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ABSTRACT

The effects of soil aeration requirments on permissible drain spacing were analyzed for both equilibrium
and transient drainage problem. The presence of a zone of insufficient aeration above the water table requires

that drain spacing must be narrower than is calculated by classical techniques if the plant root zone is main-
tained adequately aerated.

A one-dimensional model was developed to simulate drainage in soils where the flow and storage in the cap-
illary region are significant. The contribution of the capillary region was described analytically in terms of
the measureable soil properties and the rate of percolation to the water table. Drainage tests conducted in a
sand-filled flume confirmed that the numerical model adequately described the total flow system.

Further analyses were conducted using the numerical model to determine the effects of bubbling pressure
head and pore-size distribution on the position of the water table. These analyses showed that the water table
1s always lower than predicted by methods that ignore the capillary region. The lowering of the water table by

the presence of the capillary region is increased by a higher bubbling pressure, a wider distribution of pore
sizes, and a larger percolation rate.

It was shown that the region of inadequate aeration is always thicker than the amount by which capillary
flow lowers the water table. As a result, the depth of aerated soil 1is always less than predicted by the
classical drainage equations.
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DRAINAGE DESIGN BASED UPON AERATIGNl!

by Harold R. Duke?’

INTRODUCTION
Although aeration of the crop root zone is one 3. To develop a computer solution that per-
of the primary objectives of agricultural drainage, mits objectives (1) and (2) to be achieved
present methods of design consider this factor only and at the same time is sufficiently simple

insofar as the depth of water table is specified. Any
mathematical description of the partially saturated
region above the water table so complicates the dif-
ferential equations of flow that analytical solutions
in closed form are impractical. Yet, in many situa-
tions, the region of capillary flow has a signifi-
cant, if not dominant, effect upon the performance of
agricultural drains. This is particularly true in
areas having fine-textured soils and relatively shal-
low aquifers.

The equations resulting from
in the partially saturated
near, second-order partial
The recent generation of high-speed, large-capacity
digital computers has opened the way for practical
solutions to equations of this type.

considering flow
region are highly nonli-
differential equations.

This study utilizes a mathematical model based
upon the Dupuit-Forchheimer assumptions to analyze
the combined effects of saturated and partially satu-
rated flow upon the performance of drains in shallow
aquifers.

The primary objectives of this study are:
1. To evaluate the effect of soil capillary

parameters upon the depth of soil  above
the water table which has sufficiently low

saturation to permit adequate soil aera-
tien. This evaluation requires determining
the effects of capillarity upen the flow

and storage of water above the water table
as well as upon the shape and potition of
the water table.

2. To illustrate, for the specific conditions

analyzed, how consideration of soil aera-
tion could influence the design of drainage
systems.

and economical to be practical.
Current technology could provide a more rigor-
ous mathematical approach than has been attempted
here, since this approach accepts the Dupuit-Forch-
heimer approximation. However, it is questionable
whether present techniques of field evaluation justi-
fy a more rigorous approach. The predicted perfor-
mance is shown to agree quite well with experimental
data. This observation is accepted as evidence of
the adequacy of the approach used.

This study 1is limited to shallow, horizontal
aquifers underlain at uniform depth by an impermeable
boundary. The drainage systems considered are restri-
cted to fully penetrating parallel open ditches of
sufficient length that fluxes have components in only
two dimensions. The soils are assumed to be homo-
geneous, isotropic, and stable with time.

Under these conditions,
water table and the locus of points at an arbitrary
saturation are evaluated as affected by the depth of
tailwater in the ditch, rate of uniform infiltration,
bubbling pressure head, and distribution of pore
sizes in the soil.

the positions of the

These analyses are ultimately extended to show
the magnitude of spacing error resulting from neg-
lecting capillary flow and aeration requirements.
The height of the =zone of insufficient aeration is
determined for a predetermined drain spacing. Since
the classical analyses assume that drainage is com-
plete above the water table, the height of insuffi-
cient aeration 1s assumed equal to the height of the
water table resulting from the classical analyses.
This height is used to calculate the spacing, assu-
ming no capillary flow. The comparison of these two
spacings indicates the magnitude of spacing error re-
sulting from neglecting capillary flow and aeration
requirements.

1 . . . . .
kf Contribution from the Western Region, Agricultural Research Service, USDA, in cooperation with the Colorado

State University Experiment Station.

2/

— Agricultural Engineer, USDA, Fort Collins, Colorado.



REVIEW OF LITERATURE

Soil Aeration

The adequacy of soil aeration is one of the solution, describing the water table profile in equi-
most important factors in determining soil productiv- librium with a constant, uniform infiltration rate,
itv. The carbohydrates produced by photosynthesis is commonly called the ellipse, Hooghoudt, or Donnan
are transported to all living tissue of the plant to equation as it has been developed independently by a
supply the energy for growth. Release of this stored number of researchers.
energy is dependent upon oxidation within the plant
cell. Except for such specialized plants as rice, The ellipse equation 1is based wupon the Dupuit
agricultural plants cannot transport oxvgen through assumptions, namely 1) that all streamlines in a
the plant tissue from the aerial parts fast enough to system of gravity flow toward a shallow sink are hori-
provide adequate respiration in the roots. Thus, ade- zontal, and 2) that the velocity along these stream-
quate root growth is dependent upon an external path lines is proportional to the slope of the free water
of oxygen transfer (Hillel, 253). surface but independent of depth. In this first de-

velopment of the equation, drainage is assumed to

Gases can enter the root environment either in terminate in open ditches which penetrate to the
the gaseous phase or dissolved in the liquid phase. impermeable layer and which are shallow compared to
Hagan, et al. (22, p. 942) give the respective dif- their spacing. Although gradients near the centerline
fusion coefficients of oxygen in air and in water as between drains are essentially vertical, certainty to
1.13 X 101 and 1.54 X 10-3 cm?/min. Thus, the ex- the Dupuit assumptions, this equation appears to be a
change of oxygen between plant roots and the atmo- reliable approximation provided the other assumptions
sphere is achieved much more readily through soil hav- are valid.
ing an interconnected gas-filled space than through
a soil having only entrapped gases. In the years following the development of  the

ellipse eguation, many attempts were made to account

Gaseous exchange between soil and atmosphere for the vertical components of potential gradients
can occur either by convection or by diffusion. Dif- existing near the outflow region. Hooghoudt (van
fusion is generally accepted as the principal trans- Schilfgaarde, 36), among others, replaced the Dupuit
port mechanism (Hillel, 25). Stolzy and Letey (43) assumptions with the concept of radial flow toward
suggest that an oxvgen diffusion rate (ODR) of 40 X the sink to determine the potential distribution for
10-% g em~2min-l may be taken as a safe minimum neces- a number of specialized boundary conditions. The so-
sary for optimum plant growth. called "equivalent depth' correction to the ellipse

equation was proposed by Hooghoudt to account for the
~ The diffusion rate of gases in soil is depend- lack of complete penetration of drains to the imper-
ent upon the fraction of the pore space occupied by meable layer. Van Deemter, and Luthin and Gaskell
a continuous air phase, and according to Penman and (van Schilfgaarde, 36), presented details of a relaxa-
Marshall (in Hillel, 25) to a lesser extent upon the tion technique for solution of the problem. Other
size distribution of air-filled pores. In experiments approaches, too numerous to mention, have been
to determine the adequacy of soil aeration during developed.
sprinkler irrigation, Stegman, et al. (42) used a pla-
tinum electrode to evaluate ODR as a function of satu- Although these steady-state solutions are of
ration. They concluded that, for a given soil, a considerable use where rainfall or irrigation are suf-
unique saturation exists below which the critical ODR ficiently frequent that percolation to the water
cannot be supplied. The ODR remained very low until table can be considered uniform, the existence of
the capillary pressure exceeded what Brooks and Corey steady-state conditions is the exception rather than
{10) defined as the bubbling pressure. As capillary the rule. Thus, many investigators have sought to
pressure further increased, the ODR increased rapidly. develop solutions for the case of transient flow.
The critical saturation for four soils tested ranged
between 75 and 92.5 percent. The effective satura- Boussinesq (van Schilfgaarde, 36) and Glover
tion (as defined by Brooks and Corey, 10) averaged a- (Dumm, 19) applied the Dupuit assumptions to the
bout 80 percent at the critical ODR for these soils. transient flow situaticn, and found a solution for
the case of drains on an impermeable boundary without
Classical Drainage Theories resort to linearization. Glover (Dumm, 19) later
extended his solution to the case of drains above an

The exact solution of the differential equa- impermeable boundary by assuming that the depth
tions describing drainage problems is usually quite through which flow occurs is invariant with time,
difficult. 1In fact, attempts at such exact solutions thus effectively linearizing the differential equa-
have been successful in only the most simplified tion.
cases. Fach of the developments reviewed in this sec-
tion is based upon the assumption that the water ta- As in the case of steady-state solutions, many
ble effectively bounds the permeable region and, investigators have attempted to more accurately ac-
where applicable, that drainage is instantaneous and count for initial conditions or changing boundary
complete as the water table passes a given point. Van conditions. Kemper (van Schilfgaarde, 36), compared
Schilfgaarde (36) pointed out that the solutions re- electrical analog data with results £rom Glover's
sulting from these, and other simplifying assumptions equation and found that better agreement could be ob-
can be of considerable value if carefully used, but tained by introduction of an empirical correction fac-
emphasized the need for constant awareness of their tor to Glover's equation. This correction resulted
limitations. in a greater value of the dimensionless time facter,

or slower drainage. This was in agreement with the

Van Schilfgaarde credited Colding, a Danish en- fact that Glover's equation neglects convergence,
zineer, as having been the first to present, in 1872, resulting in an overestimate of the effectiveness
a mathematical solution to a drainage problem. This of a drainage system.

1.z



Werner (48) emploved the methods of Lanlace two soil parameters. The resulting power functions

transformation to evaluate a number of transient flow are somewhat easier to manipulate mathematically than
drainage situations, involving sloping aquifers, vari- Gardner's relation. Furthermore, empirical relation-
able replenishment rates, and changing tailwater ships such as equation (1) are obtained on small lab-
levels. oratory samples. Such data indicate a significant
Dagan (17) presented an analysis of water table reduction in saturation and permeability at capillary
fluctuations in response to variable recharge. He pressures less than the bubbling pressure. The re-
linearized the free surface boundary condition to re- sults of studies by White, et al. (49) indicate that
duce the problem to a solution of a Volterra integral this orobably would not be the case in the field
equation of the first kind. This equation was solved where the volume of soil relative to its atmospheric
numerically and the results were presented in both boundary 1is large. The relationship presented by
tabular and dimensionless graphical form. Brooks and Corey (10), which is used here, assumes
that air will not penetrate the interior of a soil
Hornberger, et al. (26) developed a numerical volume until the capillary pressure reaches the bub-
model based upon the Dupuit-Forchheimer assumptions bling pressure on the drainage cycle.
to evaluate aquifer response to changes in stream
stage. Capillary flow was neglected, and the results The basis for the Brooks and Corey relations is
were compared with the exact solution of Boussinesq their observation that a large number of experimental
under appropriate boundary conditions. As one would data seem to fit the relation
expect, this comparison was quite precise where the )
initial condition was assumed to be a curved water Se = {Pb/Pc) for Pc 2 Pb E (2)

table. This initially curved water table reduces the
effects of large vertical gradients at early times,
which occur when the initial water table is flat as
assumed by Glover (Dumm, 19}.

The effective saturation, SE , is defined by

- S, = (5-8)/(1-5)) ©)
The preceding discussion is not intended to pro-
vide a complete history of the development of solu-

i : S ; e where Sp., the residual saturation, is the saturation
thoms to the flov equetions, | Such intensive roviers Lt uhichthe sheory sssuned the permebilicy i soxo.
gaarde (36), Childs (16) and others. Rather. it The two soil parameters involved in the Brooks and

: - : Corey theory are bubbling pressure, Py, and the pore-
serves to illustrate the degree of mathematical so- iiie dieriitntish Sans N The BB Ting prassurs
phistication that has been applied to the drainage o e . EP

is defined as the minimum capillary pressure on the
drainage cycle at which a continuous nonwetting phase
exists. The pore-size distribution index was shown
to be a measure of the relative distribution of pore
sizes, and was defined by equation (1), i.e., the
negative slope of the straight-line portion of a plot
of log S, as a function of log P./og

problem while retaining the assumptions of negligible
influence of capillary flow. Situations certainly
exist in which these assumpticns are justified. On
the other hand, one can readily visualize situations
in which the improvement achieved by mathematical
sophistication is far outweighed by neglecting the
capillary flow region. The succeeding sections review
some significant attempts to treat flow in the capil-

: Brooks and Corey showed that the relative permea
lary region.

bility, kg , is given by

Parameters Describing Capillary Properties

k_= (P /P)" for P_>P_. 4)
. : c e . . . T b e c="b

Scientists of many disciplines, including soil

physics and chemical, petroleum and agricultural engi-
neering have sought parameters characteristic of a
porous bedy by which the capillary properties could
be described. One such characterization of capillary
conductivity, described by Gardner (21), is widely
accepted by soil physicists. Gardner found that the
relationship between capillary conductivity and capil-
lary pressure head for many soils seemed to {fit an
equation of the type

where k. is the ratio of effective permeability to
saturated permeability. The exponent n was shown
to be related to 3 by

n=2+3 . (5)

Capillary pressure, P. , may be expressed in terms
of the capillary potential on a weight basis, com-
monly called pressure head, h , by

a

K= —— (1) P = -pgh (6)
n c
(P./rg) + b ) )
where p and g are the liquid density and gravita-
tional acceleration, respectively. The saturation,
where K 1is the unsaturated conductivity, Pg/og 1is S , defined as the fraction of the pore space filled
the capillary pressure head, n is a constant for a by the liquid phase, is related to volumetric water
given soil, and a and b are constants such that content, 8 , by
a/b is the saturated hydraulic conductivity.
S =8/t (7
Brooks and Corey (10) presented a method for
characterizing porous media based wupon the nomencla- where ¢ 1is the total porosity.
ture of petroleum technology. They used the terms
permeability, capillary pressure, and saturation, The term permeability is used as a measure of ca-
rather than the hydraulic conductivity, tension, and pacity of the soil to transmit a fluid, independently
vater content familiar to the soil physicist. The of fluid properties. Thus, the term is explicitly
~elationships between these terms are discussed later. restricted to systems in which the solid matrix and
.he relationships developed by Brooks and Corey ex- fluid do not interact. Such is usually not the case
press the functional dependence of permeability and in soil-water systems.

saturation upon capillary pressure in terms of only



The polar nature of water and the electrical in equilibrium with a uniform infiltration rate, as-

charge associated with clays in most soils result in suming that capillary flow occurred solely in that
adsorpt%on of water onto _the clay particles. This region remaining fully saturated. Childs considered
adsorption can cause swelling of clavs, and in fine- that the height of this saturated zone is influenced
;extured maFErlﬂls orlat low saturation may result by the infiltration rate. It was assumed that this
in chgnges in the phyvsical properties of water. In increase in capillary fringe height was 1 percent
materlgls where icse cffects can be neglected, per- when the ratio of infiltration rate to saturated con-
meability, k , is related to hvdraulic conductivity dgctivity was 0.01, and negligible at lower infiltra-
by : tion rates. He concluded:
_ kog it . . <
K = S (8) ...for thick fringes, the bulk of the thick-
nass of the fringe is accomodated above the wa-
where K is hvdraulic conductivity and u is dvnam- i Fable WhIch i3 not @epressed i propen o,
ic viscosity. It is apparent that relative hydraulic ?"?OH the level appropriate to the absence of a
conductivity, Kp » 1s also given by equation (4) ettt
since the viscosityv, density, and gravitational ac- p— <
celeration appear in both numerator and denominator. ; Bouer.(4:45) uFlllZDd both numerlca! - ——
trical analog technigues to evaluate the influence of
Significance of the Capillary Fringe the "capillary fringe" upon the steady-state perform-
: = - S ance of drains. He defined a '"critical tension' as
Although most investigators have acknowledged the tfps;on at the eenter of the TAnEe Over wh1Ch
the possibility of an influence of the capillary G o @ecreases rapldly: Hhe capillpry £ringe
fringe on the performance of drains, only in recent e Ehen defined; A ?he Zepdon bet?e§n the e
years have significant efforts been made to analvze table and the elevation of this critical tension.
the phenomena. This section reviews the development Sance £lew TELES ihe cap111§r¥ fringe st weHally
OF methods 6F Hiakbing e e llond Besiam small compared with the conductivity, Bouwer assumed
5 bt it & -

that the pressure distribution in the fringe was es-
sentially a static distribution. He emphasized that
if the water table is near the surface, or the water
content-tension curve shows a gradual change, then

In 1947, Donnan (van Schilfgaarde, 36) demon-
strated by sand tank experiments that the ellipse
equation could be modified to give closer agreement

with experimental results. He utilized an equation th? apg11catlon oy 4 ?OnStant .?D?CI?lC yigld may be
of the Form objectionable. Bouwer's analysis indicated that flat-
ter water tables could be expected under conditions
QdL/ZK =YY )2 S, e Y )2 ©) where the capillary flow was considered.
c f d £
In analyses using hypothetical soil data, Bouwer
where (3 1is the tetal drain outflux, L is drain concluded that neglecting the flow above the canil-
spacing, K is conductivsity of the saturated sand, lary fringe, as defined in his study, contributed 1lit-
Y. and Y3 are water table elevations at the mid- tle error to the solution. However, he conceded that
peint and at the drain outlet, respectivelv. The such might not be the case for soils exhibiting a
height of the capillary region, Yg , was assumed to gradual reduction of conductivity with increasing ten-
be the height above the water table at which the soil sion.
first began to desaturate. Van Schilfgaarde (36),
however, considered Donnan's approach inadequate. He Bouwer postulated that, so long as the capillary
pointed out that, in general, there is no well- fringe did not extend to the surface, lowering the
defined capillary fringe, and the hyvdraulic conductiv- impermeable boundary by an amount numerically equal
ity decreases gradually with increased tension. to the capillary fringe height would have approxi-
mately the same effect upon discharge as would the
Despite this shortcoming, this approach remained addition of the capillary fringe above the water
the principal method of accounting for capillary flow table. Such an assumption would allow the use of
for several years. Swartzendruber and Kirkham (44, Hooghoudt's "equivalent depth' concept for analyzing
45) used the Swartz-Christoffel theorem to sclve the the capillary flow problem. Bouwer presented compari-
case of steady horizontal flow through a rectangular sons between the flux computed from such an analysis
slab. They also considered that capillary flow was and the results of electrical analog solutions. From
confined to the zone that is essentiallv saturated. these results, he concluded that the comparison was
It was concluded that for their boundary conditions quite satisfactory. However, an analysis of his pub-
where the water table was one-tenth as high as it was lishked results indicates that the differences between
long, the fringe contribution could reach a maximum these two solutions increase with increases in both
of 170 percent of the flow beneath the water table as the critical tension and the saturated thickness of
the soil thickness increased. the aquifer. One might expect such increased devia-
tions, since lowering the impermeable boundary may
Chapman (12) considered the effects of the capil- result in longer streamlines than would exist in
lary region upon discharge, height of the seepage the equivalent capillarv fringe. These longer stream-
face, and shape of the free surface for a similar lines would result 1in smaller potential gradients
steady-state flow problem. Applving the same descrip- than in the capillary fringe and a lower flow rate.
tion of the capillary region he used Green's theorem
to develop an equation describing the flux. Chapman's Luthin (29) and Luthin and Worstell (31) attempt-
conclusions, based upon comparisons between his equa- ed to account for the change in specific yield with
tion and the results of an electrical analog, were depth in a problem of transient drainage. The value
essentially the same as those of Swartzendruber and of specific vield used in these calculations was sim-
Kirkham. ply the arithmetic mean of the specific yields at the
initial and final water table depths. It was assumed
Childs (13) modified van Deemter's hodograph so- that the water content distribution was independent
lution to account for the presence of a capillary re- of water table velocity, thus these specific vields
gion. He considered the case of steady-state drainage were evaluated from water content-tension curves. The



-

investigators concluded that significant errors were depth equivalent to the thickness of the essentially

introduced by neglecting the change of specific yield saturated region above the water table. Subsequent
with depth of the water table when the water table analyses were made with regard to the "depth of the
was near the surface. upper boundary of the capillary fringe" rather than

"depth of the water table."
These rather simplified analyses have been fol-

lowed by progressively more elaborate considerations Schmid and Luthin (38), in an analysis of drain-
of the capillary region. Childs (14) evaluated the age of sloping forest lands in the pre-Alps of Swit-
effect of decline of the water table upon the specif- zerland, applied the approach of Hooghoudt to the
ic yield. He showed that, depending upon the depth problem of a water table in equilibrium with rainfall
to the water table, the effective specific yield will on a sloping hillside. Although they did not explic-
range from essentially zero for very shallow water itly evaluate flow above the water table, they point-
tables to a constant ultimate value when the water ed out its possible significance and suggested a
table is very deep. A similar analysis by Duke (18) method of zccounting for the effects of capillary con-
presents a quantitative basis for evaluating the ap- ductivity. They suggested integrating the area under
parent specific yield as a function of depth to the the conductivity-capillary pressure curve from zero
water table. to the pressure at the soil surface, then dividing by
the saturated conductivity to obtain an equivalent
In a subsequent publication, Childs and Poulovas- depth to be added to the waterlogged flow region. It
5ilis (15) extended the previous analysis to consider must be realized, however, that the pressure-eleva-
the effect of water table celerity upon the shape of tion relation is affected by the rainfall rate, and
the water content-elevation curve. The investigators must be taken into account in such an integration
presented a theoretical description of the shape of procedure.
the water content-elevation curve in the idealized
case of a water table moving at a constant speed. Schmid and Luthin (38) suggested that the solu-
they pointed out that in the initial stages of water tions obtained from noncapillary considerations repre-
table movement the water content profile continues to sented the upper limit of the flow region. That is
. change its shape with time. After a sufficient length to say, the actual water table will be lower than the
of time, the shape of the water content profile re- values given by an amount equal to the equivalent
mains constant, and the profile rises or falls with depth as calculated above. As shown later in this
the water table. paper, this is not the general case, especially for
systems 1in equilibrium with rainfall. Certainly,
Youngs (50) presented a hodograph analysis of such an assumption will give grossly erroneous re-
steady-state drainage in equilibrium with a constant sults in the immediate vicinity of the drain.
infiltration rate, taking into account the effect of
the capillary fringe. Although he assumed capillary Bouwer (6) presented the method of accounting
flow to be confined to the region remaining fully for capillary flow mentioned by Schmid and Luthin
saturated, Youngs explicitly considered the effect of (38). That is, he considered that the entire capil-
the percolation rate upon the height of the capillary lary region could be represented by a step-function
fringe. Youngs presented the positions of both the analogous to the critical tension concept. Bouwer
water table and top of the capillary fringe at the evaluated the thickness, Z, , of this fictitious
centerline between drains. He concluded that the cap- capillary fringe as

illary fringe had little effect upon water table po- H

sition midway between the drains, although one might 7 = i—f K(2)dz (10)
question the validity of this conclusion after care- e Kg -

ful analysis of Youngs' results.

where H represents the depth of the water table;
K , the saturated hydraulic conductivity; K(Z) the
capillary conductivity; and Z is the vertical dis-

Kraijenhoff van de Leur (27) wused uniform sand
in a physical model to evaluate the effect of the
?:Ei;éazﬁ s§:§l§§c:§;2n§2eogeiigi?:?i? OigizzfniESEEQ_ tance measured from the wate? table. Bouwer creditgd
sidered only the fully saturated region of the capil- Mye?s and van Bavel (34] with development of this
lary zone, but considered the effects of both infil- concept.
tration rate and rate of water table movement upon
the height of this zone. For the conditions studied,
he concluded that the effects of water table celerity
did not sufficiently influence the shape of the cap-
illary zone to affect the results. The capillary
zone in his study was about 15 cm thick, a signifi-
cant portion of the 60-cm depth of sand.

