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ABSTRACT

Following the theory of the supremum of a random number of random
variables a stochastic model is presented for interpretation, analysis,
and prediction of the largest flood peak discharge above a given base
level concerning a time interval [o,t], at a given location of a
river. Although the analysis of floods is the main objective of the
developed stochastic model, it has a broader scope. The model can be
applied to any kind of data of an intermittent process having a sub-
stantial stochastic component for which probabilities of the largest
value are desired.

The model has been applied in this study to data from gaging stations
on the Susquehanna River at Wilkes-Barre, Pa., and the Greenbrier River
at Alderson, W. Va. Results were compared to those obtained by Gumbel's

method; they indicate that the introduced model fits the data better.

viii



THEQRETICAL PROBABILITY DISTRIBUTIONS
FOR FLOOD PEAKS

by

Emir Zelenhasic*

Chapter 1
INTRODUCTION
In recent years many analysts of flood frequency as the interval, and the time when a peak flow occurs
distributions, and the many inferences made about flood are random variables, this problem actually trans-
probability distribution functions, have indicated that cends the framework of the classical extreme value
there is an increasing need for improvement in methods theories. This relatively restricted applicability
used for flood analysis. Various branches of engineer~ is the major shortcoming of the methods of classical
ing and water resources conservation and development extreme value theories. All previous results obtain-
represent the basis for this need. According to Benson ed are related to problems where the number of ob-
[4], who was with the Work Group on Flow-Frequency servations n 1is given. However, for many naturally
Methods, Hydrology Committee, Water Resources Council occurring phenomena this number depends on chance.
of the U.S. Govermment, which studied the most commonly Because, in the classical theories of extremes, the
used methods of flood-frequency analysis, "....the number of observations n 1is always given, the
range of uncertainty in flood analysis, regardless of largest and smallest values are functions of this n .
the method used, is still quite large so that there is In many practical investigations, particularly in
still a need for continued research and development to flood control problems, it is important to know how
solve the many unresolved questions.'" The Work Group large a maximum flood peak one can expect in a given
recommended continued study of the problem of analyz- interval of time. Following the theory of a random
ing floods. For a more general methodology of flood number of random variables, the number of observa-
analysis, progress can be made only through a better tions in the interval [o,t] is a random variable, so
understanding of the stochastic nature of the flood that the extremes considered in the time interval
phenomenon, [o,t] are functions of t. The approach used in this
study takes these stochastic properties of flood
This paper presents a new theoretical approach to peaks into consideration simultaneously.
the analysis of stochastic properties of floods. The
approach is based on some recent developments in the Even though this method deals with flood peaks
theory of extremes by Todorovic [48]; a general sto- above a certain level, instead of total flood peaks,
chastic model for the extremes of a random number of the generality of the method is not limited. If a
random variables applicable to the problem of flood constant is added to a random variable the largest
peak flows is developed. The new method uses data on value in the interval [o,t] increases by the same
flood peaks above a given base level, with the sto- amount.
chastic precess x(t], defined as the maximum term
among a random number of random observations in an Flood data are usually extracted either in the
interval of time [o,t], as the basis, The distribu- form of annual flood series or partial duration ser-
tion of the largest flood peak flow in a given time ies. The former method defines the annual flood as
interval [o,t] ,with the number of flood peaks exceed- the highest momentary peak discharge in a water year.
ing a certain base value in a given time interval and Langbein [34] states: '"Only the greatest flood in
the magnitude of these peaks considered as random each year is used. An objection most frequently
variables, as studied. encountered with respect to the use of annual floods
is that it uses only one flood in each year. Infre-
Practical aspects suggest considering only the | quently, the second highest flood in a given year,
sequence of flood peaks above a given base level in- which the above rule (i.e., annual floods) omits,
stead of considering all instantaneous discharges of may outrank many annual floods." Many hydrologists
flood hydrographs or of flood-hydrograph tops above a do not consider a maximum annual peak discharge that
given base flood discharge. In this way, a sequence is so small that its level does not exceed a certain
of random variables E1s Egs o-enEy is obtained as stage,.say the bankfull stage, as a flood. Highest
i annual peak discharges during the dry years of some
f}OOd peaksof il kydrogreph top= abovesa BIVEL Ease rivers En arid and Eemiarid Tegions gay be so small
dlscharge. 1t the be°°WeS feas;ble t°.1n§35tlga & that an analyst calling them floods may question this
the maxieun flood peak dlstrlputlon 5 LhiEOREN approach himself. However, Gumbel [28] defines the
classical extreme value theories. flood as 'the largest mean daily discharge, measured
in volume per unit time, among 365 observations of a
Because both the number of flood peaks in each calendar year. Whereas any year might produce sever-
subsequent time interval [o,t] , say with the year al inundations, or none at all, there is one, and

