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PREFACE

Theoretical mathematical treatments of water storage problems in the application of the basic storage
differential equation, in which realistic, complex periodic-stochastic processes of inputs and/or outputs and
stochastic changes of storage characteristics are taken into consideration, either have not been successful or
have been beyond the power of presently available analytical stochastic methods. The usual theoretical treat-
ment has been carried out for relatively simple conditions for storage reservoirs and their inputs and outputs.
Simplifications deviate so much from the real world and practical problems, that the planners of and the
decision makers related to storage reservoirs have shied away from using the generalized mathematical
solutions under these grossly idealized conditions.

The thesis by Jose D. Salas-La Cruz relates to the range analysis of water storage reservoirs with a relatively
complex periodic-stochastic input and a simple output. It represents an attempt and successful accomplishment
for increasing the power of theoretical treatment of complex hydrologic and water resource storage problems.
This piece of work is a continuation of several previous efforts in the analysis of range as the major random
variable of storage problems, which have been undertaken within the research project: “Stochastic Processes in
Hydrology and Water Resources”, sponsored by the U. S. National Science Foundation at Colorado State
University, Department of Civil Engineering, Graduate and Research Hydrology and Water Resources Program
The continuous analysis of the range, and other random variables related to water storage problems, promise
some very significant contributions in the theoretical treatment of water reservoir systems.

When the treatment of storage problems with complex inputs and outputs becomes analytically intractible,
the only approach left at present is the use of the experimental statistical (Monte Carlo) method in generating
new samples of given sizes for inputs and outputs, with realistic representation of all processes involved. The
simulation method permits an assessment of effects of various hydrologic complexities in solving storage
problems, at least within the limits of sampling reproduction of the basic processes.

This Hydrology Paper makes a use of both methods, mathematical analytical and data generation, in
determining the properties of range when inputs are complex periodic-stochastic processes. A huge gap exists
at present between the mathematical theoretical solutions of water storage problems, derived under over-
simplifying assumptions, and the solutions which would be obtained with realistic physical conditions of
inputs, outputs, and stochastic changes inside the storage capacities. Continuous attempts are needed to make
bridges between the mathematical analysis of storage problems with realistic assumptions and true solutions
which would be obtained under these realistic physical conditions. The progress in finding theoretical solutions
for reservoir problems may be fastest by combining the use of all methods available in obtaining the probabilistic
properties of range and other random variable related to storage problems.

The results presented in this paper explain how the realistic inputs affect:the key parameters of the range,
with the range conceived as the needed storage capacity for regulating the inputs (given in the form of various
generated samples) to produce given simple outputs for given regulating time intervals. Particularly, it is shown
how the periodicity in the mean, in the standard deviation and in the autocorrelation coefficients of stochastic
components of runoff input series with intervals smaller than the year, affect the expected range and the variance
of the range. The data generation method can be a very useful procedure for showing planners and operators of
reservoirs that the theoretical analyses of storage problems have a realistic relationship with current practical
problems of design and operation of storage capacities.

September 1972 Vujica Yevjevich
Professor-in-charge of
Hydrology and Water Resources
Program, Department of
Civil Engineering
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ABSTRACT

The storage problem of within-the-year water fluctuations is the main topic of this paper. The storage
difference equation which relates inputs, outputs and storage is used for formulating the mathematical problem.
This leads to the problem of determining the expected values and variances of the range or adjusted range of
cumulative departures from the population and sample mean, respectively.

Using the univariate, bivariate and trivariate normal distribution functions for the marginal and joint
distributions of the partial sums, the exact expressions of the expected range are derived for n = 1,2 and 3.
From these general expressions, particular cases of the expected range of independent and linearly dependent
variables are derived. Based on these derived exact equations of the expected range, approximate equations are
derived for higher values of n .

The expected value of the adjusted range of inputs equally dependent (exchangeable variables) and outputs
equal to a percentage of the mean inflow, is shown to be expressed in the same way as the expected value of the
unadjusted range of exchangeable random variables. This result is relevant in hydrology because when one is
interested on overyear storage design and the assumption of independence of streamflow events is sufficiently
accurate and the regulation or development is expressed as a fraction of the sample mean inflow, then the
expected value of the storage for a given number of years is given by the expected adjusted range which now may
be computed exactly by the derived equation.

The variance of the range was derived mathematically for the case of Markov first-order linearly dependent
normal random variables for the case of n = 1 and 2. For the case of higher values n and periodic standard
deviation, approximate equations are obtained by using the data generation method.

Based on mathematical approximations derived for the expected range and assuming a Markov first-order
linear dependence structure of the stochastic part of monthly streamflows, a design method is developed by
which the total storage is made up of two parts: (a) a deterministic storage which is a function of the standard
deviation of the periodic monthly mean p_ and on the mean and standard deviation of the periodic monthly
standard-deviation o_ ; and (b) a stochastic storage which is a function of the mean and standard deviation of
the periodic monthly standard deviation o, and of the first serial correlation coefficient p .

Jose D. Salas-La Cruz

Civil Engineering Department
Colorado State University
Fort Collins, Colorado 80521
May, 1972
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CHAPTER 1

INTRODUCTION

1.1 General Concepts

Water is always controlled and regulated by a
water resource system to serve a wide variety of uses.
For example, water is regulated for urban use,
irrigation, hydropower, navigation, recreation, water
quality control, flood control, and so on. These uses
may be either competitive or complementary to
various degrees. This does not make the problem of
design and operation of a water resource system with
reservoirs a simple task.

As one example of competition, release of
water for irrigation or municipal supply may impair
recreational uses at the reservoir and power pro-
duction. An example of complementary use may be
the case of flood control with low flow augmenta-
tion. Water conflicts usually are compromised in
project design. That is, trade-offs are considered in
allocating the supply for different uses, which in turn
require an estimate of alternative designs of a water
resource system.

One of the most importants aspects of water
resource systems is water regulation by reservoirs. It
basically represents man’s interference with the
hydrologic cycle in an attempt to “balance” supply
and demand. In other words, one often needs to
smooth out the peaks and lows of streamflow so as to
obtain a greater beneficial use of water resources.

The design of a water resource system must be
viewed within the context of hydrologic risk and
hydrologic and economic uncertainties. The
stochastic nature of inputs and outputs of a water
resource system is the reason for considering the
hydrologic risk and uncertainties. The economic
uncertainties are also present because the discount
rate and other economic parameters are subject to
uncertain changes over time. This risk and all
uncertainties make it necessary to consider alternative
designs to achieve developments that are optimal.

Within the past two decades, the methods for
planning, design and operation of water resource
systems have been changing from the use of “rules of
thumb” and “engineering judgment” to a more
formal type of analysis based on mathematical
models. Approaches to be used in design of storage
capacities may be classified into three

methods: empirical, experimental (simulation or data
generation), and analytical (mathematical),
(Yevjevich, 1972)*.

The empirical method, known as the Rippl’s
diagram or mass curve is still the most commonly
used method for analyzing the relationship between
reservoir input, output and storage capacity. This
method assumes that both input and output are
known functions of time and produce the storage
capacity required for no water shortage to occur
during the period considered for analysis. However,
the reliability of results of this analysis, based on a
single sequence of hydrologic events or historical
record, is limited, because it is unlikely that the same
flow sequence will occur again during the life of a
reservoir. In other words, another sequence of
hydrologic events will require a storage capacity dif-
ferent from that found by using the historical record.
Another disadvantage of this empirical method is in
the length of historical records, which is likely to be
quite different from the economic life of a dam.
Since the required storage capacity for a given regula-
tion rule increases with an increase of the length of
record, the estimated capacity based on a historical
record will be different from that based on the eco-
nomic life of the project.

Because of the stochastic nature of streamflows
and water uses, one cannot speak of the storage
capacity of a reservoir in a deterministic sense. In
reality, the needed capacity for a given sample size is
a random variable, and it is therefore necessary to
consider statistical measures such as the expected
values and variances of the distribution of this
variable in the design of the finite capacity of a
reservoir. The data generation method approaches
this problem by generating either a large number of
samples of the project life size or large samples of
data. This method is called, in mathematical statistics
and probability theory, the Monte Carlo method. It
uses independent random numbers of empirical or
theoretical probability distribution functions, the
time dependence structure and adds the periodic

*Name and date in parenthesis refer to the author’s
name and date of publication given in the biblio-

graphy.



components when they are present in a series. This
method enables one to determine approximately the
moments and probability distribution functions of
random variables related to storage problems.

The mathematical method consists of finding
by exact, asymptotic or approximate derivations the
properties of various variables related to storage
capacity design, such as the mean, variance and other
parameters of surplus, deficit and range. Exact
general expressions for some of these properties of
the range, with the range definition based on the
cumulative departures from the mean, have been
derived in the past only for the case of independent
and identically distributed normal random variables.
Similar properties are not known when the random
variables are dependent and have non-stationarities.

The complexity of reservoir capacity designs
depends on the type of required or proposed
regulation. For example, if the regulation is of the
overyear storage type, the analysis is based on annual
streamflows and a given degree of river development
or draft, which are usually given as a percentage of
the mean inflow. In dealing with annual streamflows,
the assumption of independence of events is in many
cases sufficiently accurate. However, in other cases,
the serial correlation between the values is significant,
with Markov or linear autoregression models widely
used for describing the dependence, (Yevjevich, 1964;
Fiering, 1967). In many cases, annual streamflows are
stationary stochastic processes; therefore the pro-
perties of the random variable of storage capacity
may be derived either from exact or from approxi-
mate equations.

If the within-the-year water fluctuations are
considered in the design of the reservoir storage
capacity, then the analysis is usually made either with
monthly, weekly or daily streamflows, or with
monthly, weekly or daily outflows. In dealing with
monthly values of streamflows, a non-stationary
stochastic process must be considered, since time
series show periodicities in the mean, standard
deviation and often also in autocorrelation coef-
ficients, besides the time dependence structure of
stationary stochastic components, (Thomas and
Fiering, 1962, Roesner and Yevjevich, 1966;
Yevjevich, 1971). Time series of monthly outflows of
reservoirs, as water use time series, also show some
characteristics similar to the monthly streamflows,
(Salas-LaCruz and Yevjevich, 1972). The need to deal
with non-stationary series of inflows and outflows

[N

makes the general mathematical treatment of storage
problems extremely complex.

1.2 Objective and General Approach in this Investiga-
tion

The storage problem of within-the-year water
fluctuations is the topic of this paper. There-
fore, mathematical models of monthly streamflow
series are used. The main objective of this investiga-
tion is to determine mathematical equations for the
expected value and variance of storage capacity
needed, measured by the range values, which can be
used in the design of a reservoir.

The storage difference equation which relates
inputs, outputs and storage is used for formulating
the mathematical problem. This leads to the problem
of determining the expected values and variances of
the range or adjusted range of cumulative departures
from the population mean and sample mean, res-
pectively.

Using the univariate, bivariate and trivariate
normal distribution functions for the marginal and
joint distributions of the partial sums, the exact
expressions of the expected range are derived
for n = 1,2 and 3. Based on these exact expressions,
approximate equations are derived for the expected
range for higher values of n.

The variance of the range was derived
mathematically for the case of Markov first-order
linearly dependent normal random variables for the
case of n = 1 and 2. For the case of higher values of
n and the standard deviation periodic, approximate
equations are obtained by using the data generation
method.

Based on mathematical approximations derived
for the expected range and assuming a Markov first-
order linear dependence structure of the stochastic
part of monthly streamflows, a design method is
developed by which the total storage capacity is made
up of two parts: (a)a deterministic storage which isa
function of the standard deviation of the periodic
monthly mean and of the mean and standard
deviation of the periodic monthly standard deviation;
and (b) a stochastic storage which is a function of the
mean and standard deviation of the periodic standard
deviation and of the first serial correlation coef-
ficient.
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CHAPTER 11

REVIEW OF LITERATURE

Empirical, simulation (experimental) and
analytical methods have been used in the past in
dealing with the analysis of reservoir storage design
and operation. The empirical method proposed by W.
Rippl, (1883), and somewhat modified later by many
other authors, has been the most commonly used.
With the development of the digital computer in the
past 15 wyears, experimental simulation or data
generation methods became attractive. Finally,
mathematical analytical methods using the pro-
bability theory, mathematical statistics and stochastic
process analysis have also been attempted by many
authors during the last two decades, in efforts to
solve the water storage differential equations under
various conditions,

From a theoretical point of view, previous
investigations of water storage problems may be
broadly classified into two categories:

(1) Studies of reservoirs by assuming an infinite
storage capacity. A great deal of research has been
done along this line, and the concepts of the surplus,
deficit and range of cumulative or partial sums were
mainly analyzed under this assumption. The problem
is, given the inflow and outflow characteristics, to
find the moments and distribution of the storage
capacity of a reservoir which, starting with any initial
water level, would not run either empty or full in the
following n years.

(2) Studies of reservoirs by assuming a finite
storage capacity. The finite size of the storage
capacity of the reservoir is given, and by assuming the
inflow characteristics and the operating rules which
determine the outflows, the problem is to find the
time dependent probability function of storage levels,
their limiting distribution, probabilities of water over-
flow and probabilities of emptiness of the finite
TeServoir.

Since this study considers the reservoir storage
problem by assuming an infinite storage, a detailed
review of previous research concerning the statistical
properties of the range and adjusted range comprises
the first part of this chapter. The second part presents
only a review of the investigations followed mainly
by P. A. P. Moran, N. U. Prabu, W. B. Langbein, E. H.
Lloyd, and R. Jeng.

2.1 Analysis of Water Storage Problems by Range

Let x; be a sequence of random variables and
assume that E(x,) = 0,and

Si=x,+x,+ ..... Fx 4= 12 o

M =max (0,S, ,S,,..... ,S,)

m =min(0,S, ,S,,..... ,Sn)
Rn=Mn_mn 2.1

The random variable S, is called the cumulative or
partial sum, M_  the maximum partial sum or sur-
plus, m_ the minimum partial sum or deficit and
R, the range of the partial sums.

In many applications, especially for small values
of n, it is necessary to modify the above definitions;
that is, each component of the partial sum is cor-
rected for the estimated sample mean X_. There-
fore, the above random variables will take the form

- i
St=8-% S,
* *®
M, =max(0,S,,S3,..... »5%)
* ; *
mn=mm(0,Sl,S§, ..... ,S:}

*

R M*—~m? 29
where S* is called the adjusted partial sum, M * the
adjusted maximum partial sum or adjusted surplus,
m* the adjusted minimum partial sum or adjusted
deficit and R?¥ the adjusted range. Both types of
the above random variables, unadjusted and adjusted,
are graphically shown in Figs. 2.1 and 2.2, respec-
tively.

The distributions of M ,Mf,m ,m: A 5
and R¥ are of interest in the theory of water
storage and reservoir design. Assume a reservoir is of
an infinite capacity which receives during every year a
random streamflow input either of a symmetric or a
skewed probability density function and releases the



population mean discharge p or the sample mean
X, - The probability that, starting with an initial
water level, the reservoir will not run dry in the fol-
lowing n years is given by the distribution function
of R or R* . In general, finding these exact dis-
tribution functions is a difficult mathematical pro-
blem even for cases of independent normal random
inputs. Therefore, one tries to approximate these
distributions by finding either their exact expected
values for finite values of n or their asymptotic
expected values.

After Rippl (1883) introduced the mass curve
method for analyzing the relationship between the
inputs, outputs, and storage capacity of a reservoir,
several engineers tried to improve it. A. Hazen
(1914), realizing the shortcomings of Rippl’s
approach, used standardized streamflow values of
several rivers in order to increase the length of the
historical records. He was able to test different
reservoir storage capacities and evaluate the number
of periods of water shortage occurring with each size.
Subsequently, C. E. Sudler (1927) for the first time
generated synthetic sequences by writing historical
records on cards, shuffling them and then drawing a
series of cards to represent a sequence of flows.
Sudler’s attempts were the first to use an
experimental approach to approximate the stochastic
nature of reservoir design and thus replaced the
Rippl’s and Hazen’s empirical approach.

H. E. Hurst (1951), in computing the storage
required for the Great Lakes of the Nile River Basin,
was the first to apply more formally the concepts of
probability theory to the storage problem. His
method made a statistical interpretation of Rippl’s
approach by estimating the mean adjusted range of
cumulative departures of streamflow records. He
specifically used the binomial expansion for approxi-
mating the normal probability density function, and,
with some concepts of combinatorial analysis, he
derived the asymptotic expected adjusted range as

E{R;‘}=o\/-n?, 23

in which ¢ is the standard deviation and n is the
length of record.

Hurst also analyzed a large number of records
of annual values of natural phenomena such as rain-
fall, temperature, water levels, riverflows and so on.
From the plots of the rescaled mean adjusted range
R /o, against the observation length n , Hurst

concluded that the observed adjusted ranges do not
increase as the square root of n , but as a higher
power n°, with a mean value of ¢ of 0.729 and a

standard deviation of 0.092. ’

Hurst’s findings led many hydrologists to pro-
pose stochastic models to account for high and low
frequency effects in order to reproduce the depar-
tures from the square root law, usually called the
Hurst phenomenon. However, even though Hurst
analyzed a large number of records, these departures
from the square root law, to the understanding of the
writer, do not represent a conclusive characteristic of
streamflow processes. Fiering (1967) clearly says
Hurst’s results are the outcome of “a jumble of dis-
tributions, record lengths, correlations and
processes.” Another weakness of Hurst’s findings is
that his slopes are based on estimated mean adjusted
ranges which are highly uncertain, especially for
values of n 2 100. For example, for the records of
around 1000 years, the mean adjusted range
for n = 100 was computed by averaging 10 values,
for n = 500 by averaging 2 values, and for
n = 1,000 there is only one value. How can his
slopes be the evidence of low frequency effects if the
mean values were estimated over such small samples?
The writer considers that the Hurst’s results should be
accepted with caution before trying to reproduce
slopes which may not really represent natural charac-
teristic of streamflow. If in the future, with more
available records, Hurst’s findings are substantiated,
then the use of stochastic models which could repro-
duce slopes higher than 0.5 for n very large may be
necessary, particularly if one is interested in designing
reservoirs for periods of time greater than 100 years
(Fiering, 1967).

W. Feller (1951) found the general expression
of the probability density function of the range
R(t) in continuous time. Feller assumed independ-
ent normal random variables and approximated the
discrete random variables S. with a continuously
changing normal variable S(t), with mean zero and
variance t . Thus, the moments of R(t) constitute
the asymptotic moments of the discrete vari-
able R . In particular, he obtained the asymptotic
mean and asymptotic variance of the range as

E{R, }22 /22 ~ 15058 n* , 24

Var{R_ }=4n(log2-2/m)~0.218In . 535

and
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By approximating the discrete random variables S*
with a continuously changing variable S*(t) , Feller
also found the expression of the exact distribution of
the adjusted range R*(T) in continuous time. In
particular, the asymptotic mean and asymptotic
variance of R* are given as

T
Var{R? } = 5 (; -1) =00741n. 27

and

These theoretical results also apply for cases in which
the underlying distribution of the original random
variables are not normal, since for large values
of n the partial sums S or S* are asymptotically
normally distributed.

A. A. Anis and E. H. Lloyd (1953) gave the
exact expected value of the maximum of the partial
sums S, , S, ,..8 of independent normal variables
with mean zero and variance unity, in the form

1 n-1
EM_} = E ¥
{ n’ \/ﬁ =1 i 2.8
which leads to the expected value of the range
2 n-1
E{Rn}=\/_i' _E! "% 29
l=

Equation 2.9 gives the asymptotic expected value
of 24/2n/n in agreement with Feller’s results.

Subsequently, A. A. Anis (1955) published the
exact second moment of the maximum of the partial
sums Sl 5 S2 - , for independent standard nor-
mal random variables. His equation for n = 2 is

EM}= 7 (a+))
n2 i

E G j§1 [iG-j+1)]"%, 210

which gives an asymptotic second moment equal to
2+4/7 4

m

EM2}= n- 2.11

A. A. Anis (1956) presented a recurrence rela-
tionship for obtaining the numerical evaluation of all
the moments of the maximum of the partial

sums, 8, ,8, ,....8 ,Df independent standard nor-
mal variables as
1 Il-l
E MT } = —_— b2 r=-
{ n+l \/27 1=l {M l+1}
n-1
t(r-Dn E{M:lft }- — (r w ) T‘ E{M:j 1

2.12

for n 2 2 and 1 > 3. Therefore, by using the first
two moments as given by Eqgs. 2.8 and 2.10, higher
order moments may be obtained from Eq. 2.12.

F. Spitzer (1956), using combinatorial analysis,
published a more general result than previously
obtained. Considering a sequence of independent and
identically distributed random variables and S; = x,

t x4 X and Mj = max(0S, .S, ..., Sj), a’nd

Sj+ =max (0,S. ), 2.13

Spitzer derived the identity

oo (=]

jED P,(1) ? =exp | jzl 1 (0 Z)]. 214

]

where &, (t) and 'P (t) are the characteristic func-
tions of M and S , respectively, that is

'bj(t) =E{exp(it Mj)} 2.15
¥; ()= Efexp Gt S;)} 2.16

Spitzer’s equation (Eq. 2.14) is general and
valid for independent and identically distributed ran-
dom variables of any distribution function. From this
identity, the moments of the surplus M may be



directly obtained. For the first moment, differen-
tiating Eq. 2.14 with respect to t,and
setting t = 0, then

oo

Z o= R R AOR)
exp [ 3 i1 0,017,
=1

and

(=]

T e OZ=[ Z 'Y a-".
J=1 ] J=l ]
Since from Eqs. 2.15 and 2.16

@ (0)=iEM,) and ¥;(0)=iE(§")

then the first moment of the surplus is

o E{S:} : 2.17

Similarly, differentiating Eq. 2.14 twice with respect
to t and setting t = 0, then

T OZ=(1-27' { = 'y
= =1 :

+ [

IR OIS

g 8

1

Since  ®(0) = -E(Mf) and w;’(o)=-5(sf),
then the second moment of the maximum for
n =2 2 i

n
EM2} = z it E@S!?)

=1

i-1
=1 gyl 3
s jE it A=) ESDES]) - 2.8

o}

s

—

Equations 2.17 and 2.18 are generally valid for
independent and identically distributed random
variables of any distribution function. Specifically,
for the case of normal random variables with mean

-~

zero and variance ¢ , the partial sums 3, are also

normally distributed with mean zero and vari-
ance Var §; = io® . The expected value of S, is

E(S}=E(5 [S;+18113= / S, (5) S,
0

o
E(S[)= o Var ;1% 2.19

Similarly, the second moment of Si+ is

E(S7} = 3 S} +5 E4S, 18, 1)

Since for a
E(S;IS;)) = 0 , then

symmetric distribution

% 1
E{Siz} = 5 Var{Si }. 2.20

Substitution of Eqs. 2.19 and 2.20 into 2.17 and 2.18
leads to the expected value and second moment of
the maximum of partial sums for the case of
independent normal random variables. This sub-
stitution then results in:

1 1Y .. 14

EM }= T it [Var{S. )

M, } = & [Var {8, }] 2.21
and

1 n

E{M?}=—= 3 i! Var{S.

wi=g iyt Ve

n o il .

+—— % 2 il (G-j)y! [Var{S.}Var{S. .} 1% .
oy 22 (i-j)" [Varis i1 ]

222

Therefore the expected value of the range may be
written as

n
E{Rn}=,/% z i1 [Var (S, }]% . 2.23

For the particular case of standard normal random
variables, the Eqs. 2.21 and 2.22 are in agreement
with Eqgs. 2.8 and 2.10 derived by A. A. Anis.
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M. E. Solari and A. A. Anis (1957) derived the
exact expected value and the second moment of the
maximum of the adjusted partial sums for
independent and standard normal random variables as

n
g | 1 - 14 VA £
E{Mﬁ}=5 217., i‘il i (n-i)” , 2.24
and
1 n’-1
IMEL 1= —
E{M**} . s
JEH O i)
moE2 FEVE 0 -5 '

which lead to asymptotic values of

vnm/2/2  and  n/2 - /0 respectively.

N. U. Prabu (1965), reviewing Moran’s model
for the storage, gave a non-explicit solution of the
probability generating function of the maximum
partial sum M_ for independent random variables,

in both discrete and continuous time. Mﬂ is defined
as

M = max (0, M_ +xn—m),
n=0,1,2,..., 2.6

with x_ the random input m the constant out-
flow.

For the case of input x =~ of a discrete distribu-
tion function, with the probability generating func-
tion

K®) =E{8 "},101<1 ,

Prabu gives

« M m g

)0 17 L (— m e gt),

) : 0™ - tK(9) =1 15
(re1<1,181=<1), 227

where £ ,£,,.., g, are the roots of the functional
equation &M = tK(¢) , such that [ < 1.
If m>m, =E(x),then the limiting distribution
of M as n—>e exists, and its probability
generating function becomes

- (m-m)1-0) m-| f-a

U(e)= K(g)_em I'l;l] (l_ar ) ’ 2.28

where o0, s are the roots of the equation
o™ = K(a) within the unit circle.

For the case of input x_ having a continuous
distribution  K(x) = P{x . < X} and the partial
sum, defined as S = x  + x, +.+ x_, the dis
tribution function K (x) = P{S <x },
K,(x) = K(x); the probability generating function
of M s

oo n

" B My} =exp [ X 5 K om)

o™ 3

o0 {'teem )n &

+3 — J e dK (0]
1 n! Nt
(1tI<1,R (6)>0). 2.29

Furthermore, if m > m; = E{xn), the limiting
storage function is

E{e?® Ma}=

(=]
=]

exp[—]Z: n' [ (1-eP%)dK (x +nm)] ,
0

[R.@)>0] . 230

V. Yevjevich (1965) gives a detailed analysis of
applications of surplus, deficit and range in
hydrology. He made a comparison of the empirical,
data generation and analytical methods of obtaining
statistical properties of surplus, deficit and range for
values of n =2 and n = 3. Using the data
generation approach, he found the mean, variance,
skewness coefficient and the distribution of the
unadjusted and adjusted surplus and range for a first-
order Markov process for values of n up to 50 and
various values of p.

M. J. Melentijevich (1965) investigated the case
of the range when the output is linearly dependent on
storage. Using the data generation method, he gives
approximate equations for the expected value and
variance of the range. Approximating the storage dif-



ference equation in discrete time by the continuity
equation in continuous time, and using S.
Chandrasekhar’s (1954) method and the Fokker-
Planck partial differential equations, he also found
the probability density function of the cumulative
sums.