Hedstrom, et al. (24) utilized this concept, and
a similar one related to capillary storage implied by
Childs (14) to evaluate the effects of both capillary
flow and changing specific yield upon the performance
of transient drainage systems. The relationships de-
veloped by Hedstrom, et al. will be discussed in de-
tail later.

Brutsaert, et al. (11) applied a method of suc-
cessive series of steady states to evaluate the shape
and positions of a transient water table. This analy-
 sis was analogous to that of Kirkham and Gaskell (van
Schilfgaarde, 37), but introduced capillary flow and
a specific yield dependent upon water table depth.
The functional relationship between water table depth
and specific yield was obtained experimentally from
measurements of total outflow volume and water table
position in a series of model studies. As the rate
of water table decline approached zero, this relation
was expected to approach the water content-tension
relation for the soil. The effects of permeability
above the water table were considered by adding a

Talsma {46) attempted to utilize the effective
capillary fringe concept of Myers and van Bavel along
with Childs' (13) concept of the influence of perco-
lation rate to evaluate steady-state drainage. He was
primarily concerned with the influence of capillary
flow upon design spacing of drains in the Murrumbid-
gee irrigation area of Australia. The field condi-
tions investigated were shallow drains with an essen-
tially impermeable layer from 0.1 to 1.8 m beneath
the drain, and the water table from 50 to 100 cm be-
low the soil surface. The soils studied by Talsma
showed no region of saturation above the water table,
but began to desaturate immediately as tension in-
creased. Thus, the values he obtained for Zo were



small, of the order of 10 cm. Using Childs (14) meth-
od of analysis, Talsma calculated that the water ta-
ble would be about 8 cm lower than the 50 em calcu-
lated by neglecting capillary flow. He concluded
that the spacing error introduced by neglecting cap-
illary flow was less than é percent and that for
soils in the study area the capillary flow could be
safely ignored.

It is apparent from the preceding discussion
that methods have been devised to treat the partially
saturated as well as saturated flow regions in soil
drainage systems. It is also apparent that the math-
ematical complexities involved limit the use of ana-

lvtical methods to idealized boundary conditions,
simplified' capillary flow considerations, or both.
It has been argued that the uncertainties of field

data are sufficient to outweigh the errors introduced
by these assumptions. However, digital computer tech-
nology has encouraged many investigations wusing
numerical solution techniques for studying the ef-
fects of the «capillary flow region. The reader is
referred to the works of Bittinger, et al. (3), Rubin
(35), Breitenbach, et al. (7, 8, 9) and Amerman (1)
for details of finite difference equations, methods
of approximating boundary conditions, and merits of
the many matrix solution techniques. The following
paragraphs describe some such investigations as they
pertain to the problem of evaluating capillary flow
in drainage systems.

Luthin and Day (30) conducted experiments in a
sand-filled tank designed to evaluate the contribu-
tion of the capillary region to the total soil water
flux during steady flow. They analyzed the flow by
numerical solution of a nonlinear two-dimensional
form of the continuity equation. Values of capillary
conductivity were taken from a separate laboratory
determination of the ten.ion-conductivity character-
istics of the soil used. It was concluded that the
comparison of experimental and computed results sub-
stantiated the validity of the nonlinear continuity
equation.

Sewell and van Schilfgaarde (39) developed a two-
dimensional computer model to simulate flow in the
saturated and unsaturated regions for steady-state
tile drainage and subirrigation problems. Because
the numerical model was written in two dimensions and
solved in terms of potential, it was not necessary to
approximate the effects of the capillary region by
techniques such as Bouwer (6) used. The relation be-
tween capillary conductivity and tension was utilized
directly from the conductivity-tension curves. The
conductivity was determined from the equation pro-
posed by Gardner, that is,

K= —2 (11)
(P./og)" + b

where n , a , and b are constants, and P./pg is
the capillary pressure head, for each grid in the net-
work. Results were compared with comparable solu-
tions to the ellipse equation. For large drain spac-
ings, the ellipse equation severely underestimated
the flux from the drains because of the contribution
of the capillary region.

Rubin (35) developed a two-dimensional numerical
model capable of consistently evaluating the trans-
ient potential distribution 1in both the saturated

and partially saturated regions of an agricultural
drainage system. This model utilized measurcd rela-
tionships between water content and tension and be-
tween conductivity and tension for calculating the
coefficients of the model matrices. Rubin was able
to show the distribution of Darcian velocities
throughout the profile, as well as to define the
potential distribution. This approach accounted for
the influence of nonequilibrium water distribution as
well as the effects of capillarity wupon flux distri-
bution. Rubin concluded that flow in the partially
saturated region may profoundly affect the vprogress
of the water-table decline.

Verma and Brutsaert (47) examined the effects of
the Dupuit assumptions and the assumption of no-flow
above the water table upon the rate of outflow during
transient drainage. These investigators compared the
results of one- and two-dimensional numerical models
to evaluate the effects of the Dupuit assumptions.
They concluded that, except for small time, the Du-
puit assumptions resulted in less than 10 percent er-
ror in outflow rates if the ratio of drain spacing to
aquifer depth was at least eight. The rate of out-
flow decreased significantly with increases 1in the
parameter related to capillary fringe height, but was
relatively insensitive to small changes in the param-
eter related to pore-size distribution. Increases in
both drain spacing and water level in the ditch in-
creased the error in outflow rate resulting from ne-
glecting capillary flow.

Freeze (20) utilized a three-dimensional model
to evaluate the effects of the capillary region upon
both steady and transient flow through earth dams.
He used exaggerated soil properties to emphasize the
effects of the partially saturated region, therefore,
his results are only qualitative. Freeze obscrved
that a significant number of streamlines did cross
the water table, a direct contradiction to the clas-
sical approach. He also observed that neglecting un-
saturated flow caused larger errors in the transient
cases than in steady-state problems. In a later sec-
tion of this paper, it is shown that such results are
expected, since the storage coefficient, which is
related to capillary phenomena, does not enter into
steady-state solutions. Freeze admitted the limited
applicability of a three-dimensional model because of
its complexity and the uncertainties of field data.

Although previous investigations have been con-
cerned with various aspects of flow in the capillary
region, these studies are related only indirectly to
the effects of capillary properties upon the location
of the aerated zone. Little attention has been given
to a systematic evaluation of the relative influence
of capillary conductivity and capillary storage upon
the shape and position of the water table.

Before the full value of the previous investiga-
tions can be realized, each of these capillary paranm-
eters must be evaluated thoroughly and their relative
importance determined. Only then will these investi-
gations provide quantitative information of practical
use to field design personnel.

The remaining sections of this paper provide one
such evaluation. However, the current investigation
is restricted in scope and the results can be inter-
preted quantitatively only for the specific boundary
conditions evaluated.



ANALYSIS OF THE PROBLEM

The design of drains to achieve a predetermined
depth of water table has been a classical problem of
agricultural drainage. In reality, the position of
the water table is of little direct importance. What
is important 1is the effect of the water table upon
the movement of water and air within the partially
saturated root zone. The results of investigations
by Stegman, et al. (42) imply that adequate soil ae-
ration may be achieved by maintaining the effective
saturation below some critical value within the root
zone.

Thus, besides determining the position of the
water table (considering both saturated and partially
saturated flow), the water content in the soil above
the water table should be evaluated in regard to its
effect on soil aeration. Before proceeding with the
analysis of this problem, the assumptions wused are
presented as follows:

1. Water flux is solely in response to gradi-
ents of mechanical potential in the liquid
phase.

2. Hysteresis 1is absent, thereby restricting
the analysis to drainage only.

3. The medium 1is homogeneous and isotropic,
so that saturated hydraulic conductivity
can be considered a scalar constant.

4. The celerity of the water table is suffi-
ciently small that the shape of the satura-
tion profile above the water table can be
considered a function of the soil para-
meters and vertical flux only.

5. The soil and fluid properties
stant with time. That is, the
sidered do not shrink or swell.

6. The conductivity and saturation are de-
scribed, in terms of capillary pressure, by
the Brooks-Corey equations.

remain con-
soils con-

Most of this study is concerned with the use of
a numerical model based wupon the Dupuit-Forchheimer
assumptions to predict the performance of open ditch
drains. The Dupuit-Forchheimer approach has been
modified to incorporate the flow and storage of cap-
illary water in a one-dimensional flow model.

Based upon the Dupuit-Forchheimer assumptions
and the assumptions enumerated above, the mass conti-
nuity equation is expressed as

Y

s L] aY
B == 3;-(K Yy g;ﬂ +Q (11)
where ¢ 1is the effective, or drainable, porosity;
K is the saturated hydraulic conductivity; Q is

the strength of the distributed water source (used
here to simulate the surface boundary condition); x
is the horizontal space coordinate; and t is time.
The horizontal component of the free surface gradi-
ent, 3Y/9x, (Y is the water table elevation referred
to the impermeable lower boundary) is assumed to be
uniform along a vertical line, both above and below
the water table. If this equation is to represent
both partially saturated and saturated flow, the
storage term, Yg, and horizontal flow term, Yis
must account for the effects of capillary storage and

capillary conductivity, respectively. Since the flow
problem is analyzed as a one-dimensional problem, the
effect of the capillary region is incorporated in the
form

Y=Y+ H (12)
where Hy is a fictitious depth of saturated soil

having the same capacity for horizontal flow as the
capillary zone, and

Yo=Y ¢ H (13)

where H; is a fictitious depth of saturated soil
having a volume of drainable water equal to that in
the capillary zone. The concepts of an equivalent
permeable height, as suggested by Myers and van Bavel
(Bouwer, 6), and of an equivalent saturated height
used by Hedstrom, et al. (24) are used. Because of
their pertinence to this study, these concepts are
developed in detail in this section. In addition, a
theory is presented for evaluating the depth of soil
above the water table at which an effective satura-
tion in excess of some arbitrarily selected value
exists.

Equivalent Permeable Height

The effectiveness of the capillary region in
conducting water horizontally toward a drain is given
by an expression suggested by Myers and van Bavel
(Bouwer, 6) as

L H
Hk=k-fkedz (14)
o]

where Hy is the effective permeable height, a fic-
titious height of saturated soil having the same
capacity to transmit water as does the partially sat-

urated region above the water table. The saturated
hydraulic conductivity 1is denoted by K; Ke 1is the
capillary conductivity as a function of capillary

pressure; Z 1is elevation above the water table, and
H is the distance from the water table to the soil
surface. When H 1is less than the bubbling pressure
head, Pp/pg, the soil remains saturated to the sur-
face and Hy = H. If H > Py/pg, the conductivity
is dependent wupon elevation and any vertical flux
that may exist. The equations for Hp (where the
soil water is in static equilibrium with the water
table and where both steady, uniform downward and up-
ward fluxes occur) are developed in the following
sections.

Static equilibrium.  When the soil profile is
in static equilibrium with the water table, Z = Pc/
cg, where P./pg is the capillary pressure head (See

Fig. 1). Under these conditions, the Brooks-Corey
equation for effective conductivity Kg can be
written
K, =K for Z.E_bepg (15)
and
beIDg En
Ke =iz j for Z > Pb/pg i (16)

!
Substituting equations (15) and (16) into (14) gives
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Figure 1. Capillary pressure profile in soil in
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which, when integrated, is simplified to

1-n -1
Py in - BT (/o)™
g | n-1

(18)

H =

o

|

Dimensionless variables, H. and Hi. are de-
fined by dividing H and Hg by the bubbling pres-
sure head, a characteristic parameter of dimension
length, such that

H. = H/(P /eg) (19)

and

H, = H /(P /eg) . (20)

Substituting equations (19) and (20) into (18) gives
the equation for scaled permeable height, that is,

1-n
_n - H.
Wi Bty e

Equation (21) is equivalent to equation (17) develop-
ed by Hedstrom, et al. (24).

Steady downward flow. During steady percola-
tion to a water table, the capillary pressure head
is, at every point, less than the elevation above the
water table. It is apparent from Figure 2 that the
relation between capillary pressure head and eleva-
tion above the water table exhibits three separate
regions delineated by Z', Z", and H. Before equa-
tion (14) can be applied to this case, it is neces-
sary to evaluate these elevations and their corres-
ponding capillary pressures. In the region between
the water table and the point at which the capillary
pressure equals the bubbling pressure, (0 <Z < 1Z'),
the hydraulic conductivity remains constant at the
saturated value (see Figure 2).
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Figure 2. Capillary pressure profile in a soil with

a steady downward flux of water.

For this region, Darcy's
one-dimensional form as

equation can be written in

q=-K <t (22)

where q 1is the volumetric flux rate, positive up-
ward; Kg is the effective hydraulic conductivity;
Y 1is the hydraulic head; and elevation Z is defined
positive upward. Since both g and K are constant
at capillary pressures less than Pp/og, the gradient
of hydraulic head in this region is constant, because
the pressure gradient is constant. Expanding equation
(22) in terms of the components of hydraulic head,
i.e., elevation and pressure heads, gives

d(z - P_/eg)

K = - ——— . (23)

Defining a dimensionless flux by q. = g/K, gives
d(p /og)

The elevation Z' at which Pyp/pg is the capillary
pressure in the soil is given by

P /pg d(P _/pg)
b

z' = | __T%HT__ : (25)
s]

Performing the indicated integration gives

Py/c8

AL
z T (26)
or, defining a scaled elevation Z.' = Z'/[Pb/og],

1
T ¥

Z. T - 27
As elevation increases above Z', capillary

pressure increases, and conductivity decreases. Thus



the gradient of capillary pressure must decrease. If
the soil profile is sufficiently deep, the hydraulic
conductivity continues to decrease with increasing
elevation until it approaches the flux in magnitude.
That elevation at which

K, = - eq (28)

is defined as ZI'" where € is a constant greater
than, but arbitrarily close to unity. The capillary
pressure head at Z" is denoted by P, and it is
assumed that Ky = - eq for Z > Z'". In the region
A

d(z - P /og)

g ==y =

(29)

Substituting the Brooks-Corey expression for Ke,
equation (28) becomes

a4 = - K /oe)" (P /og) (1 - d(P /og)/d2] .
(30)

Defining a scaled capillary pressure P. = P /Py, and
employing the definition of gq. , equation (30) is
written as

e .
or
P.
gz w2 WPe (32)
P& 1 4 q.p."

In the region ' < Z < H, Pc/cg =P" , and

eq = - K[(P,/08)/P"]" (33)

or

B
" P _R -
Pt =2 (eq.) (34)

The elevation at which P" occurs can be evaluated
by integrating equation (32) between the limits Z =
Z' at P.=1 and Z=1ZI" at P.=P.", where

P." = pH/[Pb/pg), which yields
P [—eq.)-l”‘rl
b dpP,
™ = Zr 4 J T e S T [35)
P 1 1+ q.P i

Substituting equation (26) into (35), and defining
2. = Z”/(Pb/pg) gives

-1
-eq.) 7" dp
Z," = + —= (36)
1+ il
; 1 1+ q.P.

The closed form solution of equation (36) is diffi-
cult for n > 3. Mchkhorter (33) has pointed out that
the integral can be expressed in terms of the incom-
plete  Beta function. In the study reported here,
numerical techniques were utilized to evaluate these
integrals.

After evaluating the elevations Z.' and Z."
at which the conductivity function changes form, the
equivalent permeable height is evaluated from equa-
tion (14). Equation (14) can be expressed as

i ! Al H
Ho= g [ kaz + i K dz + [ (-=q.) dz]
O ZI z”

(37)

or, integrating directly the first and third terms
and substituting the scaled form of the Brooks-Corey
expression

K = gp. " (38)

into the second integral, equation (37) can be ex-
pressed as

ZI’Y
Ho=2'+ [ P.774Z - eq.(H-2") . (39)
ZI

In the region Z > Z', dZ is given by equation (32).
Substituting this expression into equation (39) and
noting that Z = Z' when P. =1 and Z = Z" when

P. = (-eq.)-1/n, (39) becomes
-1/n
. Ty 5] P.”" ap.
Reom 2% -oeqolH-2"] % o= ] e ey
°8 1 1+q.p."
(40)

Equation (40) can be expressed in terms of scaled
variables, after substituting for ZI', as

1 (read)™N g
e = Thgr - ez« ] e
. He 1 P."(1+q.P.M

(41)

Substituting equation (36) into (41), and assuming

1+ ea.

Tig" 1 (42)
equation (41) becomes
-1
~eq) 7" dp.
=1 -=q.H. + _
* 1 P."(1+q.P.")
-1/n
-eq.)
f eq.dP. (43)
1 l+q.P.n

Combining the integrands gives
-1/n
n
e B0 . ap
P."(1+q.P.™

{-eq.)
Ho =1- eq.H. + {

(44)

Note that if H. < Z.", the second term in equation
(41) does not exist, and the upper limit on the third
term is Ps. < (-eq.)~1/n where Py, 1is the scaled
capillary pressure at the soil surface. In this case,

o b



dp.
p."(1+q.P.™

1 Ps
e STt 45)

It is important to emphasize that q. is defined pos-
itively upward, so that for the case considered here,
values of q. are negative.

Steady upward flow. Upward flow of water from
the water table may be induced by evaporation at the
soil surface, or by root extraction. In the one-
dimensional problem analyzed, both of these terms may
be approximated as pseudo-sink terms. Neither of
these terms 1is truly steady state; both are subject
to diurnal fluctuations. They are not plane sinks
either, as root extraction or vaporization may be di-
stributed over a substantial depth. However, over a
long period of time, the flux may be approximated by
steady flow. It may be valid to assume some ficti-
tious mean depth at which liquid phase flux can be
considered to terminate. Based upon such concepts,
the influence of upward flux upon the equivalent per-
meable height can be evaluated in a manner analegous
to that of the previous section.

This analysis is subject to a further limita-
tion as described by Anat, et al. (2). That is, for
a given set of soil parameters and depth to the water
table, there is a maximum rate of upward flow that
can be induced. The following analysis assumes that
q. is physically possible for the situation des-
cribed, which implies that the surface capillary pre-
sure is finite.

Since the water content, and consequently  the
hydraulic conductivity, decrease in the direction of
flow, the capillary pressure gradient must increase
continuously with elevation above the water table. In
the limit, as H approaches the maximum depth, Hpax.
at which a given flux can occur, this capillary pres-
sure gradient approaches infinity as shown in Figure
3.

Elevation Above Water Table

F%/pg Ps /pg
Capillary Pressure Head

Figure 3. Capillary pressure profile in a soil with

a steady upward flux of water.

Thus, assuming that H < Hpay, the elevation at
which the bubbling pressure head occurs is given by
equation (26). It is important to remember that for
the case of upward flow being considered, q. 1is a
positive value. For the case of steady upward flow,
the capillary pressure head-elevation relation ex-
hibits only two separate regions as indicated in Fig-

10

ure 3. The elevation of Z' and the surface capil-
lary pressure must be evaluated before equation (15)

can be evaluated.