*Ph.D. graduate, Civil Engineering Department, Colorado State University.



only one annual flood which need not be an inundation
and might even be a drought." Another shortcoming of
the annual flood series is that a small number of
floods is considered, or a limited number of informa-
tion about the flood phenomenon is used for a given
discharge time series. )

The partial duration flood series appears more
useful for theoretical analysis than do annual flood
series. The preceding objections to the annual flood
series are not valid for the partial duration series
which considers each flood peak individually. The
only drawback of this method of data extraction is
that the sequence of flood events might not be con-
sidered as fully independent. Consecutive flood hy-
drographs may be sometimes so close that one flood
sets the starting stage for the next flood. However,
there are ways to surmount this difficulty, as shown
in the insuing text.

The hydrologic part in the design of bridges,
culverts, spillways, levees, highway drainage, storm
sewers, and similar structures is based on high flows
exceeding a certain critical magnitude. This magni-
tude will be called the base level, the base flood
flow, or simply the base in this paper. Discharges
below this base are excluded from consideration
because of their insignificant effect on a structure.
The U.S. Geological Survey determines the base flood
stage at the locations of river gauging stations.
Wisler and Brater [53, p. 320] state, "Frequently,
however, especially on the more important rivers, an
arbitrary elevation has often been established, either
by the U.S. Army Engineers or by others in authority,
that is called flood stage." This is reasonable pro-
cedure for distinguishing between large discharges
which are floods from those which are not. Kirby [33]
also divides hydrographs into floods and nonfloods.
Partial duration flood series meets the practical
considerations needed for this study and therefore the
data from this series will be used for computation.

The method presented here, using the theory of
extreme values of a particular class of stochastic
processes given by Todorovic [48], discusses the dev-
elopment of a probabilistic model that describes the
flood phenomenon. The model is sufficiently general
to be applicable to numerous naturally or artificially
intermittent stochastic processes important in the
geophysical sciences. The simplest form of the model,
with flood peak exceedances -» B, » Tep-

resents a sequence of independent and identically
distributed random variables independent of the se-
quence of times of the occurrences of these exceed-
ances t(1), 7(2), ..., as applied to data from the
gauging stations on the Susquehanna River at Wilkes-
Barre, Pa. and the Greenbrier River at Alderson, W.
Va. Both gauging stations have long records of homo-
geneous data on flood flows in the form of partial
duration series. Observed and theoretical results
agree fairly well. The simplest form of the model,
however, might not be adequate for some rivers. In
these instances, it will be necessary either to devel-
op a new particular model from the general model given
or to use periods shorter than a year (seasons, for
example) for which the simplest form of the model
would still be justifiable.

El, 52,

Acceptance of a certain model for analysis of the
largest flood peak must be based on the goals and
conditions that are to be fulfilled and satisfied by
the model; goodness of fit is a necessary but not a
critical condition for acceptance. If goodness of fit
were the controlling criterion, (as many engineers are
often apt to believe) high-degree polynomials to fit
empirical curves would have to be used; this is not
the standard practice. The most important criterion
is that the model have a sound theory describing the
phenomenon, and a maximum extraction of information
by the proper estimation techniques. The method pre-
sented in this study represents an effort to offer a
sound, general approach for analyzing the largest
flood peak,



Chapter 2

BRIEF REVIEW OF PERTINENT LITERATURE

The history of the problem of extreme values be-
gan with the pioneering work of E. L. Dodd and L. H.
C. Tippett. Dodd first studied the largest value for
other than the normal distribution (1923), and Tippett
calculated the probabilities of the largest value
taken from the normal initial distribution for dif-
ferent sample sizes (1925). In 1927, M. Fréchet
obtained the second asymptotic distribution of the
largest value. He also introduced the notion of a
type of initial distribution and showed that a common
asymptotic distribution of the largest value may exist
for different initial distributions having a common
property. In 1928, R. A. Fisher and Tippett presented
all three asymptotic distributions of the largest
values. Their result concerning the second asymptote
was independent of Fréchet's. R. von Mises (1936) and
B. Gnedenko (1943) made further contributions by clas-
sifying the initial distributions which possess asymp-
totic distributions of the largest values and by
giving the necessary and sufficient conditions for
validity of asymptotic distributions of the largest
values.