P. Sutabutra (1967) investigated the reservoir
design problem for within-the-year regulation
assuming a constant standard deviation for variables
at various positions during the year and the first-order
Markov linear model for the stochastic part of the
monthly streamflow data. He separated the total
storage into a deterministic storage, as a function of
the periodic means of the inflow and outflow series
only, and a stochastic storage, as the expected value
of the range for the first order Markov model. Based
on his simulation, he suggested that the expected
range for the first-order Markov model may be
expressed as an approximation by

n
ER }=/2 2 ivars % 231

which is the same as E { R} given by Eq. 2.23.

V. Yevjevich (1967) using the data generation
approach, also suggested that the expected range of
linearly dependent normal variables may be expressed
by Eq. 2.31. He specifically analyzed the cases of the
first and second-order Markov models and the simple
moving average scheme. The expected values of the
range computed by Eq. 2.31 gave a close approxi-
mation to the values obtained by his simulation.

0. Ditlevsen (1969) found the asymptotic dis-
tribution function of the maximum of a stationary
stochastic process in continuous time by considering
the partial sums in continuous time as

S(t) = gt [ x(t) - E(x) ] dt , 232

and the maximum of the process S(t) in continuous
time defined as

n (T) = sup

t
[ x(t) dt . 2.33
o<t ©

Assuming the case of a standard normal process,
Ditlevsen found that asymptotically as Tee,

F E2 c[) _U.— Lk . 234
acry () =2 {[varw(T)]%} :

where T
(M =[ x(t)dt .
0

J. M. Mejia (1971), using the asymptotic dis-
tribution of n(T) as given by Ditlevsen, derived the
asymptotic expected value of 7(T) or the
asymptotic expected value of the range

E{ R(T) }= 2E{n(T) } as

ER(T)} = [Var o(T) ]2 235

27

where the variance of w(T) is given by

Var o(T) =2A(T) [T-G(T)] 236
with
T
AM =/ p (u)du 237
(8]
and
1 T
G(T)=I(—T)— {)up(u)du, 238

where p(u) is the autocorrelation function of the
continuous stationary process x(t).

2.2 Water Storage Analyzed by Other Methods

P. A. P. Moran (1954) applied the probability
theory to the problem of finite water storage.
Moran’s model was formulated in discrete time, so
that the process occurs at discrete series of time inter-
vals. The following assumptions are made:

(1) The water input x, is a continuous,
independent and identically distributed random
variable. This input is assumed to occur during the
“wet season” and is stored until the “dry season”
when it is released.

2) The reservoir has a finite capacity
K , and the storage at time n before the input
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x flows into the reservoiris Z, IfZ + x > K,
an amount Zt ¥Ry - K will overflow, but
if Z, +x, S K, there will be no overflow. The
reservoir now contains a quantity min(K,Zt + xt).

3) At time n + 1, an amount of water
m(<K) if Z+x,ZmorZ +x, if Z +x,<m
is released from the reservoir. The release is thus
Y, = min(m, Z, + x) .

From these assumptions, the storage function
Z, satisfies the recurrence relation

Z,, =min (K,Z +x )-min(m,Z, +x,) 239

so that the random variable Z, forms a homo-
geneous Markov chain.

Considering the case in which the inputs have a
discrete probability distribution with P{x, = j}
= g, (G = 0,1,2,...), the Markov chain Z hasa
finite number of states 0, 1, 2, ..., K-m. Let its
transition probabilities be denoted by

(n) _ = - 2.40
Pij"I = BZi=§Z. =i

G,j=0,1,...,K-m,n>1);

furthermore, let P(P) =1 or 0 depend on whether
i=j or i#j,and also denote P%il. =P,; . From
the recurrence relation of Eq. 2.39, Moran found
that the transition probability matrix P = (Pij) may
be written as

241
i
i 0 1 2 ceee k-m-=1 k-m
0 m 5m+l gzﬂ+2 E‘k-l hk
! Gm-l Bm Em+1 e Bi.2 hk-t
P= : F : : = :
m G, B By st Bremet Py
m+1 0 ) I"l SI\ m-2 k-m-1
k-m |0 0 0 o h,,

where G, =g +g +..+g h=g+g,  +..,
(i>0), and it is assumed that m <K/2 . From the
above transition probability matrix, it follows

oo

z P QA-2B Ry 242

where Q, = (Pio’Pil""’Pi,K-m) J is the identity
matrix and R; = 0 g

The distribution of the stationary storage was
also obtained by Moran while N. U. Prabhu (1958)
derived the exact solution when the inputs have
geometric, negative binomial and Poisson distribu-
tions. Subsequently, A. Ghosal (1960), following
Moran’s storage theory, analyzed the problem of
emptiness with overflow and before overflow, finding
the expected values of the wet periods.

W. B. Langbein (1958) presented an application
of queuing theory to the storage problem. The
analogy of queuing theory with the storage problem
is as follows. The inflow to the reservoir represents
the arrivals, the impounded water is the queue, and
the regulated outflows represent the departures.
Langbein developed a procedure for determining the
frequency distribution of storage, the frequency of
spills, the frequency that the reservoir may be empty
and the frequency distribution of reservoir outflows.
He presented two kinds of solutions. The first solu-
tion was algebraic, applicable only to a linear service
function and normal inflows, and the second solution
gave a method termed “probability routing” when
service functions are non-linear and inflows are non-
normal. His procedure also allows the analysis con-
sidering monthly inflows and outflow demands.

E. H. Lloyd (1963) extended Moran’s model of
finite reservoirs so as to take into account the serial
correlation of inflows. The assumption is made that
the dependence structure of this sequence may be
approximated by a homogeneous Markov chain.
Using bivariate Markov processes as the joint distribu-
tion of storage and inflows, he derived the limiting
distribution of storage. In another study (1963),
Lloyd obtained the explicit expressions for the distri-
bution of reservoir levels in terms of the correlation
coefficient between consecutive inflows. The
probabilities of emptiness and spill-over are also
given. Subsequently, E. H. Lloyd and S. Odoom
(1964) analyzed the case of scasonal inflows. A
simple case, a two-seasonal year with three-valued



input distributions, is given. The main modification
they made to the non-seasonal model was to assume
different distribution of inflows in each season.

R. Jeng (1967) found the probability density
function of water levels in a finite storage for inflows
with independent increments and outflow equal to
the mean of inflow. He assumed that the inflow
process was independent of storage and that the
inflow varies extremely rapidly compared to

Si
Mn
1 1 '
i 2 3
Fig. 2.1  Definition of the maximum partial sum,

M, (surplus), the minimum partial sum,
m_ (deficit), and the range, R .

10

variations of the storage. Under the above assump-
tions the storage process is a case of a one-
dimensional diffusion process with zero drift, in the
presence of two reflecting barriers at 0O and
K with K the finite storage capacity. Using the
method of image points, Jeng derived the time
dependent probability density function of the water
levels or storage, and also found its limiting distrib-
ution function as t¥ee.

Si
—_— e -.-'_.-.-F.-.-.-T
2 : B
-
S —
Ma| =il —
J,.-— — ! '-I|.mr‘1“ ] Sn
-""'l"'._’r._ 1 | ' -
I 2 3 i ‘
n B L— !
Fig. 2.2 Definition of adjusted partial sum, S3

the adjusted maximum partial sum, M*
(adjusted surplus), the adjusted minimum
partial sum, m* (adjusted deficit), and
the adjusted range R¥ .
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CHAPTER 1II

GENERAL THEORETICAL FORMULATION
FOR RANGE OF PERIODIC-STOCHASTIC SERIES

A general mathematical formulation is
presented in this chapter for analyzing the range
problem of periodic-stochastic inputs and outputs.
General characteristics of inputs and outputs com-
monly used in hydrology are reviewed, and some
autocovariance and/or autocorrelation functions are
derived for use in the following chapters. Sub-
sequently, the general characteristics, moments and
distributions of partial sums, surplus, deficit and
range are reviewed,

3.1 Stochastic Storage Difference Equation

The basic relationship between inflow, outflow
and storage is expressed by the difference equation

AS
x -— B e—
t yt At

3.1

where x, and 'y, are the inflow and outflow
respectwely, and S is the storage of the reservoir.
Considering the time increment of t equal to one,
the above equation may be expressed as

S Sy = St-i
or

S =8

t t-1 + (X

¥ 32

Equation 3.2 constitutes the general stochastic
storage difference equation whose solution is
expressed in terms of moments and probability distri-
bution, since x, and y, are in general random
variables. The solution of the Eq. 3.2 depends in
general on the complexity of input and output,
x, and vy, respectively. They may be independent
identically distributed random variables, independent
but not identically distributed, dependent staticnary
and dependent non-stationary random variables.

A. Characteristics of inputs and outputs. In
general, inputs and outputs show periodic and
stochastic components and may be described by
mathematical models of the form,

xp,r =“1' + O‘r ZP.T 2 33

m
Zor " El R Ly * km,f Ep,f A

34

and
m m

K. =1L= El ;El % ri G Plislre

[ = max(ij)] .

}'}“2

35

where 7 = 1,2,....w, with w the annual cycle (of 12
months, 52 weeks, or 365 days),
p = 1,2,..,n, with n the number of years of
record, X, , Tepresents the input or output
series, p_ and o_ are the periodic mean and stand-
ard dewanon )@ . are the periodic autoregression
coefficients wh.ich are functions of the periodic auto
correlation coefficients Piri Zpa is a m-th order
non-stationary Markov process, and - is a
second-order stationary and independent stochastic
component.

By Fcurief analysis, the periodicities in the
mean, standard deviation and autocorrelation coef-
ficients may be represented by

m
v =;T + = [A, cos(2nf.r) + B, sin 27 f.1)] 3.6
j=] ] ] ] J

T

where »_ may represent {_,0_ Or py .} ; 7, s
the mean of »_, m is the number of significant
harmonics, A. and B. the Fourier coefficients
and f, is the frequency of the harmonic j . The
estimation from the sample of the periodicities
u_ ,o_,and Py , and the estimation of Fourier

cgefi“ cflents are gwen elsewhere (Yevjevich, 1972)

The periodic autoregression coefficients
o of the m-th order Markov model z of
q. 3 4 may be obtained by taking the expectatmn

of the product of z and z ., as

} =2 o Efz }

zZ .
p.7-kp,7T)

Since - and € o are mutually inde-

pendent, with means zero and variances unity, it

" follows that

11

o P ki e 37

P k,7-k = i=1



with £ = max(j.k)k = 1,2,..m, the first subscript (€Y For the first-order Markov model,

of p denoting the lag and the second the position in m=1

time. This expression is a system of m equations _

with m unknowns, & _.j = 1,2,...,m, which may 1 TP
be solved as a function of autocorrelation coef-

38

ficients, p, , , - As may be noted, Eq. 3.7 is general (2) For the second-order Markov

and may be simplified to the well known recursive model, m = 2
equation for the m-th order stationary Markov model,

: : ) Y
or with constant autoregression coefficients. i o D

al T-1 = 2
: : : ’ =Pl
Since the first, second and third-order Markov
models are most commonly used in hydrology, the and
autoregression coefficients for these non-stationary 0 -p P
_ 2,12 1,7-171,7-2

models can be derived from 3.7 and are a =

2,7-2 1 e pif_z

and

3.9

3.10

(3) For the third-order Markov

model, m = 3,

2 — —_
Py a0l = Pi3) ¥ Py 2 3Py raP3 37 PrraPar2 ™ ParaPars

2 2 _ 2
1420, 2Py 7:3P1 23 " P13 " P12 " Par3

Py 7.3P2,7.2P2 13

+
2 _ 2 2
1420y 40P 1.3P1 7.3 " P1 73 " Pir2 " P2rs
B AEwpd AR by s ey il B ol
2,7-2 2,7-3 i1,7-272,7-373,7-3 1,7-271,7-1 1,7-373,7-3 +
a =
2,7-2 _ 2 - a2 a2
1420, 0Py 3P 73 " P13 " P12 ™ Papas
Py 732 73P1 71
+
~ — — & — 2
L+ 20, 9Py 7.3P1 7.3 P13 ™ Pig2 " P2gr3
and

2 — -
P3ra (- Plra) ¥ Py r3Py 22P1 s TP r3P2 g2 T P2 3P

3,7-3 o 2 2
1420 19P5 +.3P1 2.3 ~Pir3 “ Piga ~Pap3

P raP2 12P2 13

+
2 e B _ a2
I+ 2pl,r-zp2,r-3pl,r—3 pl;r-3 '01,1'-2 p‘Z,‘."-3

12

3.11

3.12

3.13



B. Autocorrelation and lag cross-correlation
functions of non-stationary Markov models. Since
the m-th order Markov model, as given by Eq. 34, is
non-stationary, its covariance structure depends on
the lag k and the time position t. With the sub-
script  (p.r) of z and e variables changed to
t for simplicity of notation and assuming E{z }=0,
then

o
cov{ By gl E{zt %iw 1

Taking the expectation of the product z, z with

z, given by Eq. 3.4, it follows

t+k

m

cov{z, ,z, }= jEI % ek OVIZ 52,

Since Var z, is constant and equal to unity
the autocorrelation function for the positive lags
becomes

(k>m), 3.14

m
P (k:t) = _]El aj.t'i'k-j p (k_jst)

where p(k,t) and p(k<,t) are the two-dimensional
autocorrelation functions of the lags and the posi-
tions. Similarly, the autocorrelation function for the
negative lags becomes

m

=¥
P (k:t) _];I aj,l:—j

3.15
5 (k-] ) :

k<-m,

with p(o,t) = 1, and p(k,t) for |k| < m estimated
directly from data.

Equations 3.14 and 3.15 may be used
recursively to obtain the autocorrelation function of
the m-th order non-stationary Markov process z, for
any lag |k| > m and at any time t. In particular,
for the first-order Markov model, Egs. 3.14 and 3.15
may be simplified as

k

p(kyt) = llll p] RES 1 (k > 1) »
3.16
and
k
peO=T o, (<-1),
i=1 +

with p(o,t) = 1. In the case of the stationary first-
order Markov model with the coefficient of correla-

13

tion p, . a constant for every t, the above equa-
tions simplify to the well known expression
plk,t) =p .

For higher-order Markov models, say m =2 2,
the autocorrelation function may be obtained from
the following iteration equations:

For the second-order Markov model, m = 2,

Pkt =0y, AL

Yoy e, P- 20 (k > 2)

3.17

with p(l,t) and p(2,t) replaced by p,, and Py
respectively, and ’ ’

p(k;t)=a1,t_lp(_k_l’t+k)

ta, ,p(-k-2,t+k) (k<-2) 3.8

with  p(-1,t+4k) and
and

p(-2,t+k)  replaced by

respectively.

pl,t+k-l '02 ,t+k-2

For the third-order Markov model, m =3 ,

,O(k,t) = o, Jt+k-1 p (k - lst)
0, P k=20+ &3 1ik.3 P k-3,
k>3 3.19

with  p(1,t) , p(2,t) , and p(3,t) replaced by
Py ysP,, and p,  respectively, and

p(k,t)=ai‘t_1 p(-k-1,t+k)
ta, ,p(-k-2,t1k
+a3,t_3p(—k—3,t+k) k<-3) 320

with p(-1,ttk) , p(-2,t+k) and p(-3,t+k) replaced
by Py saiii 2 P5inis and Pstek.3 respectively.



3.2 Partial Sums

A. General characteristics. By using Eq. 3.2
and assuming S = 0, the following sequence of
partial sums is formed.

S, =0 : =0

S = (= vy =8, -5,
S, = (x, - y)+(x,-¥,) = 8,(0) -5,
S, =0~ ¥ H O -y = S0 -S)
S; i, - o) #y ..+(;cn -y)= Sn(;c)-Sn(y-)

3.21

where 8.(x) and S,(y) denote the partial sums
X, tx, ... +x and y, +y, +..+y,, respectively.
Equation 3.21 is a general representation of the
partial sums, and according to the characteristics
of the output ¥, s for instance Y, = M, or
Y, =X_, it may represent a sequence of unadjusted
or adjusted partial sums, respectively, as are defined
in Egs. 2.1 and 2.2 of Chapter II.

Considering the general model for periodic-

stochastic inputs and outputs as in Eqgs. 3.3, 3.4 .

and 3.5, and replacing the subscript (p,r) by t,
then

x, = 1 (x) + 0,(x) z,(x) 322

and

Y, = 1(y) + 0,(v) ,(¥) 393

with the periodic u and ¢ and the z variable as
defined previously. Therefore, the general term S, of
the partial sum of Eq. 3.21 may be represented by

i
.= . [v()-nM]
t=1
1

+ t_E_l [o,x) z, (x) -0 (¥) 2] . 3.24

For subsequent use related to the expected val-
ues and variance of the range, it will be necessary to
know the moments, and marginal and joint distribu-
tion functions of the partial sums SD , Sl ,32 ...,Sn.

14

B. Moments of partial sums. Equation 3.24 has
the expected value of S,
i

E{S; 1= 2 () - u) 328

For inputs and outputs stationary in the mean, Eq.
3.25 simplifies to E{S, }= 0

The variance of S(x) = x, + X, +...+ x
is ) .
i i
Var . = X I cov X, ks
! =1 u=1 3.26

in which the general covariance of x, is
cov{x,,x, }=E {x x,}
- E{x JE{x, }= E{[y,(x) + 0,(x) 2,(x)]
[, (0 +0,(%) 2, ()]} = 1, (%) 1, (x)

which simplifies to
cov {x,, X, F=0,(x) 0,(x) E{ z,(x) 2,(x)}

=0,(x) Uu(x)pz(x)(u =40 . 3.27

where p 75 (u -t,t) is the autocorrelation function of
the Markov process z,(x) given in general by Egs.
3.14 and 3.15. Subsutunon of Eq. 3.27 into 3.26
leads to

Var Si(X)
i i
= I T 0,0 0,00 0,,(u - ). 328
Similarly,
Var S.(y)

i

1
=2 L 0] 0,() p -t . 329

The covariance function be-

tween Si(x) and S/(y) is

i i
cov {S,(x), S,(y)}= EIE covix,y,} 3.30



with the general covariance of x, and y,

cov{x,y, } =E{x vy, FE{x}E{y,}
=E{[g,() + 0,(x) z, @] [, + 0,0 z,N]}
- p(x) 1, )

which simplifies to

cov{x,,y,}

= 0,00 0,(9) P,y . 5(yy @ — D; 3.31

with p, ) y)(utt) the lag cross-correlation func-
tion of ‘the two non-stationary Markov pro-
cesses z,(x) and z (). Substitution of Eq. 3.31 into
Eg. 3.30 leads to

cov {S,(x), 8,0 }
i

= t}_‘,l uE_ o (x) g (Y) pz(x) z(y)(u ty -

3.32

Since the variance of the partial
sum S, = S,(x) - S,(y) may be expressed by

Var S, =Var S(x) + Var 5,()

-2 cov{8,(x) , S,(y) 1,

and using Eqgs. 3.28, 3.29 and 3.32 then

i i

Vit 8, & tzl uE=1 [0,(x) 0,(x) B, (0 = L.1)
+0,(y) 0,(¥) p,(yy(u - t:)
-2 Ut(x) UU(Y) pz(x)_ z(}-)(u = t,t)] 3.33

Equation 3.33 represents the general expression
for the variance of the partial sums S, for the general
case of stochastic difference equations of inputs and
outputs. For subsequent applications, simplified in-
puts and outputs are used, so that Eq. 3.33 simplifies
as

(1) For x, independent and y, = u,
with p the general mean of x_, then

3.34

i
Var §, = t§1 {rf x) ;

15

2 For x, an independent identically dis-

tributed variable with the variance ¢® and Y =ik

Var 8, =io?; 335

(3) For x, with 0Xx) the variance of
X, the first-order non- stat1onary Markov model

and y, = u

X

i
Var §, = 3);1 a? x)
i-1 it u
t2 t.z-:l UEI Ut(X) UH'U(X) klll pl,t+u-k » 336
“4) For x, the first-order Markov model

with constant vanance g® but the periodic first
autocorrelation coefficientand y, = p_

Var Si
i-l1 it u

=¢® [i+2 E z I
t=1 v=1 k

Ip'l,t‘l-l.l-k] ; 3'3?

(5) For x, the first-order stationary
Markov model and Y, = U

x’
Var S,
¢ (@ -p2)i-20(1-p) 3.38
(l - p)?
(6) For x, the m-th order non-stationary
Markov model and y, = M,
Var §
i i-1 it
= téla x)+2 E E a(x)aHu()
m
j}=:1 % tra Pacy®@ — 30 5 3.39
with pz(x)(u-t,t) given by Eq. 3.14;
@) For x, equally correlated (p = p),

with a periodic standard deviationand y, = ;.Lx,
Var §,
-1 it
= 2 g x)+2p E 2 o, (x) 0,,,(x) 33.40



(8) For X
and y, = ox_(*)

independent

Var S¥
n-2ia : i
= (‘“n—) a2 (X) +(%)? 21 oi(x) ; 341
(9 For x, second-order stationary and
independent, and 3 = {ﬁn

2
Var s =az[i—ini(2—a)] . 342

(10) For x
Markov model and ¥ =

the first-order stationary

-

n-

Var S¥ =(— )Var S,
.2
ia 2 21&0
—l:l—-) Var Sn = I
p(1 - p™) (1 - p™)
(1 —,0)2 ' ) 343

with Var{S,} and Var {S, } given by Eq. 3.38, and

(11) For x, equally correlated with a per-
iodic standard deviation and Y, = X
Var S =(n 2]a)VarS
(m‘ 2 Var S
2 ni i
- _1nq_p_ 2 I 0,x)0, () . 3.44
i 1 |
(*) In the case when Vi = T{n with X the

sample mean and a the level of de\relopment the
partial sum:s are called the adjusted partial sums and
are denoted by Si";‘
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C. Marginal and joint distribution of partial
sums.  The distribution function of the random
variable S, depends on distributions of X, and
¥ Wthh in turn depend on chsmbutlcms of
z(x) and z(y) . respectively. If z(x) and
z,(y) are normally distributed with mean zero and
Varzance unity, then x -~ N{u,(x), 0,(x)] and
¥ 2 N[,ut(y) 0,(y)] . Since the sum of normal
variables is also normal the distribution of S is
normal, with the expected value and variance gwen
by Egs. 3.25 and 3.33, respectively. In case the
input X, is an independent non-normal random
variable and the output is ¥, = M, , the distribution
of S, isasymptotically normal for large values of i .

Since the distribution of the partial sum S,
normal, then the joint distribution function of the
sequence of partial sums S, Sz, .S, is multivariate
normal, with means and vanames Ul\"en by Egs. 3.25
and 3.33, respectively, and the autocovariance struc-
ture dependent on the means, variances and auto-
covariances of the components of the partial sums

& - ¥

For example, in the case of independent
idcntically distributed (i.i.d.) inputs
and y = M., S; has zero mean and variance equal
to io® . It is easy to show for this case that the auto-
correlation function of the sequence 5155558, is

pk,i)= (l'kk) , for k =0,

and

i+k
pk,)=(5)%, for k<O, 345

where k denotes the lag, and i refers to the partial
sum considered.

For the case of a stationary input of the first-
order Markov model and the out-
put y, =u S, haszero mean and variance given
by Eq. 3.38. Then the autocorrelation function of the
sequernce Sl . S2 — Si is



[(1-0)i-p(1-p)(1+p%)]

pk,i) =

, for k =20

[(1'P2)i-2,0(1—pi)]%‘[(]—pz)(i+k)_2p(1_pi+k)]%

and

3.46

[C1-p)(itk)-p (1-p"F)(1+p%)]

p(k,i)=

sfor k<0

[(1-p)G+K)-2p(1-p" )12 [(1-p2)i-2p(1-p)]}

The sequence of random vari
ables S1 ,S2 o Si’ constitutes a non-stationary
process, even for the simplest case of independent
identically distributed (i.i.d.), inputs, and outputs
Vo=l - Although the mean is zero for all i’s, the
variance depends on i, and the autocorrelation func-
tion depends not only on the lag k , but also on i.
This makes it difficult, in general, to find the pro-
perties of the maximum, minimum or the range of
this sequence of partial sums for a sample of size n.

3.3 Surplus, Deficit and Range

A. General characteristics. ~The maximum
(surplus), minimum (deficit) and range are defined
in Chapter II as

M =max (0,S,8,, ..,Sn),
mn=min(0,Sl,Sz,‘.‘,Sn) ;
R]'l = Ml'l - ml'l

with M~ defined as above as always positive

increasing and m_  as always negative decreasing
functions, while R is a non-decreasing function
of n.

In some cases, (A. A. Anis and E. H. Lloyd,
1953; A. A. Anis, 1955 and A. A. Anis, 1956),
the maximum and minimum are defined as

M, =max(S,,S,,...,8)
m, = min (SjeBin = 58]

and the range as
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In this case, M, ,m ' and R’ may take on either
positive or negative values, although M; and R:l are
the increasing functions and mr'l a decreasing func-
tion as n increases.

Following E. H. Lloyd (1967), the relations be-
tween M_ and M’ ,m_and m ,and R and
: n ] n n ™ n n
R, may be derived as follows:

M, may be written as

M, =max (S, S,,...,8)

n

= max (0, S2 _SI’SS_SI’

w58y =8) ¥,
or

M, = max {0, (x, - ¥,), (X, - ¥,)

+(x3‘)’3),---,(xz“y2)

o b0 ~Y I ES, o
Let w, = x,., - ¥;,,> then the above expression
may be written as

. s
Mn—max{o,w],wl+w2, ..... , W

+
w2+...-#-w“}+31 ,

and let Si =w, twirw,,..,+ wi,then

M, = max {0, S, ,S,,...,S,  }S

n-1 1

At this point the assumption of the pro-
cess W, = X,., - Vy,;,, Dbeing stationary is
necessary. In this case, the distribution of 8, is the
same as the distribution of Si. Therefore, the distri-
bution of M will depend on the distribution
of M, and S, .



