stage, the total benefit is maximized for each
of several possibilities for future inputs (as in IS0)
to determine the empirical distribution of the optimum
decision at each stage.



Procedure - The schematic for this procedure is
presented in Fig. 4.  The system and the stochastic
nature of the inputs are represented by suitable math-

ematical models. The first stage decision is to be
{adaptive

alternative)

SRR “ﬂ ESTIMATE INPUT MODELS FROM AVAILABLE DATA
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I

DETERMINISTICALLY OPTIMIZE, TO FIND THE ENTIRE DECISION
SEQUEMCE OVER THE REMAINING OPERATION HORIZON

i

I STORE FIRST DECISION FROM THE OPTIMUM DECISION SEGUE.‘-‘CE_]

I:cpect several times to obtain
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.
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|

LUSE TO ESTIMATE OPTIMUM DECISIGN FOR SYSTEM OPERA'.I-:IN?J—|

irepeu! entire procedure for
next stage decision, until fost
decision is determined

FIG. 4. ALTERNATE STOCHASTIC OPTIMIZATION TECHNIQUE.
determined first. To do this, input realizations over
the entire operation horizon are generated and a suit-
able deterministic optimization technique is applied to
the system for each input realization. Only the first
stage decision from each resulting optimum decision
sequence is noted. From this sample of first stage
optimum decision values, the empirical frequency dis-
tribution is constructed and used asan estimate of the
probability distribution for the first stage optimum
decision. Using a suitable selection rule, such as
the mean, median or mode, etc., a decision is chosen
from the distribution. This decision is then used to
operate the system for the actual input that occurs in
that stage and places the system in a new state at the
second stage. The second stage decision is now deter-
mined by repeating the data generation for input real-
izations over the remaining operation horizon and ap-
plying the same procedure as above. Only now, the
deterministic optimization technique is applied over an
operation horizon with one stage less than before, for
each input realization. The decision selected will then
be used as before to place the system inanew state in

the next stage with the acutal input that occurs in
this stage. The process is repeated until the last
decision 1is determined at the end of the operation

horizon. Admittedly, the ASO may have more application
in practice than in design since the system is operated
for the acutal input realization which occurred.

The ASO procedure is a forward looking dynamic
programming decomposition similar to some forms of the
ESO Technique described as "stochastic dynamic program-
ming.'" As such, it can be applied only to those systems
where Bellman's Principle of Optimality applies (dis-
cussed in Chapter II). This principle is used in most
dynamic programming decompositions to establish a re-
cursive relationship between optimum decisions at suc-
cessive stages. However, it also implies that the
optimum decision for any stage can be determined from
consideration of only the remaining stages. Instead of
using a recursive relationship to find the optimum
decision at each stage as a function of the next stage
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decisions, ASO repeatedly optimizes over the Temaining
operation horizon to empirically estimate the optimum
decision. Thus, much information obtained at one stage
of the ASO is not used at the next stage through a
recursive relationship, but is lost. However, this
technique allows an empirical optimization with maxi-
mization of total benefit as the objective, to take
place in the stochastic realm on a sequential, stage-
by-stage, basis.

There are many advantages of this method over the
other two methods. The decision estimates obtained
successively in ASO are from the (empirical) probabil-
ity distribution of decisions which were obtained by
maximizing the total benefit for the system. The re-
sults do not represent only a maximization of the
expected total benefit. The decision estimates are
based upon consideration of the future variables at
each stage and yet are still usable based upon knowledge
only of the past and of the stochastic nature of the
future inputs. Therefore, the method does not disregard
information supplied by the individual optimizations at
each stage concerning the dependence of the optimum
decision at a stage upon future variables.

ASO is applicable to a wide variety of problems
as was 150, Its use of data generation techniques
allows consideration of problems not solvable by ana-
lytic techniques and of complex problems not suitable
for ESO. The simplifying assumptions, problem reduc-
tion and simple problem representation that is so often
necessary in ES0 are not necessary in this method. Any
type of nonstationarity in the input times series can
be used since the method and its requirements are in-
dependent of the stochastic nature of the inputs. This
is an advantage also over ISO which requires more com-
putation of "data" in order to achieve estimates of
decisions when the input time series nonstationarity is
serious.

Multivariate analysis is not part of this method,
so that there is no conflict over which type of analy-
sis to use. Since the number of optimizations at each
stage may be set in advance, then the same number of
decision values may be obtained for each set of pre-
ceding conditions. Thus, one has reason to place the
same amount of confidence in each stage's decision.
The method does not produce any information that will
never be of use in actual operation since the method is
used in actual operation and only considers conditions
of the past which have occurred. The computation stor-
age required in the multivariate analysisof ISO is not
needed with ASO.

Finally, ASO can be used as an adaptive procedure.
Since ASO determines the single stage decisions as
they are needed in real time, then information that
becomes available canbe used to improve the mathematical
models for both input data generation and system re-
sponse. The improved models are thén used to determine
succeeding decisions and so forth. It must be mentioned
that the other methods, IS0 and ESO can be used in an
adaptive fashion by repeating the entirc sutdy at cach
stage and throwing out all previous results. Such a
procedure, while adaptive, would be highly uncconomical
thereby preventing its widespread usc.

Perhaps the greatest disadvantage of ASO i that
its application involves a large amount of computation
time. IS0 will give decision estimates or operatng
rules which may be applied to the system for any input
realization.  The results from the ASO apply only for
the single input realization actually uscd in the con
junctive operation and stochastic optimization of the
system. To find results for another input realization



requires a repetition of the method. This amounts to
a large computer time requirement. Also, since the
optimization technique is applied a number of times at
each stage and for every stage, the computation time is
great for each input realization analyzed. As an
example, in ISO, perhaps 100 input realizations are
generated and the optimization technique applied to
each. There are then 100 N stage optimizations per-
formed, where N is the number of stages in the opera-
tion horizon. In ASO, perhaps 30 time series realiza-
‘tions are generated at each stage and the optimization
technique applied to each. There are then 30(N) stage
and 30(N-1) stage and 30(N-2) stageand ... and 30(1)
stage optimizations performed. Thus, the computation
time required here may be much greater than with IS0,
even though the computation storage may be much less.

Feasible Use of the Alternative - The large com-
putation requirement associated with alternate stochas-
tic optimization would prevent its use for most problems
normally encountered in design and perhaps for most of
the problems of actual operation, However, the con-
siderations presented in Chapter IT would reduce the
required computation time for some problems and make
ASO very attractive. These '"considerations" provide
for computation reduction without destroying the ad-
vantages of the method.

By wutilizing the assumption of Eq. 7 in the
application of Eqs. 15 and 17, it should be possible to
use k stage optimizations instead of N-i stage
optimizations to determine the single stage decisions
which make up the sample at each stage. Equations 15
and 17 give some assurance that such a substitution
works when the sample size is cne, since the ASO pro-
cedure is then identical to the new application of a
deterministic optimization technique.

If the behavior described in Eqs. 15 and 17 is
found to exist, then the ASO can be modified to take
advantage of the resulting reductions in computation.
At each stage, the following procedure is used (the
schematic for this procedure is presented in Fig. 5).

i ESTIMATE AN ACDQUATE k VALLE, k‘dNJ
{adaptive ‘I!
R ‘-{_ ESTIMATE INPUT MOCELS FROM &VAILABLE DATA i
I

HCHIZON, THENM LET k EQUAL THE NUMBER OF REMAINING STAGES
[ k STAGES OF THE REMAINING OFESATION HORIZON
i
THE NEXT k STAGES OF THE REMAINING OPERATICN HCOPIZON
T

IF GFERATION 15 WITHIN k STAGES OF THE END OF THE OPERATION J
GENERATE & RANDOM INPUT REALIZATION OVER THE NEXT l
DETERMINISTICALLY CPTINMIZE TO FIND THE DECISICN SEQUENCE OVER |

1
l STCRE FIR3T DECISION FRCHM THE k STASE OPTIMUM DECISION SSQUENCE }
J

i:epeof severcl times to
L obizin “sempte” of decisions

{ FORM EMPIRICAL FREQUENCY DISTRIBUTION FROM RANDOM SAMPLE l

1 CHOOSE DECISION ESTIMATE FAOM SAMPLE eg ‘made"—l

]

| USE TO EST!MATE OPTIMUM DECISION FOR SYSTEM npzamous—|

| repeat satire e for
next stoge decision, until
lost decision is determined

FIG. 5. ASO WITH MODIFICATIONS.
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The input realizations are generated for the remaining
operation horizonover only thenext k stages, k << N.
The deterministic optimization technique is applied to
the system for each input realization, but only for the
next k stages. The value of k is that which re-
sults in optimum decisions ''close enough' to the true
optimum decisions (such a determination is discussed
later). Only the first stage decision from each re-
sulting optimum (k stage) decision sequence is noted.
From this sample, the decision value for the particular
stage is selected and the system operated according to
that decision and the input at that stage. The procedure
is repeated for the next stage using the next k stages
of the remaining operation horizon, etc.

The value of k required so that the modified
ASO would give a total benefit within some specified
range of the optimum total benefit witha certain level
of probability must be determined a priori. The k
value is a random variable, whose outcomes depend upon
the input realization used in the actual operation, the
system characteristics, the objective function and the
constraints on the system. Thus, the results from the
modified ASO would be within some specified range of
the optimum with a probability dependent upon the value
of k wused in the modified ASO.

APPLICATION

The application of ASO is made and shown superior
to IS0 and ESO fora simple reservoir system considered
here. As is true for any heuristic technique, the
suitability of ASO for any reservoir problem cannot be
determined from one simple example. However, its gen-
eral application canbe illustrated and its suitability
partially determined with the use of an example prob-
lem of possible interest to reservoir operators. It is
felt that the technique is suitable for a wide range
of system operation problems, but it is not the intent
to prove that herein.