The first book completely devoted to the statis-
tics of extremes was written by E. J. Gumbel in 1958
[29]. Gumbel did much to bring the theory of extreme
values to engineers and scientists working in differ-
ent disciplines. The first asymptotic distribution
of the largest value (also called the double exponen-
tial distribution) has been used in hydrologic prac-
tice much more than the other two asymptotes. Its
application to the problem of floods has been particu-
larly widespread.

It is well to mention at this point the limita-
tions of the asymptotic distributions of extremes.
They are [29, p. 346]:

(1) The observations from which the extreme
values are drawn should be independent.

(2) The observations must be reliable and be
made under identical conditions. The initial distri-
bution and the parameter it contains must be the same
for each sample.

(3) The number of observations, n , from which
the extremes are taken must be large. How large n
must be depends on the initial distribution and the
degree of precision sought. Unfortunately, one is not
always free in the choice of the sample size. In
meteorology and hydrology, for example, the day and
the year are natural units of periodicity, and the
choice of n = 365 (days) is imposed.

(4) The initial distributions from which the
extreme values are taken must belong to one of the
three described types.

Fuller [25] extensively studied the problem of
floods in the U.S.A. Using a purely empirical approach

he concluded that flood flows should increase as the
logarithm of the return period. This was in agree-
ment with an approximate formula for floods derived
later by Coutagne [12].

In 1939, W. P. Creager [14] published the result
of an investigation of maximum recorded flood peaks
in the U.S.A. His purely empirical result, presented
in a form of a curve embracing all the records of
maximum floods, relates the magnitude of flood to the
drainage area. His investigation sought to determine
the hydrologic aspects of spillway design. His curve
is heavily dependent on the length of flood flow
records.

Moran [38] has dealt with the problem of esti-
mating a flood corresponding to a given probability.
In his published work he discusses the sources of
errors in estimating the shapeof the tail (large flows)
of a streamflow distribution and presents what he
considers the most efficient procedure in estimating
the parameters of the assumed distribution,

Hall and Howell [30] discusses the probability
that a flood of certain magnitude will be equalled or
exceeded one or more times in a given time period.
They considered floods as independent events occurring
according to the Poisson time invariant distribution.

In 1964, Shane and Lynn [45] presented a prob-
ability model for use in the statistical analysis of
a partial duration series. Design equations relating
three measures of risk to design discharge (recur-
rence-interval distribution, encounter probability,
and expected recurrence interval) were presented.
Analysis was based on the time independent Poisson
process and the probability theory of sums of a
random number of random variables.

A succinct description of the present situation
regarding the methods of flood frequency analysis is
given by the Water Resources Council of the U.S.
Government [4] in a study they made to find a consis-
tent approach for estimating flood frequencies:
"Methods of flood frequency analysis, which started
about 1914, have developed along divergent lines, with
resulting nonuniformity in methods of analysis and,
hence, in results. The present state of the art is
such that no general agreement has been reached as to
preferable techniques, and no standards have been
established for design purposes, as have been done in
other branches of engineering." In the report,the
results obtained by the most commonly used distribu-
tions used in flood frequency analysis were compared.:
The six distributions reviewed were: (1) two-para-
meter gamma distribution, (2) Gumbel distribution,
(3) log-Gumbel distribution, (4) log-normal distri-
bution, (5) log-Pearson Type III distribution, and
(6) the Hazen distribution. The distributions were
applied to a selected group of ten long-record repre-
sentative sites in different parts of the U.S.A., and



records of maximum annual discharges were used. A
quotation from that study is significant, "The statis-
tical consultants had indicated that no unique proced-
ures could be specified as correct for any one method
of flood frequency analysis. No single method of
testing the computed results against the original data
was acceptable to all those on the Work Group, and the
statistical consultants could not offer a mathematical-
ly rigorous method. It appeared, consequently, that if
a choice could not be made solely on statistical
grounds, a choice on administrative grounds, for which
compelling reasons existed, was justified. This ad-
ministrative choice was largely governed by the rela-
tive values of the results and the tests of conformance
that were made." This "administrative choice' resulted
in the adoption of the log-Pearson Type III distribu-
tion, or the Pearson Type III distribution applied to
logarithms of flood peak discharges, as the base method
for analyzing flood flow frequencies for federal
agencies. It is also stated in the same source [4],
"The present state of the art of frequency analysis
does not warrant the specification of best procedures
for any one method.'" The Work Group also recommended,
"That the choice of a base method should not be con-
sidered as final and should not freeze hydrologic
practice into any set pattern, either now or in the
future. That in view of the increasing importance