Assuming that E[ S, }= 0, the expected value
and variance of Mr: become

"Y-R{
E(M }=E{M__}, 3.47
and
Var {M’ }= Var M, }
tVar{S, 12 Cov{s,, M., 1 348
Similarly, it may be shown that
Efm }=E{m__ } 3.49
and
Var{m/ }=Var{m__ }
+ Va:{S‘}+ 2Cov{s, ,my 1. 3.50
The range R’ may also be written as
R’ =max(0,S,, By w ,S;_l)
-min(0,S,,...,8, );
therefore
E{Rin }= E{Rn-l }’ 3.51
and
Var{R' }=Var{R_, 3.52

These final equations make it possible to compare the
results obtained by A. A. Anis based on the
sequence S1 ,Sz,.‘.,Sn with other results, for
example those of Spitzer, based on the sequence
S,,8,,.,8, with § =0.

Q

B. Distribution and moments of surplus,
deficit and range. Consider F(M_) and F(m_ ) to
be the cumulative distribution functions of the
surplus M and deficit m_, respectively, that is

F(M,)=P{M _<s}and F(m_ )=P{m_ <s}

Consider furthermore that M and m_ are de-
fined as M = max(§,, S,, .., S)) and m_ =
min(S .8S,,...,S,).
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Therefore,
F(M_)=P{S, <s,8,<s,...,S8 <s}

or

S S
)= [ nma],
£(S,.8,.....8,)dS, dS,...dS, 553

The joint density function of Sl ,Sz,...,Sn may be
expressed as

f(S,,S,,-.,S,)
=f(S,)£(S,18,) (5, IS, , S,)
o R 18y 58y o w80

Therefore Eq. 3.53 becomes
S S
FM, )= fm {m £(8,)
£(S,18,)f(S, 1S, .S,)

(S, 18,,8,,...,8, )dS, dS, ...dS

3.54

This equation constitutes a general expression for the
distribution function of the maximum of the partial
sums S,.S,, ..., S_. However, unless the distribution
function of S, and their respective conditional dis-
tributions are very siumple, an explicit solution
for F(Mn) is not possible. The best result obtained
regarding the distribution of M~ was that of Spitzer
(1956) which relates the characteristic functions
of M and S = max(0.,), for the case of i.id.
variables.

Similarly, the distribution function of, m_ may
in general be expressed as

F(mn)=P{mn <s}=1-P{m_>s}

or

F(mn)=1_P{S]>s,82>s,.A.,Sn>s}. 3.55
Let Y = - m_ , then

P{Y<s}=P{-m, <s}=P{m_ >-s)



- or

F(~im )= PIS, 8,8, 5-8;...,8, #-5)
B(~m)
= J:;S....{sf(sl ,8,5...,8,)dS, dS,...dS

Let us consider the change of vari

ables s, = - w.then F(m_ ) may be expressed as
F~m ¥= J svean éf
H=8 /58 soeed™ 80068 V8. 48
or
s
F(-m)=J ..... ‘cfo
=8, =8, veues=8,) d8, ds, ...ds 3.56

Let us further consider at this point that the input
random variables are i.i.d. with a symmetrical density
function, and that the outputis y, = p_. The joint
distribution function of the sequence S1 : Sz,...,S]rl is
also symmetric,

£(S,,8,,...,8)=f(-8§,,-8,,...,=8)
in which case Eq. 3.56 takes the form
S S
B <t ) =_£° _{o
f(SI,Sz,..‘,S“)dS1 ds, ...ds . 3.57

Finally, comparing Eqs. 3.53 and 3.57, then

F(M,) =F(-m) 358

This result is useful because the moments of the
maximum and the minimum of partial sums may be
shown to be related as

EM;}=(-1" E{m}, 3.59

and in particular the mean and variances are related as

E(M }=-Efm,} 3.60
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and

Var{Mn}=Var{mn} ; 3.61

The distribution function of the
range R~ depends on the joint distribution
of M_ and m_ . Thatis

FR,) =P{R, <r}=P{M, -m, <r},

or
FR )=  PM -m <rIM_} f(M)dM_,

==]

FR,) = {_Pim, >M, ~r M} {M,) M, ;

or

since P {mn > Mn-rIMn}= l-l:'{mn <M, 1M, F,
then F(R ) may be expressed as

oo

FR ) =1- [ P{m <M

~rIM) fM)dM 3.62

The problem is that finding explicitly the joint
distribution of M_and m _ is very difficult,
because even the marginal distributions
of M, and m  cannot be represented in explicit
form. V. Yevjevich (1965) found by numerical
integration the distribution functions of the sur-
plus, M| ,deficit m_ and range R for the case of
inputs i.i.d. normal variables and output
¥, =i for valuesof n of 1,2, and 3.

The moments of the range, surplus and deficit
are related as follows;

BiR, J=EML F=E{m, ] 3.63
For the particular case in which the distribution of
components of the partial sums is symmetrical, Eq.
3.60 applies, so that

E{R_ }=2E{M_}. 3.64

Similarly, the variance of the range is

VaI{Rn}=Va.r{Mn}+Va:{mn}— ZCOV{Mn ,m_}



M, and m_  as functions of n . For the particular
case of symmetric distribution of the components of

Var{R, }=Var{M,_ }+Var{m_} 365  partial sums, Eq. 3.61 applies; therefore, Eq. 3.65 is
simplified to

or

~ 2 Var? M }Varlf5 {m_ 1 p(Mn ; mn)
where p(M_,m_) is the correlation between Var{R_}=2Var{M_}[I-pM_,m )] 3.66
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CHAPTER IV

EXACT EXPECTED VALUE OF THE RANGE

The theoretical expected values of the range for
n = 1,2, and 3 are developed in this chapter, con-
sidering in general that the joint distribution function
of the sequence of partial sums is multivariate not-
mal. In particular, the univariate, bivariate and
trivariate normal distributions are used to derive the
expected values of the maxima M ,M2 ,and M3 5
which in turn lead to the expected values of the range
R, , R, ,and R; . Some of the characteristics of
these distributions are reviewed, derived and sub-
sequently used in this chapter.

4.1 Properties of Multivariate Normal Distribution
Function

Following A. M. Mood and F. A. Graybill
(1963), let W, ,W,,...W_ be an n-dimensional
random variable which is designated as elements of an
nx 1 random vector W by

/W1

v,

wi‘l
This random vector is distributed as an n-variate
normal if the joint probability density of
W W LW s

n

fW) =f(W, ,W,.....W)

1

1 .
- - . Cl T
Gaie . Bel- g u)4.1}

where C is a positive definite symmetric matrix. Its
elements are constants and is the covariance matrix,
i isan n x 1 vector whose elements K, are the
expected values of the random variables W , which
are constants, and C! denoting the inverse matrix
of C and (W-u)" representing the transpose of the
matrix  (W-g) . The covariance matrix C is
explicitly given as

255 Oz -+ Uyq
921 O32 +++ Upq

C= 42
Unl GnZ onn

in which the element o, represents the covariance
of random variables W, and W. , equal to

gij = ‘\/Uii 0jj Py » 4.3

with o, and o the variances of W, and W. res-
pectlvely and Pi; their correlation c0efﬁc1ent it may
be shown for the n-variate normal random
vector W that the marginal distribution of any W, is
normal with mean I8 and variance 0,y

Another important point concerns the con-
ditional distributions. Let the nx 1 random vector
W ,the nx 1 vector y and the matrix C be
partitioned as follows:

W U Cll CII
W= VY u=( '), and C =
w;‘ U2 CZI C22
4.4
with
v, .
Wi = ‘?’2 u;= Hy
W My
/”11, T - L)
Y93 Tag. 0. Boj
and G = . - . 4.5
%1, %2,..., %k



The conditional distribution of WF given W} is the
k-variate normal with the mean

Ut=U, +C., CL(We-10Y 4.6

and the covariance matrix
C11.2=611_C12C-212C21 ’ .
in which C,, , denotes the covariance matrix of

WI"‘ given W;. The partial correlation of W, and
WG < k), given W, ... W, is defined by

%i.(k+1).......n

P =
H(kt1).....n VO (k+1)....n %5.(k+1)....n

4.8

For the particular cases of n=1,2, and 3, the
joint and conditional density functions are given in
explicit forms:

(2)

function is

For n = 1, the univariate density

N L B
(0= G ep(-g (o)

X
£l
X

4.9

with by and o, the mean and standard deviation
respectively.

(b) For n = 2, the bivariate normal density
function is

oy 2\
(2mo, 0 (1 —ny)
1 Xeipr,

s (6

exp{ )

X-p Y- Y-
AT DD 40

22

while the conditional density function
of X given Y is

1
fX1Y)=
N2 Gx(l—piy)
s (X
exp {-————— [X-u
205(1-0%,) X
pXYUX
-, (Y-u)’) 4.11
(c) For n = 3, and assuming

that B =B, =4, = 0, the trivariate normal density
function is

1

oY= “21c

1
anpicn Pt

[c, X? + ¢, Y? +e,Z% +2c, XY + 2, XZ + 2¢,YZ] },

4.12
where
¢, =0 2 c, =0, 0, -
1 Yy zZ vz 3 4 X2 ¥Z Xy zz?
i 2 -
02 xxgzz ze ! Cs nyoyz nyaxz’
e 2 =
CS xxoyy axy ¥ c& Ux}raxz xxo}'z’
4.13
and
g, ,0. .0 ol,0. .0
xx? xy ? xz X MUxy WXz
= = 2 4
C LN S B ol 0 4.1
2
gzx’azy ’Uzz ZX ’Uzy ’cz

Consider the three-dimensional vectors

=

Il
N X
=) o

and C of Eq. 4.14, and the partition

where W¥= and W} = (2) .



From Eq. 4.6 and since U = U, = 0, the con-
ditional distribution of X and Y given Z has the

* = -1 * Q1
mean U Clzczz Wz.Smce
o,
= Xz o 2
C12 o sz & (oz)
Yz
then ox 5
U* U’k 'uX.Z {}'z 'OXZ
= = = 15
1 Xy.z Ky, oy . 4.1
g Py

and using Eq. 4.7, the covariance matrix,C, .,

denoted now as Cx”, is
LS SR 2 _ 2
Ux sz}raz ? axy axzoyz’laz
oo 2 v | 2 .
ax}' Oy zcryzfo'z ? Gy 0yz’lraz .16
which may also be expressed as
Gi.z : ny.z
C, T
y.2 2
ayx.z i Uy.z
20y o2 z
gx(l pxz) ! 0xory(‘ﬂxy pxzpyz)
_ 2 A2
Uxoy(pxy pxzpyz) 2 oy (l ’Oyz)
4,17

where the p’s denote the correlation coefficients
between the indicated random variables. Therefore,
by using Eq. 4.10, the conditional distribution
of X,and .Y given Z,is

f(X,Y1z) = T
2 Xy.Z
{ (g
ex - e
p 2(1 _piy,z) ( UX‘Z pxy'z
x_“x.z Y-'uy.z Y_‘u'y.zz
( g )( o )+( o )]}s 4'18
X.Z Y.z y.2
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and

’ox.z

with p =g, [o, 0o
Xy.z xy.z' x.z2 y.z

) and Oyy.
. given by Eq. 4.17.

z

Similarly, the conditional distribution function
of X and Z given Y is

f(X2Y)= ———
21/C,,
1 X-uy
exp { - [( ) =2p
2(1 _piz.y) Ux.y ALY
X-u Z-u Z-u
X.¥ z.y z.¥
( )( )+ PV A1
UX.}" GZ.Y 4 ( UZ.Y ) ]
with p = = ﬂxz‘yz‘ax_yoz_y and the matrices of
mean and covariance given by
U)(
* & ey o Pxy X
U xz.y " = ¥ , 4.20
z.y Uz
— Pay Y
¥
and o> o
_ X.Y Xz.¥
sz.y -
sz.y’az.y

2 -
Gx(l _piy) ’Uxaz(pxz—pxypyz)
2 2
0,0,(p, Py Py ,) 0, (1=0y,)
4.21

Finally, the conditional distribution function
of Y and Z given X is

1
fYZIX)= ————
27 4/C
XYy.Z
s B 055
exp { - Py
p 21 - iy_z) {2 yz:ix
' Z-pu Z-pu
V.X Z.X y 4 Z.X 2 . 422
( Oy x Oy x o 92.x gt
with p, = ayz_x,’ory_xcrz_’L and the matrices of

mean and covariance given by

o, X
. _ By x _ Fx_ Pxy \
Uex ™ = 423

K, %2
=) \enx )



and 2

2 2 -
o, (1=p3,) 20,000, =P P, ,)

2 2o
P,,) Gz(l il g

xyxz

0y0,(Py, = p
4.24

4.2 Expected Value of Surplus of Random Vari-
ables with General Covariance Structure

The following mathematical derivations deal
with the expected value of the maximum of partial
sums for n =1, 2, and 3. They are performed in
general so that the expected values obtained may be
used for both the unadjusted and adjusted partial
sums. The assumption is made that the departures
(%, - yt) are normally distributed with mean zero
so that the distribution of the partial sums is also
normal with mean zero. In order to simplify the
mathematical derivations the following notation is
introduced:

=8, mlx, =4
¥=8, =(x, ~¥; )y +(x; - ,), and

Z=8,=(x, =y ) *(x, - y,) +(x;=y;) . 425

A. The case n = 1. According to the above
notation the maximum M, is defined as

M, = max(0,X)
Then
(1) M, =0 if X<O0
2 M =X if X>0
The expected value of M, is

EM, }=E{X}= FX 0 dX
L8]

Since X is normally distributed, f(X) is defined
by Eq. 4.9, so that
o1 4.26
E{Ml }-\ﬁi— Gx

Since for a symmetric distribution, Eq. 3.64 applies,
then the expected value of the range is

E{R, }=\/;Z_[Var X]”

4.27
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B. The case n = 2. In this case the max-
imum M2 is defined as

M, = max(0, X, Y)

Then
€)) M2=0 for X<0 , Y<O0
(2) M, =X for X>0 , Y<X
(3) M2=Y for X<Y , Y>0.

The expected value of M, is

E{M2 1=E{XME{Y}, 4.28
where
s K
E{X}= f [ Xf(X)Y)dYdX, 4.29
0o -o°
and v
Ef¥Yi}= ,g _Jme(X,Y)dXdY S

Since the above two integrals are symmetric, the
solution of only one is necessary. Therefore, for
solving E{X} let us use the conditional distribu-
tion of X given,Y , so that

X

=]

E{X}= f f Xf(XIY)f(Y)dYdX,
(8]

£

which, separated into two integrals, gives

(8] =]

E{X}=_j;o £(Y) g XfXIY)dXdY

o0 =]

+E(Y) S XE(XIY)dXdy , 431
o Y

where f(Y) and f(X|Y) are given by Egs. 4.9 and
4.11 respectively, with,u and ,uy,equal to zero.
For convenience, the conditional density function
is expressed by

= (X-=bY)*}

2a?

fX1Y)= exp{ -

1
V2T a
where

= 2 —
e (l—pxy) and b'ny ox}’oy .



With the above expression for f(X|Y), the inside

integrals of Eq. 4.31, denoted from now on by I,

are
=]

I= J Xf(X|1Y)dX
¢

oo

1
= X
£ N 2moa

whose solution is equal to

1
= - bY)? X
exp { o (X-bY)"}

QbY

- {—1( 2 )

bY

+bY [1- 432

E

with ®(.) denoting the univariate normal cumula-
tive distribution function.

For the first inside integral of Eq. 4.31,
denoted by I,, & = 0, so that Eq. 4.32 gives

a
- A 2T

For the second inside integral of Eq. 4.31,
Y , so that Eq. 4.32 produces

a
I =

2 \/ET
api~ (5

I

exp { - 2—(—)2Y21+bY<1>( Y). 4.33

Q=

a- b)

b yriipy e - Y]

4.34
Substitution of Eqs. 4.33 and 4.34 into Eq.
4.3] leads to

(8]
E{X}=— [ f(Y)exp

=

1 a
(-7 (F Y MY+

N3

-b
) Y? MY +

J f(Y)exp
0

1
{-7(

0 oo

+bf Yf(Y)cb(?)dYWb [ YE(Y)®
—00 0

b) Y] dY =E{X} : [fo f(Y)
= S exp
A/ 2‘_!7 -0

]_
[-(a
0

1 b
(-7 @V Y)Y+ [ £(Y)

1 1-b, Q —
expl-7 (5 Y JY]+b [ [ YT(Y)
2 (1-b)
T a

4.35

The above expression basically contains the

following two types of integrals
(8]

1
I, = ;[w f(Y)exp (-5 ¢ Y?}dY
0
and I, =;(me(Y)<IJ(cY)dY

with ¢ = b/a for the first and third integrals
and, ¢ = (1-b)/a for the second and fourth integrals
of Eq. 4.35. The solutions of these integrals are:

0
1
I, = L’ f(Y)exp{-5 ¢* Y* }dY
1
FE—————— ? 436
Ao} +1)"
and =
= [ Y{(Y)®(cY)dY
9 [ co, N
24 27 4.

(c? G':, +1)%

Substitution of Eqs. 4.36 and 4.37 into Eq. 4.35
leads to

2
1

E{X}=

m [a2+b20;]y‘
\ 1 +bo§

[ +(1-bPo2]% 2V
b 1-b

{ e },

[a® +b202]* [ +(1-b) 02]1*

Fmally, replacing the constants a
g (lp )f‘ and pxyox,v‘cr
equatlon becomes

and b by
respectively, the above

a
X

EX}=

VI (var(y - )] %

{o,=p, 0, +[Var (Y-X)]%}. 438

Since the integral E{Y} of Eq. 4.30 is of the
same type as E{X} of Eq. 4.29, Eq. 4.38 by making
the corresponding replacements becomes



a
¥

1
VI Var(y - X1
[Var (Y = X)] #}.

Substitution of Egs. 4.38 and 4.39 into Eq.
4.28 leads to

E{Y}= {o =Py0, t

439

a8 %
oo {7 [VarX]
+.%[Vaxy]%+;—[vax (Y-X)1%}. 440

EM, )=

Consequently, the expected value of the range is

2 1 1
E{Rz}=\/;{;fwarX]/z
by Va Y%+ 7 Va(Y-01%}. 441

C. The case n = 3. The maximum M, is de-
fined as M, = max(O,Sl,Sl,S3) = max(0,X,Y,Z),

or

(1) M;=0, for X<0, Y<0, Z<0

@ M,=X, for X>0, Y<X, Z<X

@) My=Y, for X<Y,Y>0, Z<Y

4) M=z, for X<Z,Y<Z,Z>0

Therefore, the expected value of M; may be written
as

E(M, }=E{XH+E{YHE{Z}, 4.42

where

(=]

X
EX}=/ J
0 -0

e

© Y Y

EtY}=/S f f Y £(X,Y,Z) dX dZ dy 444

0 —o° —oo

and

= Y Y
serf s

L=s]

X f(X.YZ)dYdZdX, 443

Z{(X,Y,Z) dX dY dZ .445

Using the conditional density functions, the
above integrals become

o X X
EX= [ J J XX f(Y,Z|X)dYdZdX,
(8] =00 —0O
4.46
< Y Y
E{Y}= f [ J Y f(Y) f(XZ]Y)dXdZdY,
0= = 447
and
o Z Z
E{Z}= [ f | Zf(@2)f(X,Y|Z)dX dY dZ
0 - == 448

where f(X,Y|Z), f(X,Z|Y) and f(Y,ZIX) are given
by Egs. 4.18, 4.19 and 4.22 respectively.

Solution of the integral E{X } of Eq. 4.46. By
making the following change in the conditional den-
sity function f(Y,ZIX) of Eq.4.22,

i 2 i -1
k =1-p sk = Q2n 0y <% x \/El Y' 449

YZ.X

and

Y- oyp”Xfax
p=—

f(Y ZIX) becomes
f(Y,Z|X)
1
=k, exp {- 7% @ =2, (w+v)},

and the integral E{X } of Eq. 4.46 is expressed as

i X
L

EREK e 6. T I
IS oo

X ¥.X Z.X

1
expl{- 75— (07 =2, W V)JdudvaX  45)

in which
O, 0Py
= —_— c

c =
1 UXOY X 2 OX oz.x

O " %Pxa 45
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The constants ¢, and c, are usually negative for
the linear dependence between the components of
the partial sums. They are equal to zero for the case

of independence (see Appendix). Therefore, the solu-
tion that follows is for c,<0 and czé 0

Replacing -¢, by b, ,and -c, by b, the
triple integral of Eq. 4.51 is graphically shown in Fig.
4.1.

In order to integrate first in X, Eq. 4.51 is
separated into two integrals as

o o
E{X}= kxo},‘xcxz_x [J{c __[m
1 , , —V,’bz
exp{ - 2k, (uv* - 2y, UVt )} 6{
o o 1
X f(X)dXdudv - f S exp{ - —
e blv,fb2 2k,
-v/b,
(u? —'2,0”_)( w+v?)} S ’ X f(X) dX du dv]
\ ~u/b, 4.53
L ! integration region
I/ /
u=-b X
= -V
+¥ A ‘bzx
Fig. 4.1 Integration region for the triple integral

of Eq. 4.51.

The integration of inside integrals of Eq. 4.53 leads to

o, o
E{X}=kxay_xgz.x JZT[—-L:‘
1 4 5 2
exp{-3 V' } [ eKP{'Zk (u-py, ¥}
—oo 1
2 lkz}f0 exp{ '2‘1(_‘1
. _ i _
wart Loml-gia® I L, el-TE

(u-p,. v)*}dudv-

VZI.X

0 1 0
'j;o exp{wszvz}__fm
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1
exp{ - 7%, (u- ,cvyz_xv)2 }du dv -

o 1 . 0] 1
- [ epl-g kS expl-7 WV v
=00 biV/bz
Y daudv ]
= N u av
k1~f'1-:—4 4.54

in which the constants k, and k _ are given by Eq.
4.49 and k, =k3 ,and k4 are

1+ (b, 6,)° 1+(b,0 )
k2 i 2 ? k3 = k + b 3 2
(,0,)  +(0,0,)
2
B k1 +(b10x) .
W 4.
k,(b,0,)

Integrals of Eq. 4.54 have the general form

9 1 0
I= [ exp{=5a v} [ exp
Zoo a,v

{_

(a,u= asv)2 }du dv

2a 4.56

3

and their solution depends on the lower limit of the
inside integral. Therefore, in order to find E{X},
and subsequently E{Y } and E{Z} , the following
cases of Eq. 4.56 were first solved:

(a) For 0 < a, < oo
NV 1 .
[=(2n) —-—ai—[— arctan (———)
\/al a, 2n Va, Vag
a5
+— arct )] 57
oo ae (\/?\/@ )] 45
(b) For a, = <,
Va, 1
I=Qg)~———— [
va, Va, 4
3 g )] . 458
— arctan (———— x :
2 Va, Va,



() For »eelim, <0

1=(2n)——a£3——[-2i
1 4

Iazla4+a5 1

Vi Vi, H

ag

)

arctan (

arctan  ( 4.59

and

Fora2=-°°

@

I=(2n) \fat\/_?ia_
i 4

1 1
[F + 57 arctan ( 4.60

____a.S__)]’

in which the angles are reduced to the first quadrant
and measured counter-clockwise.

The first integral of Eq. 4.54, denoted by L.

with a =1’31_ - =kl » 3, =1 and
A =0, o is obtained from Eq 4.60 as
1 =(2vr)\/kl
[1 " 1 3 (pvzx y
b arctan . 461
% \"El
The second integral of Eq. 4.54, denoted
by I, with b, ™ kz’ a, blsz,
a, =kI ,a, =1 and A, =0, , is obtained from
Eq. 4.57, as
L =02 )V!_kT[ 1 i b, - b, Pys.x
=(2n arctan (——- """
2 27 ( — )
k3 b2 \/kl \/k_z

o

YZ.X

1
ta— arctan (—(————

The third integral of Eq. 4.54, denoted by
I3,withal=k2 8y = °=>,a3=kI . 4"land
& =4 , is obtained from Eq. 4.60, as

0
vZ.X
arctan ( ——————)]

vk, \/’k:
4.63

4.62

¥Z.X

Finally, the fourth integral of Eq. 4.54, denoted
by I,with a = ka,a2 = blsz, iy = 1y

1
a, = ka‘; and a; = p”_x}kl\/l-(;, is obtained

from Eq. 4.57 as
¥ o (2m) vk,
MY k, VEs VT(:_
blklk4 "bz pyz‘x 1
( ) + 5 arctan

kK VE,

pyzx

[ 55 arctan

o Ve 464

Substituting Eqs. 4.61 through 4.64 into Eq.
4.54, and since Eq. 4.49 gives k.o yxTz VK = 1/
(2m) , it follows that:

E(X) = U;,-, {}1_ 71-— arctan
,0\;:kix )= \/1_ —— arctan
(E’fﬁrﬂ AL
blkik\jgs \/k:z.ﬁ +§-};— arctan
p

__¥z.x

4.65

Solution of the integral E{Y} of Egq.
4.47. Following a similar change of variables as in the
case of the integral E{X}, Eq. 4.47 becomes

o Y Y
E{Y }- k}'ox YJZ ¥ Of ‘{g _oJ:
Yf(Y)exp{— =1 =2 uv+v ) }du dv dY
1 4.66
in which
Pl 2 i i
kf - -pxz‘y ’ ky ‘(ZH ox_yoz_y \/k_lr ) I 4.67
b’ 90, P
=¢, = ——— .
1™ a, 0, .,
g, . ~-0_p
' ' ¥ 2 vz
db, =-¢ =
and b, c, 5,7, ) 468



integration region

Y=u/b,

Fig. 4.2

Integration region for the triple integral
of Eq. 4.66.

with the constants ¢, > 0 and, cz' < 0 (see
Appendix). The integration region of E{Y} of Eq.
4.66 is graphically shown in Fig. 4.2.