In the following comparisons, procedures con-
cerning "ties'" for the optimum decisions, infeasible
decision estimates, etc., were arbitrarily determined.
However, they were consistently applied for both ASQ
and IS0 to minimize differences in results not directly
related to either method. Furthermore, since the com-
parison is hypothetical, the input reali:ations that
were used for comparison of the ASO and ISO decision
estimates were randomly generated from the same gener-
ator used in both the ASO and ISO. Therefore, only the
relative suitability of the methods may be determined.

Problem - The system used in
same single reservoir model described in Chapter II.
The system parameters were changed somewhat to see if
the assumption of Eq. 7 was still good for a broader
class of problems. The inflow time series isnow rep-
resented by a data generation model which is a Markov
model of order one with periodicities over the year
(12 months) in the mean, standard deviation and first
order correlation coefficients.

this study is the
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All parameter values, except for the correlation coef-
ficients are the same; see Tables 1 and 2. The 12
values for the 1lst serial correlation coefficient are
given in Table 5.



The system performance is measured with the benefit
function of Table 3, but weighted according to the
following equation.

(32)

In the above equation, bd is the base benefit obtained

from outflow d in Table 3 and wj is the weighting
coefficient for benefit in month j

stage i) in Table 6.

(corresponding to

TABLE 5

FIRST SERIAL CORRELATION COEFFICIENT FOR
MODEL FOR EQ. 31

JAN FEB MAR APR  MAY JUN JUL AUG SEP OCT NOV DEC

1 2 3 4 5 6 7 8 9 10 11 12
-1160 .1379 .1829 .2696 .2930 .3220 .3011 .3105 .2542 .1947 .1360 .1041

TABLE 6

WEIGHTING COEFFICIENT FOR EACH MONTH USED TO
DETERMINE THE BENEFIT FUNCTION

JAN FEB MAR APR MAY JUN JUL AUG.SEP OCT NOV DEC

As before, the operation horizon is 120 months and
the initial state is & = 10. There 1is no salvage
value assigned to the system and no end condition on
storage in the reservoir. The deterministic optimiza-
tion technique used is still dynamic programming. The
starting stage of operation is February.

Modified Application of the Optimization Technique-
For this system it was desired to determine whether or
not the modified application of the optimization tech-
nigue could be made. In other words, Eq. 25 for k<5,
was to be tested as a hypothesis. To test this hypoth-
esis, 25 input realizations of 120 stage length were
generated independently, 5 for each value of k
(k =1, 2, 3, 4 and 5). Using k stages for the ROHAES,
optimizations were performed on each of the 5 time
series for each value of k to obtain values
total benefit. Also, 120 stage optimizations were
performed on each of the 25 time series to obtain the
maximum total benefits. The relative total benefit for
each optimizationwas calculated and appears in Table 7.
The procedures outlined in Chapter II were applied to
these data. The value of the test statistic was T = 0
and the hypothesis of Eq. 25 was accepted at all levels,
¥, within the available tables.

Since the assumption of Chapter II is accepted,
then the question remains, "which k to use in the
modified application of the optimization technique?”
To achieve a high level of probability in obtaining
optimum or near optimum results, the ROHAES was selected
to be k = 5 stages for future use. From the data in
Table 7, one can be sure of obtaining at least 98 per-
cent of the true optimumby using the modified applica-
tion of the optimization technique with the ROHAES = 5,
instead of using conventional applications.

for the-
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TABLE 7

ORDERED VALUES OF RELATIVE TOTAL BENEFIT (RELATIVE
TO MAXIMUM TOTAL BENEFIT) OBTAINED WITH THE MODIFIED
APPLICATION OF THE OPTIMIZATION TECHNIQUE WITH
ROHAES = k, FOR 25 RANDOM INPUT REALIZATIONS

k 1 2 3 4 5
L7995 . 8992 .9466 L9716 L9878
.8000 L9037 .9498 .9761 .9883
.8038 9053 .9537 L9779 .9885
.8155 . 9064 .9547 .9785 .9887
.8167 .9091 .9606 .9799 L9913

Application of 450 - The input model of Eq. 31 was
used to generate 10 input realizations over the next
five months starting with stage one. The 5 stage opti-
mization was performed for each of these realizations
and the initial (first stage) decision from each was
stored. From this sample of 5 stage optimum initial
decisions, that decision which appeared the most times
in the sample (representing the "most probable" deci-
sion) was selected (see Fig. 5). In case of a "tie"
the smallest decision value was taken. The input model
was then used to generate the first stage input for the
system. The most probable optimum decision was checked
to see that it was feasible and if not, it was changed
to equal the feasible wvalue it was closest to. This
decision was then used together with the system state
and the input to operate the system for one stage,
placing it in a new state at the next stage. The input
used in the actual operation was stored. The above
procedure was then repeated for the second stage, the
third stage, etc. When the system reached the
117th stage, a 4 stage optimization was used; at the
118th stage, a 3 stage optimization was used, etc. The
sequence of inputs used in the actual operation were
stored for use in a later comparison with ISO. This
entire application of ASO was repeated for nine more
input realizations. Thus, the ASO was applied to 10
different input realizations with its ROHAES = 5. The
total benefit obtained from the resulting sequence of
decisions was calculated and appears in Table 8,
column 3, for all 10 input realizations. As a compara-
tive study, the ASO was also applied to 14 more input
realizations with its ROHAES = 1. The total benefit
obtained from the resulting sequence of decisions was
calculated and appears in Table 9, column 3 for all
14 input realizationms.

0f the 24 input realizations that were randomly
generated, the AS0 was not used exactly the same way
for all of them. For 12 of the input realizations, the
ASO was applied as described above, using 10 samplc
points to choose the "most probable" decision at each
stage. For the other 12 input realizations, the ASO
was applied as described above, except that J0 samplc
points were generated at each stage for the choice of
the ''most probable'" decision at each stage. The input
Tealizations are marked in column 1 of Tables & and 9
as to which variation of the ASO technique was used on
them.

Application of IS0 - The input model of  Ey. 31
was used to generate 30 input realizations over the
entire 120 stage operation horizon. The 120 stape

optimization was performed for each of these realiza
tions and the entire optimum decision sequence was



TABLE 8
COMPARISON OF RESULTS BETWEEN DETERMINISTIC OPTIMIZA-
TION, APPLICATION OF ASO (ROHAES = 5) AND APPLICATION
OF IS0 FOR SEVERAL REALIZATIONS

Laput True ASO IS0
Time  Optimum Eq. 39 Eq. 40 Eq. 41 Eg. 42 Eq. 43
Series
Number Mean Square Error
Sample 8.0334 B8.0088 5.8299 5.3002 5.8669
Points
1 46602 45066 40306 40453 42192 42481 41397+
(30) 1.000 0.967 0.865 0.868 0.905 0.912  0.885**
2 50952 49763 45520 45722 46992 47292 46116
(10) 1.000 0.977 0.893 0.85%7 0.922 0.928 0.905
3 48078 46379 41446 41622 43368 44174 435293
(10) 1.000 0.965 0.862 0.866 0.802 0.919 0.900
4 53455 51204 46335 46652 48250 48444 46403
(10} 1.000 0.958 0.867 0.873 0.903 0.906 0.868
5 45524 44348 39668 40037 41463 42130 40941
(30) 1.000 0.974 0.871 0.879 0.911 0.927 0.899
6 46896 45750 40875 41196 43025 43667 42434
(30) 1.000 0.976 0.872 0.878 0.917 0.9%31 0.905
7 45021 44687 39886 40019 41691 42314 40939
(30) 1.000 0,972 0.367 O0.870 0.906 0.91% 0.8930
8 47578 46654 41529 41928 43575  44I10 42918
a0 l.000 0,981 0.873 O0.881 0.516 0.929 0.902
9 50542 49080 44369 44991 45963 46362 44791
(10 1.000 0.571 0.878 0.890 0.909 0.917 0.88%6
10 50483 48322 43155 43487 45412 45752 43120
(10) 1.000 0.957 0.855 0.861 0.899 0.%® 0.874

*Total Benefit; **Relative Total Benefit

TABLE 9
COMPARISON OF RESULTS BETWEEN DETERMINISTIC OPTIMIZA-
TION, APPLICATION OF ASO (ROHAES = 1) AND APPLICATION
OF IS0 FOR SEVERAL REALIZATIONS

Input True ASO IS0

Time  Optimum Eq. 39 Eq. 40 Eq. 41 Eq. 42 Eq. 43
Series
Number Mean Square Error
Sample 8.0334 S8.0088 5.8259 5.3002 5.8669
Points
11 46090 36747 39671 39958 41777 42736  41022*
(10) 1.000 0.797 0.861 0.867 0.906 0.927 0.890**
12 50701 42263 44789  4498C 46803 47084 45027

(10)  1.000 0.834 0.883 0.887 0.923 0.929 0.208

13 49185 39713 42850 43249 45093 45855 41188
(10) 1.000 0.807 0.871 0.879 0.917 0.932 0.898
14 47684 37660 41202 41623 43658 44334 43604
(10} 1.000 0.790 0.864 0.873 0.916 0.930 0.914

15 48329 39182 43040
(10) 1.000 C.8i1 0.881

15 47624 38408 41768
(10) 1.000 0.806 0.877

43294 44379 44848 45147
0.8%6  0.918 0.928 0.893

42108 43487 44315 42856
0.884  0.913  0.951 5.900

17 45540 35510 39199 39450 41386 42406 40855
(30) 1,000 0.780 0.861 0.866 0.90% 0.931 0.897
18 48218 39050 43103 43317 441893 44998 43385
50 1.0G0 0.810 0.084  G.8%8  0.917  0.933  0.300
13 47844 38156 42235 42416 43799 44943 43455
(30) 1.000 0.798 0.833 01887 0.915 0.939 0.508
20 46948 36743 40602 40953 42775 43335 41964
(30) 1.000 0.783 0.865 0.872 0.811 0,923 0.89%4
21 50094 41592 44247 44504 46121 46781 45154
(30) 1.000 0.830 0.883 0.888 0.921 0.934 0.901
22 51256 42697 45415 45483 46315 46358 45114
(30) 1.000 0.833 0.886 0.887 0.904 ©.914  0.880
23 49948 41034 43948 44122 45682 46218 43877
(30) 1.000 0.822 0.880 0.883 0.815 0.925  0.878
24 49830 40089 42507 42708 44750 45146 43942

(30) 1.000 0.805 0.853 0.857 0.898 0.206 0.882
*Total Benefit, **Relative Total Benefit

stored. Each decision sequence was then used to operate
the reservoir for eachof the respective input realiza-
tions and the resulting state variable sequences were
stored. Thus, there were 30, 120 stage time series
realizations of inputs, optimum decisions, states and
month designations available for the multivariate
analysis. Since the nonstationarity of the inputs and
the benefit function was limited to variation over only
12 months (i.e., the characteristics of the inputs and
the form of the benefit function repeat every 12 months),
the generated ''data" may be regarded as 300 values of
input, storage and optimum decisions for each month of
operation.