of frequency analysis in water-resources development,
studies should be continued for the purpose of resolv-
ing uncertainties, improving methods of analysis, and
reviewing all work in this field. That when consider-
ed desirable, new techniques or methods should be
recommended.'

In 1969 Kirby [33] discussed the random occurrence
of major floods. He considered flood peaks as the
successes or exceedances in a sequence of randomly
spaced Bernoulli trials representing the occurrence
of hydrograph peaks. The event that a hydrograph peak
is a flood is called an exceedance. Kirby adopted a

criterion for classifying hydrograph peaks into floods
and nonfloods. His model showed that, at sufficiently
small exceedance probabilities, the probability distri-
butions of the times between exceedances and the number
of exceedances approach those implied by trials from a
Poisson process. Kirby, therefore, justified Poisson
models of flood occurrence and gave an explanation
of observed distributions. However, the model could
have been better if a time dependent process for the
arrival of flood peaks was used instead of a time
independent process. Kirby [33] stated, ".... it does
no harm to ignore seasonal variations of parameters
and thus assume that the times between the hydrograph
peaks are identically distributed as well as indepen-
dent random variables, ...." The times between
hydrograph peaks cannot be considered as identically
distributed random variables, because the average
number of flood peaks, A(t) , in a unit interval of
time is, in most cases, a nonlinear function of time.
Denoting with n(t) the number of flood peaks in an
interval of time [o,t], the above statement expres-
sed mathematically reads P{n(tl+at) - n{tlj =k} #
Fot,.

P{n(t2+dt) - n(tzJ = k} for L 2

In 1969 Todorovic [48] obtained the distribution
functions of extreme values of a random number of
random observations which were valid for any given
interval of time. Todorovic's article presents a new
approach to the theory of extreme values that is of
particular interest in the analysis of extremes of
naturally occurring pheonmena where an element of
probability is involved. This approach offers new
possibilities for a more general analysis of extreme
values. Although the number of observations occur-
ring in an interval of time and the results of these
observations are both random variables, the distribu-
tion functions of extremes are uniquely determined
functions. This study will apply this new approach
to the problem of flood peaks.



Chapter 3

THEORETICAL CONSIDERATIONS

3.1 Phenomenological Analysis. Given a stream-
flow hydrograph (Fig. 1) at a specific point along a
river, consider only those peaks Qk ¢ k= ly 2y

[o,t]

v , in some interval of time
base flood flow Qb.

that exceed the

N Q
= ‘L The Base Flood ol [0 t'L i
g I\ /FIOH,Q?/\ I l
2N AR N
LK. - | N— N,
o T V™ T(w-1} vy t
Time

Fig. 1. General streamflow hydrograph of
instantaneous discharges at a given
point on a river for the time interval

[o,t] .

As stated in Chapter 1, the vw-th flood peak exceed-

ance £ in an interval of time [o,t] is defined as
£, =Q, - Q, 3 L
in which Q is the w-th total flood peak which has

occurred in the time interval
Qv > Qb and v =20, 1, 2,

[o,t] By definition,

In the case of a multipeaked flood hydrograph,
such as the hydrograph at t(v-1) in Fig. 1, only the
largest discharge is considered to be the flood peak.
This treatment is an approximation of the concept of
the independence of flood peaks and the effect on the
final result,using this method, is minor. It is pos-
sible to separate a complex hydrograph to obtain the
independent flood peak but this method would complicate
the approach and add nothing significant to its appli-
cability.

Because hydrograph peaks smaller than the base
flood flow, Qb , are not considered as flood peaks,
all flows are excluded except the flood peaks (Fig. 2).