In order to integrate first in Y, Eq. 4.66 is
separated into two integrals, see Fig. 4.2, as

T 0O o0
EYFk o o [T J
exp { - : ? -2 uv+v?)}
p 2k"l pxz.y
- v/b,
Y E(Y)dY dudv+
0
o “Hyv/b,
+ [ exp{-=—— (u> -2p_, uv+v?)}
—0 g 2k, xz.y
-v/b,,
J ., YI(Y)dYdudv] . 4.69
u/b1

The integration of the inside integrals of Eq.
4.69 leads to the following four integrals:

O'

EfY}= kyax yo7 Y JIr
o

1
L eXP{-;(U P

[ f exp{ - vz}

v)? }du dv +

XZ.¥

+j’ exp{ - kvz}_j' /b

2

29

1
= — 2 L
exp{ 2k'1 (u pxz'yv) }du dv
= f exp{ - k v: 3 f
1 2
exp{ > (U-p,, 7 Judv-

1

0 1, o 1 -
- J_expl{-7k, v} ;rb*lv/b'z exP{“’f(\/‘C s
pxz.y

VK,

v’ }duadv] , 470

where the constants k' and k are given by Eq.
4.67 and k ,k and k are

1+(b,0,)
k! = S el
2 (b2 Uy)2 3
k +(b'lcary)2

k;(b;ﬂy)z

1+ (b)0, ?
k, +(b'1cry)2

r

and k4=

Since the four integrals of Eq. 4.70 are of the
same type as those of Eq. 4.56, their solutions, given
by Eqgs. 4.57 to 4.60 will also be used here.

The first integral of Eq. 4.70, denoted by

L}

I vwith &, =1 .8, =54, =kl 8, =1,and
a; =p,, , »is obtained by using Eq. 4.60 as
| 1 pxz.y
I=CQmvk [1 + arctan (—=—)] .
1 1 L4 In
iy

4.72

The second integral of Eq. 4.70, denoted

by I, with a, =k}, a, =-0b//b), 2, =k/,
a, = 1,and 8, T Py, S obtained from Eq. 4.60
as

T N

=(4m) —= | — 3, arctan
2 g 2w
v
b +b, pxzy

b \/1:\/1:) Q—Mctan(m]



The third Jnteﬂral of Eq. 4.70, denoted by

I , With al-k =M,33=k1,a4-.,and
a il obtamed from Eq. 4.60 as
I "(2‘:r)\i(_’L [l + ]
3 LY S 7
vk,
pxz.y
arctan ( 3] - 4.74

Fmally, the fourth integral of Eq 4.70, denoted

byI with al=k; b/b,a =1,
2z = \/E4,and a; = p,, y{‘k \/:', is obtamed

from Eq. 4.59 as

() vk} |
I’ =_’—r_——- [_ =y
4 \/k_l \/k_:a \/l?; 2

bl kl k4 * b2 pxz.y

vy, VR,

arctan (

+ ’}‘l_ arctan ( Pxay )]
2T n ) .
k) VAT VA

4.75

Substituting Eqgs. 4.72 through 4.75 inEo Eq.
4.70, and since Eq. 4.67 gives k o, o, vk '=1/
(2m), it follows that:
9y % 1

L4

V2

N 1 . (‘oxz.y) 1 1
s—arctan (—==——) - —[
g \/k_1 \,/}?;[4

E{Y}=

b 'O)(Zy

WW)

1
+ 57 arctan (

1 1
+_"——_"'—: [
r T 3 Q]T_
\/kl vk \/k4
b’l kpl k; +b2 Pyay

arctan (———; - ;
by 16, VK, VK,

L i )
_F arcian r—“ﬁ: .
k) Vi VG 4.76
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Solution of the integral E{Z} of Eq.
4.48. Following a similar change of variables as in the
case of the integral E{X}, Eq. 4.48 becomes

o ¢ Z ciZ
= Z f(Z
EZi=ko,,0,, [ L [,ZT®D
} 2
exp {-Zk" (u* = pry_zuv+v )}dudvdZ |,
1
4.77
where
"o 2 _ .
kl_l_pxyz .,k (Z?Tﬁx_zyz\/‘k )1
4.78
bu___cr;_a_oxp b”_n_gz—'oyp
1Y 0,0, » by =c, 5,0,
4.79
with the constants ¢, > 0 and,c, > 0 (see

Appendix).

The integration region of E{Z} of Eq. 4.77 is
graphically shown in Fig. 4.3.

\fmegr-;:

lon fegion

Fig. 4.3  Integration region for the triple integral

of Eq. 4.77.

In order to integrate first in Z , Eq. 4.66 is
separated into five integrals, see Fig. 4.3, as follows:



(8] oo

I exp { 2 W =2, uv +v?) }OJ' Zf(Z)dZ dudv+

o
E{Z}=k, 0 (S

zxzyz

oo (=]

o
+ [ | exp{- W=2. . w+v?)}[  Zf(Z)dZdudv+
—= 0 KyaE u/b

2%, 1
< 0 1 oo
+ exp{ - u =2 uv + v Z f(Z)dZ dudv+
fO Jm p{ zk.: ( Pxy.z )} {;b; @ uav
+ fmexp{v ! (W?-20 ., uw+vi)} fm Zf(Z)dZdudv-
2k: x¥:2 u/b’l'
- W, o
[ f exp{-— (*-2p  ,uw+Vv)} [ , Zf(Z)dZ dudv] . 4.80
0o o : Y u/b

1

The integration of the inside integrals of Eq. 4.80

leads to
i K e BN 1 2
E{Z}=k, 0, ,0 vz = [__rm exp{-=7V }J_'mexp{--z—kT(u x!”v) }du dv=
0 1 o 1 x
- {m exp{—fk;vz}oj; exp{——z-(\/lzz u- k,,\;,;,,. v)? }dudv -
0 1 " l
- [ exp{-75k, v} J’ explez—rlu=p, v)2 }du dv +
—o0 2k
0 1 . o 1 Pxy.z
+ [ expl-7Kiv} [ exp{-3 (VhGu=— v)? Jdu dv +
oo —o0 kl.\/E:
+ f exp{ - k"vz}f r—_l_( )? }du dv -
I exp 7 y exp{-2.~ u-p,, V) Hdudv
fb 1
_J'O exp{ ‘Lk" v} _fo exp{ - 7(\/1?1: v)? }dudv] .
b "2 " 0 4.8
MR %, k) \/E_ :

1 2
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where the constants k! and k are given by
Eq.4.78,and k) k7 ,and k] a
" 2
) 1+ (b2 0,)
(b o) 4.82
1+(b] 0,)? k4] o)
k” = " " ? and k" = H—
K] +(b] 0)? 4 ki (b] o

Since all the integrals of Eq. 4.81 are of the
same type as those of Eq. 4.56, their solutions as
given by Eqs. 4.57 through 4.60 are used here.

The first integral of Eq. 4.81, denoted by I

withal=1,a2=-°°3'k;'4=l,
and ag = Py, isobtained from Eq. 4.60as
{217)\/1EF [ arctan ( ). 483
Ft 27r \/Er

The second integral of Eq. 4.81, denoted by

I;,witha =k =e a3, =1,a, =vk; and
ag = p”_z[k';\/f" is obtained from Eq. 4.58 as
(2m) \/l?lr 1 1
L= = [-7*
2 \/kT \/E'T \/E’T 47 2n

‘cyz

arctan( "\A?"J\/-’T.)}

4.84

The third integral of Eq. 4.81, denoted by 17,

with a, =k;’,a2=°°,a3=k;',a =1,and
e ™ Ps is obtained from Eq. 4.58 as
vk
3 " T
vk}
pxy.z
arctan (——\/l?r )] . 4.85
VKT VAG
The fourth integral of Eq. 4.81, denoted
byl , _with a, =k3,a = = g, F 1y

a \/k4, and 8y = pxyz "\/ 4 is obtamed
from Eq. 4.60 as

(2m) ""El 1 1
I” o P T YL R T
¢ \/RT Vi;a VEZ [4 s

p)(
arctan (

¥.Z
e k] § 486
Ky VG Vi
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The fifth integral of Eq. 4.81, denoted by I

with a, “k;, 2‘b"/b" -k", 4=l,and
dg TP s is obtained from Eq. 457 as
VKT
IH’ _(2,”) \/F [2_
" ( -b pxy z )+ 1
arc an ]i' n n r
Vv
pxy z
arctan (———- \/l?r \/l?r 4.87

Finally the sixth integral of Eq. 4.81, denoted
by 15, with a, = kf a, =blfpll,a
a, =vk, and ag = p,, /K] \/k_ is obtamed from
Eq. 4.57 as

(2n) \/Erlr 1
= = = |
6 \/]?;r \/‘E; f—ﬂ'k4 Ir
" " n "
’ (bl k1k4_b2'pxy.z - 1
arctan —
bV Vi T

arctan ( 4.88

I
k] \/k; \sz ’

Substituting Egs. 4.83 throﬁgh 4.88 into 4.81,

and since Eq. 4.78 gives k o 20y, z\,/k_]"= 1/(27),
then
c O Ii 1
BZr = 7t
(ﬁ I 1 [1 . 1
arctan (——=— — [z m
\/1?1' \/‘E; 4 " 2n
n (b “E,,b B8
arctan (—————=—
b, vk vk;
1 1 I

m T

Xy.z 1

u \/E!r\/—rr I
" n 1] n
bykiky=by0.,,

AV

arctan (—————=—

arctan (

i1 ¥ = 4.89



Substituting the derived expected val-
ues E{X},E{Y} and E{Z} as given by Egs. 4.65,
4.76 and 4.89, respectively, into Eq. 4.42 gives the
expected value of the maximum M; and con-
sequently the expected value of the range R,.

4.3 Expected Value of Range of Independent
Random Variables with Changing Standard Deviation

The expected value of ranges R, , R, ,
and R, for independent components of partial sums
are derived here based on the above derived general
expressions.

For n = 1, Eq. 4.27 holds without any
modification.

For n = 2, the difference Y - X of Eq. 4.25
is X, - yi;therefore, Var {Y-X}= Var(x, - Vo= 0‘22 ;
Furthermore, Egs. (7) and (8) of the Appendix give
Var X =07 and Var Y = 02+0},s0 that Eq. 4.41

1
gives the expected value of the range R, as

E{R,}

71 1 1 1
:@[701+502+§(01 +0'i_)ﬁ] . 4.90

For the particular case of ii.d. random vari-

[Var X]” = o, = 0, , so that Eq. 4.90

ables, i 5%

becomes
2 1 ;
E{R, }=\/;{ [ Var X]* +5 [Var V2 1

By using the notation S, = X and S, = Y , finally

5 5 5 ;
E{R, }=\/1—T-{{Var S,i%+ y[Vars,]*} 491

which is in agreement with Spitzer’s formula given by
Eq. 2.23. For the particular case of the standard nor-
mal variable, Eq. 4.91 further simplifies to

) 1
E{R2}=\/;[1+5] ,

in agreement with Anis’ and Lloyd’s formula given by
Eq. 2.9.

4.92

For n 3, the expected values
of X, Y, and Z are first evaluated as given by Egs.
4.65,4.76, and 4.89, respectively.

Evaluation of E{X} of Eq. 4.65: Substitution
of p of Eq. (17), and constants k  and k,,

and i'(z'xof Egs. (19) and (20) of the Appendix leads
to

: 0 1 0 d i
—_—=0, —= = an
vk, Vi,

VZ.X 2

V iEI % "

g

which substituted into Eq. 4.65 give

g 1 1 o,
E(X}= —— [g+ 7 arctan (g2)] . 4.93
5 A 2. 3

V2T

Evaluation of E{Y} of Eq. 4.76: Substitution of
Pypy ©of Eq.(17), and constants b, and b, k|

and k) ,and kj and k, of Egs. (21), (22), and
(23) of the Appendix leads to

| Pyz.y

p— '_‘0 . T =0 )
VK, vk
1 _ o,
VE VK VR, (0] + )"

and
brl kl k;l * b; pxz.y

RV A

which, substituted into Eq. 4.76, gives

E(Y}= 2 [I+1 95
v o4t (g§+a§)%1‘
Since Eq. (8) of Appendix,

’ s V2
gives 0 = (o2 + 03)", then

_ 1 1 1 o2, 2%
E{Y}= __EFIZ 02+I(01 +O’2) ] . 494
Evaluation of E{Z} of Eq. 4.89: Substitution of
Pry. Of EQ (17) and constants b, and L S

and'zk; ,and k; and k; of Egs. (24), (25), and
(26) of the Appendix leads to

pxy‘z 01 03

1

B 24 2 2%
0,(0] +0; + 03)

I o,

P S TRy B )
\/'Ez (0 +03 +03)




"o "
b, —b Peys Oy

1
R A NN

2 24%
_ (02 +03) 'OxY.z
(O} +o3 +a)" K VKTV,
2 23%: LAV R
_ 03(02 +03) b1k1k4 b pxy.z
- 2 2 24% ’ " ] 0]
0,(0 +02 + ) bj k] V’k3 \/k4

2 2 2
0,(0] +03 +07)

2 z
03(02 + 03)%

Substituting the above expressions into Eq.
4.89, then

Bzl (L]
o 14 m
0103
arctan ( % ¥

2 2 2
0,(0] + 03 +03)
o 1 o

3 | 2
[ *+ 37 arctan (W)] +

(of + o§ + a_i)"&

2 o 2%
. (03 +03)" [I 1
gl gt MZ3W
(01+02+03)
1, 24%
05(03 +03) 1
arctan ( = )_??

2 4.2
0,(0] +03 +07)
N L

0,(07 + 03 +03)

2, 2%
0,(05 +a3) :

)1 k.

arctan (

Since Eq. (9) of the Appendix
gives 0, = (ol2 + 022 + 6%)1’5, the above equation
simplifies to

1 1 1
R el e e
E{Z}= V’jﬁ-[‘; 0, +7(0; +03)
1 2 1 g
+ (04 + 02 +02)* + 0, 5 arctan -ﬂ% +

9 %3

IR
0,(0] o35+ 03)

1
+(0} +a3 + og)% 5arctan (
4.95
Substituting Eqs. 4.93, 4.94, and 4.95 into Eq.

4.42, the expected value of the maxi-
mum M3 becomes

w] -

1 1
EIML s ol o, i)

V2T
1
]}& 1
+gh(? e )or (e 2ol x (ol vod +ol)*]
1 g, 1 I
+0, 5 arctan (5—3) +0, =5 arctan (-gl—)

0'03

w1
+(ai+a§+o§)”ﬁ—arctan( ol B

2 4 2 T
o,(0] to + 03)

Consequently, the expected value of the range R 4 I8
given by

2.1
E{R,}= \/—;{E(oi +o,+0,)

1 1
+7 [0 +02)* +(02 +03)" +(o} +0] +0})* ] +
1 g, 1 7y
+0, 57 arctan (0—3)+ 0, 5, arctan (*(',T)

% 9%

+(a +o +0 )""2 7 arctan (

%) T -
2(0 +o +o )“‘
>4.96

For the particular case of i.i.d. random vari-

ables, or Wi = G TS,

[Var X] % = [VarSl]"’& =0,
[Var Y]* = [Var 8,1% = (o? + 62)" = (02 + 62)*

[Var Y]* = [Var $,]"* =(0? + 0 +0%)*

Eq. 4.96 takes the form
2 1
ER, }=v/ 2([Var s, ]

1 %, ) %
which is in agreement with Spitzer’s formula given by

Eq. 2.23. For the particular case of the standard nor-
mal variable, Eq. 4.97 simplifies to

E{R }—f[l

which is in agreement with Anis’ and Lloyd’s formula
given by Eq. 2.9.
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4.4 Expected Values of Range of Equally Dependent
Random Variables (Exchangeable Variables)

Exchangeable random variables have the pro-
perty that the variances are the same, and the
correlation between any two variables is also the
same (M. Loeve, 1960). The expected range of this
type of variables is of importance, especially when
deriving the expected adjusted range as given in
section 4.6 of this chapter.

Following D. B. Owen and G. P. Steck (1962),
exchangeable variables may be generated by

x,=Vp e +VT=p e, 0<p<1l, 499

t?

in which e and e, are independent normal random
variables with mean zero and variance unity,
with E{x, }=0, Var{x, }=1,and E{x, x _ }=p

For n = 1, Eq. 4.27 holds without modifica-
tion. For n = 2 the difference Y-X of Eq. 4.25 is

equal to x,-y,. Since an equal variance is assumed,

then s
_ Var {Y-X}=Var {x,-y,}=0

Because Eq. (29) of Appendlx gives Var X =
Eq. 4.41 becomes
\/5 ; Wt %
ER I-VT {[Var X]”* +5 [Var Y&t
With the notation S,

=Xand §, = Y , finally,

2 1
E{R, }=\/ﬂ—_{[\farsll"2 ta[Vars,1%}. 4.100

By using Egs. (29) and (30) of the Appendix,
the explicit equation for the expected value
of R, becomes

2 )
ER,V 7 0[1+—\/,L,. (1+p)*] . 4101
For n = 3, the expected values

of X, Y and Z are first evaluated as given by Egs.
465, 4.76 and 4.89, respectively. Evaluation

of E{ X} of Eq. 4.65: Substitution of Disi of Eq.
(39), and constants b, and b ]tc1 and
k, and k, of Egs. (40), (41) and (42) of the

Appendix, leads to

35

Pys. 1 VZp
_ﬂ=(1+2p)% s T ’,3 s
vk, VK, (1+)p)

bl _b2 pyzx =0

b, vk, VEz ,

1
= B
vk, \'Ez "Es
b1k1k4 T e _(1—p)(1+2,0)%'

ki, VK, 2 ,
pyz.x

k!‘3 “k4

and =p(1+2p)*

By substituting these expressions into Eq. 4.65,
it becomes
1
{lz+2
VI _e
b (1)

(1-p)(1+2p)"

1
- 5— arctan

a
E{X}_\/T?

arctan [(1+ 2051 -

+ 2117— arctan (p (1+20)*)] }.

After simplifying, we finally have

VI
\/_ FT T gy

1
+5-arctan [( 1+ 20)*]

EX}2——

1+20)%
2T

-p S arctan [ 4.102
g

Evaluation of B{Y} of Eq.4.76: Substitution
of p_, . of Eq. (39) and constants b1 and b
k: and k , and k, and k, of Egs. (43), (44) and
(45) of the Appendm lead to

pxz.y_o 1 _ \/7 P
Y S O L
b +b.p
1 2 A 1

T2 =(1+20)%

b, v, Vi,



1 _ (1+p)*

T T
b, ki k, +b) Piss (1 +2p)"
b,k Vﬁ‘_’; "554 P 1
g e 0
and ————— =0 .
C R,

By substituting these expressions into Eq. 4.76,

it becomes
o

¥
E{Y}=
1 —
1 \/2' 0 -
{g= (i ),,2 [4 5= arctan (1+2p)*] +
(1+p)* 1 (1+20)"
ho=m—— g arctan[=————"] =
V2 2w [ p ]
Since Eq. (30) of the Appendix gives g, = V2
o (1 + p)”* , then
o VZ ;
E{Y}='—5: {—4(1+p)/’_
+ ’f“z
+(1+p)2— arctan | p) ]-20
l I'_r’:~
57 arctan (1 +2p)" } 4.103

Evaluation of E{Z} of Eq. 4.89: Substitution

of p,, , of Eq. (39) and constants b/ and b, k/
and k, , and k and kj of Eqgs. (46), (47), and
(48) of the Appendix, leads to

Pyy.z 1 1 _(1"'29)%

i V3 . V3

-8 b )

" [ " = ( 1 + 2p) ¥

by Vi V]

1 V2 (1+2p)"

VKIVKRIVK, 3 (1+p)"
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n " n N %
b11"'11(4 b, pxy.z_ 3(1+0)
bk! VK] v V2(1+20)%
- VZ(1+20)"
k] ViV, 3(1+p)*

By substituting these expressions into Eq. 4.89,
it becomes

o,
E{Z}-\/__ +T arctan(\—/_-—
%
(i/i3—2m{4 ?l—zlrctan(l+2,o)”2 ]+
NRCICLE) S N
\/j(l'l'p)!’i 2 H
vZ(1+20)%
arctan ( —————— T
3(1+p)
& arcan(V/_(1+2)% )
Since Eq. (31) of Appendix

gives 0, = /3 o(1 + 2p)”*, the above equation
simplifies to

g
E{Z}=
v \2m
1
{(1+2p) [z + 5 arctan (1+20)% 1+
L, YZ (1+2%) 5
S & (l+p)1/ 73 (1+2p)" }.4.104

Substituting Eqs. 4.102, 4.103, and 4.104 into
Eq. 442 gives the expected value of the maxi-

mum M3 as
o

V2

E{M,}=

1
(L

V2

1
(1+p)””+\73_ (1+20)%] .



Consequently the expected value of the
range R, becomes

\/127:0[1

1 )
+— (1+p)*+

V2

E(R,}=

N (1+2p)%] .

4.105

Equations (29), (30), and (31) of the Appendix

give [Var X]” = o,[Var Y]% = ov/2(1 + p)*,
and [Var Z]*% = o/3(1 + 20)"%, and a sub-
stitution of S, =X, §, = Y, and S; =2, as
indicated by Eq. 4.25, leads to
. /2_ .
E{R3}— 7 {[ Var 51]
2 [ Vars,]* + [Vars 1% } 4.106

In summary, the expected value of the range
for n = 1,2 and 3 of exchangeable random vari-
ables are:

2
E{RI}=\/;[Va:sl]V=

2 1
E{R,}= ‘/;{Ivmsl]‘é + 5 [Var§]* 1,

2 %
ER,}= /7 {[Vars,]

1 1 ;
+ 5 [VarS]% + 5 [VarS,]% } .

As a conclusion, the general expression for the
expected range of exchangeable random variables can
be written as

2 n
E{Rn}=\/~; z i [VarS]* , 4.107

in agreement with Spitzer’s formula (Eq. 2.23).

4.5 Expected Values of the Range of First-Order
Markov Linearly Dependent Variables

The exact expected values of the range
for n = 1,2, and 3 are given here for the case of a
stationary first-order Markov model.
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For n =1, Eq. 4.27 holds also without
modification. For = 2, Egs. 4.100 and 4.101,
valid for exchangeable random variables, are also valid
in this case because only two random variables are
considered.

For n = 3 the expected values of X)Y,

and Z given by Eqgs. 4.65, 4.76 and 4.89, res
pectively, are first evaluated.

Evaluation of E{ X} of Eq. 4.65: Substitution

of p,, . of Eq. (59), and constants b, and b, ,
k, and k, ,and k; and k, of Egs. (60), (61), and
(62) of the Appendix, leads to

%
Brvax _(14p) , 1o p1tp)*
Wk, NN
b -b 2 Pys 5

b, vk, vk, ) \/_(1+p)”“ ’

1
———— =
VK, vk, VK,
I3‘1k1k4 bz pyz,x < (11)

+ ?
bk, Vi vk, PP
'Oyzx
—== = p(l+p)

k, Vi, vk,

By substituting these expressions into Eq. 4.65,
it becomes

E{X}=\/02igr {‘l‘—+ -z.l?arctan (1+p)
p(1+p)* 1 1 p
_-{/—E_L [4—- 3, arctan (\/5(1+p)”‘3)] -

- p[ﬁ arctan (ﬁ}_ﬂﬁj)*’% arctan (p(1+p))] }

which simplifies further to

¥
E{X}=

o 1 1 p(l+p
_1_ g
v @z
1

+ 5 arctan (1+4p) +

1+p)*

V2

-I.

1 p
R ) a0



Evaluation of E{Y} of Eq. 4.76: Substitution of
Py,y Of Eq. (59), and constants b; and b'2 ,l::'1 .
and k, ,and kj and k, of Egs. (63), (64), and
(65) of the Appendix, leads to

Pxzy _ P 1 _ p(1+p)"*

KT TVaamyE VK V2

b; +b; pxz.y 1 (_]+p)]’&
— = = =+ o -~
bk Vi, O KRR, V2
bikikitbia,, 2 Pay o
TR, P GG,

By substituting these expressions into Eq. 4.76,
it becomes

o
v 1 1 p
E{Y}s — {5+ 5=— arctan [- —————
Y= o gt g aretan [~ 7 )

p(1+p)* 1 1
we—————— [ = y— arctany( 1+ +
(1+p)* 1 21
+—-—-—-—ﬂ o arctan(;)—ﬁ—
p
arctan (-5)] }
Since Eq. (50) of the Appendix

gives 0, = o2 (1 + p)”, this expression further
simplifies to

E{Y}= L (1-p2

Vs ;
+_¢2; (+p)* - P(l‘hﬂ)# arctan (1+p) -

. w1 —L2
V2 (1+p) 3, arctan [\/2—(1+p)1é]} 4.109

Evaluation of E{Z} of Eq. 4.89: Substitution of
p of Eq. (59), and constants b;’ and b,: ,k’l'

Xy.z
and kj ,and ki and kj of Eqgs. (66), (67) and
(68) of the Appendix, leads to

Prvs _ _ (*0) 1 (1+p+0%)
VKT (Brap2e?yt 0 VK, (3+apr2e?)”
bl b2 ny.z (l )
= (1+,
I _ (1+p)* (24p)

VEIVIGVEG V2 (3440 +207)%

" " " " l',f’z 2
bikiky —by 0., ., . (1+p)*(3+2p+p©)
bk VKT Vi V2(1+40%)
Pxy.z (1+p)°12(24p)

ki VK] vk}  VZ(3+4p+20%)

By substituting these expressions into Eq. 4.89,
it becomes

a 2
- z 1 (1+p)
Z}l= + T 1
E{Z} 5 {%; 5 arctan [_{_3+4p+2p2) 71
2
(1+p+p”) ! [4L 2
(3+4p+2p*)"
b&
1 (1+p)"(2+p) 1
4o apitan ClEpI 4 oo~ I £l
217 arc an( p)] \/2_(3+4_p+2p2)')"2 [2
1 (1p)°>2(24p)
T2 e (a2
1, A9 3204’ )\”
— 7. aIcian 7
2 VZ (L+ptp?)