Performing the multivariate analysis required
determining the variables of importance, the functional
relationship and the method of estimation of parameters
in the relationship. Any comparison of results between
IS0 and ASO is heavily dependent upon the above selec-
tions. The selection of variables, functional form and
parameter estimations was limited in complexity to the
degree normally used in practice (40,48). Least squares
regression analysis was selected as the multivariate
analysis technique. Available to the writer was the
Bureau of Beclamaticn, DMDXESRE, nonlinear leas:i squares
regression analysis computer program as revised 0y the
C.8.U. Statistics lab in June, 1870. The selection of
the significant variables was more difficult. Since
the input time series was represented by a Markov model
of order one, only the one previcus inflow was con-
sidered dimportant in determining the decision at a
stage. The relationship was also judged to be depen-
dent upon the monthof operation since there were peri-
odicities over the vear in the mean, standard deviation
and correlation coefficients of the input time series
and periodicities over the year in the benefit func-
tion. The relationship was also judged to be a func-
tion of the state of the reserveir. Thus, the follow-
ing equation was used in the multivariate analysis:

dy = fsy5 I, 45 1) (33)

In BEq. 33, j is the month of the year

to stage 1.

corresponding

The selection
lationship for use in Eq. 33 was the most

of the appropriate functional re-
difficult.

Instead of selecting only one relationship, several
were used:

By = BT B ¥ Bl iRy (34)

ps ps .p.u\' s
dy =Py *PpS;  * Pyl * Pl (35)

- Lft ) z
d; =Py * PySy * Pgly_; * Pycos(T3)  (36)

4 .

AT %

dl =Pyt PySyt pSIi-l - Rgl p£+5c05[ 12 ) (37)

fon o o
d, = P, * pzcos[jggﬂ + PSCOS(j%%USi + p4cos(—fgﬂli_l
(38)

In Egs. 34 through 38, the p signifies parameters to
be estimated in the multivariate analysis. The selec-
tion of the above functions was not made independently
of the regression analysis. First Eq. 34 was used, then
Eq. 35. The analysis indicated that all of the expo-
nents in Eq. 35 were very close to unity and so the
exponents were dropped for subsequent analysis. The
periodicities mentioned above prompted the cyclical



representations in  Eqs. 36, 37 and 38. In Eq. 37,
smaller cycles (harmonics) were added but the improve-
ment (as represented by the mean square error of the
residuals) was small. In Eq. 38, the periodicity was

introduced into the other variables with little im-
provement. Of the five equations above, Eq. 37 gave
the best representation as shown in Tables 8 and 9.

The least squares regression results for Eqs. 34 through
38 are respectively:

d; = 0.010811 + 0.21223s, + 0.46711T, , - 0.039786j
(39)
. -
d = -0.037536 + 0.19900s;" "7 + 0.48565107 7587
¥ y.
- 0.00082371j°" 0942 (40)
d. = 1.6462 + 0.13527s, + 0.247071.
i at i-1
- 2my.
- 5.0142 cos (53 (41)
d, = 1.9707 + 0.12776s. + 0.193101,
i 1 i-1
- 5.5292 cos (B5) + 0.57219 cos b
- 0.070249 cos (%l + 0.91303 cos (ST’;l} 42)
e
d; = 5.2871- (1.1288+0.1904s, +0.225631, ) cos(55H)
(43)
COMPARISON OF RESULTS
For every actual input realization that ASO was

applied to, - the results of the ISO were <also applied
and the resulting total benefit was calculated. The
decision, at each stage of each realization, resulting
from the function used in each case (Egs. 39 through
43) was checked to see that it was feasible and if not,
it was changed to equal the feasible limit it was
closest to. Therefore, since this procedure is common
to both AS0O and IS0 as applied here, this procedure
does not bias the results in comparison of ASO with
IS0. The 120 stage optimization was also applied to
each of the realizations to determine the true maximum
total benefit.  The results of all optimizations are
presented in Tables 8 and 9 for ease in comparison. It

can be seen from inspection of Table 8§ that the ASO
yields consistently higher total benefits, for the
actual input realizations considered here, compared
with ISO and each of the relationships of Egs. 39
through 43.

Several statistical tests were performed on the

data of Tables 8 and 9 to study the results of ASO and
to compare ASO with ISO. Some of the following tests
are probably extraneous to most practical applications
of AS0, but were included here for information concern-
ing ASO.

Effect of Generated Sample Size at Each Stage in
450 - The first statistical test was made to see if
there was any significant difference in the ASO results
for this problem between using 10 sample points or
30 sample points at each stage to determine the most
probable decision. For the data of Table 8 (ROHAES = 5},
the Mann-Whitney test (5) was applied to test the
following hypothesis:
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; 25,30 5,10
Ey: P[:_120 < a] = P];;zn < u]; for all ¢
(44)
5,30 =5,10
Hl: P[;;BS < a] # P[;JE; < a]; for some o
-K; . . " :
In Eq. 44, Zy ™ isthe relative total benefit achieved

from ASQO applied over N stages with a ROHAES = k and
using m sample points at each stage. To test the
above hypothesis, two random samples are taken and they
must be mutually independent samples. For the purposes

here, the random variables, ZE’m are treated as con-
tinuous. Time series numbers 1, 5, 6 and 7 are used to
?ééu, and numbers 2, 3, 4, 8, 9 and 10 are

5,10
used to represent L5y -

combined sample with a rank of 1 assigned to the small-

represent Z

Ranks are assigned to the

est value. The test statistic is:

T 5,30,  n(n+l)

T= ] Rl i) » m— (45)
1=1
7 5,30, . % 2 3

In Eq. 45, Ri[2120 ) is the rank of observation i on
Z?;SO assigned fromthe combined sample and n is the
size of the random sample for ZTESU‘ If the test
statistic 1is less than the /2 quantile or greater
than the 1 - ¥/2 quantile of the distribution of T,
then the null hypothesis is to be rejected. The value
of T is 15. For vy = .002, the critical region is
reject HO if T<0 or T=24. Thus, EG is accepted
at the y = .002 1level. In addition, inspectionof the

distribution of T indicates &

0 is accepted at all

levels in the tables down to and including v = .20.
Thus, one may say that there was no significant dif-
ference in using ASO with either 10 or 30 samples

points at each stage to determine the optimum operation
of the reservoir for this problem. The same test was

applied to the data of Table 9 (ROHAES = 1) and the
same results were obtained; i.e., the null hypothesis
was accepted at all levels in the tables. For this

problem then, considering more than 10 points in the
sample at each stage does not contribute anything more
for less) to the performance of the systemoperated using
A50. From this point on, no distinction will be made
between 10 or 30 points in the sample at each stage for
ASO and optimizations with the same ROHAES will be
treated as equivalent.

Effeet of ROHAES in ASQ - The second statistical
test was made to see if there was an increase in the
probability of obtaining high total benefits when there
was an increase in the ROHAES used in ASO. Recall the
example of the previous chapter. Using the modified
application of the optimization technique it was shown
that an increase in the ROHAES also increased the
probability of obtaining any desired fraction of the
maximum total benefit in the optimization.  Here, an
analogous phenomenon is investigated. Using ASO the
test shows that an increase in the ROHAES for ASO also

increases the probability of obtaining any desired
fraction of the maximum total benefit. The Smicnov
2-sample test for independent samples is wused here
similar to the test for 5 samples of the previous
chapter. The hypothesis is,



5,. 1,.
HO P[212D >a] > P[ZIZO > o]
i - (46)
Hl. not EO
The test was performed and the null hypothesis was

accepted at all levels, Y included within the tables.
Thus, an increase in the ROHAES (from 1 to 5) does
increase the probabiZityoj’ob:aining any desired frac-
tion of the mazimmm total benefit in 450, for this
problem.

Comparison of ASO with ISO - The third statistical
test was made to see if the application of ASO gives
higher total benefits than the application of IS0, for
the problem considered here. The Smirnov test (5) was
applied to the data of Tables 8 and 9. The first
10 input realizations (in Table 8) were used to rep-
resent the ASO results (with the ROHAES = 5) and the
next 10 input realizations (series 11 through 20 in
Table 9) were used to represent the ISO results for
each of the fitted relationships (Eqs. 39 through 43).
The test was applied to two samples at a time, comparing
ASO with ISO for each equation. Thus, the test was
made 5 times. In all tests, the following hypothesis

was accepted at all levels, vy within the available
tables:
PIZ23 > a] > P[z*Y al; 2 = 39 43 (47)
120 120 ’ A

*
In Eq. 47, ZNJL

from an N stage operation using ISO and Eq. 2. Thus,
the observation that the 4SO results (for a ROHAES = 5)
were congistently higher than the ISO resulis has been
substantiated in general by the above tests.

is the relative total benefit obtained

The total costs of the computer for this problem
if only one input realization was used (instead of 24)
and if the ASO with a ROMAES = 5 and 10 sample points
at each stage were used, are as follows. Altogether,
the ASO (including preliminary studies to test for con-
vergence in the optimization technique) cost about ¢25.
Of this, §8.75 was the cost of the actual application
of ASO for a single input realization which resulted
from a required computer storage/computer time of 21700
octal/100 seconds. The IS0 (including all of the
studies of functions with least squares regression)
cost about $115. This cost included a computer storage/
computer time of 61100 octal/1038 seconds for the
BMDX85R program and 25000 octal/71 seconds for the IS0
data generation with data storage on punched cards.
The cost of applying the IS0 results (Eqs. 39 through
43) was negligible.