The barrier Qb is the lowest level of the
fe, s t20}
mittent process of flood hydrograph tops seen in Fig. 2

is a one-boundary non-negative stochastic process with
a period of one year as the time interval.

bounded process Therefore, the inter-

According to the nature of flood phenomena, the
number of flood peak exceedances in an interval of
time [o,t] , as well as the magnitudes of these

exceedances are random variables. Not only the number
of flood peak exceedances in [o,t] is a random vari-
able but the times when these exceedances occur are
also random variables. With each random variable

gv , where £, > 0 for all v=1, 2,

time +t(v) is associated with the corresponding ex-
ceedance (Fig. 3).

) €,
=
o T(1) T(v-1) Tw) t
Time
Fig. 2. Intermittent process of flood hydrograph

tops, with Et the discharge above the

base Qb z

€v
LR 1
0 T(1) T(7v-1) T(¥) t
Time
Fig. 3. A realization of the stochastic (dis-

crete, non-negative) process of flood
peak exceedances in an interval of

time [o,t] , with £  the flood peak
exceedance. ¥

Stochastic process of flood peak exceedances is a
discrete-parameter stochastic process, fEU 3 vo=

05 Rya2y wend For simplicity, flood peak exceed-
ances gu, v=20,1, 2, will simply be called

exceedances.



3.2 Distribution of the Number of Exceedances.
Noting the distribution of the number of exceedances
plays an important role because this method considers
simultaneously the magnitude of these exceedances and
their number within a given time interval [o,t] .
Using the results obtained by Todorovic [48], the
distribution function of the number of exceedances is
summarized in this section.

Denote by n(t) the number of exceedances in an
interval of time [o,t] . By definition, n(t) may
be 0, 1, ..., and for all t >0 and At > 0,

n(t) < (t+At) . In general, n(t) depends also
on the parameter Qb , and for a fixed t , n(t) is

a non-increasing function of Qb . However, for a

flood analysis at a given point on a river, Qb

can have a physical meaning.

As defined in the pre-
vious section,

Qb represents the base flood flow
and therefore is treated as a selective parameter
throughout this study.

}n the event that exactly v exceedances occur
in [o,t] , denoted as

EL = {n(t) = v}, 2
then
E'nEf =6and U E'=Q forall i#j=0,1, ...
1 ] v=0 v

in which v 1is a particular numerical value of the
random variable n(t), ® stands for the impossible
event, and 2 stands for the certain event. Let

A(t) stand for the expected value of n(t) . Then

@

M) = T v P(E:) . 3

w=1

Because of seasonal variation, A(t)
cases, a nonlinear function of time.

is, in most

Writing Fk(t) = P{t(k) < t} , where <(k) is

the time of occurrence of the k-th exceedance, then
[48]

:
P(Ek) =* Fk(t} " F‘k"’l(t) - [4}

From Eq. 4, one obtains

o t
F(t) = ] P(E) . (5)
B ]
i=k
Denote by E£ the event that exactly k exceedances
occur in a fixed time interval [o,t] , and denote by

-
Ei’t AL the event that only one exceedance occurs

in a time interval [t,t+At] , in which At is the
length of the interval. Under certain very general
assumptions one may show that the probabilities

PED 4 k=0, 1, ...
differential equations,
dP (E,) . ;
—dt Ak_.}_{t)P(Ek_l) - Ak[t}P(Ek] k=1,2,...

t (6)
dpP(ES)

] t
It T AMPEY

, satisfy the following system of

in which
A (t) =1im —m—————— )]
k At-+0 bt
and DT o (n(t+at) -n(r)=1}

1

It is not difficult to verify that system (6) has
the solution

t
P(EZ) = expl- [ A ()ds} (8)
(4]

t t t
P(E)) = exp{- [ A (s)ds} [ A (¢
Y
exp{[ [A\ (s) - A, (s)]ds}
o
t

a1 Ty

ﬁ;.. £ 2o (1) exp{£ [, ()2 (S)1dshdty de, ,...dt, .
()]

Generally, a simple expression for each P(EE) in
terms of {hk(tj} is not possible. However, several

special cases have been solved and are given in ref-
erence [49].

The case considered to be of revelance in flood
analysis is when

J\k(t) = ax(t) (independent of k) .

Under this condition

t t
P(EE) =1 i(s]ds}kexp{4 [ A(s)dsl/xt (10
o o

which is the time dependent Poissonian process. From
the mathematical expectation given by Eq. 3, A(t)
becomes

t
At) = f A(s)ds . (11)
o
Equation 10 can also be written as

PED = (M) exp [-A(D)] /k! | (12)

In the preceding equations, A(t) is the mean number
of exceedances in a time unit. It can also be called
the density of the number of exceedances in a unit of
time. Hereafter, for the two rivers used as examples
in the application of the method presented, A(t)
represents the mean mumber of exceedances per day, and
is a deterministic periodic function of time having a
one-year period.