After further simplification and since Eq. (51)
of the Appendix gives 0, = 0(3 + 4p + 20%)%,
then

o 9 2yl 1|
B{Z}= ?2_;{( I+p+p*) [g + 5 arctan (14p)]

2+p)(1+p)" 2(1+p)*
+——-( 3(2_9) —Lzﬂ arctan [\/—7(‘0 P) ]
, 1+p)?
+(3+4p+20% )" [+ + 7‘— )y
(3+4p+2p%)" [ — arctan ((3+4p+2p2)V£}1}0



Substituting Eqgs. 4.108, 4.109, and 4.110 into
Eq. 4.42 gives the expected value of the maxi-
mum M, as

w o B {i 1
E{Ma}— ﬁ [4 +2 5 arctan (1+p)]

+/2 (1+p)* [3-' 21— arctan (m)]

1 2
(1+p) )

+(3+4p+2p?)* I+ oL arctan ((—————
&+ 2 ((3+4p+2pz) -

Consequently, the expected value of the range R; is

ER, b= /2 o (3 +2 - arctan (140)]

% L 2+2p—p°
+4/2 (1+p)* [4 + -zlgarctan (m
1
2

i
T arcian —2_%"
(3+4p+2p )4.“1

)1+

+(3+4p+2p?)" [‘k +

Equations (49), (50), and (51) of the Appendix

give [Var X]* = g, [Var Y]* = &/2(1 + p)”,
and [Var Z]%* = o(3 + 4p + 20>)%. A sub-
stitution of §, = X, S2 = Y,ancl,S3 =Z, as
indicated by Eq. 4.25, leads to
2 3 2
ER)= /7 (7% 77
arctan (1 +p) ] [Var Sl]l"‘: +
1 +2p - p*
+ [ g+ 57 arctan ( e )|
il 2vZ p (1+p)*
, 1+p)’
[Var § ]’(‘+[4 arctan(——g—p)—,ﬁ)}
(3+4p+20%)

[VarS,1% },
or
2 ¥
ER,}=/ 7 {¢,() [Var S,1

1 " 1 ,
tc,(p) 5 [Var 8,1 +c,(p) 37 [VarS;]” 1,
4.112
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; 3 2
with ¢ (P)=[7+ 57 arctan (1+p) ],

2+2p-p?
2vZp (1+p)

1 1
c,(p)=2 [z + 55 arctan ( g

and

(1+p)?

1
Emctan(m 1.

1
@) =307+
For the particular case of p = 0, ¢,(p) =
c,(p) = c;(p) = 1, then Eq. 4.112 simplifies to

2

in agreement with Spitzer’s equation (Eq. 2.23).

4.6 A Note on the Expected Value of Adjusted Range

The expected values of adjusted range of
exchangeable random variables are shown to be given
by the same formula as for the expected values of the
range of a transformed variable which also shows the
property of exchangeability.

Let us assume the inputs are exchangeable vari-
ables, as defined in Section 4.4, while the outputs are
equal to o:in , with 0 <a< 1 and En the
sample mean. Then the adjusted partial sums, as given
in general by Eq. 3.2 are

5¥=0,

St= 84 (x -aX )

8= St +(x,-ax), 4.113
B¥= g ®ifk —aX ).
By using the transformation
W% 0 Ay, - 4.114
this new process, W, has the expected value
Ew }=E{x,}-aE{x }=0, 4.115



and the variance, using Eq. 4.114, is

Var {w,_}=Var {xt}
+a? Var Ix, b= 2acov {x,,X_ }. 4116

Because the variance of the sample, X is

= 1

Var{x }= = Var{S_ }= P [no’
n—-1 n-i

+ 2 iEI j=21 cov{x, , xHj}] :

and since the original process x. has equal auto-

correlation coefficients, with Cov x. x £ }= d%p,
the above equation becomes
_ o
Var{x_}=— [1+(n-1)p] . 4.117
The covariance of x, and "fn is
1 n
Cov{x, ol O _§1 X, }
=
0_2
= —[1+(n-1p] . 4.118

Substituting Eqs. 4.117 and 4.118 into Eq.
4.116 leads to

Var {wt 1
2

= —E— {n+a(a=2)[1+(n=-Dpl}. 4119

The covariance of the process w, is

o
Coviw,w,,, }= E{x x,, }+o® EX_}

= aE{xt)Tn}~ aE{kafn}.

Substituting Egs. 4.117 and 4.118 into the above
expression leads to

ch-[wt Wk }

2

= _g”{"ﬂ +a(a=2)[1+(n=-1Dpl}. 4120

Therefore, the autocorrelation function of, W, is

np+ta(a-2)[1+(n-1)p]
n+a(a-2)[1+(n-1)p]

p (wt)= 4.121
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Equations 4.115, 4.119, and 4.121 show the
process w, to be second-order stationary and to
have equal autocorrelation coefficients, independent
of the lag k, that is, w,is a sequence of exchange-
able random variables. This property shown by the
components of the adjusted partial sums is important,
because, as shown in section 4.4, the expected value
of the range of a sequence of partial sums whose
components are exchangeable random variables may
be obtained by using Eq. 4.107.

For the sequence of adjusted partial sums
So’f ; Sl* . Sz*, Sn"‘ , the expected valug of the
adjusted range is

*1 = 3 . ar], %] ¥
E{R? }= /;' 'El i [VarS¥]* . 4.122
1=

In the case of independent standard normal
variables and o = 1, Eq. 4.1 simplifies to the
equation given by Solari and Anis (1957). For com-
puting the variance of S, for this case, Eq. 2.2 gives
the general terms S, expressed by Si*= Si - iSn;’n i
so that

Var{S¥ }= Var {§,}+ (Hi)z

i
Var{s. t=2 ¢ Cov{Si,Sn}.

For i.id. and standard normal variables, Var {Si}=
i, Var{S }=n, and Cov{s, , Sn}= i, so that

Sn = i, so that

i
Var (8#= = (n-i) . 4.123

Substituting Eq. 4.123 into Eq. 4.122 gives

2 n (ni)*
BRIV & 7 o7

n on 2(ni)”
REVAVY 30 M
il ni

From Eq. 224, the expected value of the
adjusted range, given by Solari and Anis, is

n n 1, 1,
ERM =77 2 i (n-0)% . 4.125

4.124



To show that the summations in both Eqs. 4.124 and
4.125 are the same, write

TG T N W
Y —— =3 i%* (n-=i
i1 ¢ i=1 L

ni i=

Changing variables n - i = j on the left-hand side,
then
n 2 14 n ,
z ]—,ﬁ =X i%* (n-i)%.
1 n(n=j) =1

Separating the left-hand summation into two parts
and passing one to the right-hand side gives

n i% n 1
i§1 n(n-i* ) izl i” (n - i)*
n %
T F1 n(n-d®
n i’;ﬁ n
y — = Z
=l n(n-i” =1
1 i‘r’z
E i (n-1)* n(néi)i”’] ’
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and

n 35
T ——
=l n(n-i)*
_ £ (n-{)* n p2
=1 n i® =1 nm-9)%

which proves that Eqs. 4.124 and 4.125 are identical.

The conclusion of this analysis is that the ex-
pected values of adjusted range of exchangeable
random variables may be expressed in the same way
as the formula for the expected value of unadjusted
range. Equation 4.122 is, therefore, valid when input
is either independent, or dependent with equal auto-
correlation coefficients (exchangeables), while the
output is equal to a percentage of the mean inflow,
that is, ¥i = t:lcx_rl ,With a being the level of
development.

The above result is relevant in hydrology
because when one is interested in overyear storage
design, and the assumption of independence of
streamflow events is sufficiently accurate and the
degree of regulation or development is expressed asa
fraction of the sample mean inflow, the expected
value of the storage in a given number of years is
given by the expected adjusted range which now can
be computed exactly by Eq. 4.122. This equation is
of mathematical interest as well, because it also gives
the expected adjusted range when the original
variables have the property of exchangeability.



CHAPTER V

APPROXIMATE EXPECTED VALUES OF RANGE

The exact expected values of range
for n = 1,2, and 3 are derived in Chapter IV, con-
sidering the univariate, bivariate, and trivariate nor-
mal distribution functions for the partial sums
S, .S, and S, . Based on the exact expected
values of range for n = 1,2, and 3, the computer
simulation or the data generation method is used in
this chapter to obtain the approximated equations of
the expected values of range for large values of n .
In particular, the following cases are studied: the
Markov models with periodic autoregression coef-
ficients, the non-stationary exchangeable random
variables, and the Markov models with periodic
standard deviation.

5.1 Expected Values of Range of Markovian Linear
Models with Periodic Autoregression Coefficients

Considering the general model given by Eq. 3.3,
it is assumed that po= 0 and o= 0= acon
stant. The Markovian models considered in this sec-
tion are of the form

m
=0 [2 a

X =0z 5
]=1 1,7)

P.T km_.'r ep,r]

E s
P.T P.T-]

with k_ _ given by Eq. 3.5.

V. Yevjevich (1967) gives an approximate
equation for the expected values of ranges of linearly
dependent normal variables. In particular, he uses the
first and second-order Markov models with constant
autoregression coefficients and moving average
schemes. The same equation was used by P. Sutabutra
(1967) for the first-order Markov model.

The same equation is used in this section for
approximating the expected value of ranges of
Markovian models with periodic autoregression coef-
ficients, or

e, = [

The approximation of the above proposed
equation is checked in general by the data generation
method, for various values of n . For the particular
case of n = 3 and the first-order Markov model, a
comparison is made between the expected values of
range given by the exact Eq. 4.112 and by the
approximate Eq. 5.1. The results of this comparison
are given in Table 5.1. This table shows a high

i! [Var Si}l"f2 5.1

I pg=

1

-
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closeness of expected values obtained by both equa-
tions where the percentage relative differences are less
than 0.09 for all cases of p analyzed.

TABLE 5.1 COMPARISON OF THE EXPECTED VALUE QF RANGE

FOR n=3 , GIVEN BY THE EXACT EQ. 4.112
AND THE APPROXIMATED EQ. 5.1, FOR TIE
FIRST-ORDER MARKOV MODEL.
-
Expected range for n=3
Exact
Equation | Approximated Relative
P 4.112 kquation 5.1 {Difference | Error in
(1) £2} (2)-(1) Percentage
0.0 1.822728 L::822728 . 000000 0. 0000
0.1 1.881283 1.881455 0.000172 0.009%2
0.2 1.839242 1.939801 0.000559 0.0288
0.3 i 1.997770 0.0010407 Bo0504
0.4 2 2.055367 0.001410 0.0687
0.5 . ik 2.11260}% 30016493 00802
0.6 2.167675 21689480 0. 001805 0. 0833
0.7 2.223303 2.226015 0.4001710 0.0769
0.8 2.280826 2287211 0.001385 0.0607
0.9 2.337268 2.338085 V. 000817 .0349

Equation 3.39 gives the general expression of
the variance of the partial sum S. for the m-th order
Markov linear model with a periodic standard devia-
tion and periodic autoregression coefficients. In the
case of a constant standard deviation, Eq. 3.39
simplifies to

i—1  i=t
Var {S.}=0? [i+2 = z
? t=1 u=l j

[Tk

1

aj,{+u-j pz(x)(u_.l!l)] L]

where o _ are the periodic autoregression coef-
ficients which may be computed by the solution of a
system of m linear equations as given by Eq. 3.7.
For the particular cases of the first, second, and
third-order Markov models, these coefficients can be
computed directly from Egs. 3.8 to 3.13. The

periodic autocorrelation function pz(x)(u-j,t) be
computed by using the recursive Eq. 3.14.
Substituting the above equation

for Var 8, into Eq. 5.1 the expected value of range
of the m-th order Markov model with a constant
variance and periodic autoregression coefficients
becomes



1[1+22 2 3}
t=1 v=1 j=1

5 .1
Emn}e\/;a;z

T
Y t+us pz(x)l(u—],t)] 5.2

For the particular case of the constant auto-
regression coefficients, Eq. 5.2 simplifies to

2

ER }=[7 ,

(i-u) jzl G0, -j)J* 53

which is identical to the equation given by V.
Yevjevich (1967).

An explicit expression of E{Rn} for the case
of the first-order Markov model with periodic auto-
correlation coefficients may be obtained by using the
variance of S, given in Eq. 3.37, so that Eq. 5.2
becomes

E{Rn}eﬁ o 21 it

i-1 i-t u
[i+2 £ X

I 1*
t=1 u=1 k=1

pl.t'i-k-l 2 5.4

where e, is the first periodic autocorrelation coef-
ficient, whlch may in general be represented by the
harmonic function as given by Eq. 3.6.

In the case of a constant first autocorrelation
coefficient, that is, Py, =P, Eq. 5.4 simplifies to

1]
2 o1-p)y2 = it

Bt =1

[(1-p?)i-20(1-pD)]% 5.5

which is in agreement with the equation given by P.
Sutabutra (1967). It may also be shown that, for the
case of p, =0, Egs. 5.2 through 5.5 simplify to
Eq. 2.9 for i.i.d. normal random variables given by
Anis and Lloyd (1953).

The validity of the Eqgs. 5.2 through 5.5 were
tested by the data generation method. The first,
second, and third-order Markov models were the only
models tested since they are the most commonly used
in hydrology. In all cases, 2000 sequences of normal
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independent random numbers were generated, and
the respective Markov dependence was then
introduced. The mean ranges for values of n up to
60 were obtained by averaging the computed ranges
of 2000 samples.

For the first-order Markov model, the following
cases were analyzed:

(a) ,31,7 = 0.60 ; s(plﬂ_) = 0.00
®) p,, =060 ; s(p, ;) = 0.102
(c) Py, =060 5 S(pl’r) = 0.207
where pl and s(p, ) represent the mean and

standard dewatmn of the periodic first auto-
correlation coefficient, respectively. The results
obtained are presented in Figs. 5.1 through 5.5
showing the mean ranges of simulated samples and
the values obtained by Eq. 5.4 or Eq. 5.5 for values
of n up to 60. In all cases, the agreement between
the mean ranges of simulated samples and those com-
puted by Eq. 5.4 or Eq. 5.5 are very good. Figure 5.5
gives a comparison of the cases studied. It shows that
after a transition period, which is around one cycle or
12 units, the expected ranges of n increase with the
increase of the standard deviation of Py,

For the second-order Markov model, the cases
analyzed are given in Table 5.2

TABLE 5.2 CASES ANALYZED FOR THE SECOND-
ORDER MARKOV MODELS.
Lag Mean Standard Deviation s (nk T}
k T ?
k,T
(a) (b)
1 0.60 0.0 0.102
2 0.45 0.0 0.102

The results for the mean ranges of simulated samples
and those obtained from Eq. 5.2 are shown in Figs.
5.6 and 5.7 for values of n up to 60. In both cases,
the agreements are very good.

For the third-order Markov model, the cases
analyzed are given in Table 5.3.



TABLE 5.3  CASES ANALYZED FOR THE THIRD-
ORDER MARKOV MODELS.

Lag Mean Standard Deviation SEOk )
X = 2
k.7
(a) (b)
1 0.60 0.00 0.102
2 | 0.45 0.00 0.102
3 0.30 0.00 0.102

Figures 5.8 and 5.9 show the results for the mean
ranges of simulated samples and those computed by
Eq. 5.2 for values of n up to 60. In both cases the
agreement is very good.

e{ro}

20k ®  Computed from Simulated
Samples {m=2C00}

Computed by Eq. 5.5

O L | ] 1 1 Il L n
0 10 20 30 40 50 &0

Fig. 5.1 Mean range obtained from simulated
samples and the expected values of range
computed by Eq. 5.5, for the first-order
Markov model with a constant autocor-
relation coefficient.

E{An}
Computed by £q. 5.2
20k *  Cgrputed from Simulated
Samples (m = 2000
16
P
BT F z080,s(p ):0.102
12 10 I ,
ua |
04 /l/‘\
Cln cal
0.2
#
ar T T e s o
n
] 1 1

1 1 L |
o] 10 200 30 40 50 60

Fig. 5.2  Mean range obtained from simulated
samples and the expected values of range
computed by Eq. 5.4, for the first-order
Markov model with the periodic autocor-
relation coefficient.
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samples and the Expected values of range
computed by Eq. 5.2, for the third-order

Markov model with (1) E = 0.60 and
s(p, T) = 0.102, (2) p, , = 0.45 and
s(o, ) = 0.102, and 3y 7, = 030
and s(p3 ) = 0.102. u

The results obtained above lead to the con-
clusion that Eq. 5.1 and the derived Eqs. 5.2 through
5.5 are very good approximations of the true
expected value of the range for Markov models with
periodic autoregression coefficients.

5.2 Expected Values of Range of Non-stationary
Exchangeable Random Variables

Non-stationary exchangeable random variables
are defined for the purposes of this study as variables
which have standard deviation changing with t, but
which have equal autocorrelation coefficients. For
example, o0, may be an increasing, a decreasing or a
periodic function of t , while the correlation
Pi; between x;, and X; for t=1i and t=j is
constant and equal to p forany i and j . This kind
of variable may be generated by

X, =0, o e, + V1o et),0£p<l

where €, and e are independent normal variables
with mean zero and variance one, both uncorrelated
It follows that E{x }=0, Var{x } = a ,and
Covix, x,, 1= o, oﬁu . For the part:cular case
of p =0, Eq. 5.6 leads to independent variables
with changing standard deviations with t .

5.6

An approximate equation is proposed in this
study for the expected range of the above defined
non-stationary exchangeable random variables, as

E{R}f Tl

14
E [Var {8, }] £



where (S,). in this case denotes the j-th sum of size
i outof (7) possible sums. In other words, for given
values of n and i, there are (') possible ways in
which S, may be formed. For example, for the case
of n = 3,Eq. 5.7 takes the form

ER,}= [2 {(VarS )%+ L [(Vars,)?

+(VarS,) + (Var$,)4] + & (Vars))#1 |

which, in terms of the components of,the partial
sums, becomes

E{R,} =/%_ {(Var x,)*

+ %’[ (Var £, 6%, D% + (Var i hx h*
+ (Var (x4 %, DAL +4 (Var {x 4 x4 %, D% 3.

For the particular case of iid. random
variables, Eq. 5.7 simplifies to

- [2 0
E{R“}—ﬁ iEl [N 8.}

which is in agreement with Spitzer’s equation given as
Eq. 2.23 in Chapter IL

The degree of approximation by Eq. 5.7 to the
exact expected values of range is checked by the data
generation method for various values of p and n.
For the particular case of p = 0 and n = 3, a
comparison is made between the exact expected value
of range given by Eq. 4.96 and expected values com-
puted by Eq. 5.7. The results of this comparison are
given in Table 5.4 for various combinations of

TABLE 5.4.

COMPARISON OF EXACT EXPECTED VALUES OF RANGE FOR

o, , 0, ,and oy . This table shows that Eq. 5.7
gives a good approximation to the exact expected
values of range. The differences relative to the exact
values are less than 0.75 percent in all cases analyzed.

The validity of Eq. 5.7 is also tested for in-
creasing, decreasing and periodic functions of the

standard deviation o, for various values of n . For

the first case, o, was made increasing from 1 to 12,
and for the second case it was made decreasing from
12 to 1. The results of the comparison of the mean
ranges obtained from simulated samples and those
given by Eq. 5.7 are shown in Figs. 5.10 and 5.11 for
values of n up to 12. They are also given in Table
55.

For the case of periodic standard deviation
o_ , several cases were analyzed by using the model
of Eq. 5.6. These cases are given in Table 5.6.

For cases shown in Table 5.6, the mean ranges
obtained from simulated samples and those computed
by Eq. 5.7 are shown in Figs. 5.12,5.13 and 5.14.
They are also shown in Tables 5.7, 5.8 and 5.9. These
results lead to the conclusion that Eq. 5.7 gives a high
degree of approximation to the expected values of
range of non-stationary exchangeable random vari-
ables.

Figure 5.15 shows a comparison of the
expected values of range of iid. random variables
(with ¢ = 10) and independent variables with
periodic standard deviation (with &_= 10 and
s(0,) = 6.87). The basic characteristic of this com-
parison is that the mean ranges of variables with

n=3 ,

GIVEN BY EQ. 4.96 AND THE APPROXIMATE VALUES COMPUTED

BY EO. 5.7 FOR THE CASE OF INDEPENDENT VARIABLES WITH
STANDARD DEVIATIONS VARYING WITH t .
Standard Deviations Expected Range n=3 Ralative
Test . . _ Eg. 1.96 Ea. 5.7 Difference Error in
No i 2 3 (1) (2) (2)-(1) Percentage
1 1.0 1.0 1.0 1.822728 1.822728 0.000000 0.000
2 1.0 1.0 10.0 8.705911 8.738561 +0.032650 +0.375
3 1.0 10.0 1.0 §.803861 8.738561 -0.065300 -0.740
4 10.0 1.0 1.0 8.705911 8.738561 +0.032650 +0.575
5 10.0 10.0 1.0 13.937151 15.909559 -0.027792 -0.200
6 10.0 1.0 10.0 15.853776 13.5093559 +0.055583 +0.401
7 1.0 10.0 10.0 13.937151 13.909359 -0.027792 -0.200
8 1.0 10.0 100.0 84.199965 §4.251436 +0.051471 +0.061
2 1.0 100.0 10.0 84.365130 84.251436 -0.113694 -0.135
10 100.0 10.0 1.0 84.199965 84.251436 +0.051471 +0.061
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TABLE 5.5 COMPARISON OF SIMULATED MEAN RANGE AND APPROXIMATED EXPECTED RANGE OF
EQ. 5.7 FOR INDEPENDENT RANDOM VARIABLES WITH INCREASING AND DECREAS-
ING STANDARD DEVIATION.
Mean Range
n For Increasing o, For Decreasing o
Simulated By Equation Difference | Simulated By Equation Difference
m=2000 5.7 in % m=2000 5.7 in %
1 0.775 0.798 2.88 9.296 9.575 2.92
2 2.052 2.089 0.48 15.294 15.670 2.40
3 3.743 3.788 1.19 19.625 20.077 225
4 5.858 5.840 0.31 23.100 23.398 1.27
5 8.276 8.207 0.84 25.677 25.931 0.98
6 10.948 10.861 0.80 27.674 27.855 0.65
7 13.976 13.779 1.43 29.158 29.290 0.45
8 17.087 16.944 0.84 30.244 30.327 0.27
9 20.510 20.343 0.82 30.997 31.038 0.13
10 24.403 23.961 1.84 31.496 31.486 0.03
11 28.069 27.791 1.00 31.732 31.729 0.01
12 32.272 31.821 1.42 31.820 31.821 0.003

TABLE 5.6 CASES ANALYZED FOR
RANDOM VARIABLES.

THE NON-STATIONARY EXCHANGEABLE

Correlation Periodic Standard Deviation o
Coefficient @) ) ©
p Period ET s(oT} Period] ET S(Gr) Period G s(cT)
w w [i]
0.0 12 5.0| 2.79 12 110.0 | 6.87 6 5.0 3.28
0.3 12 5.0 2.79 12 |10.0|6.87 6 5.0 3.28
0.6 12 5.0 2.79 12 |10.0 | 6.87
0.9 12 5.0 2.79 12 (10.0] 6.87

periodic standard deviation is higher than those with
a constant standard deviation. The differences
between them increases as n increases.

The plot of the mean range against n for the
case of a periodic o shows that it is an increasing
periodic function with the same period as that of
o, , but with a shift in phase. The maximum
amplitude of the mean range is located three units
forward with respect to the position of maximum
amplitude of the periodic o, . This characteristic is
valid only for the particular case analyzed here, that

is, with symmetric periodic function @_ .For cases of
asymmetric or more complex functions o_,the
characteristics of the periodic mean range vary
accordingly.

The use of Eq. 5.7 in approximating the mean
range obtained from simulated samples of non-
stationary exchangeable random variables is very
good. For large valuesof n,say n > 20, however,
the computation takes too much computer time.
Therefore, two ways of solving this problem have
been developed as described below.



Equation 5.7 requires that, for given values of
n and i, the average of the standard deviation of
all the possible sums of size i must be computed.
Instead of following that route, one can take a ran-
dom sample of size, say 100, out of all the possible
sums of size i and then take the average over the
sample size. This can be done easily in a digital com-
puter. For practical use of this procedure, a com-

promise should be made between the accuracy of
results and the amount of computer time required,
both of which depend on the size of the sample
considered. Figure 5.16 shows an example of
application of this procedure for the case of
independent random variables with G_ = 5.00 and
s(0,) = 2.79. The number of sums, as the sample
size, mn this case was selected as m = 50,

TABLE 5.7  COMPARISON OF SIMULATED MEAN RANGE AND APPROXIMATED EXPECTED RANGE OF EQ. 5.7 FOR NON-STATIONARY
EXCHANGEABLE RANDOM VARIABLES. CASE OF El_ = 5.0 AND s{o ) = 2.79 .

Correlation Coefficient
n p=0.0 ©=0.30 ~=.60 o=0.90
Simulated By Equation Difference| Simulated By Equation Difference | Simulated By Equation Difference | Simulated By Equation Difference|
w=2000 5.7 in % m=2000 5.7 in % m= 2000 5.7 in % m=2000 5.7 in %
1 1.530 1.588 4.15 1.379 1.598 1.06 1.584 1.596 0.75 1.594 1.5946 0.12
2 2.891 3.072 2.64 3.28) 3.247 0.62 3.408 3.403 0.15 3.564 3.545 0.53
3 4.835 4.923 1.79 5.474 5.433 3.75 5.927 5.871 .95 6.302 6.261 0.65
4 7.489 7.446 0.58 8.518 8.492 0.31 9.403 9.366 0.3% 10.156 10.134 0.22
5| 10.897 10.873 0.22 12.625 12.719 0.74 14,207 14.231 0.17 15,586 15.550 0.23
6 | 15,733 15.725 .05 18.587 18.737 0.80 21,144 21.173 0.14 23.327 23.285 0.18
7 19.942 19.886 0.28 24 288 24,378 0.37 27.945 27.930 0.05 31.082 30.578 0.33
& | 22.286 22.053 1.06 27.973 27.932 C;,IS 32.557 32.468 0.27 36.461 36.321 0.38
9 | 23.533 23.256 1.19 30.462 30.298 0.54 35.762 35.626 0.38 40,284 40.119 0.41
10| 24,230 23.519 1.32 31.948 31.867 0.25 37.858 37.794 0.17 42,893 42.768 0.29
1§ 24,014 24,302 1.28 33.005 32.944 0.18 39.383 39.323 a.15 44.777 44655 0.27
12 21874 24.568 1.26 33.824 33.788 0.11 40.594 40,537 0.14 46. 281 d46.164 0,25
13 25107 24.827 1.13 34,577 34.632 0.16 41.745 4]1.752 .01 47.766 47.672 w20
'll.-t 25,471 25,182 .91 35.676 35.709 0.09 43.317 43.282 0.08 49,683 49,5060 LLERT S
15 25,802 25.773 .48 37286 37.273 0.03 45.553 45.453 a.22 52.385 52.211 0.33

TABLE 5.8  COMPARISON OF SIMULATED MEAN RANGE AND APPROXIMATED EXPECTED RANGE OF EQ. 5.7 FOR NON-STATIONARY

EXCHANGEABLE RANDOM VARIABLES. CASE OF 7

=10.0 AND s(o ) = 6.87 .