DISCUSSION

Costs - The above figures may serve to give a
rough indication of relative expenses. For a single
input realization, ASO is clearly more economical.
However, the application of ASO in design, where many
input realizations need to be analyzed, would reverse
this picture. As mentioned above, the cost of applying
ASO here was about $4.75 per unit realization and the
cost of applying the results of ISO was negligible for
each realization. 1If a large number of input realiza-
tions were to be analyzed in design, then IS0 is clearly
cheaper. Thus, perhaps the greatest application of ASQO
would be in practice, for an existing system with only
one input realization to contend with.

Of course IS0 might do better in the operation of
the system if a better choice of variables and func-
tional form are selected to estimate the decision at
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* decisions on a stage by stage basis.

cach stage. The results of this study only apply for
the functions actually used in ISO. Every effort was
made to be reasonable in the selection of the functions
and variables used in the regression. The high relative
total benefit obtained with the use of some of tne IS0
functions indicates that they were not poor choices.

Application of ESO - When considering the various
ESO techniques as applied to this problem, it becomes
obvious that ESO cannot be applied without considerable
problem reduction and/or alternate problem representa-
tion.  For example if the ESO technique, as proposed
by Manne (29) was used on this problem, then all prob-
abilities of making decision d with an inflow I, a
state s, at stage i, would have to be found. For
this problem, there are 51 possible decisions, 26 pos-
sible states and inflows and 120 stages. The number of
variables to solve for would then be 51x26x26x120
= 4,137,120 variables. Of course, this number would be
greatly reduced by the feasibility constraints that
would be imposed on the problem. Even 50, the number
indicates that the degree of complexity is great. In
lieu of making simplifying assumptions, this problem
cannot practically be worked with this method. Other
ESO techniques could be used which would solve for
However, all ESO
techniques require the probability distribution for
inflows at each stage.  Thus, an alternate problem
representation would he necessary for the application
of any ESO technique. Furthermore, there is no assurance
of achieving the maximum total benefit, only the max-
imum expected total benefit.

One large restriction with most
ESO is that the variables in the problem are represented
by a small number of discrete values. With ASO, this
restriction is lifted and computer storage that would
be reserved for the optimization in ESO is now available
for system representation with many discrete values in
ASO.

Complex Systems - If the problem as stated was a
little different, then applications of ESO and ISO are
not at all feasible. The problem was selected so that
ISO could be applied in addition to ASO without exceed-
ing computation feasibility Tequirements determined by
available funds. However, if the input time series
nonstationarity extended over the entire operation
horizon (instead of only periodicities over the year)
then IS0 would require analysis of each of the
120 months. Thus, enough input realizations would have
to be generated and optimizations performed so that
"enough" data points for each of the 120 months are
obtained. For example, if 300 data points for each
month were desired (as in the above problem), then 300
(120) stage input realizations would be needed for the
optimizations. Thus, for this problem, the data genera-
tion of inputs, optimum decisions, states and month
designations would require 10 times the computer time
as above. In addition, the multivariate analysis would
require a computer storage that would be infeasible.
However, the requirements and execution of ASO would
not change one iota. Similarly, if the operation hori-
zon was 50 years instead of 10 years and nonstationarity
over the entire operation horizon were present in the
input time series, then ISO computer requirements would
increase proportionally, whereas ASO would only consume
5 times the amount of computer time.

applications of

Finally neither conventional ESO techniques nor
IS0 techniques could handle this problem if new infor-
mation (available at each stage of operaticn) were to
be used in the problem. However, ASO is adaptive and
since the stochastic optimization proceeds one stage at
a time, new information available at each stage can be
utilized in the models.



CHAPTER IV

MODIFIED OPTIMIZATION VARIATIONS

The purpose of this chapter is to illustrate how
well the techniques perform by looking at variations
in the single reservoir problem. The modified applica-
tion of the optimization technique, as described in
Chapter II, was applied to eleven variations of the
reservoir problem. These variations are described in
detail below. The ASO was not applied, since it would
have involved lengthy computation and since it was
felt that the following results are representative of
ASO performance.

As an indicator of how "well" the modified appli-
cation of the optimization techniques performs, the
average relative total benefit is used. By comparing
different values of this measure, the relative effect
on the optimization results canbe assessed for changes
in the problem. The problem was varied by changing the
annual mean of the inflows and the annual standard
deviation in the data generation. Furthermore, the
shape and locationof the benefit function were changed.
The results of all optimizations are plotted and sig-
nificant trends are noted and discussed. The probable
implications for future problem variations are also
discussed. The studies of this chapter are offered not
as an exhaustive definition of all problem changes,
but as an indication of suitability of the methods for
typical single reservoir problems.

APPLICATION

The system used in the following studies
same single reservoir model described

is the
in Chapter II.

The inflow time series is again represented by the
first order Markov model with periodicities over the
year (12 months) in the mean, standard deviation and

first order correlation coefficients; see Eq. 31. The
system performance is again measured by a simple bene-
fit function, as was done in Table 3, with no weights
applied to it each month.

As before, the initial state is set at s = 10,
but the operation horizon is now set at 50 months
instead of 120 months, to reduce computations. There

is no salvage value assigned to the system and no end
condition on storage in the reservoir. The determin-
istic optimization technique used is dynamic program-
ming.

The modified application of the optimization
technique was made to the systems operation for each
of eleven sets of system parameters. The first set
included the monthly means and monthly standard devia-
tions of Table 1 which are plotted as broken-line
curves "A" in Figs. 6 and 7 respectively. The first set
of parameters also included the benefit function of
Table 10 of "normal" shape with itsmaximum at d = 15.
For convenience of notation this is referred to as
shape one, location 15 and this is plotted as the
broken-line curve in Fig. 8. The other sets of system
parameters which were used are described in Table 11
with reference made to Figs. 6, 7 and 8. For each set,
the new application of the optimization technique with
a ROHAES = 5 was applied to 30 randomly generated input
time series. Thus, 330 input time series were analyzed
altogether. For each series, the actual total benefit
was calculated and divided by the true maximum total
benefit.
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TABLE 10
BENEFIT, bi FOR DECISION, di
DECISION 0 1 2 3 4 5 6 7 8 9 10
BENEFIT 262 350 386 424 450 506 550 586 600 620 664
DECISION 11 12 13 14 15 16 17 18 19 20 21
BENEFIT 694 702 714 722 724 720 714 698 676 662 644
DECISION 22 23 24 25 26 27 28 29 30 31 32
BENEFIT 616 600 574 540 526 500 478 460 414 382 350
DECISION 33 34 35 36 37 38 39 40 41 42 43
BENEFIT 314 246 182 150 132 116 100 %2 86 78 70
DECISION 44 45 46 47 48 45 50
BENEFIT 64 56 48 40 32 24 16
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The ordered values of the relative total bencfit
for all optimizations are presented in Table 12.  The
mean relative total benefit and the standard deviation
of the mean were calculated for each sct and appear at
the bottom of Table 12.  The mean values arc approxi-
mately normally distributed (by the Central Limit

Theorem) and so two standard deviations, centered on
the mean represent roughly a 70 pereent confidence
interval. The mean values * onc standard deviuation are

plotted in Figs. 9, 10, 11, and 12 for convenience, The
standard deviation may thus be interpreted as a measure
of estimation error.
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TABLE 11
DESCRIPTION OF DATA SETS USED IN PROBLEM OPTIMIZATIONS
Set Mean Standard Deviation Benefit Function
Number Series Series Shape Location
1 A A one 15
2 1/3 A A one 15
3 2/3A A one 15
4 A 1/2 A one 15
5 1/3 A 1/2 A one 15
6 2/3A 1/2 A one 15
7 A A one 10
8 A A one 5
9 A A two 15
10 A A two 10
11 A A two 5
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TABLE 12