In the region 2' <Z <H , P, <P. <=, and
: - — max’. c
the flux is given by Darcy's equation

d(Z - Pc/pg)

afn K g (6]

Following the logic of the preceding section, it
can be shown that

P
47 = o_bi__u_ . (47)
PE 1 4 q.P.n
Defining Py = Pg/Py, the limits of integra-
tion of equation (47) are P. =1 at Z =12 and
P, = Pg, at Z =H, H < Hpax. Integrating equation

(47) between these limits gives

1-JS.
H. - Z.' = | | (48)
1 1= q‘P‘n
or, substituting equation (27} for Z'. ,
2]
H _ 11 = J'S. dP. (49)
@ 1 1+q.p."
Since it is assumed that H. , q., and n are known
for a given situation, equation (49) is solved by
numerical procedures to determine the surface pres-
sure, Pg. Having thus determined the surface
pressure and the elevation Z' , equation (14) can be
expressed
1 z! H
Hk=—[f Kdz + [ K dZ] (50)
K S 71 e

Substituting the appropriate pressures in the limits
of the second integral, applying the Brooks-Corey
expression for K , and equation (47) for dZ, equa-
tion (50) becomes ;

Z1 B P =-n
I R (s1)
0 € 1 1+q.P.
Integrating, substituting equation (26) for Z', and

expressing the result in terms of scaled variables

gives
P
Hk - 11 . [S- - dP. - (52)
: 9 1 p."1+q.P.M
Equations (21), (44), or (52) provide a basis

for evaluating the contribution of the capillary Te-
gion to horizontal flow toward the drain. The value
of H. is highly dependent upon n, and (except for
relatively deep water tables and small vertical flux)
is dependent upon the depth to the water table. When
water tables are shallow and the depth to the water
table changes significantly with either space or
time, a single value of Hg k6 may provide a poor cor-
rection to account for the capillary flow region. In
the case of steady downward flux, this approximation



can be especially poor, since the hydraulic conducti-
vity is nowhere less than the magnitude of the flux.

Equivalent Saturated Height

When the water table depth varies significantly
with time, the capillary region influences the flow
in a second way. The volume of water released from
storage for a unit decline of the water table is de-
pendent upon the depth to the water table. This de-
pendence has been discussed by Childs (14), Duke
(18), and others. Such a dependence of the specific
yield upon depth to the water table can be treated in
a manner analogous to the previously discussed effec-
tive permeable height. A fictitious column of satur-
ated soil of height Hg, which contains the same vol-

ume of drainable water as the partially saturated
soil profile is defined by
H
H = [ S, dz (53)
o]
where Sg, the effective saturation, is defined by

Se = (8 - 5¢}/(1 - S;). The volume of drainable water

per unit area of soil in this fictitious column is
given by

vd =41 - Sr)HS (54)
where Vd is the total water volume, ¢ is total
porosity, and Sy 1is the residual saturation. Vol-
ume V4 1is equal to the volume of drainable water in
a2 unit area of soil of height, H, above the water
table. Thus the volume of water, Vi, released per

unit area from the soil by a unit decline in the
water table is given by

Vo= o[l (), - (H)y ] (55)

where the subscripts
table at which HS

refer to the depth to water
is evaluated.

By applying the Brooks-Corey expression

X
S, = (Py/P) (56)

‘where X 1is the pore size distribution index, with
the appropriate 1limits on equation (53), the effec-
tive saturated height is evaluated. The pressure
profiles illustrated in Figures 1 through 3 are ap-
plicable for the cases of equilibrium, steady down-
ward flow, and steady upward flow, respectively.
Therefore, the elevations at which the description of
the pressure gradient changes its form are the same
as those elevations calculated in the analyses of the
effective permeable height.

Static equilibrium. When the soil water is in
static equilibrium with the water table, the capil-
lary pressure head is equal to the elevation head.
Since Se 1is unity for PC < Pb, equation (53) can
be written

/eg H
¥ az s

S, d(P_/rg) (57)
P, /o8 e c

P
Hs=f
o

11

-~

Substituting equation (56) and integrating gives

P P LT Il
= —b + —‘b ( b ] {58]
s pg pg 1 - "
or, in terms of scaled variables,
1-4
A = H.
% =1 s 1 (59)
for H. > 1, otherwise Hs = H.
Since n = 2 + 3X (according to Brooks and Corey,
10), Hg is always greater than H, for a given
soil and water table depth. This means that the ef-
fect of differences in  depth to the water table is
more significant with respect to the effective sto-
rage height than to the effective permeable height.

Steady downward flow. During steady percolation
to a water table the effective saturation throughout
the profile attains a minimum value Sg > S, depen-
dent upon the flux. In a manner identical with the
evaluation of the effective permeable height, three

pressure regions can be identified, such that

kAL

H
[ s dz+ [ 5, dz (60)
Al

ZI

H = [ dz+
s o Z!I

where Z' is given by equation (26) and S_ by equa-
tion (56). Substituting these expressigns, using
equation (32) to describe dZ in the second integral,
and substituting equation (34) for the pressure at ZI"
gives

-1/n
P

-k H 5
- dP; 3 ! [{_tq_)-lfﬂ]—«d: . (61)
1+q.p."  1v

) (P /eg) . EE
cg

H

(-2q.}
s l+q. ';

Integrating the right-hand term of equation (61) and
expressing the result in terms of scaled variables,

gives
-1/
(-eq.)
B = 11q o (-ea) gz f —;‘QL—.. 62)
. ‘ 1 P."(1+q.P.")

Substituting equation (39) for Z."
integrands gives

and combining the

-1/n .
o yMm -€q.) =X o o oyA/n
W, - lia o (eeq)¥ . - (-if.} . } B -{"qé} dp
* 2 q- 1 1+q.P. 63)
or, combining terms,
-1/n
Afn . -£q.) = Afn
H = &Ii:--_l“__- (~cq)™ H. +} Al . T RS

In:].l’.'1
(64)

By wusing the relation between n and X , equation
(64) could be reduced to an equation involving only
one of these soil parameters. This reduction is not
shown, because of the added complexity of the equa-
tions caused by introducing further fractional expon-
ents. It is re-emphasized that for this case, q. 1is
negative.



Note that if H., < Z." , the surface pressure
Pc. < P." and equation (64) reduces to
F
H, = 1_41:._._ + ___}dp— (65)
g @ 1 p.r(+q.P.M
Steady upward flow. When the water flux is
steady in the positive direction, i.e., upward, and

less than the limiting upward flux discussed previou-
sly, equation (53) may be written as

S, dz (66)

where Z' and Pg/pg were defined previously. Sub-
stituting the value of Z' from equation (26) S,
from equation (56), and dZ from equation (32) into
equation (66) gives

_By/ee) Py B pMap

! o = {s. > q_P_n (67)
which, in terms of scaled variables, is
q.P.
where PS_ is evaluated from equation (49).
Equations (59}, (64), and (68) provide a thes-

retical basis for evaluating the effect of the capil-
lary region upon the specific yield of the soil. The
comments regarding the iuafluence of soll parameters
and flux discussed previously with regard to Hy are
also applicable to H

Height of Zone of Insufficient Aeration

The preceding sections have illustrated how the
effects of capillary conductivity and capillary stor-
age can be evaluated from measurable soil properties.
This analysis provides a method by which the flux of
water in both the saturated and partially saturated
regions can be taken into account, using an analysis
based upon the Dupuit-Forchheimer assumptions. Thus
by applying an appropriate solution technique, the
shape and position of the water table can be evaluat-
ed even when the capillary region significantly in-
fluences the distribution of flux.

For a given soil and flux of water, the ability
of the soil to support a significant rate of gaseous
diffusion is severely Testricted for some distance
above the water table. In fact, the gaseous phase is
not continuous below the elevation at which the cap-
illary pressure equals the bubbling pressure. Above
this elevation, Z' , the fraction of air increases
with elevation. At some distance above the water
table, Z,, the air phase may reach a magnitude such
that gaseous transfer with the atmosphere is suffi-
cient to maintain plant growth.

At least two methods may be used to evaluate the
degree of aeration at which a sufficient rate of gase-
ous exchange can take place. The first, and probably
most consistent, method is to evaluate the gaseous
diffusion constant of the soil profile as a function
of height above the water table. All points above
which the diffusion is greater than some predeter-

mined minimum value can be

aerated.

considered sufficiently

The second method, and the easiest to apply, is
to assume that the portion of the profile in which
the effective saturation is less than some predeter-
mined value, Sy, 1is sufficiently aerated. The se-
cond technique 1is utilized in this analysis to a-
chieve the objective of the present study.

The critical
in terms of its
pressure, Pp,
tion (56) as

saturation, Sp, may be expressed
corresponding critical capillary
by the Brooks-Corey expression, equa-

b
Sy = (P,/P,) ; (69)

Then

1/4

P,/og = (P /og) S, (70)

and the problem is to determine the elevation, I,,
above the water table at which Pp occurs.

Static equilibrium. When the soil water profile
is in static equilibrium with the water table Z = P./
pg, and equation (70} can be written

P ;
- b g1
Z, = % Sy (71)
or, employing the previous scaling criteria, i.e.,
Zp. = Zp/ (Po/pg),
_ e -1/2
Iy, = S, . (72)

Note that this equation is wvalid only for H. > 1,
since no air phase exists when Pc = Pb :

Steady downward flow. With steady percolation
toward the water table capillary pressures are re-
duced, and Py occurs at a greater elevation (if at
all) than in the case of static equilibrium. Since
the surface capillary pressure decreases with increa-
sing flow rate, P, must be less than the surface
capillary pressure if S exists within the soil pro-
file. Thus, a maximum percolation rate exists, be-
vond which a suitable root environment is nonexist-
ent. At this limit

-eq. < (P /PO . (73)

Substituting equation (70) into (73) gives

P.wn P \-n
YT (Pu Y ¢ g
(Cg) (Dg) SA e

SAD/A
£

i

m
=
|~

(75)

- q. <

Assuming that this limitation of q. is satisfied,
and noting that Zp can exist only in the region Z'
< Zp < Z", then the relation between elevation and
pressure is described by equation (32), i.e.,
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Py ap.

AR e
P8 1+ q.P.n

(32)

Integrating equation (32) between the limits
P.=1 at Z=2' and P.=S-1/A at 7 = Z, gives
py gl

A dp,
Z, -1'=—= [
A LA 1+q.p."

(76)

or substituting equation (26) for 2' and expressing
the result in scaled variables,

s -1/A
1 A dP
Z, =-—+ [ —_— (77)
A 1+q. 1 1+ q.P.”

where q. has a negative value.

Steady upward flow. During steady upward flow,
capillary pressure head increases more rapidly than
elevation head. Therefore the effective saturation
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continually decreases with elevation above Z' , and
Sy can be located at any point within the region Z'
< Iy < H. Since the surface capillary pressure in-
creases with increasing flow rate, the only limita-
tion on flux for this case is that the prescribed
flux can exist for a particular water table depth.

The height of the zone of insufficient aeration
is given by equation (77), where gq. has a positive
value when flow is upward.

As mentioned previously, the effective permeable
height and effective saturated height are incorpora-
ted into a numerical model of agricultural drainage
systems based upon the Dupuit-Forchheimer assump-
tions. This model is used to evaluate the shape and
position of the water table as influenced by flow in
the partially saturated region. After the water
table is located, equations (72) and (77) are used to
determine the region of the soil having adequate
aeration.

The details of the computer program are present-
ed in Appendix A.



EXPERIMENTAL PROCEDURES

Physical Model Experiments

The objective of the laboratory experiments is
to provide data regarding the shape and position of
the water table from a physical system in which cap-
illary flow contributes a significant portion of the
total flow toward the drain. These data are utilized
to determine the boundary conditions under which the
numerical model accurately describes the physical sys-
tem. The numerical model is assumed to be applicable
to a hypothetical system, and the remainder of this
study 1is concerned with analyzing the response of
that hypothetical system.

Data collected from two physical drainage models
are used to verify the numerical model. These models
were described in detail by Hedstrom, et al. (24).
The larger facility is a soil-filled flume 12.2 me-
ters (40 feet) long, 1.22 m (4 feet) high, and 5.1 em
(2 inches) thick. The smaller one, constructed as a
scaled model of the larger, is 5.1 cm thick, 36.6 cm
high, and 3.66 m long. Both physical models are fit-
ted with tensiometers to allow monitoring the distri-
bution of capillary pressures throughout the profile.
Transient experiments were initiated by saturating
the soil to a predetermined height and allowing the
water table to become level. The transient response
was due solely to drainage of preexisting fluid; that
is, no infiltration accompanied the transient experi-
ments. The transient experimental data used in this
study are those reported by Hedstrom, et al. (24).

Steady-state experiments were conducted with the
larger model only. A rainfall simulator constructed
and described by Smith (40) was used to maintain a
steady uniform rate of infiltration at the soil sur-
face. A constant outflow level was maintained in the
fully penetrating ditches with an overflow device.
The tensiometers were connected to a series of mano-
meter banks and monitored periodically after infiltra-
tion began. The water table was assumed to be in
equilibrium with the infiltration rate when capillary
pressures ceased to change significantly. Some fluc-
tuations in capillary pressure continued indefinitely
because of the influence of temperature fluctuations
on conductivity and flow through the rainfall simula-
tor.

Although the free surface of the liquid phase is
referred to as the water table, the wetting phase
fluid used in the experimental studies was actually
a hydrocarbon. This fluid was used rather than water
to minimize changes in soil capillary properties due
to swelling of the soil. Because of lower surface
tension and density, this fluid also results in simu-
lation of a water-filled model of approximately twice
the dimensions of the physical model.

Except for periodic
saturated

in situ determinations of
conductivity, all properties of the soils
used in this study are those presented by Hedstrom
(23). The reader is referred to that publication for
detailed descriptions of the techniques of evaluating
the soil properties. Properties of the soils and the
hydrocarbon liquid are tabulated in Appendix B.

Numerical Evaluations

This study is not intended to compare analytic
solutions with experimentally determined drain per-
formance. Two such comparisons (one for equilibrium,
the other for transient drainage) are presented only
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to show that typical analytic solutions do not
quately describe drain vperformance if capillary
is significant. The assumption of no capillary
is represented by the numerical solution of the case
where bubbling pressure is zero. This solution is
used as a basis to which solutions accounting for
capillary flow are compared.

ade-
flow
flow

Except for numerical models to simulate the ex-
perimental data, all numerical models simulate a
hypothetical drainage system having arbitrarily se-
lected dimensions. Table 1 shows the range of physi-
cal parameters wused in these numerical models. A
total of 156 numerical analyses were conducted, simu-
lating various combinations of the parameters shown
in Table 1. Each numerical value of these parameters
is hereafter designated by its symbol and the column
of Table 1 in which the value appears. For example,

L(3) represents a drain spacing of 1500 units.

Table 1. Summary of Physical Parameters Used in

Numerical Models
Condition
Farameter 1 2 3 ) 5
Saturated hydroulic con- 0.002
ductivizy -K, [L/T]
Effective porosity 0.3
- tes [n.d.]
Depth to impermeable 100.
layer -0, [L]
Drain spacing - L, [L] 500. 1000. 1500.
Kater level in ditch 0. 33.33 66.67
'Yda [I—]
Initial water table 33.33 66.67  100.
elevation R [L]

! 4 -6 -5 -5 L, -5
Infiltration rate - q, 0. 2x10 1x10 2x10 4x10
[L/T]

Bubbling pressure head 0. 5. 10. 20, 40.
-P/eg, (L)
Pore-size distribution 2/3 4/3 10/3

index - 3, [n.d.]

Note: brackets indicate dimensions of parameter; L - length, T - timg,
n.d, - dimensionless.
The units of each of these vparameters are arbi-
trary, so long as consistent units are used. Note

that the boundary conditions simulated are very spe-
cific, with the soil thickness, D , being a constant
throughout the study. Except for four series of mod-

els, the drain spacing was held constant at 1000
units (designated as L{2) to represent the second
enumerated condition of spacing, L , of Table 1).

Steady-state models. Sclutions to the condition
of drainage in equilibrium with steady infiltration
were achieved by simulating the transient problem un-
til the position of the water table remained constant.
The criterion of equilibrium was selected such that
the water table elevation did not change in the
third siEnificant digit as time increased by a factor
of 100.2 This transient technique is not efficient
for generating equilibrium solutions, but is probably
as fast with respect to computer time as the itera-
tive technique required to obtain an equilibrium so-
lution directly. This technique also avoided develop-




ment of another computer program and provided analy- Table 2. Initial and Boundary Conditions on Transient

ses of transient responses to steady nercolation. Flow Models

For each infiltration rate greater than zero, Boundary Conditien, Initial Condition, Yy
i.e., infiltration conditions 2 through 5 in Table 1, Y —
q(2-5), a series of analyses was made with each ditch d 35.35 66.67 100.0
level condition, Yq(1-3) . ‘Each of these series of 0 3 .
analyses consisted of a group of runs to evaluate £
separately the effects of Py/og and of 3. The con- 33.33 X x
ditions for evaluating the effects of bubbling nres- 66.67
sure head were Pp/pg (1-5) , A(2) (see Table 1), ) %
and those used to evaluate the effects of npore-size . . g
distribution were Pp/og (4), A(1-3). The condition As w?th the equilibrium ana}yses, the condition
Pb/pg (1) was used in each case as the basis for of no capillary flow (as shown in Table 1) for each
comparison of capillary effects, since Pp/pg = 0 im-  Series of runs was Pp/pg(l). Effects of drain spac-
plies (from the Brooks-Corey theory) that there are ing were evaluated for Py/pg (1-5) , A(2), Y;(2)
no capillary effects. with  Y3(1) and Yg4(2) and drain spacings L(1)

and L(3).

To evaluate qualitatively the effect of spacing Zone of aeration. After evaluating the position
upon drain performance, one series of analyses (i.e., and shape of the water table for each of the above-
using the range of Pp/pg and ) as described above) mentioned model runs, the height of the zone of insuf-
was made with each of conditions L(1) and L(3), with ficient aeration was calculated. This height was

Ya(1) , q(4). added to the water table height to determine the Te-
gion (if any) in which the degree of saturation was
Transient models. The transient response of less than some predetermined arbitrary value. Further
drains was analyzed for the case of no infiltration, analyses were conducted with Pp/pg = 0 to determine
q(1) , only. Maintaining drain spacing, L(2), con- the spacing (based upon no  capillary considerations)
stant, a series of analyses (i.e., varying Pyp/pg and that would result in a water table equal in elevation
A as described above) was made for each of six com- to the elevation of this =zone of insufficient aera-
binations of boundary and initial conditions as shown tion.
in Table 2.

Results of these analyses are presented in the
following section.
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The

RESULTS AND DISCUSSION

primary objectives of this study were to

evaluate the effects of capillarity upon the location

of a zone of adequate

aeration, and to evaluate the

drain spacing necessary to provide a specified depth

of aeration.

These objectives were pursued by using

a numerical model based upon the Dupuit-Forchheimer

assumptions.
represent only a portion of the solutions
and are typical of all

mainder
through F.

in this section
generated,

The re-
in Appendices C

The results presented

solutions obtained.

of the results are shown

It must be emphasized that the results cannot be

extended to more
those simulated in this study.
must be extended considerably before they

general boundary conditions than
These investigations

can serve

as general guidelines for design of drainage systems.

Inadequacy of Classical Drainage Theories

The experiments were expected to be significant-

ly affected by the
objective of this study was to evaluate

capillary region. The primary

the effects

of capillary properties on the location of an aerated
region, rather than to evaluate the adequacy of clas-

sical drainage theories.

Therefore, the experimental

data are compared with only two analytical solutions;
one typical of the classical solutions to equilibrium
drainage and the other to transient drainage problems.

The ellipse

equation and Glover's equation for the

case of the drain on the impermeable boundary are com-

pared with experimental data to illustrate

that ne-

glecting the effects of the capillary region can lead
to significant errors.

The ellipse equation, based wupon the Dupuit-
Forchheimer assumptions, is
Y_ = ? q./2 + Yi)”z (78)

where
line,

Y. 1is the water-table height at the center-
g
the dimensionless
is the drain spacing.

is the water level in the drains, q. is
infiltration rate (gq/K) , and L

Figure 4 shows a comparison of

the solution to equation (78)

Figure 4 also shows
the effective saturation,
tion was selected, based
al (42), to represent the
quate aeration.
predicted by the ellipse
that the ellipse
required to maintain the
soil profile (assuming t
considers the entire regi

be aerated).

Glover's equation
drains on the impermeable
the Dupuit-Forchheimer as
transient drainage is

_ i

Y /Y, = LY/ (L
where t 1is time, ¢ 1is
is the initial drainable

ables are as defined for
gure 5 compares
the experimental data

Glover's equation predict
cline of the water table
ally. Thus, like the equ
sical equation for trans
the spacing for a given w

equation overestimates

the solution

the locus of points at which
Se , is 0.8. This satura-
upon the work of Stegman, et
limit of the region of ade-

This zone is above the water table

equation, which indicates
the spacing

desired depth of aerated
hat the classical analysis

on above the water table to

(Dumm, 19) for the case of
boundary is also based upon
sumptions. This equation for

+ QKYot/2¢) (79)

the drainable porosity, Y,
depth, and all other vari-
the ellipse equation. Fi-
of equation (79) with
of Hedstrom, et al. (24).
s a significantly slower de-
than was observed experiment-
ilibrium equation, the clas-
ient drainage underestimates
ater table response.
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Figure 5. Compariscn of solution to Glover's equa-

tion with experimentally observed decline

of the water

table.
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Figure 4. Comparison of solution to the ellipse equa-

tion with experimentally determined equili-

brium water table position.

with the steady state water table measured in the
lower at
the centerline than predicted by the ellipse equation,
equation underesti-
the spacing that will maintain the desired

large flume. The measured water table is
which indicates that the ellipse
mates
water table position.