Equation 5 represents the distribution function
‘of the time of the k-th exceedance, which can also be
written as
k-1
Fk(t) =1 - '[
j=0

P{E}) (13)

Denote by fk(t) the corresponding density function.

Taking into account Eq. 10, and after the differentia-
tion of the function Fk{t) with respect to t , it

follows [49] that
t
_an) k-1
fk[t) = m {I X(S)d.‘r}
° (14)
t
& exp {- [ a(s)ds} , for t>0
[+]

3.3 Distribution of the Largest Exceedance.
Another random variable of interest in flood analysis
is the largest exceedance. Consider an interval of
time [o,t] and denote by x(t) the largest ex-
ceedance, EU , in this interval. Because the num-

ber of exceedances in
depending on time t ,

is a random variable
is defined as

[o,t]
x(t)

x(t) = sup £

t(v)<t (3)

By definition it follows that for every

t >0 and
At > 0,

x(t) < x(t+at)

in which x(t) is a stochastic process of non-decrea-
sing (step) sample functions (Fig. 4). The process
x(t) represents the essence of the theoretical con-
siderations used in this study. The corresponding
distribution function of y(t) is denoted as Ft{xj,
foess

F (x) = Pix(t) <x} , for t>0 , and x>0

Xx(t)
e :

0o 0.
Fig. 4. A sample function of the process yx(t),

as the largest exceedance.

Todorovic [4B] obtained the expression for the function
Ft(x] as the mathematical expectation of the condi-

tiomal probability Pl -'("!)’(E\, < xi{n(t)}
TV

is {48, Bq. 3.4, p. 1060]

His result

o« K
t t
P =PED « I P[0, cnnE] . (e
% o k=1 Swel Y "
The graph of the distribution fuaction Ft(x) is

given in Fig. 5. The same result may be derived by
a simpler approach:

F,(x) = P(x(t) ¢ x} = P([x(t) <x] AQ} ;

because the events EE P E},..., are mutually ex-

clusive and exhaustive one can continue and obtain

F ) = P{[x(t] 2 ke {Exo E;]} )

P{[x(t] <x]n EE}
0

8

Il 0~

k

or

F 00 = kgﬂ P{[ Eo(su <x]n E:} . (16a)

which equals the expression of Eq. 16. The distribu-
tion function given by Eq. 16 can be interpreted as
the probability that all exceedances, £, > in an

interval of time [o,t] will be less than or equal to
x. Equation 16 represents the most general expression
for the distribution function of the largest exceed-

ance within any given time interval [o,t]. If x=0,
it follows from Eq. 16 that
F, (o) = P(ED) an
t [

which can be interpreted as the probability that there

will be no exceedances (v = 0) 1in a given time inter—
val [o,t].
I e
t
PE)
4
0
Fig. 5. Distribution function of the largest

exceedance for a given interval of
time [o,t] .

It follows from the foregoing discussion that the
distribution function Ft(x) is not differentiable

at point x = 0. The bowndary comditions of the



distribution function Ft(x) at x =0 and x =«

are satisfied, namely

t
Ft{o) = P[Eo} and Ft(w) =1

Equation 16, however, cannot be used directly for a
specific problem unless it is reduced to one of its
particular forms, i.e., unless one determines the

k
probabilities p[ n (g, 5_x)f1Ei]- pertaining to a
given case, v=1

Consider now a particular case in which the
exceedances Ev ,v=20,1, 2,..., occurring in an

interval of time [o,t] are independent and iden-
tically distributed random variables with the random

vectors {51,52, ..... § Ek} and {t(k) ,t(k+1)}
mutually independent for all k = 1,2,.... For this
case, Eq. 16 becomes

PO = ] (HET® - PED)

& k=0 Ko o

or

Py + T k. pEt (19
F () = PE) + k}=:1 ()" - PEYY , (19

in which H(x) is the distribution function of all
exceedances in a given interval of time [o,t]. This
case can also be explained another way. Given some
interval of time [o,t] and assuming that there
exists the common distribution function H(x) of all
exccedances within [o,t], the event that there will
be k exceedances is independent of the event that

all k exceedances will be less than or equal to x .