ORDERED VALUES OF RELATIVE TOTAL BENEFIT

Data Set Nos. 1 2 3 4 5 1 7 8 s 10 1
Plotting
Position
.0333 .9964 .9978 9973 9068 .9985 .9974 ,9934 .9989 .9677 .9755 9891
L0667 L9968 .9979 9373 ,9973 .9985 .9976 .9937 .9990 .9679 .9826 ,9912
.1000 .9968 .9979 .9977 .9973 ,99B6 .9978 .9942 9995 .9695 .9837 .9917
L1333 .9969 .9981 9977 .9974 .99B6 .9978 .5940 .6936 9706 .9843 9919
L1667 .9969 9981 9977 .9974 .9988 .9980 .5956 .9996 .S711 .5847 .9929
.2000 .9970 .9981 .9981 .9975 .9980 9950 .9956 .9397 .9T14 9868, .9933
.2333 .9970 .9982 9981 .9975 .9989 9981 .9957 0597 3717 .8879 09333
L2667 .9971 .9983 9981 .9975 .9990 9981 .9958 0897 9722 .08S7 .9942
3000 .9971 .9983 .9982 .9976 .999]1 .9982 .9960 .9998 .9731 5887 .9943
3333 .9972 .9985 9963 .9976 .0991 9932 9960 .BO98 9747 0858 .0944
L3667 L9977 .9985 9983 9976 9991 ,0942 .0960 9998 .9773 .9890 9245
4000 .9977 .99ES 9983 .9976 .0992 .9983 0861 .0008 L9780 9906 .0948
4333 .9977 .9986 .5983 .9977 .9992 .9983 .9964 .99%8 .9797 .9913 .9950
4667 9977 9986 0984 9578 9993 9933 ,9965 9999 9798 .9915 ,0954
5000 L9978 .908& 9984 0978 .9953 .9983 ,0966 .9999 .9B00 .9919 .9555
.5333 .9978 9988 9984 0978 .$993 .9934 .9975 .9999 .9B01 .9924 .9963
5667 L9978 .098E .9984 .9979 .9993 .3984 9575 .9999 9810 .9925 .9967
L6000 .9979 .9989 G985 .DS79 .9003 ,0086 .9976 .0099 0816 9931 9973
6333 L9980 .9989 ,9985 ,0979 9903 .0986 .9377 1.000 .9821 .9931 .0975
6667 9980 .9989 .9985 0080 .9904 .9936 ,9977 1.000 .9829 .9935 .9978
7000 L9981 ,9992 9987 90RO 9996 .9937 .9980 1.000 .983d .9%40 9980
7333 9981 9803 L9937 .0881 9956 .9057 .9980 1.000 .9536 .9942 .5983
7667 L9981 .9993 9587 .9583 .9997 _9987 .9980 1.000 .9545 .9943 .9983
L8000 L9982 .9554 9957 .9933 .9997 Q085 9982 1.000 .9850 9367 .9586
8333 L9983 .9996 .9989 0983 0007 .09S .0084 1,000 9855 .9972 9966
8667 L9983 9996 ,9990 ,9983 1.000 .9988 .9984 1.000 .9862 .9972 .59992
.9000 L9983 .9996 .5690 9983 1.000 .0990 .4984 1,000 9564 .9973 9977
. .9333 L9984 .9996 .9992 .9983 1.000 .9951 9989 1.000 .9366 .9973 .9977
9667 L9985 .9997 .9993 9867 1.000 .9991 .9995 1,000 .9872 .9376 1.000
1.000 L9985 1.000 .9993 ,5587 1.000 .9993 .9956 1.000 .9932 .9398 1.000
Mean .8977 9988 ,9984 9578 .9993 .9984 .9959 .9998 .a792 .9913 .5959
Standard De-
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DISCUSSION
All of the relative total benefits calculated in
Table 12 are high, indicating that the optimization
technique did well in all cases. Closer inspection

reveals that there are several interesting trends which
appear significant.
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As the annual mean or annual mean/reservoir
capacity ratio decreases, by using each of the three

sets of values in Fig. 2 with other things constant,
the mean relative total benefit appears to increase
slightly; see Fig. 9. The ratio values were picked to
be 2.046, 1.364 and 0.682 indicating that the technique
works well in a range of ratio values and slightly
better for small values. This study was repeated for
a standard deviation series set at half of the previous;
see Fig. 7. 1In Fig. 10, the same qualitative results
were obtained. It appears that in general, the modi-
fied application works better when there is less varia-
tion in the input time series and possibly when the mean
inflow is small.

The average monthly mean/reservoir capacity ratio
is obtained from the annual mean/reservoir capacity
ratio by dividing by 12. Thus, the average monthly
mean/reservoir capacity ratios corresponding to the
annual mean/reservoir capacity ratios listed in Fig. 6
are respectively: 0.1705, 0.1137 and 0.0568. The
benefit function of shape one, location 15 was used for
all results appearing in Figs. 9 and 10. The location
of 15 corresponds to a relative release {di divided by

reservoir capacity) of 0.600. Thus, it may be that in
addition to variations of inflows, the discrepancy
between the average inflow and maximum benefit location
also affects the efficiency of the technique. Perhaps
then, the closer the average inflow is to the peak
location of the benefit function, the better is the
modified application. This cannot be deduced from
these plots but the effect seems to appear again later.

As the location of the benefit function decreases,
the mean relative total benefit appeared to increase.
This was true for both the shape one and shape two
(Fig. 8) benefit function. In Fig. 11, a simple curve
could not be drawn through the points because of esti-
mation errors but in both Figs. 11 and 12, the maximum
mean relative total benefit occurred for the smallest
location value. The shape of the benefit function
appears to have a marked influence on the results.
For the "narrower" shape in Fig. 8, the mean relative
total benefits are consistently poorer than those
achieved using the "wider" shape. Although this seems
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reasonable, it isevident that the modified application
still yields high values for the mean relative total
benefit (greater than 0.95 in all cases studied) with
a ROHAES equal to 5 stages.

It is interesting to note again that the results
of Figs. 11 and 12 can also be interpreted as before.
The monthly mean series A and monthly standard devia-
tion series A were wused for all results appearing in
Figs. 11 and 12. Thus, the average monthly mean/reser-
voir capacity ratio was 0.1705 in all cases. As the
relative release approaches this value (0.6, 0.4and 0.2)
in both Figs. 11 and 12, the mean relative total bene-
fit increases markedly. It appears then that smaller
discrepancies between mean inflow and benefit peak
location yield better results for the modified applica-
tion.

Furthermore, the benefit
interpreted as a contract level.
this contract level decreases the benefits; thus the
peak of the benefit function falls at the contract
level. The maximum benefit over the operation horizon
is realized when the contract level approaches the mean
inflow as has been shown by others (47) and which can
be seen from inspection of Table 13. Table 13 contains
the unordered values of the maximum total benefit
(obtained by conventional dynamic programming) which

peak location may be
The failure to meet

corresponds to the last three columns in Table 12.
TABLE 13
UNORDERED VALUES OF MAXIMUM TOTAL BENEFIT

Data Set No. 9 10 11
13078 23118 35900
11258 22424 35386
13772 22928 35218
10672 23400 35430
11520 23978 35222
12322 21460 35568
13514 23084 35132
12584 24732 35374
11952 22768 35952
11582 20252 35890
13556 23436 35330
10410 24292 36010
12584 24846 35770
10610 21588 35480
14126 22944 35730
10826 21512 35572
14574 20332 35510
11366 24430 35772
14342 21668 35760
11582 23114 35712
10780 21114 35920
10718 23906 34886
12168 24420 35230
10502 23948 35620
13278 23848 35632
12214 25582 35630
11890 23740 35600
11690 21276 35522
12106 22456 35610
11798 23018 35292

Mean 12112 22987 35555

Benefit Location 15 10 5

(Relative Release) (.6) (.4) (-2)

Therefore, it seems handy that the best performance of
the modified applieation appears to occur at or near
the optimem contract level (in relation to the inflow
mean) .



CHAPTER V

SUGGESTIONS, COMMENTS AND CONCLUSIONS

The purpose of this chapter is to present a few
ideas for further research and to make a few comments
on the ideas in this study that have not already been
made.

Suggestions for Further Study
of ASO and
Chapter III,

- In the development
in the problem application of ASO, in
the decision at each stage was selected

as the "most probable' from a small sample. Depending
upon the problem at hand, this may not be the best
decision to'use. Various weighted averages obtained
from the sample may be better. A topic for further

research would be the investigation of various selection
rules.

In the problem application of ASO presented here,
a sample size of 10 was used at each stage of the
operation/optimization. Future research might investi-
gate the effect of the sample size in conjunction with
various selection rules for given problems.

The application of ASO presented here was made to
a fairly simple problem so that ISO could also be
applied for comparison. Future research might consider
the application of ASO0 to much more complex systems
involving both multivariate states and multivariate
decisions.

In the generation of a sample of optimum one stage
decisions at each stage in ASO, the effect is to fore-
cast the optimum decisions to use directly, and not
just forecast inputs. As more stages into the future
are considered to find the sample points, the probabil-
ity of achieving the optimum decision increases.
However, the reliability of forecast may be declining.
AS0 and the modified application of optimization tech-
niques might be used in future research to investigate
the balance between forecast reliability and the prob-
ability of obtaining the optimum (or suboptimum)
operation for various systems.

It was found in studies not included here, that
both the modified application of optimization techniques
(Chapter IT) and ASO (Chapter III) gave total henefits
consistently closer to the true optimum for increasing

values of the ROHAES. This was illustrated for the
modified application of optimization techniques in
Fig. 1 and for ASO in the test of Eq. 46. Therefore,

both techniques can be made as close to optimum as
could be desired by increasing the ROHAES. However,
computation costs also increase with an increasing
ROHAES and the value of the ROHAES must be chosen to
satisfy some criterion of acceptance. Such a criterion
might be as follows. From preliminary studies, esti-
mates of the total benefit obtainable with either
technique (depending upon the situation) can be deter-
mined as a function of the ROHAES. For increasing k,
the point where the increase in computation costs
exceeds the increase in total benefit obtained gives
that value of k for the ROHAES where further increases
do not increase net returns. There are certainly other
criteria for selecting the ROHAES which may prove
superior and worthwhile of investigation.

General Comments - The framework for considering
optimization problems and stochastic optimization prob-
lems, as presented in Chapters II and III, seems to be
a good way of considering methodologies. It is suggested
here, that the framework might have use in the future
when further research is made into both deterministic
and stochastic optimization methodologies.
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As mentioned in Chapter II, the operation of a
system in practice often extends past the original
design period. Instead of scrapping the system, opera-
tion continues after the end of the design horizeon. In
the past, to find the optimum operation for a system,
a fixed operation horizon had to be considered. By
using either the new application of optimization tech-
niques or ASO, operationmay proceed indefinitely while
operating near optimum. Thus, the design period is not
necessary in finding optimum operation.

The advantage of either methodology, over existing
techniques, of adaptability was not illustrated in any
of the applications presented herein. This advantage
enables the engineer to incorporate new information
on the system, its inputs, its environment, etc. into
the ongoing decision process. This continued updating
enables one to operate a system efficiently without
incurring the high computation costs of repeating an
entire earlier study (see "adaptive alternative' in the
schematics of Figs. 4 and 5).

Corments on the Modified Application of Optimization
Techniques - The degree of suboptimum performance
obtained through the use of the modified application
has been expressed as the ratio of the total benefit
obtained in the k stage optimization to the maximum
total benefit obtained from the N stage optimization.
For purposes of design and actual operation, results
could be expressed in another way. Suboptimum perfor-
mance could be measured strictly by the probability of
obtaining a desired fixed level of total benefits as
has been done with the use of IS0 in the past (15).