= 0.8

tion as shown in Figure 5.
quate aeration

level

given by equation (72).
overestimates
particular depth of aerated soil.
estimation increases to

The rate of decline of the surface at which

Se

is much slower than predicted by Glover's equa-
In fact, the zone of ade-
can never come closer to the water
in the drain than the scaled height, Zpn. »
Thus, Glover's equation also
the drain spacing required to give a
The relative over-
infinity as the depth of de-

sired aeration approaches the depth to water in the
drain ditch.

The degree
from theory
served in field installations
ienced drainage engineer.
cific yield and

of deviation of experimental data
shown in Figures 4 and 5 mav not be ob-
designed by an exper-
The design values of spe-
water table depth are usually based



upon previous experience with similar drainage sys-

tems in similar soils. As a result, the value of

specific yield wused in design calculations is an

artificial value, which forces the fit between experi-
mental data and theory. Duke (18) discusses the

hazard of using such artificial values of specific

yvield when the depth to water table differs signifi-

cantly from that at which the specific yield was eval-
uated. Such "rule of thumb" practices undoubtedly

give satisfactory results in areas where considerable

past experience is available, but fail to give due

consideration to those parameters that can result in

significant differences in the flow situation.

Influence of Soil Parameters Upon Capillary Phenomena

Saturation profiles. In a previous section it
was shown that the saturation profile is dependent
upon the bubbling pressure head, pore-size distribu-
tion, and the magnitude and direction of vertical
flux through the capillary region. Figure 6 illus-
trates the distribution of saturation with scaled
height, Z., above the water table when the soil pro-
file is in static equilibrium with the water table.
As the distribution of pore sizes becomes more uni-
form (i.e., n increases) the volume of drainable
water above the water table decreases. This volume
of drainable water is represented by the area under
the curves of Figure 6, evaluated from zero to a
height, Z. , corresponding to the water table depth.
At large n the saturation approaches residual satu-
ration (S, = 0) at relatively small Z. Thus the
partially saturated region has less influence upon
drain performance if n 1is large. The shape of the
saturation profile is less sensitive to changes in n

for large values of »n than for small values. There-
fore, it is more important to evaluate n carefully
for soils with a wide range of pore sizes (e.g.,

clays) than for soils with uniform pore
clean sand).

3

sizes (e.g.,

Figure 6.

Saturation profile in static
with the water table.

equilibrium

The presence of a steady downward flux of water
can significantly affect the shape of the saturation
profile, as shown in Figure 7. For the flux shown
here (i.e.,one percent of the saturated conductivity)
the saturation profile for low n  values is little
different from the equilibrium profile over the range

b7

of Z. shown. At high values of n , however, the
saturation remains significantly higher. Sg approa-
ches a minimum value corresponding to the saturation
at which the hvdraulic conductivity is equal in mag-
nitude to the flux. It is apparent that a downward
flux increases the volume of water in the capillary
region and can be expected to increase the influence
of the capillary region on drain performance. Satu-
ration profiles for a range of downward fluxes are
shown graphically in Appendix C.

3 .
Z.2}F
I 1
0
Se
Figure 7. Saturation profile with steady downward

flux (gq. = -.01).

When flux is upward, the pressure gradient in-
creases rapidly with height above the water table.
Because of these large gradients and the resulting
high capillary pressures, the saturation decreases
rapidly with Z , as shown in Figure 8. Anat, et al.
(2) showed that a maximum height exists above which
a given flux cannot be maintained from the water ta-
ble. This limiting height is evidenced by the fact
that S, goes to zero at a finite elevation above
the water table as shown in Figure 8.

3

Saturation profile with steady upward flux
(g. = .01).

Figure 8.



Since the areas under the curves of Figure § are
less than in the corresponding equilibrium cases, up-
ward flow can be expected to lessen the importance
of horizontal flow in the capillary region. Such un-
ward fluxes, which might result from evapotranspira-
tion, are more pertinent to problems of subirrigation
and will not be considered further in this study.

Effective permeable height. Since the coffective
hydraulic conductivitv is dependent upon saturation,
the shape of the saturation profile strongly influ-
ences the ability of the capillary region to transmit
water toward the drain. Figure 9 shows the effect of

" and scaled depth to water table, H. , upon the
effective permeable height, Hy.. , for the static
profiles of Figure 6. The curves of Figure 9  were

calculated from equation (21). It is apparent that the
major contribution to Hi. occurs within a relative-

ly short distance above the water table. He. is in-
Fluenced by water table depth to greater depth for
small values of n and is more sensitive to changes
in n for small values of Regardless of the
value of  n , H. 1s never less than unity when
H. # 1.
1.4 T T T
q.=0 a
1.3 n
Hie 2 | &
10
LI ]
1.0 ] ] ! l
0 2 4 6 8 10
H.
Figure 9. Scaled effective permeable height as a
function of scaled water table depth,

static equilibrium.

As previously mentioned, when the flux is down-
ward, the hydraulic conductivity is nowhere less than
the magnitude of the flux. Therefore, downward flux
increases the effective permeable height, as indi-
cated by equation (44) and shown graphically in Fig-
ure 10. The same general observations apply to this
case as to the case of static equilibrium. However,
Hp . does not approach a constant as water-table depth
increases. Rather, as indicated by the second term
in equation (44), Hy. 1increases linearly with H. at
higher values of H. (i.e., H. > Z."). Therefore,
the entire depth of profile can contribute to horizon-
tal flow, and the water table depth becomes an impor-
tant consideration in evaluating the total flow
system.

Figure 11 shows the influence of q. upon Hy .
for a selected value of H. and n. The rate of
increase of Hy,. with increasing q. 1is not great
except for relatively large q. This suggests that

Hy. can be calculated from the static equilibrium
equation (equation 21) with little error so long as
q. 1is small. The rate of change of Hy. with re-
spect to q. is also dependent upon n (and upon H.

2
for shallow water table depths). As n increases,
the deviation from the eouilibrium value increases.
The relations between Hy. and H. for various flux
ratios, from which Figure 11 is constructed, are pre-
sented in Anpendix D.
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Figure 10. Scaled effective permeable height as a
function of scaled water table depth,

steadv downward flux.
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Figure 11.  Effect of flux upon effective permeable

height.

Effective saturated height. When the water table
is in equilibrium with steady percolation, the effec-
tive permeable height is sufficient to describe the
effects of the capillary region upon the flow system.
In such a case, the saturation above the water table
is invariant with time and release of water from
storage does not enter into the consideration of flow.
However, if the water table declines with time, at
least part of the outflow is derived from soil stor-
age, and changes in storage become important. The
depth of water stored zbove the water table is indi-
cated by the equivalent saturated height, Hg. Figure
12 illustrates the influence of water table depth,
H., upon Hg., as computed from eguation (59), when
the soil profile is in static equilibrium with the
water table. The scaled effective saturated height,




relation to water table
However, since the exponent

P. , is larger (i.e., a smal-
A < n) in the equation relating

Hg. , exhibits much the same
depth as does Hy.
of capillary pressure,
ler negative number,

S¢ to P, than in the equation relating relative con-
ductivity, K., to P_, H is much larger than
He. at a particular water fable depth. H_. is much
more sensitive to H. and to n than’is Hy.

Therefore, the effective specific
change as the water table
large depths.

yield continues to
declines to relatively

As in the case for

Hy. , a downward flux can
significantly increase the magnitude of Hg. (Figure
13). Because of the magnitude of A relative to m,
Hg. 1is influenced by the vertical flux more than is
Hy - Therefore use of the equilibrium equation to
calculate Hg. may result in significant errors.
Since the case of steady percolation in conjunction

with a falling water table was not considered in this
study, the effects of g. upon Hg. have not been
evaluated in detail. The relations between Hg. and
H. for a range of q. are given in Appendix D, and
are similar to Figures 12 and 13.
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Figure 12. Scaled effective saturated height as a
function of scaled water table depth,
static equilibrium.
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Figure 13. Scaled effective saturated height as a

function of scaled water table depth,
steady downward flow.
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Zene of insufficient aeration. The concepts pre-
sented in the preceding sections provide a means to
evaluate the contribution of capillary flow and stor-
age in a Dupuit-Forchheimer analysis. Such an analy-
sis will allow evaluation of the shape and position
of the water table. The water table per se, however,
is of indirect importance to the problem of maintain-
ing a suitable degree of aeration within the oot
zone. Depending upon the distribution of pressure
in the capillary region, the saturation remains quite
high for some distance above the water table. It is
of prime interest to evaluate the height above the
water table at which the saturation is sufficiently
low to permit adequate root aeratiom.

The scaled depth of insufficient aeration is
given by equations (72) and (77) for static equili-
brium and steady downward flow, respectively. Exami-
nation of these equations reveals that the scaled
depth of insufficient aeration, Zj , is simply that
point on the saturation distribution curves (Figures
6 and 7) at which adequate aeration, Sp , occurs,
Therefore, these two figures show, for their respec-
tive flux rates, Zj as a function of any selected
value of S, .

is

It is apparent from Figures 6 and 7 that Zy
Figure 14 illustrates the effect

dependent upon n.

of n upon Z, when Sp 1is selected as 0.8. Zp_
is very sensitive to changes in n for small n, but
changes less than 20 percent as n  increases from
6 to infinity. The effect of n upon 2Zp_ is

strongly dependent upon the selected value of Sy, as
is apparent from Figure 6. At large Sp > n  has
little effect upon Zp . > but for smaller Sy » the
variation of Zp. with n becomes very large.

2.0 T T T T T

gq.=0 i
S,70.8

Figure 14. Effect of n upon scaled height of in-

sufficient aeration, static equilibrium.

Comparing Figures 6 and 7 indicates that a down-
ward flux increases the sensitivity of Ly, to n.
Figure 15 shows the relation between Z ~ and -q.
for S, = 0.8. From this figure, it is seen that Zy,
differs from the static equilibrium value in excess
of 10 percent only for -q. greater than about 0.07.
Therefore, the static equilibrium value should be an
adequate approximation to Z, over a wide range of
q. - Again, however, this relationship between q.
and Zp is dependent upon the selected value of S.
For lower values of S,, the range of q. over which
the equilibrium value'is adequate is considerably
smaller.

From Figure 7, it is evident that when a down-
ward flux persists, there is a minimum saturation
that can exist. Conversely, for any value of Sp and
n  there is a maximum downward flow rate beyond which
the selected S cannot exist. This maximum flow
rate, given by equation (75), is shown graphically as
a function of n in Figure 16. The maximum flux is
most sensitive to n at low values of n. Unless a
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Figure 16. Effect of n wupon the maximum downward
flux at which a given Sy can exist.
very low S, 1is required (or the saturated hydraulic
conductivity is quite low) this restriction on q.

is not likely to eliminate the zone of aeration under
typical drainage conditions.

In the preceding discussions, it has been shown
that the effects of 1 upon Hy, HS, and Iy are
relatively small for large values of n. However,
the same conclusion cannot be drawn regarding the ef-
fect of bubbling pressure head, Pp/pg. Since Py/pg
is the scaling parameter for the dimensionless form
of each of these terms, the effective permeable and
saturated heights and the height of the zone of inade-

quate aeration are directly proportional to Pp/pg.
Therefore, except for very low n values, such as
may be characteristic of clay soils, the value of

bubbling pressure head is expected to be a more im-
portant parameter than is n

Verification of the Numerical Model

The numerical model developed in this study is
based wupon the Dupuit-Forchheimer assumptions and
utilizes the concepts of equivalent permeable height
and equivalent saturated height to account for the ef-
fects of the capillary region upon drain performance.
Before this numerical model can be used to evaluate
the effects of the various capillary parameters, it
is necessary to demonstrate the adequacy of the model
for predicting drain performance.
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Steady state. When the water table is in equili-
brium with steady infiltration, the specific yield of
the soil does not influence drain performance, and
the effective permeable height is a sufficient param-
eter to describe the effects of the capillary region.
The numerical model used in this study, called FLODF,
can be used to simulate the problem where capillary
flow is neglected, simply by setting Hy = 0. Figure
17 shows the comparison of this numerical solution
for no capillary flow with the solution of the el-
lipse equation. Since both solutions utilize the
Dupuit-Forchheimer assumptions and both consider the
nonlinearity in flow depth, the coincidence of the
two solutions indicates that the size of finite in-
crements used in the model is sufficiently small.
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Figure 17. Comparison of solutions of numerical model
and ellipse equation for steady state, no
capillary flow considered.

The adequacy of the model to describe the prob-
lem where capillary flow is considered is shown in
Figure 18. Local nonhomogeneity, as discussed by
Smith (40), undoubtedly contributes to the scatter
of the experimental data. Further comparisons, shown
in Appendix E, indicate comparable agreement.
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Figure 18. Comparison of numerical solution with ex-

perimental data, steady state.

Transient drainage. To verify the adequacy of
FLODF to simulate the transient drainage problem ne-
glecting capillary flow, the numerical solution is
compared with Glover's solution for the drain on the
boundary. Glover's equation for this case accounts
for the nonlinearity in depth of flow. Because of
the initially flat water table, however, Glover's so-
lution is only an approximate solution to the dif-
ferential equation. The comparison of these two solu-
tions is shown in Figure 19. Except for early times,
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Figure 19. Comparison of solution of Glover's equa-

tion and numerical model, transient flow,
no capillary flow considered.

the two solutions are quite close, which is accepted
as evidence that the numerical solution is adequate.
Figure 20 illustrates the adequacy of FLODF for simu-
lating transient flow when the capillary region is
significant. Except at very small times, which are
usually of minor interest, FLODF adequately describes
the rate of decline of the water table. Several fac-
tors undoubtedly contribute to the lack of agreement

at early time. The numerical model does not consider
the effect of vertical gradients, which are quite
large at very early times. When the water table is

falling rapidly, the celerity of the water table af-
fects the shape of the saturation profile. Thus one
would expect the water table to decline more rapidly
than predicted until the rate of decline becomes suf-
ficiently small.
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Figure 20. Comparison of transient numerical solu-

tion with experimental data, significant
capillary flow.

For one series of experimental boundary condi-
tions, the numerical model was not successful, as il-
lustrated in Figure 20. When the water table was
initially at the surface, the numerical model predict-
ed a more rapid decline than was indicated by the ex-
perimental results, as shown in Figure 21.

It is apparent that the finite difference ap-
proach used is inadequate to accurately model this
boundary condition. Under this initial condition,
the soil remains saturated to the surface for some
time after the water table begins to decline. There-
fore, the water table will decline very rapidly
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initially, with the initial outflow derived from ex-
pansion of the 1liquid phase and entrapped gases.
Since the numerical model is based upon the assump-
tion that the liquid is incompressible, the model can-
not be expected to accurately evaluate this initial
phase of drainage. As a result, the rate of decline
is overpredicted. Therefore, further analyses of
this initial boundary condition are not considered.
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Figure 21. Comparison of experimental and predicted

transient drain resvonse, water table

initially at soil surface.

Appendix E contains the comparison of experimen-
tal and predicted drain performance for all equili-
brium and transient experiments in this study. All
of these results are comparable to those presented in
the text.

Except where the initial water table is at the
surface, these comparisons between experimental and
numerical results are considered sufficiently accu-
rate to justify further use of the numerical model to
evaluate the effects of capillary properties wupon
drain performance. The following sections describe
the results of numerical model analyses conducted for
a hypothetical soil, with a restricted range of bound-
ary conditions. In all cases, the hydraulic conduc-
tivity is 2 x 10-3, the effective porosity is 0.30,
and the total depth of soil is 100. Except where
specified otherwise, the drain spacing is 1000 units.
The units of each parameter can be selected arbitrar-
ily, so long as consistent units are used.

Shape and Position of the Water Table

The numerical model was used to simulate 156 com-
binations of boundary and initial conditions, soil
properties, and infiltration rates. The numerical
results discussed in the text of this paper represent
typical examples of the cases evaluated. Appendix F
contains the pertinent results of all analyses con-
ducted.

Steady state. The effect of the capillary region
upon the equilibrium position of the water table de-
pends upon the effective permeable height of the
capillary region. Figure 22 indicates the effect of
increasing H by increasing the bubbling pressure
head.

The upper curve of this figure represents the so-
lution to the ellipse equation, i.e., capillary flow
is neglected. As the effective permeable height, Hy,
is increased, the area through which horizental flow
can occur is increased. Since the uniform flux is

constant, the result of increasing Hk is that



smaller gradients are required and the water table be-

Yo changes by a factor of two over the
Ph/pg shown when Yg/D = 0

range of
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comes flatter. Since Hy 1is directly proportional
to  Py/fg, the effect increasing Pp/og  is
significantly reflected in the water table position.
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Figure 22. Effect of bubbling pressure head upon
equilibrium water table position.
Figure 23 illustrates the effect of ¢ upon

water table position. The water table position is not
nearly as sensitive to n as it is to Pp/pg, since
He 1is affected relatively little by n.

1 1 T L}
Y,/D:0
80 --0.01 1
i =
.60k Py/pg=20 |
2
qu i 3 r_.o"\‘ 1;%
) i A
201 = 6 4 ]
0 L 1 i i
0 100 200 3C0 400 500
Distance from Orain
Figure 23. Effect of n upon equilibrium water ta-

ble position.

The effect of infiltration rate upon water table
elevation at the centerline, Y. , is shown in Figure
24.  The primary result of increased infiltration is
to increase the water table elevation. This increase
in water table elevation reduces the fraction of the
flow moving through the capillary region by increas-
ing the depth of saturated soil relative to H . H
itself is 1little influenced by this increased flux,
since increasing q. tends to increase Hy  while
the higher water table results in a smaller distance
from water table to soil surface and tends to decrease
He. As a result, the magnitude of the error in water
table elevation resulting from neglecting capillary
flow is relatively independent of flux. The relative
error, however, decreases as the infiltration rate is
increased.

The tailwater level in the drain ditch has a sig-
nificant effect upon the sensitivity of the water
table to increased bubbling pressure head as shown in
Figure 25. Increasing the ditch level increases depth
available for saturated flow throughout the distance
between drains. Thus the gradient necessary to attain
a given flow is reduced. Although the gradient may
be reduced in proportion to Hy (i.e. to Pb/p}
the effect upon water table position is substantia. .y
less at higher tailwater depths. These small g.adi-
ents account for the minor change in Y. with in-
creasing Pu/pg at Yd/D = 2/3 (see Figure 25) while
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Figure 24. Effect of flux uvon equilibrium water ta-
ble position at centerline.
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Figure 25. Effect of tailwater level upon relation

between centerline water table height
and bubbling pressure head.

Figure 26 indicates that drain spacing has lit-
tle influence wupon the magnitude of difference be-
tween the capillary and classical analyses of center-
line water table elevation. Since the water table
elevation at the centerline increases with increased
drain spacing, the relative difference between the
two analyses decreases with increasing drain spacing.

Transient flow.
changes with time,
retion depends upon

When the water table position
the contribution of the capillary
both the conductivity and the




saturation characteristics of the soil in the capil-

lary zone. Hedstrom, et al. (24) demonstrated that
the capillary region significantly affects transient
performance of drains. Their techniques, however,

did not allow evaluation of the relative effects of
the effective permeable height, Hy , and the effec-
tive saturated height, H;, upon transient drainage.
The numerical model developed for this study is cap-
able of such analyses. FLODF can simulate no capil-
lary effects . (H and Hy assumed zero), the influ-
ence of capillary conductivity only (Hg = 0}, or the
combined effects of capillary conductivity and capil-
lary storage. Figure 27 shows one such analysis, con-
sidering each of the three alternatives for treating
the capillary regiom.
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Figure 26. Effect of drain spacing upon influence
of bubbling pressure head on equilibrium
water table height.
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Figure 27. Comparison of the relative importance of
capillary conductivity and capillary
storate to decline of the water table at
the centerline.
For the boundary conditions of the analysis

shown, it is apparent that the effects of Hp and Hg
are of the same order of magnitude. As in the steady-
state problem, the capillary region tends to increase
the depth through which flow can occur. This in-
creased flow depth tends to increase the rate of flow,
and consequently increases the rate of water table
decline. Since Hg increases less rapidly than does

ra
(73]

2

water table depth, the apparent specific yield in-
creases with increasing water table depth. The low
apparent specific yield at early time also increases
the rate of water table decline, since a smaller vol-
ume of water must move through the soil to obtain a
given water table decline.

The capillary flow is directly proportional to
the magnitude of Hy. Therefore, since Hy approaches
a constant at relatively shallow water table depth,
the conductivity contribution of the capillary region
is affected little by water table depth, so long as
this depth is significantly greater than Pyp/pg (see
Figure 9). On the other hand, Hg is quite sensitive
to water table depth over a wide range. The influence
of Hg wupon release of capillary water is not depen-
dent upon the magnitude of H_, but rather upon dHg/dH
(i.e., rate of change of H; with respect to water
table depth). Since dHg/dH 1is largest for small wa-
ter table depth (see Figure 12), the effect of capil-
lary storage is more pronounced when the water table
is shallow. This water table depth dependence is 1l-
lustrated by comparing Figures 27 and 28. The initial
water table for Figure 27 was at 2/3 the total soil

depth, while that for Figure 28 was only 1/3 the
total soil depth. It is apparent that the capillary
conductivity 1is more important than the capillary

storage for this latter case.
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Figure 28. Comparison of the relative importance of

capillary conductivity and capillary stor-
age to decline of a deep water table.