Considering the applicability of Eq. 19 in flood
analysis, the first question requiring attention is
the independence of the events [gu < x) and E; p
v=1

Popularly speaking, one might ask the question: Does

t
the event E exceedances have

k
occurred in an arbitrary but fixed interval of time

that exactly k

[o,t] permit any inference about the magnitude of
each of the k exceedances? or, does the event that
all k exceedances in [o,t] less than or equal to

x permit any inference about the time of occurrence
of the k-th exceedance? In general, the two events
might not be fully independent in some instances.
However, even in this case, a question remains whether

the degree of dependence of the two events is signi-
ficant from the position of practical applications.
The general case involving the dependence of the events

k

N (gu < x) and E; is not considered in this study,

v=1
but is left for future investigations. The case per-
taining to the present study is the case when the two
events are, or can be assumed to be independent. The
second question arising in this study is related to
distribution functions of the exceedances. This prob-
lem can be handled using available data for any parti-
cular example considered. It is possible that
identical distribution of exceedances exists through-
out the year for some rivers but not for others. This
depends whether the flood peaks are produced only by
rainstorms, by rainstorms and the melting of snow and
ice, or only by the melting of snow or ice. Therefore
any particular case requires individual investigation.
It is notinjudicious to treat exceedances occurring in
a short interval of time as identically distributed
random variables. The problem is to determine, for a
particular case, the length of this interval within
which the notion of identical distribution of exceed-
ances is justifiable. For some rivers this interval
may be a month, or a season, but for others it may
extend over the whole year.

The case analyzed in this study is the exceed
ances &, , w=0,1,2,...,which are independent and
identically distributed random variables, with the
random vectors {Ey, Ep,...... ,Ek} and {t(k),
t(k+1) mutually independent for all k = 1,2,...

A theoretically derived expression for the dis-
tribution function, P[E%), of the number of exceed-
ances in an interval of time [o,t] is given by Eq. 12
as a time-dependent Poissonian process. The other
distribution function that requires investigation is
the distribution function, H(x), of the magnitude
of all exceedances for the same given interval of time
[o,t]. Determining the distribution function H(x)
may or may not be purely a problem of estimation. At
the present state of flood analysis there are no, or
few, theoretical grounds that indicate the form of the
distribution of exceedances. Two probability laws
have played an important role in connection with the
magnitude of flood peaks. These are the gamma and the
exponential probability laws, [4], [29], [38], [45],
etc. Because the exponential distribution is a parti-
cular case of the gamma distribution, the family of
(two-parameter) gamma distributions is used in the
sequel as the common distributions of exceedances.

Therefore, using Eq. 19, the family of gamma distribu-

tions in combination with time-dependent Poissonian pro-
cess is used in the ensuing text for the study of the
theoretical distributions of the largest exceedance.



Chapter 4

STOCHASTIC PROCESS OF THE LARGEST EXCEEDANCE

IN GAMMA-DISTRIBUTED EXCEEDANCES

The distribution function, H(x) , of exceedances
in two-parameter gamma probability distribution is
considered in this chapter. The gamma probability
distribution with parameters o and 2 , and both
parameters greater than zero, is generally specified
by the probability demsity function

hix) = T?a} L R g

x>0, and h(x) = 0.

For a particular case one can estimate parameters o
and B from observations using the method of maximum
likelihood. However, it is difficult to obtain mathe-
matically convenient expressions for the distribution
function and its moments of the largest exceedance
for a given time interval [o,t] if parameter a
takes on noninteger values. In the case of noninteger
values one can resort to digital computer integrations
or similar techniques to obtain approximate solutions.
However, the development of a computer integration
scheme for a noninteger o 1is outside the scope of
this study. This paper presents the analytical solu-
tion of the considered case when parameter o takes
on integer values,

4.1 General Solution When Parameter o is a
Positive Integer. The common distribution function
of exceedances gv , w=20,1, 2,..., in a given

interval of time [o,t] , when o is a positive in-

teger and T(z) = (a-1)! is
X 4 ]

Hx) = | ¢ E151- ot ey ofem XED
o TH (20)

in which @ is the shape parameter taking on values

of positive integers, and 8_1 is the scale parameter
The integration of the above expression gives

H(x) = 1 -

a-1 i
é—Bx Z (Bx) (21)

1!
izn L
Therefore, the distribution function of the larg-
est exceedance for a given interval of time [o,t] is