The modified application of the optimization
technique may also be incorporated into ESO. For
example, the maximization of the expected total benefit
for the system may result in a set of equations which
need to be solved for the optimum sequence. By con-
sidering only a few stages at a time instead of the
entire operation horizon, the dimensions of the set of
equations may be greatly reduced. Thus, the decision
(or decision probabilities) may be obtained, one stage
at a time. This application is similar to current
practice, only simplifying assumptions are used to
reduce the entire problem for a one time solution.

Comments on Alternate Stochastic Optimization - In
the generation of optimum one stage decisions at each
stage in ASO, the effect 1is to forecast the optimum
decision to wuse directly and not just to forecast
inputs.  Thus, ASO may be regarded as a dynamic pro-
gramming decomposition with an empirical stochastic
optimization used at each stage of the decomposition.

In more complex water resource problems than were
considered here, ASO would be better than IS0 in achiev-
ing results closer to the optimum when the number of
independent variables required for the decision at each
stage is large. For example, if the input time series
was represented by a Markov model of order three or
there were several input time series, then the func-"
tional relationship used in the multivariate analysis
in ISO may require a large number of variables. The
same comment applies for an increase in dimension in
the state variable also. Thus, reasonably good results
from ISO may be intractable. ASO does not have this
difficulty and may be applied easily to even these
complex systems.



Alternate stochastic optimization will probably
have the most application in practice, rather than in
design, when the problems can be handled by IS0 also.
In practice, there is only one set of input realizations
to be concerned with, the ones which actually occur.

Conelusions - Computation requirements of optimi-
zation problems can be reduced by a modified applica-
tion of the deterministic optimization technique. More
complex analysis is possible without losing significance
of results since the computations are not reduced by
limiting the system models. The modified application
of techniques is possible for decomposable systems and
appears feasible for systems in the water resource
field.

For the single reservoir problem considered here,
very close-to-optimum results were achieved using the
modified application. The illustrationof the technique
indicates a method for determining the ROHAES and the
suitability of the technique for the single reservoir
problem.  The modified application appears to have
promise with several different deterministic and sto-
chastic optimization techniques for reducing computa-
tion requirements.

The field of water resource systems engineering
has wused two main types of stochastic optimization.
Each has certain limitations which may be alleviated
somewhat with the use of an alternate stochastic opti-
mization technique. The alternate is feasible because
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of the wuse it makes

of observations on optimization
operation horizons.

For the single reservoir system presented, the
alternate stochastic optimization technique (with k=5)
was superior to implicit stochastic optimization for
the analysis performed here. The computation time and
storage were reduced, and the performance of the system
was judged to be better, for this alternate. Further-
more, the alternate was more suitable than explicit
stochastic optimization techniques for this problem.
For more complex problems, the alternate would offer
additional advantages, over both the implicit and
explicit techniques, with regard to system representa-

tion or use of complex deterministic optimization
techniques.
Both the modified application of optimization

techniques and the ASO methodology were designed to be
of use in practice for reservoir operations on existing
systems. Existing concepts have been combined in this
study to yield an engineering methodology that has
practical merit and that gives good operations for
existing systems.

The modified application of optimization techniques

was felt to qualitatively represent ASO also and was
used in a special study. The system parameters and
inputs were changed systematically to observe the

changes in the results
are that when the mean
level, the techniques
since this is also the

from the technique. Indications
inflow is equal to the contract
perform best.  This is handy,
point of optimum contract level.



10.

114

12.

14.

15.

REFERENCES

Askew, A. J., Yeh, W. W-G., Hall, W. A., ''Use of
Monte Carlo Techniques in the Design and Operation
of a Multipurpose Reservoir System," Water Re-
sources Research, Vol. 17, No. 4, August, 1971,
pp. 819-826.

Beard, L. R., "Some Remarks on
Design," Seminar at Colorado
July, 1970,

Reservoir System
State University,

Buras, N., "The Conjunctive Use of Surface and
Ground Waters," Proceedings of the Reservoir Yield
Symposium, Water Resource Association, September,
1965.

Close, E. R., Beard, L. R., Dawdy, D.R., 'Objec-
tive Determination of Safety Factor in Reservoir
Design," Journal of the Hydraulics Division, ASCE,
May, 1970, pp. 1167-1177.

Conover, W.J, "Practical Nonparametric Statistics,'
Wiley and Sons, New York, 1971.

Croley II, T. E., "Sequential Stochastic Optimi-
zation in Water Resources," Ph.D. Dissertation
submittedtoColoradoStateUniversity,Fortcollins,
Colorado, September, 1972.

Dawdy, D. R., Kubik, H. E.,
of Streamflow Data for Project Design - A Pilot
Study," Water Resources Research, Vol. 6, No. 4,
August, 1970, pp. 1045-1050.

Close, E. R., "Value

Denardo, E. V., Mitten, L. G., "Elements of Se-
quential Decision Processes,' Journal of Industrial

Engineering, 18, 1967, pp. 106-112.

Erickson, L. E., Fan, SR L Lee, E. §.,
Meyer, D. L., "A Nonlinear Model of a Water Res-
ervoir System with Multiple Uses and Its Optimi-
zation by Combined Use of Dynamic Programming and
Pattern Search Techniques," Water Resources
Bulletin, Vol. 5, No. 3, September, 1969, pp- 18-36.

Evenson, D. E., Mosely, J. C., "Simulation/
Optimization Techniques for Multi-Basin Water
Resource Planning," Water Resource Bulletin,
Vel. &6, No. 5, September - October, 1970,
pp. 725-736.

Fiering, M. B., "Forecasts with Varying Reliabil-
ity," Journal of the Sanitary Engineering Division,
ASCE, June, 1969, pp. 629-644.

Fitch, W. N., King, P. H., Young, G. K. Jr.,
"Optimization of the Operation of a Multi-Purpose
Water Resource System,' Water Resources Bulletin,
Vol. 6, No. 4, July - August, 1970, pp. 498-518.

Fults, D. M., Hancock, L. F., "Optimum Operations
for Shasta-Trinity System," Journal of the Hydrau-
lics Division, ASCE, Vol. 98, No. HY9, September,
1972, pp. 1497-1514.

Gablinger, M., Loucks, D. P., "Markov Models for
Flow Regulation,' Journal of the Hydraulics Divi-
gion, ASCE, Vol. 96, No. HYL, January, 1970,
pp. 165-181.

Hall, W. A., Howell, D. T., '"The Optimization of
Single Purpose Reservoir Design with the Applica-
tion of Dynamic Programming to Synthetic Hydrology
Samples,'" Journal of Hydrology 1, North - Holland
Publishing Co. Amsterdam, 1963, pp. 355-363.

16.

17.

23,

24.

26.

29.

Harboe, R. C., Mobasheri, F., Yeh, W. W-G., "Optimal
Policy for Reservoir Operation,' Journal of the

Division, ASCE,

Hydraulics Division, ASCE, Vol. 96, No. HY11,
November, 1970, pp. 2297-2308.
Hausman, W., '"Sequential Decision Problems: A

Model to Exploit Existing Forecasters," Management
Science, Vol. 16, No. 2, October, 1969, pp. B95-

B111.

Heidari, M., Chow, V. T., Kokotovic, P. Vi
Meredith, D. D., 'Discrete Differential Dynamic
Programming Approach to Water Resources Systems
Optimization,' Water Resources Research, Vol. 7,
No. 2, April, 1971, pp. 273-282.

Hillier, F. S., Lieberman, G. J., "Introduction

to Operations Research," Holden-Day, San Francisco,
June, 1969.

Janssen, C. T. L., "The Crop Planning Decision
Problem: A Comment," Management Science, Vol. 18,
No. 2, October, 1971, pp. B30-B3l.

Jawarski, N. A., Weber, W.J., Jr., Deininger, R. A.,
"Optimal Reservoir Releases for Water Quality
Control," Journal of the Sanitary Engineering
Division, ASCE, June, 1970, pp. 727-741.

Joeres, E. F., Liebman, J. C., Revelle, C. S.,
"Operating Rules for Joint Operations of Raw Water
Sources,' Water Resources Research, Vol. 7, No. 2,
April, 1971, pp. 225-235.

Javanovic, S., "Optimization of the Long Term Op-
eration of a Single Purpose Reservoir," Interna-
tional Hydrology Symposium, Fort Collins, September,
1967.

Labadie, J., "A Bayesian Approach to Adaptive
Reservoir Control," University of California,
Berkeley, Operations Research Center, December,
1969.

Larson, R. E., Kekler, W. G., '"Water Resources
Problems," Proceedings of the Symposiumon Computer
Control of Natural Resources and Public Utilities,
Int. Fed. Aut. Control, llaifa, Israel, September,
1967.

Loucks, D. P.,
Regulation,"

"Computer Models for Reservoir
Journal of the Sanitary Engineering
Vol. 94, No. SA4, August, 1968,

Pp. 657-669.

Loucks, D. P., Falkson, L. M., "A Comparison of
Some Dynamic, Linear and Policy Iteration Methods
for Reservoir Operation," Water Resources Bulletin,
Vol. 6, No. 3, June, 1970, pp. 384-400.

Loucks, D. P., '"Some Comments on Linear Decision
Rules," Water Resources Research, Vol. 6, No. 6,
December, 1970, pp. 1789-1790.

Manne, A. S.,
Decisions,"
April, 1960.

"Linear Programming and Sequential
Management Science, Vol. 6, No. 3,

Mitten, L. G., "Composition Principles for Synthesis
of Optimal Multi-Stage Processes," Operations
Research, 17, 1964, pp. 610-619.



31.

1
[

(2]
1

36.

Mobasheri, F., Harboe, R. C., "A Two-Stage Opti-
mization Model for Design of a Multipurpose
Reservoir," Water Resources Research, Vol. 6,
No. 1, February, 1970, pp. 22-51.