Correlation Coefficient
2=0.0 2=0.3 o=0.6 0=0.9
Simulated By Equation Difference | Simulated By Equation Difference| Simulated By Equation Difference | Simulated By Equationm Difference|
n ==1000 5.7 in % m=1000 5.7 in % @=1000 5.7 in % ==1000 5.7 in %
1 1.530 1.596 4.13 1.578 1.596 1.13 1.589 1.5%6 0.44 1.600 1.596 0.25
2 3.732 3.802 1.84 3.930 3.908 1.70 4.136 4.175 0.93 4.331 4.337 0.14
3 7.226 7.282 0.77 7.931 7.933 Q.02 8.526 8.502 0.28 9.069 9.015 0.60
4 12.997 12.852 1.13 14,275 14.359 0.58 15.696 15.648 0.31 16.946 16.796 0.89
5 22,296 22.216 0.36 25.185 25.224 0.11 27.861 27.767 0.34 30.287 30.017 0.90
6| 33.108 32.900 0.63 38.253 38.298 0.12 42.926 42,758 .39 47.029 46.663 0n.78
7| 42.298 42.004 0.70 50.544 50.496 0.09 57.498 57.317 Q.31 63.722 63.211 11}
A A%.251 47.700 1.15 59.437 59.341 0.16 68.636 68,438 0.29 T6.741 76.208 w70
AL T ) 50.050 1.37 63.980 64,019 0.06 74.811 74.724 0.12 24,350 B3.796 bty
i L I T 51.088 1.51 66.794 66.635 0.24 78.742 78.402 0.43 89.034 B8.328 (1% 1]
1 s2.311 51.545 1.50 68.245 68.085 0.23 80.847 80.510 .42 91.680 90,963 0,70
2] 52.524 51.748 1.50 69.048 68.883 0.24 82.018 81.699 0.39 53.168 92365 0.76
15 52.687 1.5 1.43 69,812 69.680 0.19 83.181 82.888 0.35 94.679 93,968 0.76
11 53.056 52.371 1.51 71.278 71.128 0.21 85.303 34.998 0.36 97.352 96 . 0h0a 0.77
15 53.510 53.312 0.93 73,846 73.743 0.14 88.955 58.684 .30 100 . 864 11,138 0.72
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TABLE 5.9

COMPARISON OF SIMULATED MEAN RANGE AND APPROXIMATED EXPECTED RANGE OF

EQ. 5.7 FOR NON-STATIONARY EXCHANGEABLE RANDOM VARIABLES. CASE OF

G_=5.0 AND s(o_ ) = 3.28 .

T T

Correlation Coefficient
n p=0.00 p=0.30
Simulated By Equation Difference | Simulated By Equation Difference
m=1000 5.7 in % m=1000 5.7 in %

1 0.788 0.798 1.25 0.779 0.798 2.38
2 4.369 4,428 1::33 4,565 4.542 0.51
3 9.900 9.992 0.92 10.593 10.656 059
4 14.576 14.415 1.E2 16.244 16.077 1.04
5 16.407 16.076 2.06 18.906 18.627 1.50
6 16.610 16.253 2.20 19,307 19.043 1.39
7 16.799 16.417 23D 19.713 19.455 1.33
8 18.291 17.89%4 2.22 22.181 21.937 1.11
9 21.260 21.226 0.16 26.696 26.802 0.39
10 24.060 24.255 0.80 31.424 31.520 0.30
11 25237 25.377 0.55 33.605 33.856 0.74
12 25.405 25.480 0.29 33.997 34.257 0.76
13 25.526 25.580 0.21 34,388 34.657 0.78
14 26.563 26.642 0.30 36.635 36.981 0.93
15 28.852 29.259 1.39 41...252 41.531 0.66
16 31.070 31.722 2645 45.606 46.014 0.89
17 32.101 32.619 1.59 47 .885 48.284 0.83
18 32.200 ---- -- 48.239 e e

In using the procedure just outlined, Eq. 5.7
takes the form
z

E{Rn}é\/; 2

1=
where m denotes the sample size of the sums com-
puted, and the subscript j denotes a particular
realization of the sum of size i, taken at random.

-1
i

m
w2

[Var {S.}.1% , 538
7l i

Another procedure has been developed in this
study for obtaining the approximate mean range of
independent variables with standard deviation varying
with t. This procedure is based on the exact
expected range of iid. random variables and an
equivalent standard deviation 3n of the n variables
considered.

The proposed equation is

n
E{Rn}ﬁ\/; g, z e 59
1=
with G defined by
R il
Un = %‘ g]. 0: 5'10
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The idea behind this procedure is that by
multiplying the function 3;1 , as given by Eq. 5.10,
by the exact mean range of ii.d. random variables,
the effect of the changing standard deviation may be
accounted for.

In the particular case of a periodic standard
deviation o, with 7=12,.w, with w the
main cycle (for example, one year) and con-
sidering p the number of cycles (for example, the
number of years), then Egs. 5.9 and 5.10 are com-
bined as

E{R }= 241 %’ 2 % =Y
ne S Jo.g o5t Al

which is valid only for values of n = pw , say for
n = 12, 24, 36,..., 12p , with p an integer, and
w equal to 12 months. Notice that, for the
particular case of iid. random variables with 0. =0,
the above equations simplify to Eq. 2.23.

The validity of this procedure for obtaining the
approximate mean range of independent random
variables with standard deviations varying with t



was tested by comparing the mean ranges obtained
directly by simulation with those computed by
Eq. 5.9. The first two tests considered the cases of
standard deviations increasing and decreasing with
t . For this, 250 sequences of random numbers, each
of size 600, were generated by increasing or decreas-
ing (according to the case) their standard deviation
every 50 generated numbers. These standard devia-
tions varied from 1 to 12 and from 12 to 1 for the
increasing and decreasing cases, respectively. The
results of these tests are shown in Fig. 5.17 for
values of n up to 600 .

40—E{R“}
Computed by Eq. 57
0 Computed from Simulated
30+ Samples
201
1 0'1
8
lo] o K
) 1
G I 1 L L o2 4 6 8 w@n

0123456?89@[1!2

Fig. 5.10 Comparison of mean ranges obtained
from simulated samples and the Ex-
pected values of range computed by Eq.
5.7, for independent random variables
with standard deviation increasing with t.

A

Two cases of periodic standard deviations with
cycles of 12 months were also tested. The results of
these tests are shown in Fig. 5.18 for the mean ranges
of n up to 600. For all cases analyzed, the
agreement between the mean ranges obtained by
simulation and those computed by Eq. 5.9 are very
good for both small and large values of n. It is
interesting to observe in Fig. 5.18 that the increasing
periodic mean range may be reproduced by con-
sidering the equivalent periodic function c?n .as given
by Eq. 5.10.
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Fig. 5.11 Comparison of mean ranges obtained

from simulated samples and the Expect-
ed values of range computed by Eq. 5.7,
for independent random variables with
standard deviation decreasing with t .
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Fig. 5.12 Comparison of mean ranges obtained from simulated samples and the Expected values of
range computed by Eq. 5.7 for non-stationary exchangeable random variables of Eq. 5.6.
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Fig. 5.13 Comparison of mean ranges obtained from simulated samples and the Expected values of range
computed by Eq. 5.7, for non-stationary exchangeable random variables of Eq. 5.6.
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Fig. 5.14 Comparison of mean ranges obtained from simulated samples and the Expected values of range
computed by Eq. 5.7, for non-stationary exchangeable random variables of Eq. 5.6.
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Fig. 5.16 Comparison of mean ranges obtained

from simulated samples and the Expect-
ed values of range computed by Eq. 5.8,
for independent variables with periodic
standard deviation, with ij =5 and
(0. )=2.79.
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Fig.5.17 Comparison of mean ranges obtained

from simulated samples and the Expect-
ed values of range computed by Eq. 5.9,
for independent variables with standard
deviation increasing with t (1), and
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5.3 Expected Values of Range of Markov Dependent
Random Variables With Periodic Standard Deviation
The use of Egs. 5.7 and 5.9 for approximating
the expected values of range of Markov dependent
random variables with a periodic standard deviation
did not give satisfactory results. Another procedure
was developed for the particular case of Markov
models with the constant autoregression coefficients.
Let us first discuss some characteristics related to the
expected values of range of this kind of models.

Figure 5.19 shows the plot of mean ranges
obtained from simulated samples of the first-order
Markov model with a periodic standard deviation for
n up to 60. These mean ranges are increasing
periodic functions, with the same period as that of
o and maximum amplitudes which are three units
out of phase with respect to ¢_ . This last character-
istic refers to the particular case of o_ considered.
Figure 5.19 shows the mean ranges for the case of
'ET =50, s(or) = 2.79,and p values of 0.0, 0.3,
0.6, and 0.9. It also shows the mean range for the
case of a constant o = 5. As in the case of
stationary Markov models, the mean range for a
particular n increases as p increases, for Markov
models with periodic standard deviation.

The expected values of range of Markov models

with a periodic standard deviation are expressed as
ER,}=1(@,,50,), ) 5.12
where ET and s(o_) denote the mean and standard
deviation of the periodic standard deviation and p is
the first autocorrelation coefficient which defines the

dependence. With the above notation, four functions
are defined as follows,

- - /2 -%
L=101.0,0= ) 2 iz , 5.13
2 % i [Vars]* , 514

fz_f'z (1,0,,0): T i=1 ’ :

2 ~ 0y
f,=f, 0,50 )0)= [ a 151 i y 5.5
and

5.16

f,=f, @, 5,),p)
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That is, f, denotes the expected values of range of
iid. random variables with variance unity and is
exactly that given by Eq. 2.23; f2 denotes the
expected values of range of Markov models with
variance unity and the first autocorrelation coef-
ficient p , which, as described in section 5.1, may be
approximated by Eq. 5.5; f, denotes the expected
values of range of independent variables with a
periodic standard deviation, which, as described in
section 5.2, may be approximated by Eqs. 5.7,5.8, or
5.9, (in Eq. 5.15, f, is approximated by Eq. 5.9);
finally, f, denotes the expected values of range of
the Markov model with a periodic standard deviation.

The basic hypothesis in approximating the
expected values of range of Markov models with
periodic standard deviation, denoted by f 4 »may be
expressed mathematically as

-
fz (I,O,p)—fl (1903 0) =€

[f, @,.5(0)p)—f,(@,.5(0,),0)]  5.17

which is also shown schematically in Fig. 5.20.

The idea behind the above hypothesis is that
the effects of dependence due to p and non-
stationarity due to a periodic o0, may be separated.
In other words, one can go from the function
f,(1,00) to f,(@, s(g,),0) by using the pro-
cedures developed in the previous section 5.2, Then
the function f,(G (0, ).p) will be obtained by
superimposing the effect of p as in the stationary
case.

The validity of the above hypothesis of Eq.
5.17 was tested by computer simulation
for p = 0.60 and for two cases of periodic o :
0.=50,s(0)=2.79,and T_=10.0, s(¢,) = 6.87.
The effect-of p = 0.60 for the stationary and non-
stationary cases, as expressed by Eq. 5.17, are
shown for the above two cases in Fig. 5.21 and
Tables 5.10 and 5.11 for n wup to 600. The
results obtained are very good, especially for n
greater than 10.

Based on the hypothesis expressed by Eq. 5.17,
the proposed approximation to the expected values
of range of Markov models with periodic standard
deviation is

2 A 0o

E{Rn_}é 710, _El i*+g,

1=

n , N
(2 (Vars)* — 2 %13 218
= ¥



where o o is given by Eq. 5.10 and Var S, by Eq.
3.38. It should be noted that the function
f,(@,, s(0,), 0) was approximated in Eq. 5.15 by
Eq. 5.9. However, better accuracy is obtained if
f, is approximated by Eq. 5.7 or Eq. 58.

Equation 5.18 was used for computing the
approximated mean ranges of the two cases of

Markov models: (a) p = 0.60, &= 5.0 , and
s(0,) =2.79 ,and (b) p =0.60,7_=10.0,and
s(0.) = 6.87 . These mean ranges were compared
with those directly obtained by simulation, and
the agreement between them is very good, as shown
in Fig 5.22 and Tables 5.12 and 5.13.

A hypothesis similar to that expressed by
Eq. 5.17 may be extended to cases of higher order
Markov models or even to Markov models with
periodic autoregression coefficients. In such cases,
the equations developed in section 5.1 should be
useful.

p=050
|60-E{Rn}
1401
1201
p=060
100
8ok P=0.3O
&0 v
50
40fr Tp=5.0, slo):2.79
U‘T
o
201 5 /\
Ly T,
2 4 6 B 10 12
0 I L 1 1 i L [
Q L] 20 30 40 50 &80

Fig. 5.19 Mean ranges obtained from simulated
samples for the Markov model x -
o (px, | * V1-p* €, .) With periodic
standard deviation ¢_ and constant
first autocorrelation coefficient p .
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Fig. 520 Effect of dependence on the expected
values of range of Markov models with
both a constant and a periodic standard

deviation.
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Fig. 521 Comparison of the effect of dependence

on the mean range, for two cases of
Markov models with both a constant and
a periodic standard deviation.



TABLE 5.10

COMPARISON OF THE EFFECT OF DEPENDENCE ON THE MEAN RANGE, FOR MARKOV MODELS WITH

CONSTANT AND PERIODIC STANDARD DEVIATION. CASE OF ET =5, s[ctj = 2.79 AND

p = 0.60 .
Mean Range By Standardized
Simulation Difference Difference Difference
n |6, = £,6.,500),0) | £5 = £5(3,,5(c),0) £, %{f“-f_-i] £,(1,0,0)-£; (1,0,0)
6 20.157 15.733 4.424 0.885 1.002
10 34.682 24.236 10.447 2.089 1.843
14 37.734 25.411 12.323 2.464 2.606
18 46.928 31.225 15.703 3.140 3.300
22 57.241 37.321 19.920 3.984 3.939
26 59.681 38.267 21.414 4.282 4.534
30 66.757 42.347 24,410 4.882 5.092
34 75.196 47.091 28.105 5.621 5.619
38 77.224 47.905 29,319 5.864 6.120
42 83.736 51.967 31.769 6.354 6.598
46 91,313 56.430 34.883 6.976 7.056
50 92.958 57.062 35.896 7.179 7.497
100 138.197 80.926 57.271 11.454 12.031
150 177.602 102.776 74.826 14.965 15.556
200 213.196 121.759 91.437 18.287 18.541
250 240.101 135.943 104.158 20.832 21.180
300 264.541 148.922 115.619 23.124 23.570
350 288.376 162,417 125.959 25.192 25.770
400 313.256 175.542 137.714 27.543 27.819
450 336.302 188.450 147.852 29.570 29.746
500 356.882 198.909 157.973 31.595 31.569
550 374.815 209.233 165.582 33.116 33.303
600 392.4453 218.893 173.550 34.710 34.961
TABLE 5.11 COMPARISON OF THE EFFECT OF DEPENDENCE ON THE MEAN RANGE, FOR MARKOV MODELS WITH
CONSTANT AND PERIODIC STANDARD DEVIATION. CASE OF Et =10 , S(GT) = 6.87 AND
p = 0.60.
Simulated Mean Range Standardized
Difference Difference Difference
n Gt | EEEELsE0.0|  ffy | (Eef) | 500606100
6 40.853 33.110 7.743 0.774 1.002
10 71.683 51.882 19.801 1.980 1.843
14 74.896 53.081 21.815 2.181 2.606
18 95.917 66.096 29.821 2.982 3.300
22 118.680 79.719 38.961 3.896 3.939
26 121.424 80.660 40.764 4.076 4,534
30 136.366 89.946 46.420 4,642 5.092
34 154.982 100.422 54.560 5.456 5.619
38 157.340 101.230 56.110 5.611 6.120
42 171.839 110.273 61.566 6.157 6.598
46 189.909 120.212 69.696 6.970 7.056
50 191.865 120.834 71.031 7.103 7.497
100 285,500 171.580 113.920 11.392 12.031
150 367.300 219.120 148.180 14.818 15.556
200 443,160 259.870 183.290 18.329 18.541
250 498.820 290.220 208.600 20.860 21.180
300 549.670 317.660 232.010 23.201 23.570
350 599.700 346.750 252.950 25.295 25.770
400 649.430 373.560 275.870 27.587 27.819
450 695.200 400.650 294,550 29.455 29.746
500 738.020 422.580 315.440 31.544 31.569
550 775.890 445.580 330.310 33.031 33.303
600 812.880 466.680 346,200 34.620 34.961
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1000 “E{Rn}

5001} Computed from Simulated Samples
® Computed by Egq. 5.18

(2)

100}

(2)

(n
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! 1 ] I 1 LNy
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Fig.5.22  Comparison of mean ranges obtained from simulated samples and the expected values of range
computed by Eq. 5.18, for two cases of Markov models with p = 0.60 and with periodic
standard deviation. (1) 0 =35 and s(0)=2.79, and (2) 0, =10 and s(0,) = 6.87.

TABLE 5.12  COMPARTSON BRETWEEN THE MCAN RANGES OBTAINED BY STMULATION TABLE 5,13 COMPARISON BETWEEN THE MEAN HANGES OBTAINED BY SIMULATION
ANDCTIOSE COMPUTED BY [0, 5.18, FOR MARKOV MODELS WITH AN THOSE COMPUTED BY IQ. 5.1&, FOR MARKOV MODELS WITH

PERIOUIC STANDARD UEVIATION. CASE N0F & = 3, s(= 1= PRRIODEIC STANDARD DEVIATION, CASE OF a_ = 10, s{a ) =

2.79 AND o = n.od. T J 6.87 AND o * 0.60 I !
Computed By Computed By

lquation 5.1% Simulated Tguation 5.18 Simulated

n F."fl ':'l'l’_?-flj i'j\"-'-‘,sl’-—:j.U) Fﬁ(r?f,s(")...,' .sfct},c) n f_,-i'L -':T(F_,—Fl) 53(-:r.s(c'].U) .-',Sf':‘t],p] fd(ﬁr,s[c:].u]
2 i, t.747 | 2.5991 3.738 3.320 2 0.149 1.454 3.732 5.226 4.015
4 0.5 2.809 7.489 9.013 4 0.562 5.617 13.007 18,624 15.372
1. 5.011 15.733 | 20.157 I ] L.onz 10.023 33.110 43.133 411,853
1. T.lel 22286 { 30.477 l I & 14,322 48.2131 62.603 63.997
1. 9.215 24,256 | 34.682 i 18.430 51.882 70312 71.683
- 11.169 24.878 36.392 ' 12 22,337 52.546 74.883 73,463
3 16.500 31.225 46.528 | 18 33.000 b6, 096 99,095 95.817
4.2 21207 37.857 9. 5B.564 24 42,418 80.273 112.689 120.250
3. | 25.460 42,3547 67.807 66.757 50 50.920 80,946 140.Bo6 136,366
il T 37.484 537.062 94,546 2. 058 50 . 4.970 120,834 195.804 [91.805
100 | i2 a0.135 141.081 158.197 100 112,051 120,310 171.582 291.8%2 285,498
R 77.780 150.558 177.602 150 | 15.556 155.560 219.123 374,683 67,304
200 97.705 214, 464 213.196 200 | 18,541 185.410 259,867 445,277 145,163
250 105,900 241.845 240,101 250 | 21,180 | 211.300 90,217 502.017 498,825
300 117,550 l4s.922 66.772 264,541 500 | 23.570 | 235.700 317.659 553.359 549,667
350 128.850 162,417 291,267 288,376 330 | 25.770 | 257.700 346.755 604.455 599.701
400 139.095 175.542 314.637 313.256 400 | 27,819 | 278.190 373.558 651.748 649,433
450 1458.730 188,450 337.180 336.302 450 1 29.746 | 297,460 400.655 698,115 645,196
500 157.3845 198.909 356.754 356.882 500 | 31.569 315.690 22.580 738,270 TiE.01T7
530 166.515 09,133 575.748 374.815 (550 [ 33.303 | 333,050 445.585 778.615 © 775,890
G 174,305 21E.893 395,698 392.4435 B00 | 34,961 344.610 466.682 Bl6.292 B1I.881
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CHAPTER VI

VARIANCES OF RANGE

The exact variance of the range for any finite
value of n is not known even for the case of i.i.d.
normal variables. The exact variance of the range for
the case of stationary Markov models is derived in the
first section of this chapter for n of 1 and 2. For
higher values of n, the mathematical derivation
becomes extremely cumbersome. Therefore, in these
cases, and for Markov models with periodic standard
deviation, approximate equations are obtained using
the data generation method.

6.1 Variance of the Range for Markov Models

The general type of the first-order Markov
model is used here,

+e

Z,5Pz_ V&

6.1
where p is the first autocorrelation coefficient of
the process z, and €, is an iid. variable uncor-
related with z, . It is assumed
that E{z } = E{e£}= 0, and Efz?}=1,
and E{etz} =(1-p%).

In this case, the partial
sums So,Sl,and Szare
So=0 =0
= =X
8,72

S, =(14p)z, te, =(1+p)X +Y 6.2
where for simplicity of derivation the new
symbols X =z, and Y = ¢, are introduced.

Fors = LRy = max(0,8,) - min(0,S, ), so
that

Ri=S1 for S, >0, and R, =-S5,
for Sl<0, or R! =lS,l for _°°<51<°°‘

The second moment of Rl is

E{R,%}=E{S,"}=E{s,*}=d} 6.3
where o denotes the standard deviation
of §, =X

From Eq. 4.27, the expected value of R, is
E{R, )= V2/n o . Therefore, the variance of
R, becomes
Var{R, }= E{R,*} - E*{R, }

Var{R, }= o2(1-2)

1

6.4
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For n=2,R, = max(0,S,.S,) - min(0,S, S, ),
so that

R2=Sz_51 for §, <0<s, ,
R,=-(8,-8,) for S,<0<S8, ,
R, =S, for 0<S8, <8, ,
R2=--S2 for Sz<s1<0 5
R; =8, for 0<S8,<S, ,
R,=-8, for §,<s,<0 ,

which in terms of the variables X and Y , given by
Eq. 6.2, become

~
L}

,= [(1#p)X+Y] for X>0, pX+Y>0

’

~
!

2'-[(1+,0)X*Y] for X<0, pX+Y<0
,= (X+Y)
R, =- (pX+Y) for
R, =X
and R, =-X for (1+p)X+Y <0, X+Y>0

1

~
n

for X<0, (1+p)X+Y>0

X>0, (14p)X+Y <0

’

for (1+p)X+Y> 0, pX+Y<0 ,

Because of symmetric regions of integration,
the second moment of R, is

E(R;}= 2E{[(1+0)X +Y]?}

+ 2B{(-pX-Y)*} + 2E{X*} 6.5
where the moments shown in Eq. 6.5 may be
expressed as

E{(14p)X+Y} = (14p)? [ J';: X2 £(X) f(Y) dYdX +
o P
+2140) [ 1 XY £(X) f(Y) dYdX
o -pX

+ fw f; Y2 f(X) f(Y) dYdX , 6.6

o -p

E{(-pX-Y)*}=p" .(f) mjﬂ“’o )X}F f(X) f(Y) dYdX +

+2p ém {i X v 5000 £Y) dYdx

{1+p)

I X Y? (X) f(Y) dYdX, 6.7

o=



and

T e »X 2
E{X*}= J(; -({-!-,o)XX fX)f(Y)dYdX 6.8

with f(X) and f(Y) the density functions given by
Eq.4.9.

The integrals of Egs. 6.6, 6.7, and 6.8 are equal
to

[ . XX (V) dYdX=1 o2
o -pX %
gl g 2 a
_LLL 6.9

O‘x X
e arctan (pax) ,

+
(2#)(0: +p? ai )

o _.v___
f f XY £(X) £(Y) dYdX = o D

6.10
& 1
1) Yzf(X)f(Y)deX T o2
) -p ¥
po, oye’
ma— 2_1'_ arctan (pU—) , 6.11

'8 {i X e 130 1Y) dYax =

0
(1+p) 03 o,
B (2“)[0; +(1+p) 2]

(s o
x ¥
+ -5, arctan [ﬁ—ﬁp ox]

6.12
;- {f] e XY f(X) f(Y) dYdX =
0 -oo
o, ai
) (2m)[o} + (14p)? Uil 6.13
e X
J ih‘p) Y? f(X) f(Y) dYdX = ?1{ o
e o (1+p)a_ |
" enig ey 2] ~ 7w et Pl
6.14
and % %
;XX fY) avax =
0 -(g-f-p)x
0: 2 (1+p) B B
(2m)

2 2 .2
[o; + (1p)* 03] (0, +p* 07)

{?Tr arctan (—-Y-) =

-rr arctan [ITW] 1
6.15
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Substituting Eqs. 6.9 through 6.11 into Eq. 6.6,
Egs. 6.12 through 6.14 into Eq. 6.7, and Eq. 6.15
into Eq. 6.8, gives

E{(1+p) X+ Y} =(1+p) g [T (211)(0 +p%o )
i o (2+p) o, Uy

_ 1 y
27 arctan (5 "x)] - (o’ )
X

6.16

PO,
+ 0 [4 5 arctan. (T )

(14p) o, o,
2 [a:r +(14p)? 02]

E{(-pX-Y)*} = p*d2 {-

3
1 a}’ i | (l_’a)gx Uy
+ - +
F5 arctan [(1+p)01} 2 T 2
x 2w [0) +(14p)" 0]
s 1 ¢ P)C'
+ 02 (g -ny actan [ 1}, 617
and 5

poio
B e L
27 (crY +p® o))
3
. (14p) oy, a,
2 [of + (1+p)* 0]

1 ag
- E arctan [tl—‘i_%wx] }

Substituting Egs. 6.16 through 6.18 into Eq.
6.5, and since ai= 1, andof=l-pz,the

second moment of the range R, becomes

+a2 {21? arctan(p—?—)
X

6.18

ER2}=2(14p)+ 510"
%
-(I+2,o)2— arctan {E p; ]

Since the first moment of R,
the variance of R2 becomes

Var{R_ I= 2(1+p)

1+ 1%
2o 2D t3(1—p)*—(1+p)&

-p)*
)Vx

6.19

is given by Eq. 4.101,

-2+/21 - (1 + 2p) arctan [ ]. 620

6.2 Approximate Variance of the Range for Markov
Models with Constant Standard Deviation

In this section, the results of the simulation
approach are presented for obtaining the variance of
the range for Markov models with constant standard



deviation. First, however, a sensitivity analysis was
performed to see the effect of the periodicity in
the autocorrelation coefficients on the magnitude
of the variance of the range.