The effects of increasing Pp/pg upon the rate
of water table decline are illustrated in Figure 29.
As in the case of steady drainage, the capillary zone
has a capacity to transmit flow toward the drain. As
a result, increasing Pyp/pg increases the effective
permeable height, Hy , and drainage is more rapid.
Since Hg is also directly proportional to Pp/eg,
the effect of capillary storage becomes more pro-
nounced as Pp/pg is increased. For the initial
condition illustrated in Figure 29, the soil was ini-
tially saturated to the surface for Pp/pg = 40. As
a result, the water table decline at the centerline
was almost instantaneous to the point where the sur-
face soil began to desaturate, thus accounting for
the low water table at early time.

Figure 30 illustrates the effect of n
transient response.
and (59) the
sensitive to n
changes in n

upon the
As indicated by equations (21)
rate of water table decline 1is not as
as to Pp/og. The sensitivity to
decrease as n becomes large. So long
as Pp/pg is finite, the water table must drop more
rapidly than indicated by the analysis neglecting
capillary flow, regardless of the value of n . Note



that as n + =, H, and Hg approach Pp/pg rather
than zero.
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Figure 28. Effect of bubbling pressure head upon
transient water table response.
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Figure 30. Effect of n upon transient water table
response.

Because of differences in shape of the drawdown
curves, it is rather impractical to compare the en-
tire curve for various initial, boundary and capil-
lary conditions.  Further comparisons of water table
response are based upon the time required to achieve
an arbitrarily selected fraction of the total avail-
able drawdown. The relative drawdown, YC/YO , Se-
lected for such comparisons is 0.8.

Figure 31 illustrates the effect of Pyp/pg upon
the time at which the water table declines to 80 per-
cent of its original height (t.g). As P/og in-
creases, the rate of change of t g with respect to
Py/eg decreases. This indicates that the relative
effectiveness of the capillary zone in transmitting
water toward the drain is reduced as Py/pg increases.
Such an effect is expected if one considers the in-
creased length of flow path and the increased con-
vergence losses near the drain resulting from these
large capillary effects.

Figure 32 illustrates the time to reach this 80
percent drainage relative to the corresponding time
if capillary effects are neglected. Again, this fig-
ure illustrates the reduced effectiveness of the
capillary region at high bubbling pressures. The ex-
tremely fast response at high bubbling pressure for
the case Yi/D = 2/3, Y4/D = 1/3 is due to the fact
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that the soil profile remains saturated to the sur-
face during early time over a significant portion of
the distance between drains.

i 1 T
i VL HIVEN A
Y4/0=0
o
AT
»° Y, /D=2/
= Y,/D:0
> Y,/D=2/3
o
& i Y4/D=1/3
& E
E
- -
10* ] ! i
¢} 10 20 30 40
Py/pg
Figure 31. Effect of bubbling pressure head upon time
required to lower water table to 80 per-
cent of the initial drainable depth.
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Figure 32. Effect of bubbling pressure head upon re-
lative time required to lower water table
to 80 percent of the initial drainable
depth.
Figure 32 also 1illustrates the effect of the
initial water table level wupon drain response. At
early time, the capillary region provides a larger

flow area compared to the depth below the water table
as the initial water table depth is decreased. This
larger area for flow results in more rapid drawdown
for the lower initial water table. As bubbling pres-
sure head is increased, this difference in effective
flow depths is offset by increased convergence losses
in the capillary region. Figure 33 illustrates the
effect of drain spacing upon the time reaquired to



obtain 80 percent drawdown. The relative time used in
Figure 33 is the time required for the spacing shown
divided by the time to obtain the same drawdown with
L = 1000. Drain spacing has 1little effect upon the
relative significance of capillary flow except when
the bubbling pressure head is large. When drain spac-
ing is small, large values of Py/pg result in sig-
nificant convergence losses, which reduce the effec-
tiveness of the capillary region. On the other hand,
when the spacing is increased, the effects of surface
saturation at high bubbling pressure are significant
over a larger proportion of the distance between
drains. As a result, the rate of water table decline
increases.
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Figure 33. Effect of drain spacing upon time to ob-
tain 80 percent drawdown relative to time
at L = 1000.

Region of Aeration

The preceding sections have indicated the manner
in which the capillary flow region affects the water
table position. The water table position itself is
of little direct importance to the problem of drain-
age, however. One important function of drainage is
to maintain the water content within the root zone
sufficiently low to permit adequate aeration. This
section is devoted to a discussion of the effects of
the region of insufficient aeration above the water
table upon drain design. The effect of the capillary
region upon design spacing of drains is evaluated by
assuming that the upper limit of this zone of insuf-
ficient aeration satisfies the same aeration require-
ments as the water table calculated by neglecting
capillary flow. Thus, an equivalent spacing is de-
fined which will give a water table elevation (ne-
glecting capillary flow) equal to the elevation of
the zone of insufficient aeration. For this discus-
sion, it is assumed that the soil is adequately aer-
ated whenever the effective saturation is less than
0.8. Further numerical results are presented in tab-
ular form in Appendix F.

Steady state. Figure 34 illustrates the equili-
brium position of the surface where S, = 0.8 for
the water table profiles shown in Figure 22. In every

case, the height of the zone of insufficient aeration,
Zp, (calculated from equation 77) is greater than the
depression of the water table resulting from capil-
lary flow. As a result, increasing the bubbling pres-
sure head results in a decreased depth of adequately
aerated soil, even though the water table elevation
is lowered.
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Figure 34. Effect of bubbling pressure head upon aer-
ation profile, steady state drainage.

Figure 35 indicates that the effects of n upon
the aerated region are more significant than the ef-
fects upon the water table position (see Figure 23).
The sensitivity to changes in n decreases with in-
creasing n , Jjust as was the case regarding water
table response. The position of the aerated zone is
much less sensitive to n than to Pb/og , as indi-
cated by equation (77) (i.e., Zj is directly propor-
tional to P, /pg).
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Figure 35. Effect of n upon equilibrium aeration
profile.

Figure 36 illustrates the effects of Py/pg upon
the height of the zone of insufficient aeration, Yj,
at the centerline between drains. Since the water
table depression is always less than Pyp/pg, Yo con-
tinues to increase with increasing bubbling pressure
head. The effect of Pp/pg upon Y decreases some-
what as the water level in the ditch . is decreased.
This results from the increased effect of Pp/pg upon
water table elevation for small Yq , as shown in
Figure 25, and the fact that Zjp is independent of
water table depth.

As evidenced by the curve for Yg/D = 2/3, it is
entirely possible that the soil will have no zone of
adequate aeration at the centerline if the bubbling
pressure is sufficiently large and the water table is
near the surface.

The effects of the capillary region wupon drain
design are presented in terms of a relative spacing.



This relative spacing is the effective spacing (the
spacing calculated by neglecting capillary flow which
will result in a water table at the same elevation as
Yp calculated by considering capillary flow) divided
by the actual drain spacing. Thus, this relative
spacing is an indication of the spacing error result-
ing from neglecting the effects of the capillary re-
gion.
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Figure 36. Effect of Pp/pg upon height of zone of
insufficient aeration at centerline.
Figure 37 illustrates the effect of bubbling

pressure head and of tailwater level upon the rela-
tive spacing. Because of relatively small effects of
capillary flow upon water table position, the rela-
tive spacing increases as depth of tailwater increas-
es (i.e., as gradient decreases). The influence of
convergence upon the effectiveness of the capillary
zone is again apparent for Y4/D = 0, since the rate
of change of relative spacing with respect to Pp/pg
increases with increasing bubbling pressure head.
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Figure 37. Effect of bubbling pressure head and tail-

water level upon relative drain spacing.

The effects of drain spacing upon relative spac-
ing are shown in Figure 38. Because of the increased
significance of convergence losses, the relative spac-
ing is larger for small drain spacing. The effects of
drain spacing diminish as the spacing increases be-
cause these convergence losses become a progressively
smaller fraction of the total head dissipated.
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Figure 38. Effect of absolute drain spacing upon re-
lative spacing, steady state.
The effects of infiltration rate and tailwater

depth upon relative
The relative spacing

spacing are shown in Figure 39,

is increased by either reducing
the percolation rate or raising the tailwater level.

Either of these changes results in smaller water

table gradients. As discussed earlier, the effect of
the capillary region upon the position of the water

table 15 small when small water table gradients exist.
Since Z, 1is independent of water table gradient and
depth to water table, it is these conditions where

water table gradients are small that result in the
greatest effects upon Such small water table
gradients exist whenever tﬁe infiltration rate is low
or the tailwater depth (therefore the equivalent flow

depth) is large.
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Effect of infiltration rate and tailwater
depth upon relative spacing.

Figure 39.

Transient drainage. During transient drainage,
the zone of insufficient aeration above the water ta-
ble is assumed to have a constant thickness with time.
That is, Z, 1is assumed to be the equilibrium value,
given by eqaution (71). The basis for comparison of
drain performance is arbitrarily selected as the time




required to reduce the zone of inadequate aeration at
the centerline between drains, Ya, to 0.8 the ori-
ginal drainable depth of the water tuble.

Figure 40 illustrates the cffect of bubbling
pressure head upon the rate of decline of the surface
of aeration for the boundary conditions of Figure 23.
Although the rate of decline of the water table is
increased by large values of Pyp/og , the effect of
the capillary zone upon position of the water table
is not as large as the wvalue of I, As a result,
increasing the bubbling pressure head delays the rate
of decline of the zone of insufficient aeration. If
Zp is greater than the initial drainable depth, the
aerated :zone will never decline below the initial
water table elevation, as is apparent for the case
Py/pg = 40 in Figure 40. As drainage progresses to-
ward the final water table elevation, Yy, the zone
of inadequate aeration, Y, , approaches the constant

elevation, Yd * Iy
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Figure 40. Effect of bubbling pressure head upon rate
of decline of the zone of insufficient aer-
ation.

Since the final water table elevation, Y4, is in-
dependent of effects of the capillary region, the ul-
timate effects of n wpon Y, are somewhat larger
than for the case of equilibrium, as shown in Figure
41. During early stages of aeration within the re-
gion considered, water table gradients are larger for
large n The resulting higher water table tends to
compensate for small values of Zp. As a result, the
effects of n are initially small and tend to increase
with time.
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Figure 41. Effect of n wupon rate of decline of zone

of insufficient aeration.

I'rom the discussion of equilibrium drainage, one
would expect the relative spacing to increase as the
drainable depth (i.e., Y; - Yq) decreases. Figure
42 illustrates the effect of the initial and final
water table depths upon relative spacing. The effects
of increased convergence losses, due to smaller satu-
rated thickness are reflected in the slightly larger
relative spacing shown for the case where the tail-
water depth is zero.
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Figure 42. Effect of bubbling pressure head upon re-

lative spacing for wvarious initial and
final boundary conditions.

The effect of drain spacing upon relative
ing is shown in Figure 43. Since the initial and
final water table elevations are the same for all
spacings shown, the average gradient decreases with
increasing drain spacing. Such was not the case with
the equilibrium drainage discussed previously. As a

spac-

result, the effects of drain spacing upon relative
spacing are small for transient drainage.
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Figure 43. Effect of bubbling pressure head upon rela-

tive spacing as influenced by drain spac-
ing.



It should be emphasized that the magnitude of the relative spacing will be even greater than that
the errors resulting from spacing calculations based indicated. From the standpoint of drain design, this
upon the assumption of no capillary flow is dependent means that drains must be spaced even closer, and pos-

If the effec- sibly deeper, to maintain an optimum environment for

upon the degree of aeration required.
tive saturation required for adequate aeration is plant roots.
less than the value (0.8) selected in this discussion,



CONCLUSIONS AND RECOMMENDATIONS

The previous discussion has shown that neglect-
ing the effects of the capillary region on drain per-
formance can result in serious design deficiencies.
Classical drainage theories always overestimate the
maximum spacing. The degree of overestimation de-
pends on the soil characteristics, the infiltration
rate, initial and boundary conditions, and the degree
of aeration required within the root zome.

The analyses performed for this study are insuf-
ficient to justify any general design criteria. They
do, however, indicate the manner in which various
parameters affect the error resulting from neglecting
the capillary region.

The bubbling nressure head,
significant soil property affecting the adequacy of
classical drainage theories. As Pp/og increases,
the classical theories provide a less accurate des-
cription of actual drain performance. The pore size
distribution, n, 1is significantly less important in
evaluating drain performance than is Py/pg, espe-
cially for large values of n. This suggests that,
if Pp/pg can be determined accurately, then n (which
is considerably more difficult to evaluate) could
possibly be estimated with sufficient accuracy from a
qualitative inspection of the particle size distri-
bution.

Pp/pg, is the most

In general, the classical theories provide the

least adequate evaluation of drainage when water
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table gradients are small. Such
sult from low infiltration rates,
conductivity, K, (although large K 1is usually as-
sociated with small Py/og), a large saturated thick-
ness of soil, or a large capillary region with res-
pect to the total soil depth.

conditions may re-
a, high hydraulic

It is recommended: that further
conducted in the following areas:

investigation be

1. The analyses presented here need to be ex-
tended to more boundary conditions so they
will be useful in field design procedures,

2. The effects of capillary flow upon systems
in which vertical gradients are significant
(e.g., tile drains in thick aquifers) should
be evaluated,

[

The effects of soil stratification upon the
importance of the capillary region should be
evaluated,

4. The possibility of developing correction
factors to be applied to classical drainage
theories should be investigated, and

5. Methods for field evaluation of bubbling
pressure head and pore size distribution
index need to be developed.



I~

10.

11

L2

14,

LITERATURE CITED

Amerman, C. R., Appendix 1, Numerical solution of
the flow equation. In: Soil and water phy-
sical principles and processes, by Daniel
Hillel, Academic Press, New York, pp. 241-
254, 1971.

Anat, A., H. R. Duke and A. T. Corey,

ward flow from water tables.

Univ, Hvdrology Paper No.

Colo., 34 pp., 1865,

Steady up-
Colo. State
7, Fort Collins,

Bittinger, M. W., H. R. Duke, and R. A. Longen-
baugh, Mathematical simulations for better
aguifer management. Publ. No. 72 of the

[ASH, Symposium on Artificial
Management
509-519,

Recharge and
of Aquifers, Haifa, Israel, pp.
1967.

Bouwer, H., Theoretical aspects of flow above the
water table in tile drainage of shallow
homogeneous soils. Proc. Soil Sci. Soc.
Amer., 23: 260-265, 1959.

Bouwer, H., Theoretical aspects of unsaturated
flow in drainage and subirrigation. Agr.
Engr., pp. 395-400, 1959.

Bouwer, H., Unsaturated flow in ground-water hy-
draulies. J. of Hydr Divn. Amer. Soc.
Civil Engrs., HYS: 121-144, 1564,

Breitenbach, E. A., D. H. Thurnau, and H. K. van
Poolen, Immiscible fluid flow simulator.
Soc. Petr, Engr., AIME, Paper No. SPE2019,
Dallas, Tex., April 22-23, 1968.

Breitenbach, E. A., D. H. Thurnau, and H. K. van
Poolen, The fluid flow simulation equations.
Soc., Petr, Engr., AIME, Paper No. SPE2020,
Dallas, Tex., April 22-23, 1968.

Breitenbach, E. A., D. H. Thurnau, and H. K. van
Poolen, Solution of the immiscible fluid
flow simulation equations. Soc. Petr. Engr.,

AIME, Paper No. GSPE2021, Dallas, Tex.,
April 22-23, 1968.

Brooks, R. H. and A. T. Corey, Hvdraulic prop-
erties of porous media. Colo. State Univ.

Hydrology Paper No. 3, Fort Collimns, Colo.,
27 pp., 1964.

Brutsaert, W., G. 5. Taylor, and J. N. Luthin,
Predicted and experimental water table
drawdown during tile drainage. Hilgardia,

31: 389-418, 1961.

Chapman, T. G., Capillary effects in a two-
dimensional groundwater flow system. Geo-
technique, 10: 55-61, 1960.

Childs, E. C., A treatment of the capillary £ri-
nge in the theory of drainage. J. Soil Sci.,
10: 83-100, 1959.

Childs, E. C., The nonsteady
table in drained Iland.
65: 780-782, 1960.

state of the water
J. Geophys. Res.,

30

{5

16.

17.

18.

19.

20.

25..

26,

28.

Childs, E. C. and A. Poulovassilis, The mois-
ture profile above a moving water table. J.
of Soil Sci., 13: 271-285, 1962.

Childs, E. C., An introduction to the physical
basis of soil water phenomena. John Wiley
and Sons, Ltd., London, 493 pp. 1969.

Dagan, G., Linearized solution of unsteady deep
flow toward an array of horizontal drains.
J. Geophys. Res., 69: 3361-3369, 1564.

Duke, H. R., Capillary properties of soils-
influence upon specific vield. Trans. Amer.
Soc. Agric. Engrs., (in press).

Dumm, L. D., Drain and spacing formula.
Engr., 35: 726-730, 1954,

Apr.

Freeze, R. A., Influence of the unsaturated flow
domain on seepage through earth dams. Water
Resources Res., 7: 929-941, 1971.

Gardner, W. R., Some steady-state solutions of
the unsaturated meisture flow equation with
application to evaporation from a water
table. Soil Sei., 85: 228-233, 1958.

Hagan, R. M., H. R. Haise, and T. W. Edminister
Irrigation of Agricultural lands. Menograph
No. 11, Amer. Soc. of Agron., Madison, Wis.

Hedstrom, W. E., Models for subsurface drainage.
Ph.D. dissertation submitted to Colo. State
Univ., 149 pp., 1970.

Hedstrom, W. E., A. T. Corey, and H. R. Duke,
Models for subsurface drainage. Colo. State
Univ. Hydrology Paper No. 48, Fort Collins,
Colo., 56 pp., 1971.

Hillel, Daniel, Soil and water physical princ-
iples and processes. Academic Press, New

York, 288 pp., 1971.

Hornberger, G. M., J. Ebert, and I. Remson, Num-

erical solution of the Boussinesq equation
for aquifer-stream interaction. Water Re-
sources Res., 6: 601-608, 1870,

Kraijenhoff van de leur, D. A., Some effects of

the unsaturated zone on nonsteady free-
surface groundwater flow as studied in a
scaled granular model. J. Geophys. Res.,
67: 4347-4362, 1962.

Letey, J., L. H. Stolzy, and W. D. Kemper, Soil
aeration. In: Irrigation of agricultural
lands. Edited by R. M. Hagan, H. R. Haise,
and T. W. Edmin er. Amer. Soc. of Agron.
Monograph WNo. 11, Madison, Wis., pp. 941-
949, 1967.

Luthin, J. N., The falling water
drainage-II. Proposed criteria for spacing
tile drains. Trans. Amer. Soc. Agric.
Engrs., 2: 44-45, 1959,

table in tile

3



L]
(]

34,

37.

39.

40.

Luthin, J. N. and P. R. Day, Lateral <flow above
a sloping water table. Proc. Soil Sci. Soc.
Amer., 19: 406-410, 1855.

Luthin, J. N. and R. V. Worstell, The falling
water table in tile drainage-I. A labora-
tory study. Proc. Soil Sci. Soc. Amer., Z21:
580-584, 1557.

Luthin, J. N. and R. V. Worstell, The

water table in tile drainage-III. Factors

affecting the rate of fall. Trans. Amer.

Soc. Agric. Engrs., 2: 45-51, 1959.

falling

McWhorter, D. B., Personal communication. Dept.
of Agric. Engr., Colo. State Univ., 1971.

Myers, L. E. and C. H. M. van Bavel,
ment and evaluation of water table eleva-
tions. Proc. 5th Congress, ICID, Toyko,
Japan, Question 17, pp. 109-119, 1963.

Measure-

Rubin, J., Theoretical analysis of two-dimen-
sional transient flow of water in unsatura-
ted and partly unsaturated soils. Proc.
Soil Sci. Soc. Amer., 32: 607-615, 1968.

Schilfgaarde, J. van, Approximate solutions to
drainage flow problems. In: Drainage of
agricultural lands. Edited by J. N. Luthin,
Amer. Soc. of Agron. Monograph No. 7, Madi-
son, Wis., pp. 79-112, 1957

Schilfgaarde, J. van, Design of tile drainage
for falling water tables. J. of Irrig. and
Drain. Divm., Amer. Soc. Civil Engrs., IRZ:

1-11, 1963.

Schmid, P. and J. Luthin, The drainage of slo-
ping lands. J. Geophys. Res., 69: 1525-
1529, 1964.

Sewell, J. 1. and J. van Schilfgaarde, Digital

computer solutions of partially unsaturated
steady-state drainage and subirrigation
problems. Trans. Amer. Soc. Agric. Engrs.,
6: 252-296, 1963.

Smith, R. E., Mathematical simulation of infil-
trating watersheds. Ph.D. dissertation sub-
mitted to Colo. State Univ., 193 pp., 1970.

41.

44.

45.

46.

47,

48.

48,

50.

Soil Conservation Service, USDA, SCS national
engineering handbook Section 16 - Drainage
of agricultural land. Engr. Divn., So0il
Cons. Serv., USDA, Washington, D. C., 430
pp., 1971.

Stegman, E. C., A. E. Erickson, and E. H. Kidder,
Characterization of soil aeration during
sprinkler irrigation. Summer Meeting, Amer.
Soc. Agric. Engrs., Paper No. 66-214., 18

pp., 1966.

Stolzy, L. H. and J. Letey, Correlation of
plant response to soil oxygen diffusion
rates. Hilgardia, 535: 567-575, 1964.

Swartzendruber, D. and D. Kirkham, Capillary
fringe and flow of water in soil. Soil Sci.
81: 473-484, 1956.