Morin, T. L., '"Optimal Sequencing of Capacity
Expansion Projects," Journal of the Hydraulics
Division, ASCE, Vol. 99, No. HY9, September, 1973,
pp. 1605-1622.

Morin, T. L., Esogbue, A. M. 0., "Some Efficient
Dynamic Programming Algorithms for the Optimal

Sequencing and Scheduling of Water Supply Projects,’
Water Resources Research, Vol. 6, No. 3, June,
1971, pp. 479-484.

Moss, M. E., Dawdy, D. R., "An Optimum Path to
Reservoir Design Based on the Worthof Data," U.S.
Geological Survey, 1971

Nayak, 5. C., Arora, S. R., "A Note on Linear
Decision Rules," Water Resources Research, Vol. 6,
No. 6, December, 1970, pp. 1789-1790.

Nayak, S§. C., Arora, S. R., "Optimal Capacities
for a Multireservoir System Using the Linear
Decision Rule," Water Resources Research, Vol. 7,
No. 3, June, 1971, pp. 485-498.

Nemhauser, G. L., Introduction to Dynamic Program-
ming, John Wiley and Sons, New York, 15966.

Pfeiffer, P. E., Concepts of Probability Theory,

McGraw-Hill, New York, 1965.

Revelle, C., Joeres, E., Kirby, W., "The Linear
Decision Rule in Reservoir Management and Design 1,
Development of the Stochastic Model," Water Re-
sources Research, Vol. 5, No. 4,
Pp. 767-777.

August, 1969,

25

40.

41.

42.

43.

44,

45.

46.

48.

Roefs, T. G., '"Reservoir Management: The State
of the Art," IBM Washington Scientific Center,
Report No. 320-3508, Wheaton, Maryland, July, 1968.

Roefs, T. G., Bodin, L.D., "Multireservoir Opera-
tion Studies," Water Resources Research, Vol. 6,
No. 2, April, 1970, pp. 410-420.

Roesner, L. A., Yevjevich, V. M., "Mathematical
Models for Time Series of Monthly Precipitation
and Monthly Runoff," Colorado State University
Hydrology Paper No. 15, October, 1966.

Russell, S. 0., Caselton, W. F., "Reservoir Oper-
ations with Imperfect Flow Forecasts," Journal of
the Hvdraulics Division, ASCE, February, 1971,
pp- 323-331.

Tschannerl, G., '"Designing Reserveoirs with Short
Streamflow Records," Water Resources Research,
Vol. 7, No. 4, August, 1971, pp. 827-833.

Wagner, H. M., "On the Optimality of Pure Strate-
gies," Management Science, Vol. 6, No. 3, April,

1960.

Wilde, D. J., Beightler, C. S., "Foundations of
Optimization,' Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1967.

Young, G. K., "Chinking Up Some Cracks,'" Federal
Water Pollution Control Administration, U. S.

Department of the Interior.

Young, G. K. Jr., '"Finding Reservoir Operation
Rules,'" Journal of the Hydraulics Division, ASCE,
November, 1967, pp. 297-321.




APPENDIX A
ILLUSTRATION OF OPTIMIZATION COROLLARY

Suppose that an input matrix is specified. Instead
of performing an optimization over the N stages of
the project, the first stage decision is arbitrarily
specified. This also determines the first stage benefit.

(A-1)

by = vld;35)31g) = v(d)ie3T) = v () = v, (@) = by

(A-2)

Now, the second stage state vector and benefits function
may be calculated:

Sp 7 Vplspilyid) = 0y(sy30p5d)) =8, (A-3)

V(dZ;dl;az;sl;bl;Il} - v[dz;dl;sz;slgol;il) = Vz(dzJ
(A-4)
An optimization over the N-1 stages from stage 2

through stage N is to take place using the following
objective function:

B = B(by3bys...3by) = BB 3by5-..3by) (A-5)

The optimization is performed (to find the maximum
value of B) and the following results are then obtained:

d2 = di; d3 = dé;...;dN = dﬁ (A-8)
b2 = vz[dz) = vz(dé} = bé;b3 = bé;...;bN = b& (A-7)
Bmax{dl] = B[bl;bé;b%;...;b&] (A-8)

The entire process (Eqs. A-1 through A-8) is then re-
peated for all feasible first stage decision vectors,
dl = dl. The resulting maximum total benefit function

is determined:

B (dl} =B (A-9)

max (le; dl =d

max 1

Now, the first stage decision vector is selected which
gives the highest value of Bmax' This same first
stage optimum decision vector is obtained by the appli-
cation of the optimization technique over the project
for N stages, given the initial statevector 5,789

using the objective function:

B = B(bl;bz; .;bN} (A-10)

The above statements were made for an arbitrary input
matrix and an arbitrary initial state vector. There-
fore, they are true for any input matrix and initial
state vector. The above behavior is possible because

of the way that the benefit function at a stage was
defined:
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bi = v[di;di-l;"‘;dl;si;si-l;"';Sl;bi-l;bi-2;"'

"’;bl;Ii-I;Ii-Z;"';Ilj (A-11)

The function, v(-) does not depend upon any decisions .
or state vectors in the future or upon any benefits or-

inputs at present or in the future. Thus, the benefit
function at a stage can be completely determined as a

function of that stage's decision vector, since all of
the required variables are known at that stage:

b, = v(d,;d

. P . . - - .7 -
i 5 i-l’""“l’si’si~1""’81’01-1’01—2”"

St MY L)
i

1 i_z;...;fl) = vi[di} (A-12)

1’

The above observations can be extended further. For
any input matrix and initial state vector, the first
i-1 stage decision vectors can be specified. An opti-

mization is performed over the remaining N-i+1 stages
using objective function:
B = B(Dl;az; ';Di~l;bi;bi+l;"‘;bN} (A-13)

The optimization may proceed since the ith stage state
vector and benefit function can be determined in terms

of the previous decision vectors, state vectors and
benefits. After an optimization over N-i+l stages
from stage i through N with the objective function
of Eq. A-13, the following maximum total benefit is
obtained:

B = B(b,;t sh, 3B 3B, - 3...iby )} (A-14

max = B(DIJDZJH'sbi_l:Di 'Di‘*l’.l‘, N '[ = )
Note that in Eq. A-14, if the first i-1 decision
vectors that were specified had been the first i-1

optimumdecision vectors froman N stage optimization,

then Eq. A-14 would have been:

Bmax = B{DI;b b

s h¥ -y

3iee bt (A-15)

* . * . o JE
2} Sepdeaalg)

This is also the maximum total benefit obtained from
an N stage optimization. Thus, if all previous de-
cision vectors prior to a stage 1 were the optimum
vectors from an N stage optimization, then an opti-
mization over the N-i+l stages fromstage i through

stage N would give the optimum decision vectors for
stages 1 through N that were also the same as those
from the N stage optimization. Therefore, the fol-

lowing set of decision vectors would be the same as the

optimum decision vectors obtained in an N stage
optimization:
. -l- '2‘ L2542 L7l _ - < . TE
(dl;:ljdl; :dg :'-‘st_Z,dN_l,uN) = (d;,az,--.,dﬁ_l,d]\;)
(A-16)



APPENDIX B
REMAINDER SYSTEMS OPERATIONS

Given that the first i-1 decision vectors are
specified as (dl;dz; .;di_lJ and the first i-1
input vectors are specified as (II;IZI"';Ii—lJ’ then

the system over the remaining operation horizen can be
treated as a separate problem. Note that:

B @ VT 0]

= q . T =T - -d
vsisz,sl,-z,-l,dz,le

e
L]

o3 = ¥3E5 e s8pse Ty g5 didy 5 05d))
therefore:
() = dpidy = dpsennsdy ) = dy 131) = I51) = Iy,
.;Ii_1 = Ii_l;s1 = sl} i d S; = 8385 € Si (B-1)

Equation B-1 means that any feasible combiaation of the
first i-1 decision vectors together with the first
i-1 input vectors and the initial state vector yield
a value for the ith stage state vector which is within
the set of allowable state vectors. This result is
guaranteed by the definition of the system and its
inherent behavior. For convenience of notation, the
following statement represents Eq. B-1:

([d]i_l;[I]i_l;s1 = 31) s, = 8.

5 1;si 3 Si _(B-2]

Furthermore, by Egs. A-12 and B-2, the benefit function
at stage 1 1is completely determined by the past:
([d}i-l;[r]i-l;sl = Sl) + bi =

vi(d) (B-3)

Also, the benefit functions for future
partially determined by the past:

stages are

([dl;_y3 0015 y38) = 8))

iar = V(850395305 150 nidyisygisieg gieeieyibys
L
(BT e D)) = VI 50,58y 58 3by5L)
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and

isp = VU055, 150535, 558;5,0585305 9305 5 TL)
ﬁbN = v[dN;. ;di,sN; ";si;bN-l;"';bi;IN~l;"’;Ii}
Therefore, the optimization over stages i through

N given the first i-1 input and decision vectors and
initial state vector could be regarded as an optimiza-

tion over the N-i+1 stages, from stage 1 through
stage N-i+l, given that:
s = 8 (B-4)
by =v, (@) (B-5)
bj = v(D;...5D 58, LR I’Ij~l’ D]
= l;‘..;N-i‘Pl (B'é}
B=B(0y5.-30; 15bi5..05by) = B(bys...iby sip)
(B-7)
In Eqs. B-4 through B-7:
%5 T Civjel
P 7 Pisj
%5 7 diag
T =1, B-8
T = L,y (B-8)

All statements made previously apply to the transformed
problem since it is the same type of problem as before.
Therefore, the statements made previously about the
optimum first stage decision can be applied to the ith
stage optimum decision given the first i-1 input and
decision vectors.