For the first-order Markov model, as given by
Eq. 3.4 for m = 1, the variance of the range was
computed for n up to 60 and for a periodic first
autocorrelation coefficient. Figure 6.1 gives the plot
of Var{R } against n for p, = 0.6 and for
three values of s(p, ,). 0.0, 0. 102 and 0.207. This
figure shows that the periodicity in Py increases
the variance of the range as the value
of s(p, ) increases. It also shows that the increase
in Var {R } is augmented as n increases. No
attempt was made to quantify these experienced
increases of Var {Rn} for particular values
of '5'” and s(pl,r).

For the second and third-order Markov models,
no appreciable differences are found between the
variance of the range obtained with constant and
periodic autocorrelation coefficients. The results
obtained in these cases are shown in Figs. 6.2 and 6.3
for the second and third-order Markov models, res-
pectively.

Experimental curves are obtained by simulation
for the variance of the range of the first and second-
order Markov models with constant autoregression
coefficients. The plot of the values of Var {Rn}
against n suggests that a straight line fit is good in
cases of n = 6. Therefore, the variance of the
range was approximated by

Var{R_}=0? [A+Bn] , 6.21
where o is the constant standard deviation and the
linear regression coefficients A and B are func-
tions of the autoregression coefficients of the Markov
model considered.

For the first-order Markov model with ¢ = 1,
Fig. 6.4 shows the plot of Var{R 1} against n
for n up to 50 and for various values of p. The
straight line fit to values of Var{R_} obtained from
simulated samples is shown to be a good approxima-
tion. Table 6.1 also gives the values of the simulated
and fitted variance of the range for various values
of n and p . The linear regression parameters of Eq.
6.21 are given in Table 6.2 for various values of p .
They are also shown in Fig. 6.5, which may be parti-
cularly useful for finding the A and B values for

p not explicitly obtained.
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P. Sutabutra (1967) suggested another
empirical equation to approximate the variance of the
range of first-order Markov models, namely

n
Var{R_}= C(n,p) _3-'_: it Var{S;},

with 15
C(n,p)=0.2181(1+0.4p+0.40*)(1 +—)
6.23
A comparison was made between the percentage rela-
tive errors obtained in using Egs. 6.21 and 6.22 for
approximating the variance of the range. The results
of this comparison are shown in Table 6.3 and
indicate that the Eq. 6.21 gives a better fit to the
simulated variances of the range, decreasing the errors

considerably with respect to those obtained by Eg.
6.22.

6.22

For the second-order Markov model, the
simulated and fitted Var {R,} against n are
shown in Figs. 6.6, 6.7 and 6.8 for n up to 100 and
for various values of p and p, ,the first and
second autocorrelation coefficients, tespectwely The
straight line fit in this case is also very good, and the
respective linear regression coefficients A and
B of Eq. 6.21 are given in Table 6.4.

6.3 Approximate Variances of the Range for Markov
Models with Periodic Mean and Periodic Standard
Deviation

In this section, the variance of the range is
obtained by computer simulation for the general case

Var { Rn}
80
(3,
Y —2)
60+
)
40t
20r
n
0 1 | 1 N i .
0 10 20 30 40 50 &C
Fig. 6.1  Variance of the range for the first-order

Markov model with constant and peri-
odic first autocorrelation coefficient with

. = 060 and (1) s(p, ) = 0.0,
(2) s(e, ;) = 0.102, and (3) s(p1 f)
0.207 .



of Markov models with periodic mean and periodic
standard deviation. From Eqs. 3.3,3.4 and 3.5
- = n2
Xor =Wt [pz, +V1=p" ¢ ],
6.24

with u_,0_,p, 12y o and € defined as in Section
3.1. In obtaining the vanance of the range, it is
assumed that the output y, of Eq. 3.2is T K, -

Var{Rn}
80+ e (1)
o (2]
60+
40
20r
O i L H 1 | L I
o) 10 20 30 40 50 60
Fig. 6.2 Variance of the range for the second-
order Markov model with constant and
periodic first and second autocorrelation
coefﬁcwnts (1) Pi.~P = 0.60 and
Py = = 0.45 and(2)p =0.60,
Ps 045 and s(pk )= 0 102 for
k=1 and 2.
var { Rp }
80F
e (I}
o (2)
60
40k
20¢
(0] ® | | L 1 1 i a
o] 10 20 30 40 50 60
Fig. 6.3  Variance of the range for the third-order

Markov model with constant and peri-
odic first, second and third autocor-
relation coefficients. (1) p, 5 Sy ™
0.60, p, 20 =Py =045 ,and p PP

0.30,and (2) 5 P, =0.60,p , =045,
and p31’ = 030 ; and s(p ) 0.102
for k=1,2,and 3.

Fig. 6.4  Variance of the range obtained from
simulated samples and fitted linear func-
tion of Eq. 6.21, for the first-order
Markov model with constant first auto-
correlation coefficient p .
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Fig. 6.5  Regression coefficients of fitted linear

function (Eq. 6.21) to variance of the
range of the first-order Markov model.



TABLE 4,1 COMPARLSON OF VARIANCES OF THE RANGE OBTAINED FROM SIMULATED SAMPLES AND BY E. 6.21, FOR THE FIRST-ORDER
MARKOV MODEL OF Ef. 3.4 WITH CONSTANT - , FOR n UP TD 50 AND VARIOUS VALUES OF i
w = 0.0 a = 0.10(*%) a = 0.20(%) o o= 0,30 o= 0.40(*) a = 0.60(*) e = D.BO(")

nifimulated Equation [Simulated Equation |Simulated Equation | Simulated Equation Simulated Eouation | Simulated Equation

Simulated FEguation

| 1.47E3 1.5096 1.8054 1.8568 2.16%0 -.2503 Z.654d o.8831 3.1657 3.3341 4.7701 5.1157
& 1.9562 2.0672 2.3769 2.4091 I.8R40 2.52%0 3.5247 3.7667 4.3250 4.4067 &, 7870 6.9964
1| 2.50%0 1.5348 2.9779 2.9537 3.0300 36000 4.5914 4.8511 5.5132 5.47492 5.8479 E.8770
15| 3.8849 3.7038 4.3127 4.3360 5.2914 5.5072 7.2030 6. 8620 3.2048 5.1607 13.7085 13.5785

20

. 0geT 4.8728 5.7013 5.714 7.0060 7.0055 B.35578 9.0728 | 10.5047 10,8421 18,4344 18,2800
30 | 7. 2RG2 7.2108 H.5668 &.4652 [ 10,5303 10,4021 13,6038 13.4847 | 16,2264 16,2045 | 25.0569 27,6830

40| 9.5260 9. 5488 11.4259 11.217% | 14.0707 13,7987 17.8loe 17.9165 20510 21.5678 | 37.9329 37.0861

LU I D B ) 11,5848 13.7626 13.9706 | 16.91B4 17.1952 | 22,1630 21,3383 | 26.4554 26.9300 | 45.5670 46,4851

7.5608 7. 4800,
11.el19 11,8027
15.9342 16,2455
27.067% 7. 2033
38.1203 38.1591
60.5044 0. 0728

83.6533 Bl 9805

102.4562 103, w001

(*) lor these values of o , the VarIP.nl obtaiped by simulation were taken from P. Sutabuzra (1967).

TABLE 6.2  PARAMETERS OF LINEAR REGRESSION FOR THE VARIANCE OF THE
RANGE OF THE FIRST-ORDER MARKOV MODEL OF EQ. 3.4.

Values of ¢
0.0 0.1 0.2 0.3 0.4 0.6 0.8
A 1 019676 0.20683 0.21238 0.22929 0.11639 -0.52607 -5.66821
B 0.23380 0.27527 0.33966 0.44218 0.53629 0.94030 2.19137
Standarg, Lrrox 0.00285 0.00305 0.00402 0.00606 0.00696 0.01323 0.02190
Nf Regr. Coeff.
Correlation ; o
199 99 TS q7
Coefficiont (., 99856 0.99963 0.99958 0.99944 0.99950 0.99941 0.99970
TABLE &.3  COMPARISON OF PERCENTAGE RELATIVE ERRORS OBTAINED IN USING EQS. 6.21 AND 6,22
FOR COMPUTING THE VARIANCES OF THE RANGE OF THE FIRST-ORDER MARKOV MODELS.
RELATIVE ERRORS IN PERCENTAGE
o= 0.10 e = 0.20 o = 0.40 & = 0.60 o= 0.80
n Equation Equation Equation Equation Egquation Equation Equation Equation Equation Equation
6.22 6.21 6.22 6.21 6.22 6.21 6.22 6.21 6.22 6.2l
6 -6.088 -2.862 -4.677 -3.702 -2.096 -5.051 +1.682 -6.758 +1.220 +1.080
3 -3.745 -1.336 -2.650 -1.560 -0.864 -1.854 +2.516 -2.991 +1.485 =2.115
n -1.321 +0.618 =0.750 +0.585 -0. 006 +0.620 +2.362 -0.327 +14.901 -1.916
I3 -1.824 -0.539 -2.147 -0.299 -2.853 +0.540 -1.657 +0.965 +10.696 =0.494
k] =1.229 -0.194 =2.246 +0. 006 -4.542 =0.345 P -5.140 +0.845 +5.438 =0.102
30 +01, 352 +1.201 -1.611 +1.217 -5.870 +1.367 -B.653 «1.351 -1.408 +0.718
10 +1.1H1 +1.854 =1.268 +1.97] -6.5374 +2.148 -10.133 +1.2B4 -4.950 + 2 033
50 =1.238 -1.4Ry -4.986 -1.610 =10.750 =1.765 -15.344 -1.983 -11.207 =1 AW
Avurage
Absolute
frrur X AR ¥ I.202 2,547 1.369 4,169 1.711 5.930 2. 184 6421 1.231
TABLE 6.4  REGRESSION COEFFICIENTS OF LINEAR FUNCTION FIT TO VARIANCES OF
THE RANGE OF THE SECOND-ORDER MARKOV MODEL.
ol=0.40 01=0‘60 01-0.80
_DZ=0‘10 02-0.20 02=U.30 02'0.25 °2=0'30 D2=0'40 92-0.40 02=0.50
A -0.33983 | -0.66148 | -1.21142 | -0.12678 | -0.51548 | -1.86086 | 3.98548 | 2.20953
B 0.47315 0.60505 0.77663 0.65861 0.77870 1.08101 | 0.38242 | 0.90797

IStandard Error

Correlation
Coefficient

Of Regr. Coeff. 0.00426 0.00519 0.00617 0.00609 0.00670 0.00860 | 0.00837 | 0.01021

0.99931 0.99938 0.99946 0.99927 0.99937 0.99946 | 0.99595 | 0.99893
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of Eq. 6.21, for the second-order Markov
model with constant autocorrelation co-
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py= 0.40 and (2) P, = 0.50.
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In general, whenever periodicity exists in
parameters of the components of the models repre-
senting the inputs and outputs, the resulting variance
of the range is also a periodic function. The first
simulation was performed to see whether the char-
acteristics of Var{ R }, when p_and o_ are
periodic functions, (see Fig. 6.9) depart significantly
from the stationary cases. These curves are shown in
Fig. 6.10, where the mean and standard deviation
of M, are ET =20 and s(,uf) = 12.40, and the
mean and standard deviation of o are G _=5.0
and s(o ) = 2.79. For these cases, Fig. 6.10 shows,
for p,=,6,0 and p = 0.60, the vaniance of the range
against n for values of n up to 60. This figure
shows also how complex, Var{R _ } becomes when-
ever one uses models with periodic functions.

A general characteristic presented by Fig. 6.10
is that after a transition region the variance of the
range becomes a non-decreasing function of n,
because the effect of periodicities on Var{R_}
decreases with n. This characteristics differs from
that of the expected range for which, as will be
shown in Chapter VII, the expected range is alwaysa
non-decreasing function for all values of n . Figure
6.10 also shows that Var{ Rn } isa periodic function
with its phases and amplitudes dependent on the
periodic functions u, and o, . The plot also shows
that the amplitudes of the periodic func-
tion Var{R } decrease as n becomes large. Simi-
larly, as in the case of the variance of range for
stationary Markov models, the effect of dependence,
in this case of periodic u_ and o_ , is considerable.

Strictly speaking, the variance of the range for
models of the type of Eq. 6.24 depends on
amplitudes and phases of periodic functions u_
and o, aswell as on p . If one considers the Fourier
fitof u 3 and o_ ,as suggested by Eq. 3.6, the num-
ber of parameters to consider for determining the
variance of the range becomes excessive. Therefore,
the approach in this study is to look for other
parameters which are functions of u_ and o_, such
as the standard deviation s(u ) and the mean and
standard deviation T and s(o,). By choosing only
the parameters s(JuT), FT and s(o_) as representa-
tive of p_and o, , one mainly neglects the in-
fluence of their phases. In order to see how great this
influence is on the variance of the range, a sensitivity
analysis was performed with s(u ) = 12.40 and for
two phases, and with o= 10,s(c_) = 6.87 and
for three phases. These functions, © and o, , are
shown in Fig. 6.11.




Five different combinations of symmetric and
skewed p_ and o_ , as shown in Fig. 6.11 were
considered, and in all cases the first autocorrelation
coefficients was p = 0.60. The variances of the
range obtained in these 5 cases are shown in Fig.
6.12. This figure shows that, basically, the influence
of the different phases of u_ and o_ is significant
only in the transition region. Beyond this region or
for n > 50, they all tend to converge to approxi-
mately the same variances. Therefore, for all practical
purposes, the influence of phasesin p_ and o_may
be neglected for larger n. Subsequently, all the
analysis is based on symmetric func
tions p_ and o_, and the only parameters used to
define p_and o_are s(u ), and G_ and s(o,).
The different functions of ©, and 0, considered
afterward are shown in Figs. 6.13 and 6.14.

Another characteristic observed from the
analysis of the computer simulated results is that, for
given values of E'T ; s(ar) and p , the influence of u_
is significant only in the transition region. For
n > 50, the variances of the range tend to converge
to approximately the same values. Table 6.5 gives a
comparison of variances obtained for values of n up
to 350 for the cases of G_ =20, s(o.) =0 and
1422 , p =0, and s(,uf) =0 and s(u )= 190.96.
Table 6.6 gives the comparison for the same case as
above except that p = 0.60 . These comparisons are
also shown in Figs. 6.15, 6.16, and 6.17. The results
of this analysis lead to the conclusion that for large
values of n ,say n > 50, the variance of the range
for the general case of Markov models with a periodic
mean U, and a periodic standard deviation o,
depends only on T_, s(of) and p . That is,

Var{R_}=f(o_,s(0.),p) - 6.25

The restriction on n for the validity of Eq.
6.25, for all practical purposes is not important,
because, whenever one considers models with
periodic components, one is dealing with, say, with
monthly or weekly values and so only the variances
of the range for large values of n are of interest.

The variances of the range for values of n up
to 350 and various values of 't".":_ ; s(ch) and p are
obtained and are presented in Tables 6.7, 6.8, and
6.9. They are also shown in Figs. 6.18 through 6.26.
In all cases analyzed, the plot in arithmetic scale
of Var{R_1} against n follows approximately a
straight line. For the particular cases
of s(0,) =0 and p = 0, the values presented in
the respective tables and figures were obtained by
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using Feller’s asymptotic formula, given by Eq. 2.5.
For the cases of s(0_) = 0 and p #0, they were
obtained by using the empirical results of application
of Eq. 6.21.
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01 2 3 4 5 6 7 8 9% 10 1 12
Fig. 6.9  Periodic mean u_, with p_=20 and
s(u,) = 12.40 , and periodic standard
deviation o, with TJ'T =5 and
s(0,) = 2.79, considered when Var{R }
of Fig. 6.10 are obtained by simulation.
. b
1600 | var {Rn‘(
(4]
1400+
[3)
1200}
Telelels
sook
600
{2)
200}
n
ECC—
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Fig. 6.10 Variance of the range obtained from

simulated samples for first-order Markov
models with HT =20 and s(,ur)= 12.40,
and with _=5 and (1) s(o,) =00
and p = 0.0, (2) s(o,) = 2.79 and
p =00,(3) s(o,)=00 and p =0.60,
and (4) s(0) =279 and p = 0.60 .
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Fig. 6.11 Periodic mean 1, with ﬁ: =20 and
s(u,) = 12.40 for two different phases
(upper graph) and periodic standard de-
viation o with T_=10 and s(o )=
6.87 for three different phases (lower
graph). These u, and o are used in
obtaining variances of Fig. 6.12.
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Fig. 6.12 Variance of the range obtained from

simulated samples for s(u) = 12.40,
G, =10, s(0) = 6.87 and p = 0.60,
and five combinations of phases of K
and o_ . (*number in parenthesis refer
to types of u_ and ¢ indicated in
in Fig. 6.11).
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300
200
100
T
O 1
0 2 4 & B8 10 12
Fig. 6.13 Four different periodic mean . used
in part of this chapter and Chapter VIIL
They have 1_=250 and s(u,) equal to
(1) 0.0, (2) 73.03, (3) 134.04, and (4)
190.96.
TABLE 6.5 COMPARISON OF THE VARIANCE OF THE RANGE FOR
MODELS WITH s(u ) =0 AND s(u ) = 190.96
IN CASE OF p = 0 , AND BOTH A CONSTANT AND
A PERIODIC STANDARD DEVIATION.
5 =20,5(0,)=0,0=0.0 | §_=20,5(0_)=14.22,0=0.0
n s(uT}=U s{ur}=190.96 S(UT]=0 s(ur]=190.9b
1 129.67 348.32 5.19 15.93
3 276.42 971.03 56.33 175.35
6 684.07 668.10 1285.21 1217.20
10 1545.16- 2450.48 2305.41 7190.78
15 1837.27 1571.58 2346.62 2562.93
20 2132.30 1727.13 3183.43 3417.79
30 2705.41 2066.21 3905.72 3484.86
40 3422.04 5399.94 4766.91 5098.71
50 3845.00 3750.00 4827.00 5147.00
75 6069.00 6329.00 8612.00 9325.00
100 | 8523.00 8515.00 13915.00 14648.00
150 |14340.00 14403.00 21683.00 23996.00
200 |20313.00 20572.00 28446.00 28852.00
250 |26300.00 27188.00 36932.00 36514.00
500 |29952.00 29944.00 43053.00 41557.00
350 [35259.00 34672.00 52066.00 51619.00
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Fig. 6.14 Different periodic standard deviation o_
used in part of this chapter and Chapter
VII. They have G = 20 and s(u)
equal to (1) 0.0, (2) 5.56 and (3) 14.22,
G =40 and s(u ) equal to(4)0.0, (5)
14.22, (6) 30.37, and (7) 40, and 0 _=
80 and s(u ) equal to (8) 0.0, (9) 30.37
and (10) 64.50 .
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TABLE 6.6 COMPARISON OF THE VARIANCE OF THE RANGE FOR
MODELS WITH s(2) = 0 AND s(u_) = 190.96
IN CASE OF o = 0.60 AND BOTH A CONSTANT
AND A PERIODIC STANDARD DEVIATION.
& =20,s8{c_}=0,0=0.60 3_=3{1,$['."T]=14.23,D=0,60
n s(2 00 | 5(4)=190.96| s{1)=0 | s(1 )=190.9
; T
1 120.67 548,32 5.19 13.93
5| s99.00 1986.98 | 100.90 304.91
i
6 | 2014.22 1278.43 3012.91 2135.38
10 4581.92 6857.56 8279.99 20605.91
15 7358.97 |  4148.05 9146.76 665639
20 8§35.53 | 5868.06 12798.75 10805.38
30 | 11188.38 |  7159.14 14875.94 11583.52
|
| 40 14343.70 ! 11688.07 17908.69 16041.51
i
50 | 16012.00 | 14284.00 15215.00 16705.00
75 | 23970.00 j 24103.00 28489.00 20695.00
1o | 33899.00 32675.00 44957.00 45094.00
150 | 56693.00 55238.00 77096.00 77260.00
i 200 | 79837.00 80796.00 104280.00 | 106030.00
| 250 |104991.00 | 106130.00 | 132695.00 | 132174.00
300 |120052.00 | 118882.00 | 146796.00 | 148425.00
350 | 139950.00 | 138436.00 | 169376.00 | 171444.00
varfr,.}
3x 105
o slpel=0
® siur)=190.986
| x10%F
5x10%
-
° o
L ]
1 L L]
Plohi o <]
L ]
5x10%F
[=]
-
103 . ; , : LNy
I 5 10 50 100 500 1000
Fig. 6.15 Comparison of the variance of the range

for first-order Markov models with s(u, )
=0 and s(u) # 0; and 5;=20,
s(0,) = 14.22 and p = 0.60, with the
values of the variance converging for
values of n > 50.



1 TABLE 6.7  VARIANCE OF THE RANGE FOR MARKOV MODELS WITH PERIODIC
v R STANDARD DEVIATION. CASES OF & = 20 AND THREE
ar VALUES OF S(UT) .

6x10%
S{,U.f} 00
\rar(l!“}
n 8220, s(s_)=0. 8220, s(o )=5.56 G220, $(o_)=14.22
4x10% p=0.0 | 250,30 [a=0.60 | p=0.0 | p=0.30|p=0.60 | 0=0.0 | p=0.30|p=0.60
50 | 4360 | 8936 | 18506 | 3529 | 6764 | 15381 | 4827 | 8829 | 18215 !
75 | 6540 | 13358 | 27999 | 6098 | 11099 | 23254 | 8612 | 15234 | 28489
100 | 8720 | 17780 | 37402 | 9634 | 17594 | 35764 | 13913 | 24746 | 44957 :
2xI0% £
150 |13080 | 26624 | 56208 | 15460 | 28954 | 61987 | 21683 | 39743 | 77096
200 17440 | 35868 | 75014 | 21767 | 40963 | 87886 | 28446 | 52219 |104280)| :
250 (21800 | 44312 | 93819 | 28219 | 52690 |112411 | 36932 | 66814 |132695|
n
L 1 1 1 P
OO 100 200 300 200 300 126160 | 53156 |112626 | 52392 | 59979 |127295 | 43053 [ 75890 | 146796
350 (30520 | 62000 |131432 | 37762 | 69691 |146332 | 52066 | 91049 |169876)

Fig. 6.16  Comparison of variances of the range for
models with s(u ) =0 and s(u)#0.
Cases of p = 0, and both constant o,
with (1) o, =20, and periodic o_ with
(2) ‘U-T - 20 and S(GT) = 14‘22 5 TABLE 6.8  VARIANCE OF THE RANGE FOR MARKOV MODELS WITH PERIODIC

STANDARD DEVIATION. CASES OF 3_ = 40 AND THREE
VALUES OF s(a ) .

\ var(R_ }
Vur{R } n 2,240, 5(0_)=0. 3,240, s(0,)=14.22| G =40, s(c_)=40.0
al n _ :
20xI10 0=0.0| £=0.30{p=0.60 | £=0.0| ¢=0.30|p=0.60| p=0.0| p=0.30|0=0.60
o slug)=00
0| 17440 | 35743 | 74382 14547 277 032 | 45260
e slur)-19096 s 82 | 62526 | 26 85227
75| 26160 | 53431 |111994| 25494 | 46089 | 94512 | 43687 | 75815 | 134958
15%10% 100| 34880 | 71119 |149606 | 40876 | 74125 |147997 | 70189 |122480 |212158
150 | 52320 |106495 |224830 | 64929 (121190 |256388 111187 [201578 | 368682
200| 69760 |141871 (300054 | B9614 |169499 |363897 142795 |260791 | 482370
10xI0% 250 | 87200177247 |375278 |116904|219562 |463106 (178178 (323102 | 599622
300 104640 212623 |450502 |135368|250202 (524378 215522 370483 | 655538
350 122080247999 | 525726 |158209 |290363 | 600772 265648 (448575 | 764821 3
A
SxI0*
TASLE 6.9  VARIANCE OF THE RANGE FOR MARKOV MODELS WITH PERIODIC L
n STANDARD DEVIATION. CASES OF &_ = 80 AND THREE
00 o 1 1 i VALUES OF s(s_} . ¥
o] 100 200 300 420 ’
Fig. 6.17 Comparison of variances of the range Yarin !
for ﬁrst_ordel- Markov models wlth S(“f) I =80, S(OT)HO‘D Z_=80, s[a__):SD‘ST E =80, !(cr)vbd,ED
=0 and S(P_T) #* 0 . Cases of p =0_60, c=0.0 |e=0.30|e=0.60 |2=0.0 |p=0.30 |p=0.60 [p=0.0 |p=0.30 |p=0.60
and both constant ¢ with (1) o_=20, S0{ 69760|142871| 29752¢| 58422| 111440 250830| 85582{ 153305| 306865
T 7
and periodic gr with (2) g, = 20 and 75|104640| 215724 | 147977)102753| 186023 | 350107 |148168| 261040 483966
5(g )= 14.22 . 100|139520| 284475 | 598425166088 300651 | 5976571238804 | 422323| 758703
T
150|209780| 4250979 | 899321|265145| 492915 |1036389 375548 | 687228|1306274

iEDD 279040507484 1200217 364149 686504 [1470519 (487246 394681 (1744844

I?Sﬂ S48800| TOB987 [1501113|473063| 888601 (1870963 (627725 (11379262207363

5300 418560| 8504921 1802009548731 | 1013787 [2115339 742078 1293311 | 2433665

i
i350 4883201991996 |2102905[642178 | 1173561 |2420344 [902639 (1559591 | 2819252
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. Var {Rn }
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=0.6, Eq.6.2I
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exo - =0, Eq.2.5
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Fig. 6.18 Variance of the range for Markov models
with constant standard deviation. Cases
of 0_=20 and p=00,03, and 0.6 .
IGx'Cir var{Rn} P=06
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6x10°-
4x10%- 00
2x10'F
n
(0] ] | | ok
0 100 200 300 400

Fig. 6.19 Variance of the range for first-order
Markov models with periodic standard
deviation. Cases of B’f =20,s(0,)=5.56
p=0.0,0.3,and 0.6 .
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1ox18 - o3
0.0
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5xI10 |-
o n
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Fig. 6.20 Variance of the range for first-order
Markov models with periodic standard
deivation. Cases of 0= 20 , s(oT) =
1422 and p = 0.0, 0.3, and 0.6 .