Swartzendruber, D. and D. Kirkham, Capillary
fringe and flow of water in soil: II. Ex-
perimental results. Soil Sci., 82: 81-95
1956.

Talsma, T., The effect of flow above
table on tile drain design in Murrumbidgee
irrigation area soils. Aust. J. of Soil
Res., 3: 23-30, 1965.

the water

Verma, R, D, and W, Brutsaert, Similitude cri-
teria for flow from unconfined aquifers.
J. Hydr. Divn., Amer. Soc. Civil Engrs.,
HYS: 1493-1509, 1871.

Werner, P. W.,

Some problems in non-artesian

ground-water flow. Trans. Amer. Geophys.
Union, 38: 511-518, 1957.

White, N. F., D. K. Sunada, H. R. Duke, and A.
T. Corey, Boundary effects in desaturation
of porous media. Soil Sei., 113: 7-13,
1972,

Youngs, E. (., Hodograph solution of the drain-
age problem with very small drain diameter,
Water Resources Res., 6: 594-600, 1970.



APPENDIX A

ONE-DIMENSTONAL NUMERICAL MODEL

The digital computer program utilized in this
study employs a backward-difference-implicit scheme
for solution of the system of finite-difference equa-
tions. The development of these equations, the tech-
niques of solving the equations, and a copy of the
computer program, FLODF, are presented in this sec-
tion.

The Finite-Difference Equations

The partial differential equation describing
mass continuity in flow of a solution through porous
media has been given by many investigators as

3p
?—S = - 7.F+ 8 (A-1)
where pg 1s the mass of solution per unit volume of

porous medium, F 1is the mass flux of solution, S
is the rate of production of mass per unit volume of
porous medium, and t is time. Assuming that the
density of the solution phase, pp, , 1is invariant in
space and time, equation (A-1) can be reduced to

Bk

C T 7.Q + Sv (A-2)
where 8 is the volumetric solution content [QS/DL],
Q 1is the volumetric flux rate (F/py), and Sy is

the source strength on a volumetric basis

(8/e1) -

As previously discussed, program FLODF utilizes
a Dupuit-Forchheimer approach to the solution of
equation (A-2). Figure A-1 illustrates the boundary
conditions and symbols utilized in FLODF.

q
T ;/ T
P T T T T B A
d-4————_] -]
]
o
o | e
Y . e
I e
Yd _.__
& L/2
Figure A-1., Boundary conditions and symbolism used
in FLODF.

Equation (A-2) can be written in one-dimensional

form as
aY n
s 30 2
= o m— -
¢ ot ax a KAZ3)
where x is the horizontal space coordinate, measured

from the drain outlet, ¢ is the drainable poresity,
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Ys 1s the effective saturated thickness, and q is
the uniform percolation rate. Assuming that the vol-
umetric flux is described by Darcy's equation, equa-
tion (A-3) becomes

3y
3 Y 5
where Yy 1is the depth available for horizontal flow
and Y 1is the height of the water table. This depth
of horizontal flow is the sum of the water table
height and the effective permeable height, Hy, or
Y =Y+ H (A-3)
The effective saturated thickness, Ys, 1is similarly
given by
Y, = Y+ H (A-6)
Both Hp and Hg are described in detail in the text,

and the rate
partially saturated zone,

and are dependent upon soil properties
of percolation through the
q.

If the soil is homogeneous with
saturated hydraulic conductivity,
(A-4) may be written

respect to the

K, then equation

ar

X
ot

3

ax

(Y =

s ;
T ¢ A-7)

By dividing the flow region into N equal incre-

ments in the x-direction, and applying a backward
difference scheme, equation (A-7) can be written in
finite-difference form for increment 1i(i-2,N-1) as
t+4t t+At t+At t+At
% : Y. 2

R i S i R % B V7L i-1)

ax%” ax?

t+AL t t+At/2

o Vo 94

= . = - (A-8)

K At K
where the subscripts i, i-1 and i+l represent the

grid of interest and its two adjacent grids, respec-
tively; t refers to a time level at which the so-
lution has been determined, and At is the increment
of time at the end of which a solution is desired.
The implicit solution technique used places no res-
trictions upon the time increment to achieve stabi-
lity of the solution. Other restrictions upon At
will be discussed later.

As suggested by Breitembach, et al. (7) the area

through which flow may occur between adjacent grids

i i ken as the area
(i.e., Yk,i+l/2’ Yk,i-l/ZJ is ta

from which flow emanates. Breitenbach, et al. found
such a technique to better simulate problems in which
either a seepage face or irregular lower boundaries
exist than does the mean flow area indicated by equa-
tion (A-8). Thus, equation (A-8) becomes



. t+it t+At t+At  telt
Tt % 9 Nealh Y
2 - 2 N
AX Ax
t+ht t t+hit/2
g_(Ys,i - Y51 Y (A-9)
K AT K

with this simplification, equation (A-9) would be ex-
pected to give an accurate solution only when the dif-
ference between Y| for adjacent grids is small with
respect to Yy (i.e., small gradient or large number
of grids).

Since both Y, and Yg are functions of the
dependent variablé, Y, equation (A-9) remains non-

linear. If the time in increment, &4t, is sufficient-
ly small that
i o PO (A-10)
t+it t t+it ¥
then Yy may be taken as Yk 5 Hs as HS ’

and HE as HL % with little error.

k Then equation
(A-9) “may be written as

cpgt t t+it t+At
v Sl TP 2 YT A
t t LAt T+t
¥ . . 1=
( i’ Hk,l)(&i \1-1 )
2
GAX” L tHit L t-4At Ax t+it/2
kee Ui tHg it Yy cHo ) - o
(A-11)
If q 1is a constant with time and space, the super-

script and subscript may be dropped. The coefficients
representing Y, can be expressed as known constants
at any given time step, such that

t t
C Y + Hk,i+1

1 i+l

(A-12)

and

t t
Gy = ¥y * Moy

Expanding equation (A-11) and collecting like terms
gives

(A-13)

L JtHAt tAx2, tHbt t+it
Bl - Bt gl N TRy S
¢ﬂx2 t 3 t-At Ax?
Xar 5 7 A By ¥ g Y (A-14)

Thus, the differential equation has been approximated
by a finite-difference equation reduced to a linear
equation with three unknowns.

Boundary and Initial Conditions

The entire flow system is described by N-2 equa-
tions of the form of equation (A-14), with N here-
tofore unknown values of Y. Thus, at least two va-

lues of Y must be specified. The outflow boundary
condition, Y;, is predetermined and held constant
with time at the wvalue Y4, thus simulating a con-

stant tailwater level in the outflow ditch.

The desired boundary condition at i = N is that
of a zero flux boundary, since this point represents

the centerline between parallel drains. To achieve
this no flux boundary between i =N and 1 = N-1,
the Darcy flux, Q must be zero, i.e.
aY
Q. =K Y —) =0 (A-15)
N-1/2 k,N “3x N-1/2
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This zero flux can be achieved by setting any one of
the terms to zero. Since K 1is assumed to be a con-
stant, and Yy 1is not known a priori, the flow area
term is used to set the no flux boundary in FLODF.
Since the flow area was taken as the area from which
flow emanates, then

Yy * Hen=0

is a sufficient no-flux boundary
absolute value of Yy

(A-16)

condition, and the
is irrelevant.

In each case presented, the initial condition is
that of a level water table, i.e., 3Y;/3x =0, (i =
2, N-1), with Yj = constant, t > 0. Because of the
method of linearization used to develop equation (A-
14), and the large initial gradients for small i,
the solution is expected to be least accurate at
early times.

The volumetric source term in equation (A-14),
where applicable, is the rate of percolation through
the unsaturated region, taken positive downward.

Thus, the source term serves as a pseudo-boundary
condition of uniform flux for this one-dimensional
problem.

Solution Technique

Since equation (A-14) is linear in Y, and the
entire flow system can be described by N-2 such equa-
tions in N-2 unknowns, the solution at any succeed-
ing time can be obtained directly, without resort to
iterative techniques. FLODF utilizes a Gaussian eli-
mination solution to the matrix equation

lc| 1Y| = IR (A=17]

where |C| is the coefficient matrix, |Y| the solu-
tion matrix, and |R| the matrix of coefficients re-
presenting the right-hand side of equation (A-14).

For this one-dimensional problem, the coeffi-
cient matrix is a tri-diagonal matrix of dimension
(N-2) x (N-2). The solution sub-routine (GELIM) re-
duces the matrix storage requirement to dimension
(N-2) x (3), which allows the use of a large number
of grids.

The number of grids required to give an accurate
solution was evaluated by trial. Where the gradients
were largest (i.e., initial water level at the soil
surface and zero ditch level), the solution was ob-
tained for successively larger numbers of grids (i.e.
smaller 4&x). When any two successive solutions were
obtained that agreed within three significant figures
the grid size was considered sufficiently small. For
the problems studied here, 100 active grids (N=102)
were sufficient to satisfy these accuracy criteria.

A similar analysis was performed to determine
the optimum time increment between successive solu-
tions. Since the decline of the water table is ap-
proximately linear with respect to log time, the time
increment is calculated by an equation of the form

AT = 10°T (A-18)

where b is a constant less than unity, and T 1is
the total simulated solution time. By trial, it was
determined that b = 0.25 satisfied the accuracy cri-

teria described above, when the first solution was
obtained at T = 1. Thus, solutions of the system
were obtained to a simulated time of 107 in only 29

steps. This ability to use large values of A4t as
drainage progresses is the major difference between
FLODF and the computer program developed by Hedstrom,
et al. (1971}.
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Program FLODF

The computer program 1is written in Fortran IV,
specifically for the Scope 3.3 compiler system of the

case of zero infil-
Where the in-

listing of this program, for the
tration, is presented in this section.

CDC 6400 computer at the Colorado State University filtration rate is finite, the effective permeable,
Computer Center, Fort Collins, Colorado. A Fortran and saturated depths are calculated by a subroutine
similar to program EFFECT, which is also presented.

PROGRAM FLODF (INPUTsOQUTPUT s TAPES=INPUTsTAPE6=0UTPUT)

EVALUATE TRANSIENT FLOW TOWARD

O 00

AND SATURATION(IOP=2)

A FULLY PENETRATING DITCH BASED UPON DUPUIT

-FORCHHEIMER ASSUMPTIONSs CONSIDERING EFFECTS OF CAPILLARY PERMEABILITY(IOP=1)

1

2

1

INP

COMMON Y(200)sYP(200) sYE(200)+5H(250) sPH(250)+SE(200)sSEP(200)
1RHS (2006) +CM(20093) « YM(500) + TSG(500) s TTL(S00) »QTT (500) +RAT(500)
REAND(Se1Y Y1leYIoTLsTHaNAM) s NAM2sNAM3 9 CON
FNOPMAT(4F10.6+3A5+F10.6)

READ(S+2) PHI,PBOG,PSOI+SReTTaNC

FARMAT(SF15.715)

READ(5+3) Q.I0P

FOPMAT({F1S.7s14)

C UT PARAMETERS DEFINED AS FOLLOWS (DIMENSIONS)-
C N= IMTFORPM INFILTRATION RATF+POSITIVE DOWNWARD (L/T)
C PHI= ULTIMATE DRAINABLE POROSITY (ND)
C CON= SATURATED HYDRAULIC CONDUCTIVITY (L/T)
C YI = INITIAL SATURATED THICKNESS (L)
C Y1 = DEPTH OF WATER IN DITCH AT T.GT.0 (L)
C TL = DRAIN SPACING (L)
C TH = ToTaL SOIL NEPTH (L}
C pPa05=BUBBL ING PRESSURE HEAD (L)
C pgDI=PORE SIZE DISTRIBUTION INDEX- COREYS LAMBDA (ND)
C TT = TOTAL SOLUTION TIME TO BE SIMULATED (T)
C NC = NUM3SER OF GRID COLUMNS IN MODEL (ND)
(o NAM= FIFTEEN CHARACTER DESCRIPTION OF SOIL USED
c 10P= CAPILLARY STMULATION DESIRED
C n= NO CAPILLARY EFFECTS
= 1= PERMEABILITY EFFECTS ONLY
C 2= PERMEABTLITY AND SATURATION EFFECTS
C SR = RESIDUAL SATURATION (ND)
C ARRAY NAMES DEFINED AS FOLLOWS-
C Y - WATER TABLE ELEVATION
C YP - WATER TABLE FLEVATION AT END OF PREVIOUS TIME STEP
C YE - EFFECTIVE PERMEABLE HEIGHT
C SH = cFFECTIVE SATURATED HEIGHT AS FUNCTION OF ELEVATION
C o4 = EFFECTIVE cERMEABLE HEIGHT AS FUNCTION OF ELEVATION
o SE =~ £FFECTIVE SATURATED HEIGHT
C SEP - EFFECTIVE SATURATED HEIGHT AT PREVIOUS TIME STEP
C RHS - VALUE OF RIGHT-HAND SIDE OF FINITE DIFFERENCE EQUATION
C CM = VALUE OF COEFFICIENTS OF PRESSURE
(o ¥YM - RELATIVE HEIGHT OF WATER TABLE AT MIDPOINT
C TsQ - FRACTION OF DRAINABLE VOLUME REMOVED
C TTL - TIME AT WHICH SOLUTION IS OBTAINED
C NTT - CUMULATIVE VOLUME DRAINED
C RAT = FLOW RATE
PRPH=PBOGH*PHI
FxP=0.25
XIN= 1.0/EXP +0.001
TMX=XTN
C CALCULATE TIME INCREMENT MULTIPLIER
TC=10.0#&%(EXP)=]1.0
NA=NC=-2
0 (CALCULATE EFFECTIVE PERMEABLE HEIGHT AND EFFECTIVE SATURATED HEIGHT)
CAll. SKEF (PBOG+PSDIsSR)
NC1=NC~-1
FNC=NA
X=TLZ (240%FNC)
K=TH=Y1
L=TH=YI
FK=K
FL=L
C CALCULATE INITIAL DRAINABLE VOLUME (DRAIN)

IF(L.LT.1) L=1
IF{K«LTa1) K=1
DI=TH=YI=FL
DF=TH=Y1=-FK



C

4

£

DRAINSTL#OHI# (YI+SH(LY+DI# (SH(L+1)=SH(L))=Y1=SH(Kk)=DF #{SH(K+1)~
ISHIK)I ) /240

T=0,0

NT=1a0

KT=0

THAL=0.0

IF{I0P.LT«2) LRAIN =TL*PHI®*(YI=-Y1l)/2.0
Sz

VOLP=0.0

YP(1)=Y1

YE(1) =0
CALCULATE MATRIX COFFFICIENTS (CMsRHS)
00 5 1=1.200

YELI)=Da

Y(T)y=0,

CA(Is1)=00

CM(I«2)=0.

CM{Is3)=0.

RHS(I)=0.,0

Y(lr=v1

WOTTE(Re 6 ) NAMI sNAM2 oNAMISsPROGePSUI«TL s THeYIsY1sCONsPHIsNASTT Q0
1DRATIN

FARMAT(1H1+30Xs#® DUPUIT-FORCHHEIMER APPROXIMATION TO TWO DIMENSION
1AL FLOW TOWARD DRATNS® /// 10Xs® SOIL IS ®,3A5s/ 10Xs® BUBBLE PRES
25, HEA]) = B4FS.le® CM® / 10Xs# PORE SIZE DIST. INDEX = #sF5.2s /
310%e® DRAIN SPACING = #,FS.0s% CM#® / 10Xs# SOIL NEPTH = #,F6.0,% C
M%7 10Xe® INITIAL WT THICKNESS = #5F5.09% CM® / 10Xs* DITCH LEVEL
G = #4F5,.0e% CM® / 10X,®* HYDRAULIC CONDUCTIVITY = #,E12.3+% CM/SEC*
6/ 1CXa# POROSITY = #4FS543 / 10Ke #* NOe COLUMNS = #,I5 / 10Xs® TOTA
7L SOLUTIAN TIME = #sE12.3,% SEC#* / 10Xs# INFILTRATION RATE = #.ElZ
hedet CM/SECY / 10Xe% DRAINABLE VOLUME = #,E12.39% ML¥®)

STFCl=5H NONE

STFCZ2=5H

TFII0P.EQ.1.0R.I0P,EQ.2) STEC1=5H PERM

[FIINP.FR.2) STECZ2= 54 =SAT

WRTTE(Ss 7 ) STECL.STECZ

7 FOPMAT(1H +10Xxs * PARAMETERS OF UNSAT. FLOW==%s 2AS ///)

15
it

17

14

19
20

*T=kT+1

IF(T.F.0.0) GO TO 23

IF(IORP.ER2) 144510

DO 13 I=1eNC

IFLINP.EQ.1) 12+11

YE([)=0a.

SE(l)=0.

SEP(I}Y=7.

COMTINUE

NO 19 J=1sNA

PHE(J) =D,

CMldeP)=0a
CM(J«]l={Y{Jl*YEIJ}*Y(J*II*YE{J*I)3/2.0
CMIJe )= (Y (Js1)+YE(J+1 ) +Y(Je2) +YE(JU*2)) /240
IF{JaEN.1eNReIeEQaNA) 15518

IFteFRNaNAY 16417

CM{Jes2)=0a

GO TO 18

CH(Jel)= Y(J*1D+Y ()

RHS (J)=RHS(J)- CM(Js1)*Y1

CHM{Je2)= CM{Jy2)=CM(Js])

CM({Js1)=0.0
CM(J92)=CM(J92)=CM{Js1)~CM(J93) = x##2#PHI/(CON®DT)
QHS(J)= RHS(J) +PHI#X##28 (SE(J+1)=-YP(J+1)=-SEP(J+1) )/ (CON#DT)-X2#2%Q
2/CON

CONT INUE

CALL GELIM(NASCMsRHS)

DO 21 J=2.NC]

SERPI{N =SE (L)

Y{J)=RHS(J=-1)

IF(Y{))GTTH) Y(J)=TH

COMT INUF

Y{NC)=Y (nC])

T= T+DT

YO=YE(P)



23 DO 25 [=2.NCl1
IF{T«GTaDs0) GO TO 24
FIvY= TH=YI
Iy=F1ly
IF(IY.GT.249) 1Y=249
IF(IY.LT.1Y I¥Y=1
¥Yel(l)= Y1
SEP(I)=SHI(IY)
VOLP=VOLP +X®(YP(I)+SEP(1))*PHI]
Y(I)=YP(T)
24 FI¥Y= TH=y(I)
IF{IORP.LT.1) GO TO 25
IY=FIY
Fy=1Y
CORR= TH=- Y(I)=FY
IFCIY.LTL1) IY=1
YE(I)= PH(IY)+ CORR®(PH{IY+1)=PH(IY))
IF(I0P.LT,.2) GO TO 25
SE(I)= SH(IY)+ CORR®(SH(IY+1)=SH(IY))
25 CONTINUE
Y (NC)Y=Y(NC1)
YP(NC)=YPI(NC1)
YE(NCY=YE (NC1}
IF(T.EN.0.0) GO TO 9
QT=CONSDT#(YP(2) +Y1)®(Y(2)=-Y1) /X
S= S+ QT
VOL=0.
DO 26 I=2sNC1
Ye(iy=y(nmn
26 VOL= VOL + PHI®(SE(I)+Y(I})®X
BAL= VOLP=VOL=-QT+Q#DT®#0.5#TL
THAL= TBAL+BAL
VOLP=vOL
2ynL= 8BAL/VOL
RATE= QT/0T
YM(KTY=(Y(NCL1)=Y1)(YI=Y]])
TSO(KTY= SQH/DRAIN
TTL(KT)= T
ATT(KTY= SQ
RAT (KT)=RATE
DT = T#TC
KTMI=((KT=1)/INX) #INX =KT+1
IF(KTML.EQ.0) 2732
P7 WRITE(A+28) BAL,TBALsRVOL
28 FNOOMAT(1H-, = BALANCE ERROR THIS TIME STEP = # E}S5.3 / # CUMULATI
IVE ERROR = # E15.3 / # BALANCE ERROR RELATIVE TO VOL STORAGE = #
2E15.3 //)
WRITE(6+29) T
29 FORMAT(IH=+20X+#WATER TABLE ELEVATIONS AT TIME® Fl5.2//)
DO 30 I=1+NCs10
I1I=1+9
30 WRITE(6+31) (Y(J)eJ=1sI1)
31 FNRMATI(IH +10F10.3»
37 CONTINUE
IF(T.LE.TT) GO TO 8

WRITE(5+33)
33 FORMAT(1HL+SXe®*TIME®sBX#Y/Y0 ~ VOL DRAIN REL VOL FLOW RATE =
1 7/ SXe® (SEC)®919Xs% ML DRAINED ML/SEC = /)

WRITE(A«34) ((TTL(IYsYMII)+QTT(I)sTSQUI)+RAT(II}eI=1+KT)
34 FORMAT(LIH +2Xs S(E11.2))
END

SUBROUTINE GELIMI(NASCsR)
C SUBROUTINE FOR SOLVING A TRIDIAGONAL MATRIX BY GAUSSIAN ELIMINATION. C IS THE
C COEFFICIENT MATRIX HAVING NA UNKNOWNS. R IS THE SOLUTION MATRIX. NO ROW
c INTERCHANGE IS PROVIDED.

DIMENSION C(200+3),R(200)

Cils1)=C(1ls2)

C(NAs3)=D.