APPENDIX C
NEAR OPTIMUM SOLUTIONS

Since the total benefit obtained by any sequence
of decision vectors is always less thanor equal to the

and if the assumption of Eq. 16 is made:

maximum total benefit, for any 1rfput matrix, then: P[BI‘: 2 Bi;.lsl 28] Bl sone XN (C-5)
b ¥
L L .4 L i-1 1 N
B Eigridoids. . ids s B jeeeidy) £ By (C-1)
N 1 N-2+1°"N-£+2 N N then by Eq. 15:
Therefore:
P[Bi = B§|slz s] > P[Bi = Bﬁ!s = £]; large &; some k;
L N L N ! ! ! 1
{wlBy = By;s; = si={uw|By > aBy;s, = s}; all s; all &
! I ! N>k>L; all s (C-6)
O<ax<l (C-2)
This implies: Therefore, by Eqs. C-3 and C-6:
% N LN P[Bk > aBy|s, = &] > P[BY > Bl wals 2 2
P[By > chN|sl = s] 2 P[By = Byls, = sl; all s; all &; N > oByls) > P[By > aBy|s, = 8]; large &;
some k; c-7
02a>1 (C-3) (C-7)
N £
ote that 0<a<l; N>k»2; all s
k N
= =: = -4
P[BN BN|51 8] = 1; k=N (€4 Equation C-7 is Eq. 17 in Chapter 2.
APPENDIX D
AN EXAMPLE OF MAXIMUM BENEFIT DIFFERENT FROM MAXIMUM EXPECTED BENEFIT
’ The following simple reservoir systemis presented 0 < Pd s T < 1; all j; all s; all I; all d (D-4)
to show that there is a difference in the two sets of »Sats)
decisions achieved by maximizing the total benefit and
by maximizing the expected total benefit respectively. TP = P[I]; all s; all I (D-5)
R e d,s,I,1
Furthermore, the example will prove by contradiction d
that ESO results do not represent decisions which give
the maximum total benefit.
= P ¢ ; all I
g Pd,a,!,? [E pd,s,1,1] [I1; all &; a
Consider a simple reservoir which may be empty,
half full or full (3 states). Inflows into the reser- R . P D-6
voir may be either of three values: nothing, half the & el T, lle; ] ! (R-6)
capacity of the reservoir or the capacity of the res-
ervoir (3 values). Thus, the possibilities for release In the above equations, Pd 5,1, is the probability
3 k] »

are: 0, %, 1, 1% or 2 times the capacity of the reser-
voir. The states of the system are denoted as 0, 1 and
2 respectively; the possible inflows are denoted as
0, 1 or 2 respectively; and the possible decisions
(releases) are denoted as 0, 1, 2, 3 or 4 respectively.
The probability distribution of inflows at any stage
is %, % and % for each of the possibilities respectively.
The 1initial state of the system is specified as an
empty reservoir. The benefit obtainable in each stage
is a function of the reservoir outflow (the decision)
and the stage. There are two stages in the operation
horizon. The benefit function is given in Table D-1.
The problem is to find that set of decisions which
maximizes the expected total benefit subject to the

system constraints. Restating:
maximize E[B] = g ) Z pd,s,l,j Vd,s,I,j (D-1)
sIj
subject to: s = 0 when j =1 (D-2)
0<s+1I-d=<2;allj (D-3)

of the system being in state s, with an inflow I, and
a release d in stage j. Also, v . is the bene-
d,s,I,]

fit obtained from the system in state s, with an in-
flow I, and a release d in stage j. The optimiza-
tion procedure maximizes Eq. D-1 by finding values for

the probabilities Pd 5T, which also satisfy the

constraints.

TABLE D-1

BENEFIT OBTAINED IN STAGE j, MAKING DECISION d

d/j £ 2
0 300 350
1 400 490
2 500 520
3 505 530
4 510 540




The set of linear equations were solved obtaining the

conditional decision probabilities from the above
probabilities:
P
- d,S,I,‘ -
pd|s,I,j (D-7)
Pd $51:3
d iy ’J
In Eq. D-7, pd|s 1,3 is the conditional probability
of releasing an amount d, given that the system is in
state s and has an inflow I in stage j. After the

problem was solved, the resulting conditional probabil-
ities were found to represent a pure strategy and gave
the following table of "optimum" decisions.

TAELE D-2

"OPTIMUM'" DECISICN AT EACII STAGE GIVEN THE STATE AND
THE INFLOW

1st Stage Decision

s/1 0 1 2
0 0 1 2
2nd Stage Decision
s/1I 0 1 2
0 0 1 2
1 2 E: 3
2 - - -

The "optimum" decision sequence for each possible input
realization was determined from the above tables and
compared with the true optimum decision sequence which
gave the maximum total benefit for each time series.

The results are in Table D-3. It can be seen from
Table D-3 that maximizing the expected total benefit
does not always give the same decisions as those

obtained by maximizing the total benefit for each input
realization. In fact, this example indicates that the
probability of getting the true optimum using explicit
stochastic optimization is only 13/16 for this partic-
ular problem.

TABLE D-3
COMPARISON OF DECISION SEQUENCES GIVEN BY MAXIMIZING

THE TOTAL BENEFIT WITH THOSE GIVEN BY MAXIMIZING THE
EXPECTED TOTAL BENEFIT

* * *k kw
(1.1)  PIILIL]  (d.dy)  (@.d, ) Agree
(0,0) 1/16 (0,0) (0,0) X
(0,1) 1/16 (0,1) (0,1) X
(0,2) 1/8 (0,2) (0,2) X
(1,0) 1/16 (0,1) (1,0)
(1,1) 1/16 (1,1) (1,1) X
{123 1/8 (1,2) (1,2) X
(2,0) 1/8 [1,1) (2,0)
(2,1) 1/8 2.1 z,1) X
(2,2} 1/4 (2,2) (2,2) X
* * &k w ok -
P[(d;,dy) = (d; ,d, )] = 13/16
where: df = optimum decision at stage j given by
*1 maximizing total benefit
dj = "optimum'" decision at stage j given by

maximizing expected total benefit
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APPENDIX E
NOTATION

base benefit obtained from system operation
with release d

benefit obtained from system operation in
the ith stage

benefit obtained from system operation in
the ith stage for transformed problem

ith stage benefit value resulting from
decision vector cl.l = di and other previous
conditions

d;, the N-1
stage optimization (from stage 2 through
N) results for stage i; i = 2,...,N

values of bi resulting from

value of the ith stage benefit resulting
from an N stage optimization

values of b,resulting from d;, the N-1

stage optimization (from stage i through
N} results for stage j; j>i, i = 2,...,N

total benefit obtained from system opera-
tion over N stages

total benefit obtained from system opera-
tion over N-i+l stages for transformed
problem

total benefit obtained from system opera-
tion over k stages

total benefit for modified application
over an N stage operation horizon using a
ROHAES = k

maximum value of total benefit, B given
that the initial decision vector is dl

ith order Markov model coefficient between
the standardized values of month i-k with
month i-k+1

decision vector for stage i of the systems
operation

ith stage decision vector from an N-i+l
stage optimization over stages i through N

given that s, = g and dj = djh_3+1;

1

value for the decision vector for stage i
of the systems operation

0<j<i

value for the random variable, d?

values of d. from an N-1 stage optimiza-
tion over stages 2 through N, given that
Sy = 8, (bl = bl); i=2,...,N

value for the optimum ith stage decision
vector obtained from an N stage optimiza-
tion

values of dj from an N-i+l stage optimiza-

tion over stages i through N, given that
the first i-1 decisions resulted in these
benefits:(bl;bz; .;bi_l};jgj; i=2,...,N

max

Pa,s,1,3

t:'clls,I,j

Hi

matrix of decision vector values for the
first i stages

matrix of optimum decision vector values
for the first i stages obtained from an N
stage optimization

decision vector for stage i of the systems
operation in the transformed problem

lst stage decision vector from an N-i+l
stage optimization over stages 1 through
N-i+1 of the transformed problem given

that s, = s,
1 5!

cumulative distribution for the relative
Bk

maximum measure, —%
F)

By

input vector for stage i of the systems
operation

input vector for stage i of the systems
operation for the transformed problem

maximum value allowed to the input in a
problem representation

value for the ith stage input vector, [i

matrix of input vector values for the first
i stages

month of year corresponding to stage i
(in Chapter III only)

number of stages in the operation horizon

output vector for stage i of the systems
operation

nth parameter in equation, to be estimated
in a regression analysis (in Chapter III
only)

= probability of system being in state s,

with input I, and output d in stage j

= conditional probability of making decision

d, given that the system is in state s and
has an input I in stage j

rank of observation i inan ordered sample,
with rank = 1 for the smallest value

state vector for stage i of the systems
operation

state vector for stage i of the systems
operation for the transformed problem

value of the state vector for stage 1 of
the systems operation

value of the state vector for stage i of
the systems operation

reservoir storage capacity



space containing all allowable state
vectors, #,; determined by the constraint

3

set and boundary conditions

general form of the benefit function

gencral form of the benefit function for
the transformed problem

benefit obtained from system in state s,
with input I and output d in stage j

ith stage benefit function regarded as a
function of the ith stage decision vector

ith stage benefit function regarded as a
function of the ith stage decision vector
for the transformed problem

weighting coefficient for month j to
determine benefit for that month

relative total benefit achicved from ASO
applied over N stages with a ROHAES = k
and using a sample size at each stage = m

objective function over the N henefits
from every stage

31

objective function redefined over the N
decision vectors from every stage

magnitude of Tyvpe I error in any statisti-
cal test

functional notation for the random

" k
variable, di

independent stochastic component in the
ith month for the inflow

monthly mean inflow for the ith month

- monthly standard deviation for the ith

month

ith order serial correlation coefficient
between the standardized values of month
i-k with month i-k+i

random event representing an entire input
matrix

functional relation for the svstem state
in the ith stage with any variables of
previous stages, representing the svstems
inherent behavior

sample space containing all input matrices
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Several studies are outlined which illustrate changes in the
technique results with changes in the problem formulation.
The techniques work well for all problem variations consider-
ed here and indicate the techniques perform best for realis-
tic problem formulations.
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