}var{ Ry} p =0.6,Eq.6.21
40x10%
p=0.3,Eq.6.2]
20”0‘% -
0.0
200 300
Fig. 6.21 Variance of the range for first-order
Markov models with constant standard
deviation. Cases of g = 40 and p =0.0,
0.3,and 0.6..
P=0.6
GOlIO‘-Var{ Rn}
L)
40!’10
20x10'} %
0.0 -
0 100 200 300 ;
Fig. 6.22 Variance of the range for first-order

Markov models with periodic standard
deviation. Cases of @_= 40, s(0) =
1422 and p = 0.0, 0.3, and 0.6 .
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Fig. 6.23 Variance of the range for first-order
Markov models with periodic standard
deviation. Cases of & =40, s(0,) = 40
and p=0.0,0.3,and 0.6 .

var{Rn } p=06, Eq. 6.2!
150 %1 0%
p=0.3,Eq6.21.
100x10%
p=0.0,Eq.25
50x10%
n
00 ] 1 i 1
0 100 200 300 400

Fig. 6.24 Variance of the range for first-order
Markov models with constand standard
deviation. Cases of 0. =80 and p=0.0,
0.3,and 0.6 .
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300:104—\{“{9”} P=0.6
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200x0'F
0.3
100x1 G}
0.0
n
0.0 . 1 1 1
0 100 200 200 400
Fig. 6.25 Variance of the range for first-order
Markov models with periodic standard
deviation. Cases of T_ = 80 , s(0,) =
30.37 and p = 0.0, 0.3, and 0.6 .
vor{ra}
400:I04-
p=06
300x10%
L]
L)
200x10%+
0.3
7 / =
0.0 . L L o
0 100 200 300 400

Fig. 6.26 Variance of the range for first-order
Markov models with periodic standard

deviation. Cases of T, = 80 , s(0,) =

64.50 and p = 0.0, 0.3, and 0.6 .
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CHAPTER VII

DESIGN OF DETERMINISTIC-STOCHASTIC STORAGE CAPACITIES

This chapter deals with determining the storage
capacity of a reservoir when the within-the-year
inflow fluctuations are considered. The analysis is
based on the approximate expected values of the
range developed in Chapter V and on some further
results described herein. The main assumption is that
the inputs are described by a Markov model with
periodic mean u_ and periodic standard deviation
o_ as represented by Eq. 6.24, and the output is
equal to the mean input 7I_.

7.1 Deterministic and Stochastic Storage

First, a sensitivity analysis is performed to see
the effect of each component p_,0_and p onthe
expected value of the range. The functions
u, and o used here are those previously shown in
Fig. 6.9. Figure 7.1 shows the expected range for the
following cases:

(1) ii.d. variables with 0 =5.0,

(2) independent variables with _01_ = 5.0 and
(0,)=2.79,

(3) periodic function p_
domness,

(4) p_ with s(u)=12.40,0 with 5, =5.0
and s(orr) =0.0,and p=0.0,

(5) u, with s(u)=1240,0 with 5 =50
and s(or) =2.79,and p=00,

(6) w, with s(u)=12.40,0_ with 0 _=5.0
and s(0,)=0.0,and p =0.60, and

(7) u, with () = 1240 , o with
0, =5.0 and s(0,)=2.79 ,and p=0.60.

only, without ran-

The results shown in Fig. 7.1 are important,
giving a good idea of the influence of each
component on the expected range. For the case of
ii.d. random variables with ¢ = 5.0, a well-known
increasing smooth curve is shown. Then, for periodic
o, with (TT =5.0 and s(af) = 2.79 , the expected
range is a periodic non-decreasing function of n
with a period equal to the period of o¢_ and with
decreasing amplitudes as n becomes large. The
expected range after the transition region is greater
than the expected range of the case of a constant
standard deviation. For case (3) the function u_ has
no random part. The range in this case increases from
zero up to a maximum value of 64 at n = 8 and
remains constant for all greater values of n. Cases
(4) and (5) give for p = 0 the effect of the periodic
function o_ combined with the function p_.In
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these cases, the expected range is again greater when
0, is periodic than when o_ is constant. The same
result is given for cases (6) and (7) for p = 0.60. A
general characteristic shown by cases (4) through (7)
is that they are all periodic functions with a period
equal to one half of the period of g _. This result
defers from case (2) in which the period shown by
the expected range was the same as that of o, .
Figure 7.1 also shows that the effect of dependence,
determined in this case by p , is considerable.
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Fig. 7.1

Expected range for first-order Markov
models with periodic mean u_ and
periodic standard deviation o, . Cases of

{I)s-{.uf)= 0, 3r=5. s[of)=l) and p=0;
2) s(;.lr) =0, o =5, sla_,) =279, and p=0;
(3)s(n,)=1240, G =0, s(0,)=0,  and p=0:
(4) s(u, ) = 12.40, @ =5, s(0)=0 and  p=0:
(5)sle,)=12.40, T =5, s(o)=2179, and p=0;
(6) slu,)=12.40, o =5, 0,)=0, and  p=0.60;
(T)s(u,)=12.40, T,=5, s(0,)=2.79, and p=0.60.

The long term effect of the phases of K, and
o, s analyzed with 9(1.17) = 1240 and two
phases, and G_ = 10, and with s(g,) = 6.87 and
three phases and p = 0.60. As in the case of the



variance of the range, five different combinations of
symmetric and skewed K, and o_ were used as
shown previously in Fig. 6.11. The expected ranges
obtained for the five cases considered are shown in
Fig. 7.2. These results lead to the conclusion that the
influence of the phases of u_ and o, is significant
only in the transition region. Beyond th.lS region, or
say for n > 50, the expected ranges tend to con-
verge to approximately the same values. Therefore,
for all practical purposes, the effects of the phases of
M and o, are neglected, and, subsequently, the
analyses are made for symmetric functions of B,
and o_ only.

E{R
1000’- {ra}
L] .‘
L] ..
L]
L]
L] s )
L]
Y e
100} o
A‘#l
ape
N - -3 I )
| B * Ll op(2)
: L Pf[a“ﬂ'r{”
¢ = n prll),orl3)
10 a P’THLO'T{”
4
[ ]
- i
| 1 [l L
I 10 100 1000

Fig.7.2  Expected range obtained from simulated
samples for first-order Markov models
with s(u ) = 1240, G = 10, s(o ) =
6.87 and p = 0.60 for five different
combinations of phases of u_ and
0_ . (*numbers in parenthesis refer to
types of #_ and o indicated in Fig.
6.11).

In determining the storage capacity of a
reservoir for within-the-year regulation on the mean
flow ET » and for inputs of the Markov models type
with periodic mean u_ and periodic standard devia-
tion o_,the expected storage, given by the expected
range of cumulatwe departures from the mean [, is
divided into two parts: (1) A deterministic storage
which is a function of the standard deviation of
M, and the mean and standard deviation of & =
and (2) A stochastic storage which is a function of
the mean and standard deviation of a_ ,, the auto-
correlation coefficient p ,and n . That is,

Sp () =S, [s@,),0,,s(0,)]
+S, [o ,s(o) p,n], 7:1

where S (n) denotes the total storage required for
regulation in n units of time, and S;(.) and
S,(.) denote the deterministic and StOChaStlc storage
funct:ons respectively. Equation 7.1 is represented
graphically in Figs. 7.3 and 7 4.

The hypothesis that the deterministic storage
S4() depends only on s(u ), o, and s(0,) was
checked by comparing the expected ranges obtained
when K is considered and when it is not — that is,
when s(;.z ) # 0 and s(u) = 0. For exa.mple, Fig.
73 gwes the expected range when @ = 10,
s(o,) = 687 ,and p =0 for both s(u)‘1240
and s(u) = 0 . The differences between the
expected ranges obtained for these two cases vary
around a constant value of 41.96 for n values
greater than 50. Figure 7.4 also shows the same case
as above except that p = 0.60. The constant value
obtained in this last case is 42.03. These results are
also given in Table 7.1. This analysis confirms the
postulate of an approximately constant deterministic
storage independent of p and n for given values of

s#.) , @, and s(o,) .

The deterministic storage func-
tion Sy[s(w ), @, s(o,)] is determined for various
values of s(p ), 0., and s(0_). The specific func-
tions p_ and o censidered here are shown in
Figs. 6.13 and 6.14. Figure 7.5, gives the function
S, [s(e, ),_ s(o.)] for s(u ) = 73.03, 134.04
and 190. 96 for 'c'r' = 20, 40 and 80, and for
9(0 ) ranging from O to 40. This figure shows that
a [mear function may be fitted between the values
of S,() and s(o) for particular values of T_
and s(u ). It also shows that the effect of s(o,)
is very small so that the function S,[s(k) ,
E}:_ , s(oT)] may be further approximated by a
function of only two parameters, namely s(u,)
and O_ . In this case Figs. 7.6 and 7.7 give a relation-
ship between the deterministic storage function
Sq() against @ and s(u ), respectively.

The stochastic storage function S [0 5(d.) ,
p ,n] is determined previously in Chapter V as the
expected range of Markov models with periodic
standard deviation and is given by Eq. 5.18. There-
fore, the total storage S, (n) of Eq. 7.1 may be
approximated by
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Sp(m) =8, Is )0, ,5(c,)]

fi

g o
+ ﬂ{an£11+of
n

n
[ Z ' (VarS)*- = i*]} 7.2
i=1 i=1

x;};egre 6, is given by Eq. 5.10 and Var S, by Eq.

7.2 Example of the Application of the Proposed
Method

Let us assume that a river has a monthly
streamflow which may be described by a Markov
model with periodic mean K, and periodic standard
deviation ¢_, with the following values:

Periodic mean: & = 200 units, s(u,) = 150,
the periodic standard deviation:

w1 2 3 4 5 6 7 8 9 101112
0:4 7 12 20 34 43 43 34 20 12 7 4

with 6 = 20 and s(o,) = 14.22, and with the
first autocorrelation coefficient p = 0.60.

Assume further that one desires to find the

storage capacity for regulating the mean
flow = 200 units, which on the average will not

TABLE 7.1

run dry or overflow in a period of 20 years — that is,
n = 240.

The deterministic storage may be found from
Figs. 7.5 through 7.7. Assuming the effect of s(o.) is
neglected, then Fig. 7.7 gives a value of S, = 724
units. The stochastic storage is obtained from Eq.
5.18 in which the function &, is computed by Eq.
5.10. This gives a value of S = 970 units for the
stochastic storage. Therefore, from Eq. 7.1, the total
storage is equal to 1694 units. The variance of this
storage may be obtained from Fig. 6.20 which for
0. =20,s(c)=1422,p =0.60 ,and n=240
gives a value of 124,000 or a standard deviation
equal to 352.

It should be noted that the proposed method of
separating the total storage into a deterministic and a
stochastic part may be extended to higher order
Markov models. For these models the deterministic
storage function S;(.) remains the same, while the
stochastic storage function depends on several more
parameters; that is, in general it will be represented
by S,[0,,s(0,),5, .s(p, )] ,with k=12,.m
and m the order of the Markov model considered.

COMPARISON OF THE EXPECTED RANGES FOR MARKOV

MODELS WITH ZERO AND PERIODIC MEAN uo

(eD] s{ur]=12.40, 61=10, s(sT}=6.87, p=0. (1 s[ugr)=12.40, 6T=10, S{GT}=6.8?, p=0.6
(2) s[uT)=0.0, ET=10, s(o_)=6.87, p=0. (2) s’(ﬁtj=0.0, 5'!:10, s(cT)=6.87, p=0.6
n
Expected Range Exrtected Range

1)-(2 1)-(2
50 157.47 | 117.12 | 40.35 225.83 | 185.96 | 39.87
100 214.19 | 171.58 | 42.61 328.75 | 285.50 | 43.25
150 258.58 | 219.12 | 39.46 407.54 | 367.30 | 40.24
200 301.25 | 259.87 | 41.38 484.38 | 443.16 | 41.22
250 331.09 | 290.22 | 40.87 539.87 | 498.82 | 41.05
300 359.76 | 317.66 | 42.10 593.00 | 549.67 | 43.33
350 389.83 | 346.75 | 43.08 643.22 | 599.70 | 43.52
400 417.51 373.56 | 43.95 693.31 | 649.43 | 43.88
450 443,45 | 400.65 | 42.80 737.20 | 695.20 | 42.00
500 465.49 | 422.58 | 42.91 780.62 | 738.02 | 42.60
550 487.86 | 445.58 | 42.28 817.45 | 775.89 | 41.54
600 508.38 | 466.68 | 41.70 §54.71 | B12.88 | 41.83
Average difference = 41.96 Average difference = 42.03
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Deterministic and stochastic required storage capacities in case of inputs with periodic mean K,

and periodic standard deviation o_ with G_=10,s(c_)=6.87 and p =0.60.

72

T

i e e e



PR

s,[ste), 5, . 0]

<0
20
40

8O

s{ )

1 1 1 1 1 L L 1 1

Slsm), 5, 4 slop)
| =
1000} e
oj; — o =20 900
9005 - 40 [stie)
‘—'_\-?3.03 -
_— 80 T
7008
700+ st
. v 7,:20 )
&0 i —430 {3404 spoy
s00F go | 400"
400k 300}
30 > o G, = 20 {Jigo . eRar
40 . oo
200F —
BC 5 -
o 20
l00}
s (%) Fig. 7.7
9] 1 L 1 1
0 10 20 30 40

Fig. 7.5  Variation of deterministic storage for
various values of s(u ), and s(g,) .

[{ewsl
N

8OO

emN‘

400§

Fig. 7.6 Deterministic storage for the case of
s(o,) = 0 and various values of s(u )

and o .

73

40 &0 B8O 100 120 140 180 180 200

Deterministic storage for the case of
s(c.) = 0 and various values of s(u )
and ©0_ .



CHAPTER VIII

CONCLUSIONS

The analysis of storage problem considering the
within-the-year fluctuations of inflows was the main
objective of this study; therefore, mathematical
models of monthly values of streamflow were used as
examples. The storage difference equation which
relates the inputs, outputs, and storage was used for
formulating the mathematical problem. This led to
the problem of determining the expected values and
variances of the range of cumulative departures from
the mean.

The main conclusions drawn from this investi-
gation are as follows: (1) Considering that the
sequence of partial sums So ,SI,52 ,...,Sn follows the
general multivariate normal distribution function, the
exact expression of the expected value of the surplus
M, = max(S .S, .S,,....8 ) becomes very complex
to derive when n is large. For small values of
n , namely for n = 1,2, and 3, the expected value
of the surplus M and consequently the expected
value of the range R~ were derivedlin this study.

(2) The derived general expression of the expected
value of the range for n = 1,2, and 3 permits
obtaining the exact expected ranges of stationary and
non-stationary inputs. The following cases were
derived:

a. Independent random variables with changing
standard deviation;

b. Equally dependent random variables, and

¢. Markov dependent random variables.

(3) The exact expected values of the range,
obtained mathematically, for small values of n such
as 1,2, and 3, and the computer simulation approach
for larger values of n, can be used to determine the
degree of accuracy of approximate equations of the
expected range. In this study, approximate equations
were obtained for the following cases:

a. General Markov model with constant variance
and periodic autoregression coefficients,
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b. Non-stationary exchangeable random variables,
and

¢. Markov dependent random variables with per-
iodic standard deviation and constant auto-
regression coefficients.

(4) The expected values of the adjusted range of
exchangeable random inputs, and outputs equal to a
percentage of the mean inflow, may be expressed in
the same way as the formula 4.107, valid for the
expected range of exchangeable random variables.
This result is relevant in hydrology in cases of over-
year storage design.

(5) The exact variance of the range was possible to
derive for n = 1 and 2 for the case of stationary
first-order Markov model. The mathematical
derivation becomes complex for larger values of n.

(6) Empirical equations, derived by the computer
simulation approach, can be used for approximating
the variances of the range. In particular, in this study,
empirical equations were derived for the variance of
the range of the first and second-order Markov
models with constant autoregression coefficients.
Some empirical curves are also given for cases of non-
stationary Markov models.

(7) The total storage capacity required for regulat-
ing the mean inflow, when the within-the-year
fluctuation of the inflows is taken into account, can
be divided into two parts:

a. A deterministic storage which is a function
of the standard deviation of w, and the mean
and standard deviation of o_. (For these three
parameters it is shown that the deterministic
storage is practically constant for all n greater
than 50.)

b. A stochastic storage which is a function of the
mean and standard deviation of o, of the
autocorrelation coefficients of the Markov
model considered, and of n .
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APPENDIX
EVALUATION OF CONSTANTS TO BE USED
IN EXPRESSIONS E{X}, E{Y} AND E{Z}

OF CHAPTER IV

Let us recall that the maximum M3 was de-
finedas M; = max(0,X,Y,Z) , where

S, =X=(x1—yl)
SZ=Y=(X1 -yl)+(x2 _xz)
8, =2=(x ~¥)t 6 <)t G ~¥3)s

and let us assume that the departures or components
of partial sums (x, - y;) are normally distributed
with mean zero, changing variance and are linearly
dependent.

Therefore the variances of X, Y and Z are
given in general as

Var{X}=0? =072, (1)
Var{Y}= oy’ =g 2

Var{Z}=¢, =0, + 0,> + 0;°

+20,0,p,, ¥ 20,0505 %20,0,0,5 . (3)

The covariances of X and Y ,
X and Z ,and Y and Z may be shown to be
CoviX,Y}l=o0

2
1 ® 0102912 (4)

Cov{X,Z}= 012 +0,0,0,, t 0,030,3 > (5)

- 2 2
Cov{Y,Z}= 0, +o,*+ 20,0,p,,

+0,0,p,5 F 0,030,553 - (6)

where o0,, 0, and o, denote the standard devia-
tion of the departures (x, - Y, (x2 -y,) and
(x5 -y3) respectively and p, ., 0, 4 and p,, are
the correlation coefficients between the indicated
components.
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A. FOR INDEPENDENT COMPONENTS. In
this case Py Bia Sibys= 0, therefore Egs.
(1) to (6) simplify to

Var{X}=o0? =0?, 7
Var{Y}= 02 =0.* + 0, , (8)
Var{Z}= 0, = ¢,% + 022 to>, 9

Cov{X,Y}= 0, (10)
CoviXZ}= 0, , arn
Cov{YZ}= 02 + 0,* . (12)

From the above equations, the correlation coef-
ficients Py Pys and p,, aregiven by

px}" = (0,12 + 0_2‘2)1/2 E]

%

pxz - (012 + 522 + 0_32)’;& 2 (13)

2 2514
(0," +0,°)

and p__ =
¥z (olz + crz2 + 032)1’61

Using the Egs. 4.17, 4.21 and 4.24, the con-
ditional standard deviations are

0,9,

g T e
X.Y (0.!‘2 + 622)‘;’: x

2 2y
0,(0," + 05%)

g -
X.2Z 2 2 PRV
(0, +0,° +0,7)

© (14)



a : = 1 » (15)

0} =(022 +032)]’& ; O =05, = (16)

Applying Eq. 4.8 to the trivariate case, the
partial correlation coefficients p ,and

py 2oy FC

xy.z ' ‘Oxz‘y

7%

p = s
Xy.Z (012 + 022)% (022 & 032)‘!’.

%

2 2y (17)
+.@.%)

p =0, and p =
YZ.X
(o,

Xz,¥

Substitution of above equations into Eqs. 4.49,
452, 455, 467, 4.68, 4.71, 4.78, 4.79, and 4.82
leads to the following constants:

b =-¢, =0, b,=-¢c, =0, (8

2 2 (19)

(o) +a3)
ky=———— > K==, (20)
3
b! ' 02
= c = ,
1 1 a (012 + 022)%
b, =~ =0 ; (21)
kl =1 " k; = oo (22)
@ + a2
=1, K=—m\, @
2

78

(0 +02)"
Blads-—T 2
1Y 2 L 2 2\%
0,(0] +03 +03)

g

3
bﬂ = cfl'=
A T A R R s S
2 2 2 2
. o (o] to3 to3)
1 .24 2
(0] +03) (03 *+03)
2 2 2
"_(a!+02+03) ‘
ky = » (25

2 4 2y (n2 4 a2) (02 + 02 + o2
(0% +03) (05 +03) (0] + 05t a3)

k” -
3 {011‘ g;(oi + 022 + gg) + (o"l‘ + o";) (022 + 0‘;)]
2 2,2, .24 2 2. 2N(n2 4 A2
. [0}03(0} + 05 +03) + (0] + 03) (05 + a3)]
1

4~ 2 2
03(0; +0) (07 + 03 +03) (¢

B. FOR COMPONENTS WITH EQUAL VAR-
IANCE AND EQUAL DEPENDENCE (exchangeable
random variables). In this case,

0, =0,=0,=0, (27)
and

Py =P 13T Py3=P - (28)

Therefore Egs. (1) to (6) simplify to

Var{X}= 02 = o* , (29)
Var{Y}= o} = 20°(1+p) , (30)
Var{Z}= o = 30° (1+2p) , (31)
Cov{X.Y}= 0> (1+p) , (32)
Cov{X,Z}= o (1+2p), (33)

b
¥

A B L

il ey e A




and

Cov{Y,Z}= 20% (1+2p). (34)

From these equations, the correlation coefficients

pxy 505 , and pyz are

Py N:3 ) Pys V3
_ VZ(1+2p)*
Py E )t 69

Using Eqs. 4.17, 4.21, and 4.24, the conditional
standard deviations are

0”=\707 (1-p)*

ze=% o(1-p)% , (36)
0, = 0(1=p

yz=% o(1-p)*, @37)

0,  =V2 o(1-p)* (1+2p)* |

z

_ o(1-p)* (1+2p)*

d o :
. = (14p)*

(3%)

Applying Eq. 4.8 to the trivariate case, the par-

tial correlation coefficients By s Py ,and
Py, y UE
—_— l —-—
pxy.z_? ? ’Oxz.y_o’
_ (1+2p)*
and pyz'x_\/?.—(l+p)y: - (39)

Substitution of the above equations into Egs.
4.49, 4.52, 4.55, 4.67, 4.68, 4.71, 4.78, 4.79, and
4 .82 leads to the following constants:

by = =——p—,—

a(1-p*)*

_ V2p
T L (40)

79

B i _(14p)
1T N 149) 2570 0 @D
o=l i _(+e)(1-p+2p*)
P (1-pt2p?) ¢ P’ 42)
r r 1
b1= 1=————!}’(2
V2 0o(1-p)
' ' P
b.==-c¢c.=
2 2 _n2\% B
- ,_ (1+p)
k=1 : k,= 207 g (44)
Fe i 2
k=1 ’ k= - (45)
2
b":c": \/_

Yl Be(l-p)t

brr i C"

1
2% Aseaay 0

n_3 "o 3

k=g k=t - @D
. _ 12(1+p) ., ( 1+13p)
k3= 01+130) » kK Ty o (48)

C. FOR COMPONENTS WITH EQUAL
VARIANCE AND MARKOV DEPENDENCE. In this
case



therefore the equations (1) to (6) simplify to

Var {X} = ol =¢? , (49)
Var {Y}=02 =20°(14p) , (50)
Var {Z} =02 =0? (3+4p+2p?) , (51)
Cov {X,Y}= 0® (1+p) , (52)
Cov {X,Z} = o® (1+p+p*), and (53)
and
Cov {Y,Z}
=07 (2+3ptp?) = 0* (14p) (2+p) . (54)

From these equations, the correlation coef-

ficients Py D and p  are

_(14p)*
V2o
_ (1+ptp?)
X2 (3+4p+2p?)”
(1+p)* (2+p)
and g, =Y
Y2 2 (3+4pt2p?)"

Pyy

(55)

Using Egs. 4.17, 4.21 and 4.24, the conditional
standard deviations are

.- o(1-p)”
v~ 5
_ o(1-p*)*(2+2p+p” )"
X.Z (3+4p+2p2}]/§ ! (56)
G457 o(1-p*)"
_o(1-p*)"*(242p+p* )"
vz (3"’4,0"’292)% 4 (57)
0, =0(1-p*)* 2+204p%)* |
a(1-p)* (242p+p?)"
_ 0(1-p)™ (2+2p+p%) (58)

0!.5"

V2
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Applying Eq. 4.8 to the trivariate case, the

partial correlation coefficients p p and

xy.z Uxz.y

P”_x are

(1+p)?

—_—

 2+204p?)

Xy.z

P
Pues T QdprptyE

(1+p)

and =
YZ.X (2+2p+p2)]ﬁ

(59)

Substitution of the above equations into Egs.
449, 452, 4.55, 4.67, 4.68, 4.71, 4.78, 4.79, and
4.82, leads to the following constants:

1 1 0(1_92)'/2
e p(1+p)*
2 o(1-p)h(2+20+p% )"

E

. (60)

1
|
L (2+2p+p%)

2

kz =pz(l+p) (61)

_(1-p*)(2+2p+p?)
3 (142p°-2p% ")

_(1+2p°-2p% %)

o p2(1-p?) » 62)

1
h:= f ,
14T Bo(1-p)”
) P
SERGE 1, 1
27 o2(1-p)E(242p+p% )

L

. (63)

_ 2(1+p)
b (2+2p+p?) 2
ki=
2 p*(14p)

* (64)



. 22+2p1p%)

- o GHa0t20%)
o(p)ate?) 1™ (242p+p?)?
,_(4+p?) = GHapt20%)
4~ Y(14p) ’ (65) 2 (1+p+p?)? © o (67)

i = 2(3+4p+2p% )(2+2p4p?)
o g ()" (2rp) 37 (11425042807 18p3+7p* +p°)
Pl o(1-p)*(2+20+p% ) (3+4p+2p% )"
2
i (1+p+p*) Lo (2+2p+p*)(11425p+28p +18p3 +7p% +p°)
22 o(1-p?)(2+2p+p%)*(3+4p+2p% )" 4

(66) (1+p)(2+p)* (3+4p+2p?) ©8)
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