Ctls3)1= c(1+431/C(1,2)

R(1)= R(11/C(1+2)




DO 2 I= 2sNA
IF(C(1s1).ER.0.0) GO TO 1
C(Is2)= Cc(Ie2)/C(I41)
CtI+3= cl(I+3/CLI.1)
R(II=R(IN/C(Is 1)
Cll1+2)= (1=143)=-C(Is2)
C{I+31= =C(I+3)/CiTs2)
2 RID=(RII=1)=R(I)) /ClI,2)
DO 3 J= 2sNA
K= NA=J+1
3 R(KI=SRIKI=C(Ky3)#R(K+1)
RETURN
END

bt

SUSROUT INE SKEF(PBOG.PSDIWSR)
COMMON Y (200)«YP(200)sYE(200) +SH(250) +PH(250) +SE(200) »SEP(200)»
IRHS (200) +CM(200+3) 2 YM(S00) o TSOIS00) s TTL(S00)+GTT(500) +RAT(500)
DIMENSION SAT(250) ,PERM(250)
C SURROUTINE TO CALCULATF EFFECTIVE SATURATED HEIGHT AND EFFECTIVE PERMEABLE
C HEIGHT WHEN INFILTRATION RATE IS ZERO.
WRITE(Ah+6)
Do 1 I1=1,250
saT(iy r=1,0
1 PERMII)=1.0
1PR=PBOG
FP=IPR
IF(PBNG=-FP.GT.0.5) IPB=IPB+]
IP=1PB+]
Do 2 J=1P+250
FJ=J
PERM{JY= (PBOG/FJ)a#(2.0+3.0%PSDI)
2 SAT(J)= SR+(1.0=-SR)#(PEBOG/FJ)#=pSDI
DO 3 x= 19250
FK=K
SHIK)=FK
3 PHI(K)=FK
DO 4 L=1P+250
SH(L)= SHIL=1)+0.5#(SAT(L-1)+sSATI{L))
4 PHIL)= PH{L=1)+0.5¢(PERMI(L=1)}+PERMI(L))
WETTE(H6e5) ((IsPERMIIN+SAT(I) 4+PH(I)sSH(I))sI=1+250)
S FORMAT(LIH #13XeI1395X92E10.394Xs2E10.3)
6 FNRPMAT(1H110X+#CAP PRESS REL PERM EFF SAT EFF PERM HGT EF
1F SAT HGT #//)
RETURM
END




PROGRAM FFFECT(INPUTsQUTPUT»TAPES=INPUT,,TAPE6=QUTPUT)
COMMON FINT(1000)»FENT(1000)+FLNT(1000)
C PROGRAM EVALUATES EFFECTIVE PERMEABLE AND SATURATED HEIGHTS AS A FUNCTION OF
C ELEVATIOMs THEN CALCULATES SURFACE PRESSURE AND LEPTH OF AERATED ZONE FOR
C GIVEN WATER TABLE DEPTH.
1 READ(S+2) QDOTSPETALSLMD
2 FORMAT(3FL10.4)
WRITE(6+500) PETA
500 FORPMAT(1Hls # ETA = #4F10.1)
NNEG= 0.00001
EPS=1.001
IF(QD0T.FR.0.0) GO TO 112
CALL IMTEGR(QDOT+SLMDsPETAYEPS»QNEG)
112 75=1.0/(1.0-GD0OT)
117 READ(S5111) H.SA
111 FORMATI(2F10.4)
IF(HsEQ.0.0) GO TO 1
IF(HaLFE<Z5) 394
3 HES=H
HEK=H
HS=0e
PSUR=H/ZS
IF(QDOT.FN.0+0) PSyR=H
GO TO 100
4 IF(QDOT) Ss6s7
& HEK= (PETA-H®#(]1,0-PETA))/(PETA-1.0)
HES= (SLMD-H=2&(]1,0=-SLMD))/(SLMD-1,0)
HS= H=SA##(=1.0/S5LMD)
IF(HS,LT,0.0) HS=0,0
PSlIR= H
GO TO 100
7 EQ= (EPS=QDOT)##(-1.0/PETA)
1EQ= 100,%EQ
ZDP= 2SS + FINT(IED)
IF(ZDP,GT.H) 9410
3 00 11 JU=100.1EQ
IF(FINT(J).GT.(H=25)) 12411
12 Fu=J
PSUR=FJ/100.
HEK= ZS+FENT(J)
HFS= 7S+FLNT (J)
GO TO 13
11 CONTINUE
GO TO 13
10 HEK= 7S + EPS#QDOT#{H=ZDP) ¢ FENT(IEQ)
HES= 7S+ ({ (EPS#QDOT)## (SLMO/PETA) ) #(H-ZDP)+ FLNT(IEQ)
PSUR= EQ
13 SAL= SA##(-1.0/S5LMD)
ISAL=SAL+#100.
SLA= SA#s (PETA/SLMD)
IF(EPS*QNO0T.GE«SLA) 15916
15 HS=0.
GO TO 100
16 HS= H=ZS-FINT(ISAL)
GO TO 100
5 ZDP= H=Z5
PLIM=ONEG#*#(-1.0/PFETA)
IF(PLIM.GT.10.0) PLIM=10.0
LIMP= PLTM#100.
IF(ZDP.GTLFINT(LIMP)) GO TO 101
DO 17 I=100sLIMP
IF(FINT(T).GT.ZDP) 18417
18 HEK= Z2S + FENT(I)
HES= 2S5 + FLNT(I}
Fil=1
PSIR= FJ,s100.0
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OO0 0O0000

SAL= SA®#(-1,0/5LMn)
ISAL=SAL=100.
HS= H=7S-FINT(ISAL)
GO 70 109
17 CONTINUE
100 WRITE(A+20) QDOTsHHEK sHES+PSURsHS

20 FORMAT(IH=s% 0. .= #9F10.4/ ® H.e = #4F10.4/ # HE(K)= #3F 1044/ #

IHE(S) = #4F10.4/ # SCALED CAP PRESS. AT SURFACE = #9F 104y =

2Ew %9F10e4e ®(SCALED) IS BELOW CRITICAL SATURATINN# ’77)
GO 7O 11y
101 WRITE(A+21) QDOTsH

upPP

21 FNORMAT(1--4% Ne= #,F10.4/ * H, = %,Fl0.4/ # THIS FLUX RATE CANNOT

1 BF ATTAINED AT THIS DEPTH® ///)
GO TO 110
END

SURROUTINMNE INTEGR(NDOT+SLMDsPETASEPS»QNEG)
COMMON FINT(1000)sFENT(1009)sFLNT(1000)

SUBROUTIMNE DESIGNED To SOLVE.BY SIMPSONS RULE. THE INTEGRALS NECESSARY FOR

EVALUATION OF THE VARIOUS EFFECTIVE HEIGHTS.

Q00T = SCALED FLUX RATE » POSITIVE DOWNWARD

SLMO = NEG EXPONENT OF S-PC RELATION

PETA = nEG EXPONENT OF K-PC RELATION

FINT = AREA UNDER DP./(1=Q.P.##*PETA)s INCREMENTS OF P.=.01

FENT = AREA UNDER DP./(P.®%PETA(1-Q.P.##PETA))

FLNT = AREA UNDER DP./(P.##S MD(1-Q.P.##PETA))

EPS = ARBITRARY COEFFICIENT TO DETERMINE HOW CLOSE @ APPROACHES CE

GEFORE ASSiUME Q=CE (IN PEROCLATION)

NNEG = QDOT wHICH IS ASSUMED NEGLIGIBLE (IEsCUTNFF FOR UPWARD FLOW

TNTEGRATION)

IFLAG=0
00 1 T=1+1000
FINT(I)=0.
FENT(IY=0.

1 FLMT(TY=qn,.
IF(00TY 34342

2 PLIM=(EPS#D0OT)a#* (-] ,0/PETA)
GO TO 5

3 PLIM= QNEG##({-]1,0/FETA)
[FAFLIM.GTL104)495

a B IM=10,
IF1_AG=]

& CONTINUE
DEM=1.0/(1.0=-0D0T)
LIMP=1000.%PLJIM

S9= DEN

PO =DFN

Fo= DEN

SSl= 0.

SF1= 3.

SK1= e

DN 7 1=1002+LIMPs2
FI=1

ennT= F1s1000.
PDE = PDOT##PETA
POEI=(PDNT=.001)%*%cETA
F2= 1.0/(1.0=-000T#*eDE)
Fl1= 1.0/(1.0=-000T#pDEL)
P2= F2/PnE
Pl= F1/PDEL
S22 =F2/(pnNnTeaS| MD)
S1 =F1/((PDOT-.001)#e5_MD)
SFI= N.001#(FO+4,0%F1+F2)/3,0 + SF1
S51= 0.051%(50+4.0251+52)/3.0 ¢+ SS]
SK1=0.,001%#(P0+4,0%R1+P2) /3.0 + SK1
Fi=F2
Sp=s2
Pr =P?
J=1/10
IF(U®10.ENLT) 647
~ FINTON) = 5F1



7

=

9
14

11

le

13

la

15

1&

17
18

FENT(J)= SK1

FLUT{))= 551

CONTINUVE

WRITE(6+8)

FORMAT (1H=+20Xs% INTEGRAL OF DPe/(1=QeP.®#.2H#®,2ETA) FOR VALUES 0
IF Pe#//)

WRITE(6+12)

LIMP= IMP/10

DO 9 J=100+LIMPs10

Fl=y

FI=FI/100.0

JJ=J+9

WRITE(6+10) FI»(FINTIK)sK=JeJJ)

FORMAT(LIH »F5.1+10F12.4)

WRITE(R«11)

FORMAT (1H=+20Xs% INTEGRAL OF DP o/ (Po#a2H®# 4 BETA(]1=QoP ,2s2H#54#ETA)
1 FOR VALUES OF Pa.®//)

WRITE(6s12) .

FAPMAT(1H o11Xo® 00%eOXs® 018X % 02 99X o8 03%3QXo#,(04%99X 2,058,
19Xe#.06%49X s % 0T#99X92 ., 08%59Ks#,09%)

DO 13 J=100+LIMPsl0

Fl=J

FI=FI/100.0

JJ= J+9

WRITE(6+10) FI«(FENTIK) oK=JsdJ)

WRITE(6e14)

FORMAT (1H=920Xs2 INTEGRAL OF DPo/(Pe®s2H88 2 AMBDA (1=QePo® 9 2H% 4y SE
1TAY FOR VALUES OF P.® //)

WRITE(6+12)

DO 15 J=100+LIMPs10

FI=J

FI= FI/1n0.0

JJ=J+93

WRITE(6e10) FIeo(FLNTIK)sK=JeJJ)

IF(IFLAG.ER.O) GO TO 17

WRITE(he16)

FORMAT (1+ +2ABOVE TABLES INCOMPLETE- MAX ELEVATION AT WHICH Q. CAN
1 EXIST NOT REACHED= /)

WRITE(6+18) QDOTsSLMDWPETA

FORMAT(1H +# FOR AROVE THREE TABLES.®* / ® Q. =%#4F10.4% / ® ETA
1 =#,F1044 / % LAMBDA=#,F10.4///)

RETURN

END
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APPENDIX B

PHYSICAL PROPERTIES OF SOILS AND FLUID

Soil Properties

Table B-1. Properties of soils used in experimental
models. Table B-2. Properties of hydrocarbon fluids.
Parameter Units Poudre Sand Hygiene Sand Temp.
> i ® Core Test Fluid Soltrol 130
I i 35.6 r - 5 0
X H 12.7 Viscosity, Density, Viscosity, Density,
P /og? cm 19.0 5.7 B 0 i o
A s 1.6 1.6 centipoise gm/ml cp gm/ml
¢ none 0.348 0.288 20.0 1.589 0.7582 1.417 0.7536
g2:0 1.524 .7569 1.374 L7523
1o: LT ) 24.0 1.468 .7556 1.330 7511
with Phillips core test fluid. 26.0 1.414 "7542 1.286 7198
28.0 1.362 .7529 1.243 L7486
30.0 1.315 .7515 1.200 L7474
Fluid Properties 2,3Both are products of Special Products Division,
Phillips Petroleum Company, Bartlesville, Oklahoma.

Two hydrocarbon liquids were used in the experi-
ments. The first, Phillips core test fluid? was used
in all transient experiments. This fluid is no longer
available, and has been replaced by Soltrol 130- ,
a similar branch chain paraffin. The pertinent pro-
perties of both are presented in Table B-2.
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the reader and do not imply endorsement by USDA, Agri-
cultural Research Service or by Colorado State Uni-
versity.



APPENDIX C

COMPUTED SATURATION PROFILES
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Figure C-1.

Saturation profile

as a function of n
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for a range of vertical flux.



Figure D-1.

Figure

o i
D-2.

APPENDIX D

SCALED EFFECTIVE PERMEABLE AND SATURATED HEIGHTS
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Scaled effective permeable height

of vertical flux,
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q.=0
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Scaled effective saturated height as a function of scaled water table depth for a range

of vertical flux.



Figure E-1.

Figure E-2.

Figure E-3.
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APPENDIX E

COMPARISON OF EXPERIMENTAL AND NUMERICAL RESULTS

1
Poudre Sand : [ ' ;
Yq/0=0 =
| q.=-.0186 4
Numerical Solutio
i uti I'I\\ .
Experimental Data
| | 1 | | 1
0] 100 200 300 400 500 600
Distance from Drain-cm
experimental data and numerical results for steady flow, Yq/D =0,
] LN 1 ] T 1
Poudre Sand ,.
Y4/ D=1/3
| q.=-.0186 Numerical Solution .
Experimental Data
L L 1 1 | 1
0 100 200 300 400 500 600
Distance from Oragin-cm
experimental data and numerical results for steady flow, Y4/D = 1/3,

1 1 1 T
Poudre Sand | _
Y4/D=0 Numerical Solution -1
- q.= .03l E
Experimental Data i
1 1 J: 1 1
o} 100 200 300 400 500 600
Distance from Drain-cm
Comparison of experimental data and numerical results for steady flow, Yq/D =0,

Poudre sand.
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Figure E-4, Comparison of experimental data and numerical results for transient flow,
Poudre sand.
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Figure E-5. Comparison of experimental data and numerical results for transient flow, Yi/D

Poudre sand.
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Figure E-6. Comparison of experimental data and numerical results for transient flow, Y;/D =1,

Poudre sand.
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1.0 N e R B T T T T T 7T
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Figure E-7. Comparison of experimental data and numerical results for transient flow, Y;/D = 1/3, Yy4/D =0,
L = 366 cm, Hygiene Sand.
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Figure E-8. Comparison of experimental data and numerical results for transient flow, Y;/D = 2/3, Yy4/D =0,
Hygiene sand.

1.0 . ] TTTT =TT TTTTTI T T T T 1777
Hygiene Sand
8 Experimental Y;/D=2/3 .
B L=366cm B
o
Z: Numerical
&
4 F
]
0 [ S REN R O O 1 ]
102 103 104 103

Time -seconds
Figure E-9. Comparison of experimental data and numerical results for transient flow, Y;/D = 2/3, Yg/D = 1/3,
Hygiene sand.
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APPENDIX F

RESULTS OF NUMERICAL ANALYSES

Table F-1
Equilibrium Water Table Profile,
Y/D =0, q. = -.001.
Distance Water Table Height
from
. No Cap. n==6 n==e6 n=4 n=6 no=10 n=6
Drain Flow Pb/pg =5 Pb/pg = 10 Pb/pg = 20 Pb/Dg = 20 Pb/:g = 20 Pb/Dg = 40
2.8 1.6 1.6 1.6 1.6 1.6 1.6 1.6
47.5 6i7 4.0 . | 2.3 2.4 2.5 2.0
97.5 9.4 5.9 4.4 3.1 3.2 3.3 2.4
147.5 11.2 7.4 555 J. 3.9 4.0 2.8
197.5 12.6 8.6 6.4 4.2 4.5 4.6 £ pt
247.5 13.7 9.5 72 4.7 4.9 5.2 3.4
297.5 14.5 10.2 7.7 5.0 5.3 5.6 3,6
347.5 15.1 10.7 8.2 5.3 5.6 5.9 3.8
397.5 15.5 11l 8.5 5:5 5.9 6.1 3.9
447.5 15.7 11,55 8.7 5.6 6.0 6.2 4.0
497.5 15.8 11.4 8.8 5.7 6.0 6.3 4.0
Ya 15.8 LS 20.5 33.7 29.4 27:7 50.8
Le 1000 1094 1257 2131 1859 1752 3213
Table F-2
Equilibrium Water Table Profile,
Y,/D = 1/3, g. = -.001.
Distance Water Table Height
R No Cap. n==e6 n==56 n=4 n=6 n =10 n==6
Drain Flow Pb/og =5 Pb/pg = 10 Pb/pg = 20 Pb/pg = 20 Pb/pg = 20 Pb/Dg = 40
2.5 33.4 33.4 33.4 33.4 33.4 33.4 33.4
47.5 34.0 33.9 33.8 33.7 33.7 33.8 33/6
97.5 34.6 34.4 34.3 4.1 34.1 34.1 33.9
147.5 35.2 34.9 34.7 4.4 34.4 34.5 34.1
197.5 35.6 35.3 35.0 34.7 34.7 34.8 34.3
247.5 36.0 35.6 35.3 34.9 34.9 35.0 34.5
297.5 36.3 35.9 35.6 355l 35.1 35.2 34.6
347.5 36.6 36.1 35.8 35.2 35.3 35.3 34.7
397.5 36.8 36.3 35.9 35.3 35.4 35.4 24.9
447.5 36.9 36.4 36.0 35.4 35.5 35h 34.9
497.5 36.9 36.4 36.0 35.4 35.5 35.5 34.9
Ya 36.9 42.3 47.7 63.4 58.9 56.9 81.7
L 1000 1647 2158 3411 3071 2916 4718
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Table F-3

Equilibrium Water Table Profile,

Y,/ = 2/3, q. = -.001.
BEREnaE Water Table Height
fram No Cap. n=6 n=6 n=4 n=6 n=10 i
Drain Flow Pb/pg =5 Pb/pg =10 Pb/cg = 20 P,/rg = 20 Pb/cg = 20 P /op = 40
2.5 66.7 66.7 66.7 66.7 66.7 66.7 66.7
47.5 67.0 67.0 67.0 66.9 66.9 66.9 66.9
97.5 67.53 67.3 67.2 67.2 67.2 67.2 67.1
147.5 67.6 67.5 67.5 67.4 67.4 67.4 67.3
197.5 67.8 67.7 67.7 67.5 67.5 67.6 67.5
247.5 68.0 67.9 7.8 67.7 67.7 67.7 67.6
2587.5 68.2 68.1 68.0 67.8 67.8 67.8 07.7
347.5 68.5 68.2 68.1 67.9 67:8 67.9 67.8
397.5 68.4 68.3 68.2 68.0 68.0 68.0 67.9
447.5 68.5 68.4 68.2 68.0 68.0 68.1 67.9
497.5 68.5 68.4 68.2 68.0 68.0 68.1 67.9
Ya 68.5 74.5 79.9 96.0 91.4 89.5 100*
L, 1000 2075 2785 4369 3954 3777 -
* Indicates no aerated zone at centerline
Table F-4
Equilibrium Water Table Profile,
Y/D=0, q.= -.005.
Distarice Water Table Height
from No Cap. n=6 n=6 n=4¢ n=6 n = 10 n o=
Drain Flow P /eg =5 p/eg = 10 P,/pg = 20 P /eg = 20 P /eg = 20 P, /rg = 40
2.5 3.5 3.5 3.5 3D 3.5 5.5 345
47.5 15.0 11.4 9.3 6.9 7.2 7.4 5.6
97.5 21.0 16.7 15.8 9.8 10.4 10.8 7.5
147.5 25.1 20.5 17.3 12.4 133 135 92
197.5 28.1 23.4 19.9 14.5 15,2 15.8 10.6
247.5 30.5 25.7 220 16.1 16.9 1r:n 11.8
297.5 32.3 27.4 2357 17.4 18.5 18.9 12.8
347.5 33.7 28.7 24.9 15.4 19.3 20.0 155
397.5 34.6 29.6 2557 19.1 20.1 20.8 14.0
447.5 352 30.2 2652 15.6 20.5 21.2 14.3
497.5 25.4 30.4 26.4 19.7 20.7 1.4 14.4
Ya 35.4 36.4 38.3 47.9 44 .5 43.0 62.0
Le 1000 1030 1083 1355 1259 1216 1754
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Table F-5
FEquilibrium Water Table Profile
YD = 1/3, q. = -.005.

]

Distance Water Table [Meight
hran No Cap. n = n==5 n =4 n =6 7= 10 n =6
Drain Flow Pb/ﬁﬁ = Ph/og =10 Ph/ng = 20 Pb/pg = 20 P /rg = 20 benn = 10
2.5 33.5 33.5 33.5 33.5 33.5 3.5 33.5
47.5 36.6 36.1 35.8 555 35.3 55.4 34.8
97.5 39.4 38.6 38.0 37.0 ST 3T e 36,1
147.5 41.7 40.7 39.8 38.4 38.6 35.8 372
197.5 43.6 42.4 41.4 39.7 39.9 0.1 538.2
247.5 45.2 43.8 42.7 40.7 41.0 41.2 39.0
297.5 46.4 44.9 43.7 41.6 41.9 42.1 LA
347.5 47.4 45.8 44.5 2.2 42.6 42.8 0.2
397.5 48.0 46.4 45.0 42.7 43.0 43.3 0.0
447.5 48.4 46.8 45.4 3.0 13.3 43.6 40.8
497.5 18.6 46.95 45.5 45.1 43.4 43.7 40.9
Y3 48.6 52.9 57.4 71.3 68.2 65.3 88.5
Lo 1000 1162 1322 1783 1683 1588 s L,
Table F-6
Equilibrium Water Table Profile,
Yd/D = 2/3, q. = -.005.
Distance Water Table Height
S No Cap. n = n=6 n =4 n=6 7= 10 N6
Drain Flow Pb/og = Pb/og = 10 Pb/og = 20 Pb/pg = 20 Pb/pg =20 Pb/pg = 10
2D 66.8 66.8 66.8 66.8 66.8 66.8 66.8
47.5 68.3 68.2 68.1 67.9 67.9 68.0 67.8
97.5 69.9 69.6 69.4 69.1 69.1 69.1 68.9
147.5 71.2 70.9 70.6 70.1 70.1 122 69.8
197.5 72.4 71.9 71.6 70.9 71.0 71.0 70.7
247.5 3.3 72.8 72.4 71.6 717 71.8 71.4
297.5 74.1 73.5 73:.1 T2.2 72.3 72.4 71.9
347.5 74.7 74.1 73.6 72.7 72.8 $2:9 72.4
397.5 5.1 74.5 74.0 73.0 73.1 73.2 72.7
447.5 75.4 74.7 74.2 73.2 5% 73.4 72.9
497.5 75.5 74.8 74.3 73.3 73.4 735 72.9
Ya 75.5 80.8 86.2 100* 97.2 952 100*
Le 1000 1291 1545 -= 2000 1918 --
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Table F-7
Fquilibrium Water Table Profile,
\d/D =0, q. = -.01.

Water Table Height

Nistance
f1om No Cap. n o= ro= 6 n =4 n=6 n = 10 n =6
Drain Flow P,/rg = P /og = 10 P /og = 20 P /og = 20 P,/0g = 20 P /pg = 40
2.5 5.0 5.0 5:0 5.0 5.0 5.0 5.0
17.5 213 17.4 1.8 112 11.6 12.0 8.9
97.5 20.7 25.2 21.8 16.5 17.2 17.7 12.5
147.5 35.4 30.7 27.0 20.6 3 B 27,2 15.6
1875 59. 8 4.9 51.0 24.0 25.0 L 18.1
247.5 13.2 55.2 3.1 267 277 28.5 20,2
297.5 45.7 40.7 36.5 28.8 20.9 30.7 21.8
347.5 17.6 435 38.3 0 Jie] 315 32.4 23.1
397.5 48.9 43.8 39.5 51.4 32.7 535 24.0
197505 19,7 44.6 40.3 32.1 3305 34.2 24.5
187.5 50,0 44.9 10.5 323 33.6 34.5 24.7
\.'1 50.0 50.9 52N 60.7 575 56.6 72.5
I,L‘ 1ann 1018 1050 1214 1150 1132 1450
Table F-8
Eguilibrium Water Table Profile,
‘l'd,"[l = 1/3, q. = -.0L.
R G kater Table Height
from No Cap. n=6 I o= 4 no= 6 no= 10 n=6
Drain Flow h/c,: = l‘b/.‘g = 10 Pb/r;g = 20 Ph/.r-.g =21 Pb/pg = 20 Pb/(;g = 40
2.5 35.7 3537 33.7 33.7 337 33.7 35.7
47.5 39.5 38.7 38.2 o 37.3 37.4 56.3
Do 1.6 45.3 12,2 40,4 40.7 40.9 38.8
147.5 18.7 17.0 15.0 43,2 43.5 13.8 41.0
107.5 51.9 50.0 8.4 45.5 45.9 16.2 42.8
247.5 51.5 52:4 50.6 47 47.9 48.2 44.4
287.5 56.6 54.3 52.4 48.9 49.4 49.8 45.6
347.5 58.1 55.8 53.8 50.1 30.06 51.0 16.6
397.5 59:2 56.8 54.8 50.9 51.5 £1.9 47.3
447.5 59.9 57.4 55.3 51.4 52.0 32.4 47.7
447.5 60.1 57.6 55.5 51.6 §52.2 52.6 47.8
Ya 60.1 63.6 oy 0.0 76.1 i e 95.6
['c'. 1000 1083 1178 1454 1368 1337 1792




Table F-9
Equilibrium Water Table Profile,
Yd/D = 2/3, q. = -.01.

Water Table Height

Distance
tiux No Cap. n=26 n==6 n =4 n=6 n =10 n==a6
Drain Flow Pb/cg =5 Pb/pg = 10 Pb/og = 20 Pb/pg = 20 Pb/pg = 20 Pb/og = 40
2.5 66.9 66.9 66.9 66.9 66.9 66.9 66.9
47.5 70.0 69.7 69.5 69.2 69.2 69.2 68.9
97.5 73.0 72.5 72.1 71.4 71.4 7125 71.1
147.5 75.5 74.9 74.3 73.4 73.4 73.5 73.0
197.5 77.7 76.9 76.2 75.0 75:1 75.2 74 .7
247.5 79.4 78.5 77.8 76.4 76.5 76.6 76.0
207.5 80.8 79.9 79.0 77.6 77.7 77.8 T2
347.5 81.9 80.9 §0.0 78.5 78.6 78.7 78.1
397.5 82.7 81.6 80.7 7951 79.2 79.3 78.7
447.5 83.2 g82.1 81.1 79.5 79.6 79.7 79.1
487.5 83.3 82.2 81.2 79.6 79.7 79.9 79.2
‘('a 83.3 88.2 93.2 100* 100* 100* 100*
Le 1000 1155 1303 == e 5 =
Table F-10
Equilibrium Water Table Profile,
Yde =0, q. = -.02.
Distanes Water Table Height
from No Cap. n=6 n=6 n=4 n=6 n =10 n==6
Drain Flow Pb/pg = 5 Pb/pg = 10 Pb/pg = 20 Pb/pg = 20 Pb/Dg = 20 Pb/pg =
2,5 7.1 T Tl 71 Tl Tl 7.1
17.5 30.1 26.0 22.9 18.0 18.7 19.1 14.4
97.5 42.0 3.3 33:.5 26.7 27.7 28.4 20.9
147.5 50.2 45.3 41.2 33.4 34.6 35.4 26.2
197.5 56.3 513 47.0 38.6 39.9 40.8 30.5
247.5 61.0 55.9 51.5 42.8 44.1 45.1 34.0
297.5 64.6 59.5 55.0 46.0 47.4 48.4 36.7
347.5 67.3 62.2 57.6 48.4 49.8 50.8 38.8
397.5 69.2 64.0 59.4 50.1 51.5 52.6 40.3
447.5 70.3 65.1 60.5 51...1 52.5 53.6 41.2
497.5 70.7 65.5 60.9 51:5 52.9 54.0 41.5
Ya 70.7 TL.5 73.1 80.1 Tl 76.0 89.9
I,e 1000 1011 1034 1133 1090 1075 1271
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Table F-11

Equilibrium Water Table Profile,
Yy/D = 1/5,

q.- =

Water Table Height

Distance
from No Cap. n = n==6 n=4 n=6 n =10 n=06
Drain Flow Pb/pg =5 Ph/og =10 Pb/pg = 20 Pb/ng = 20 Pb/pg = 20 Pb/cg = 40
2.5 34,1 34.1 34.1 34.1 54.1 34.1 34.1
47.5 44.9 43.6 42.6 40.8 41.0 41.2 39.2
97.5 53.6 51.6 49.9 46.9 47.3 47.6 44.0
147.5 60.2 57.8 55.7 51.8 52.4 52.8 48.1
1975 65.4 62.7 60.4 55.9 56.6 57.1 515
247.5 69.5 66.6 64.1 59.2 60.0 60.5 54.4
297.5 72.7 69.7 67.1 61.9 62.6 63.2 56.7
347.5 75.1 72.0 69.3 63.9 64.7 65.2 58.5
397.5 76.8 73.6 70.8 65.3 66.1 66.7 59.7
447.5 77.8 74.6 71.8 66.2 66.9 67.6 60.5
497.5 78.2 74.9 ik 66.5 Rife:i2 67.9 60.8
Ya 78.2 81.0 84.2 95.1 91.4 89.9 100*
Le 1000 1044 1093 1260 1204 1181 =
Table F-12
Equilibrium Water Table Profile,
Yy/D = 2/3,  q.=-.02.
BisTaics Water Table Height
e No Cap. n o= n=6 n =4 n=6 n =10 n=6
Drain Flow Pb/cg =5 Pb/pg = 10 Py/pg = 20 Pb/pg = 20 P /pg = 20 bepg = 40
2.5 67.0 67.0 67.0 67.0 67.0 67.0 67.0
47.5 T3:1 727 72,5 71.6 7.6 7 TE:3
97.5 78.8 77.9 TF.2 76.0 76.1 76.2 75.6
147.5 83.4 82.3 81.3 79.8 79.9 80.0 79.4
197.5 87.3 85.9 84.8 83.0 85.1 83.2 82.6
247.5 90.4 88.9 87.6 85.8 85.9 86.0 85.4
29755 92.9 91.3 89.9 88.1 88.2 88.3 87.7
347.5 94.8 93.1 91.7 89.9 50.0 90.0 89.5
397.5 96.1 94 .4 93.0 91.1 91.2 91:3 90.7
447.5 96.9 95.1 93.7 91.9 92.0 92.1 91.5
497.5 97.2 95.4 94.0 92.2 92.3 92.4 91.8
Ya G2 100% 100* 100+ 100% 100* 100*
L 1000 62 i -- -- -- -
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Table F-13

Equilibrium Water Table Profile,
Yd/D =0, gq.=-.01, L =2500.

Water Table Height

Distance
from No Cap. n = n==e6 n=4 n==6 n =10 n==6
Drain F}ow Pb/pg =5 Pb/pg =10 Pb/pg = 20 Pb/pg = 20 Pb/pg = 20 Pb/og = 40
1z25 25 2.5 Z.5 25 2.5 255 2u5
23.75 10.6 T3 5.8 4.3 4.4 4.6 3.6
48.75 14.8 10.9 8.6 6.0 6.3 6.5 1.6
73.75 17.7 13.5 10.8 7.4 7.8 8.1 5.5
98.75 19.9 15.4 12.5 8.6 9.0 5.4 6.2
123.75 21.6 17.0 13:9 9.5 10.1 10.5 6.9
148.75 22.9 18.2 14.9 10.3 10.9 1123 7.4
173.75 23.8 19.1 157 ©10.9 11.5 12.0 7.8
198.75 24.5 19.7 16.3 11.3 12.0 1255 8.1
223.75 24.9 20.1 16.6 11.6 12.2 127 8.2
248.75 25.0 20.2 16.8 11.7 123 12.8 8.3
Ya 25.0 26.2 28.9 40.3 36.5 34.8 56.7
Le 500 524 578 806 730 696 1134
Table F-14
Equilibrium Water Table Profile,
Yd/D =0, gq.=-.01, L =1500
o - Water Table Height
from No Cap. n= n==6 n=4 n==s n =10 n==6
Drain Flow Pbng =5 P /pg = 10 Pb/pg = 20 P /pg = 20 P /og = 20 P /eg = 40
375 7.5 7.5 b 75 7.5 7.5 7.5
71.25 51.9 27.8 24.6 19.5 20.2 20.7 15.6
146.25 44.5 39.8 36.0 29.0 30.0 30.7 22.8
221.25 53.2 48.3 44.1 36.1 37.4 38.2 28.6
296.25 59.7 54.7 50.3 41.8 43.1 44.0 33.3
371.25 64.7 . 59.6 55.2 46.2 47.6 48.6 37.0
446,25 68.6 63.4 58.9 49.7 5L.1 5.1 40.0
521.25 71.4 66.2 61.6 5252 53.7 54.8 42.3
586.25 73.4 68.2 63.5 54.0 55.5 56.6 43.9
671.25 74.6 69.3 64.7 55.1 56.6 57.7 44.9
746.25 75.0 69.8 65.1 55.5 57.0 58.1 45,2
Ya 75.0 75.8 e g84.1 81.2 80.1 93.6
L 1500 1516 1546 1682 1624 1602 1872
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Table F-15

Decline of Water Table at Centerline,

Y,/D = 1/3,

Yd/D = 0.

Water Table Height

No Cap. n==6 n==6 n=4 n==a6 n =10 n=6
Time Flow Pb/pg =5 bepg =10 Pb/pg = 20 Pb/pg =20 Pb/pg = 20 Pb/ng = 40
1x 10 1.00 1.00 .99 .98 .99 1.00 .97
1.8 1.00 1.00 .99 .97 .99 .99 .96
5.2 1.00 .99 .99 .96 .98 .99 .94
5.6 99 .98 .98 .92 .95 .96 .86
;%000 .98 .95 .92 81 .87 .89 71
1.8 .92 .86 .82 64 .72 .76 .50
5.2 .82 .73 .66 .43 53 .58 .29
5. .69 .56 .47 .23 .33 .38 .12
1 x 10° 53 .38 .29 .08 16 .21 .03
1.8 .38 29 .15 .01 .06 .09 .00
5.2 25 11 .06 .00 .01 .03
5.6 .16 .05 .02 .00 .01
1 x 107 09 .01 .00 .00
t g X 107 35.0 47.0 62.5 - 157 136 -
B 1000 1140 1340 ® 2090 1940 -
Table F-16
Decline of Water Table at Centerline,
Y./D =2/3,  ¥y/D = 0.
Water Table Height
No Cap. n==6 n==6 n =4 n =6 n = 10 n==6
Time Flow P /eg =5 P /eg = 10 P,/pg = 20 Py/pg = 20 P, /eg = 20 Py/eg = 40
i x 10 1.00 1.00 1.00 .98 .99 1.00 .91
1.8 1.00 1.00 .99 .98 .99 .99 .89
3.2 .99 .99 .98 .94 .96 .97 .82
5.6 .97 .95 .93 .83 .88 .91 &1
1x 10° .90 .86 .83 .67 .74 .79 .47
1.8 .80 .73 .68 .46 .56 .62 .28
3, .66 .56 .50 21 5 .44 .14
5.6 .50 .39 .33 12 .21 27 .04
1 x 10° 35 .24 .18 .03 .01 .14 .00
1.8 23 .13 .09 .00 .03 .06
3.2 .14 .06 .03 .01 .02
5.6 .08 .02 .01 .00 .00
1x 10 .05 .01 .00
t g % 107 17.6 19.7 22.5 23.2 26.2 29.0 44.5
L 1000 1040 1120 1140 1210 1280 1590

55



Table F-17

Decline of Water Table at Centerline,

Y,/D = 2/3,

Yd/D = 1/3.

Water Table Height

No Cap. n=6 n=6 n=4 n=6 n =10 n=6
Time -~ Flow Pblpg =5 bepg = 10 Pb/pg = 20 Pb/pg = 20 ijpg =20 Pb/pg = 40
1 %10 1.00 1.00 1.00 .97 .99 .99 .83
1.8 1.00 .99 .99 .96 .98 .99 .80
3.2 .99 .98 .97 .90 .04 .96 .70
508 .95 .92 .90 /] .82 .87 .50
1x 10° .86 .80 .76 .58 .64 .71 .27
1 . .62 .56 .30 .41 .50 .07
3, .51 .40 .34 .10 .21 .29 00
5k .31 .21 .16 - .00 .07 g
1 x 10° ik .08 .05 .01 .03
1.8 .05 .02 .01 .00 .00
3 .01 .00 .00
5.6 .00
g1 13.0 18.0 24.8 ® 53.5 53.5 =
by 1000 1170 1360 ® 2010 2010 w
Table F-18
Decline of Water Table at Centerline,
Y,/D=1, Y D-=0.
Water Table Height
No Cap. n==6 n==6 n =4 n==6 n = 10 n==5
Time Flow Pb/pg = Pb/pg = 10 Pb/pg = 20 Pb/pg = 20 Pb/pg = 20 Pb/pg = 40
1 x 10% 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.8 1.00 .99 .99 .98 .98 .98 .98
3.2 .98 .95 .94 .91 .91 .92 .89
5 .93 .85 .80 33 .74 .76 .67
1X10° .83 .72 .64 .48 ;54 .54 B
1.8 .70 .57 .49 .23 .34 .40 12
3.2 .54 .42 .35 L .22 .28 .01
5.6 .39 .28 .22 .04 .12 17 .00
1 x 10° .26 17 .12 .00 .06 .09
1.8 .16 .09 .06 .02 .04
3.2 .10 .04 .02 .00 .01
5.6 .06 .02 .00 .00
1x 107 .03 .00
g X 107? 11.6 9.30 8.70 9.00 8.80 9.30 10.6
L 1000 880 850 870 860 880 940
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Table F-19
Decline of Water Table at Centerline,
Yi/D =1, Yd/D = 1/3.

Water Table Height

No Cap. n==6 n==6 n =4 n==6 n =10 n==6
Time Flow P/eg =5  Pyfeg =10 P jog =20 Py /pg =20 P /g = 20 P,/pg = 40
x 10* 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.8 .99 .98 .98 .97 .97 .98 .97
3.2 .97 .94 .92 .89 .89 .90 .87
5.6 .91 .80 .75 .66 .68 .69 .61
X 10° .78 .62 .52 .35 .38 .41 .26
1:% .61 .45 .34 .10 .16 .23 .00
3.2 .42 .28 .19 .00 .06 .12
5.6 .24 .14 .09 .01 .05
x 10° SEE * .05 .02 .00 .01
1.8 .04 .01 .00 .00
3. .00 .00
i X 3ot 9.25 7.65 7.95 9.65 8.90 8.90 14.8
L, 1000 900 910 1005 960 960 1250
Table F-20
Decline of Water Table at Centerline,
Y./D=1, Y /D=2/3.
Water Table Height
No Cap. n=6 n==6 n=4 n==6 n = 10 n==6
Time Flow P /g =5 P, /eg = 10 Py /og = 20 P,/eg = 20 P, /pg = 20 Py /eg = 40
X 10* 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.8 .99 .98 .97 .97 .97 .97 .97
3.2 .96 .91 .89 .88 .88 .88 .88
5.6 .88 .74 .69 .64 .64 .64 .63
X 10° 74 .49 .37 .27 .28 .29 ;26
1.8 .53 .29 .14 .00 .00 .00 .00
3.2 .32 .14 .03
5.6 .15 .05 .00
x 10° .05 .01
1.8 .01 .00
3.2 .00
g X 10 7.95 7.30 8.70 & 15.6 14.3 S
L, 1000 950 1040 © 1400 1340 ©
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Table F-21
Decline of Water Table at Centerline,
Yi/D = 2/3, Yd/D = 1/3, L = 500.

Water Table Height

No Cap. n==6 n==6 n=4 n==~6 n =10 n==6

Time Flow Pb/pg =5 bepg =10 Pb/og =20 Pb/pg = 20 Pb/ag = 20 Pb/pg = 40
1x 10° 0.98 0.96 0.95 0.86 0.90 0.93 0.64

1.8 .92 .88 .85 .68 .76 .81 .41

3.2 .81 .73 .68 .44 .55 .63 18

5.6 .63 .53 .47 .21 .32 .41 .02
1x10° .43 .32 .26 .04 14 21 .00

1.8 .24 .15 .10 .00 .03 .08

B .10 .05 .02 .00 .02

5.6 .03 .01 .00 .00
1 x 10° .01 .00

1.8 .00
X 107 3.25 4.50 7.10 - 13.2 6:6 -
L, 500 590 750 = 1020 720 ®

Table F-22
Decline of Water Table at Centerline,
Y;/D = 2/3, Y4/D=1/3, L= 1500.
Water Table Height
No Cap. n==56 n==6 n=4 n==6 n =10 n==6

Time Flow Pb/pg =5 Pb/pg = 10 Pb/pg =20 rb/pg = 20 Pb/Dg = 20 Pb/Dg = 40
1 x 10° 1.00 1.00 1.00 0.97 0.99 0.99 0.83

1.8 1.00 1.00 1.00 .97 .99 .99 .82

3.2 1.00 1.00 99 .96 .98 .99 .80

5.6 .99 .99 .98 .93 .96 .97 .74
1 X 10° .97 .95 .93 .83 .88 .91 .58

1.8 .91 .86 .82 .64 .72 .78 .36

3.2 .78 .70 .64 .40 .51 .59 .15

5.6 .60 .49 .43 .17 .28 .37 .08
1 x 10° .39 .28 22 .02 11 .18 .00

1.8 2 12 .08 .00 .02 .06

3. .08 .03 .02 .00 .01

5.6 .02 .00 .00 .00
1107 .00
g X 107 3.00 4.00 5.35 ® 12.0 6.0 =
L, 1500 1750 2000 ‘o 2900 2130 @
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Table F-23
Decline of Water Table at Centerline

¥;/D=1/3, Yy /D=0, H =0

Water Table Height

n=6 S
Time P, /og = 20 Pb/c'g = 40
x 10* 1.00 1.00
1.8 1.00 1.00
3.2 .99 .98
5.6 .97 .94
X 10° 91 83
1.8 .79 .67
5% 62 .47
5.6 .42 28
x 10° 55 .14
1.8 I i .06
B .05 .02
5.6 .01 .01
X 107 .00 .00
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conducted using the numerical model to determine the effects
of bubbling pressure head pore-size distribution on the po-
sition of the water table. These analyses showed that the
water table is always lower than predicted by methods that
ignore the capillary region. The lowering of the water ta-
ble by the presence of the capillary region is increased

by a higher bubbling presure, a wider distribution of pore
sizes, and a larger percolation rate. It was shown that
the region of inadequate aeration is always thicker than the
amount by which capillary flow lowers the water table. As

a result, the depth of aerated soil is always less than pre-
dicted by the classical drainage equations.
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