- P9k
F () = a it ¥ iﬁ%%—] . (22)

k a-1
At -Bx
-(T{—[l_e )
) i=0

which can be also written as

a-1 i
F (x) = exp r-lt i ) LE?%—]
| Y

The distribution function Ft(x} is discontinu-

ous at point x=0 for all t=0 . For x>0 the

function Ft(x) is continuous. It follows from Eq. 22

or Eq. 23 that

Ft(o} = exp (-it) (24)

The distribution function Ft[x] is a mixture,

because it is not always continuous nor is it a step
function. Accordingly, the distribution function

Ft[x] is not differentiable at x=0 , and the
corresponding density function ft(x) is defined

in a special way at this point. The probability den-
sity function of the largest exceedance, for a given

interval of time [o,t] , is
3F_(x)
-At t
= 2

ft(x] 2 e §(x) + 5% . (25)
which is valid for x > 0 . In Eq. 25, §(x) 1is the
Dirac delta function (or the symmetrical unit -
impulse function) of a real variable x defined by

( 0 if X<a or Xb

b 5
[ £()8(e-X)de = %—f(XJ if X=a or X=b), (2 <Db),
2 | (26)

f(X) if a<X<b

in which £(x) is an arbitrary function continuous
for x = X , with

[s] - 1
sx) =0  x#0 , [ s(e)de=[s(e)de =3
- a
and [ é(e)de = 1
At x = 0, the derivative of Ft(x] may be defined
arbitrarily.

The distribution function, Ft{x), of the largest

exceedance, x(t), for this case can also be specified
as
dF (x) = 0 , xX<0
LAt L x=0
3F, (x)
=de,x>0

The moment generating function of the largest
exceedance for a given time interval [o,t] is

°°LI.X
b (u) = i e dF (%)



After considering this expression one may write,
® _ © 3F, (x)
*t{UJ = | & g, Ak §(x)dx + [ e t
[+] o+

ax

which, with Eq. 26 in mind, gives

- aFt(x)

v =e e[ e dx . 27
o+

ax

The same equation can be obtained also by the
Stieltjes integral:

b o aF, (x)
ux ~At ux ux t
[ e dF (x) = e [0 e & [ e o
[+ ] o+
@ © aF_(x)
ux -At ux t
[ e dF, (x) = e + [ e s dx
o o+

Continuing, the moment genera-

which equals Eq. 27.
x(t) 1is obtained:

ting function of the process

__-at. g%
beWze e TnT

o k =

-At (At) f ux-px

e e
kzl (k-1)! 20

.-k-1
P i
R =
i=0

28
4 (28)
or
=it At ar_a-1 -Bx
‘Pt (u)=e + -7 B {wx exp [ux-ﬁx-lte
a-1 (Bx:i
iEO il } dx (29)

All absolute moments, for this case of positive
integers, are deduced from the moment generating fun-
ction wt(u):

o k-1 =

it -it A br
B (t)= =t e I %}}L‘_! YR Y
B s! k=1 T o
k-1
-y s 1
1 -e€ - dy .
[ L ] (50)
Here the substitutions s =a -1, and ¥y = Bx

are introduced for simplicity, and m= 1, 2,..., is
the order of the absolute moment. Equation 30 can
be also written as

@

s i
;t I ys*m exp [-y -ate? ) %TJ dy
B's!o i=0 *

Ex"(t) =
(31)

The asymptotic value of the m-th absolute moment
when o is very large is

Ex"(t) = iﬁ- e (@em® . (32)

The derivation of Eq. 32 is given in Appendix 1.

4.2 The Special Case of Exponentially Distributed
Exceedances (o=1). Exponential distribution plays

an important role in the theory of extreme values. In
the classical theory of extremes [29],al11 statements
which are exact for the exponential distribution are
asymptotically valid for all distributions belonging
to the exponential type. Exponential distribution is
encountered in many areas of geophysics. It describes
the decay process of many phenomena in modern physics,
hydrology, sanitary engineering, etc. This distribu-
tion is also observed in certain flood phenomena.

For the case under discussion, the common distri-
bution function of all exceedances Eu s W 051,250

in some interval of time [o,t] is

-Bx

H(x) =1-e , x>0 .

(33)

Therefore, the distribution function of the largest
exceedance in the same time interval [o,t] is

- 3
= oM e 1
Fo(x) = e kzo[lt(l e x)] £ &

which is reduced to

F (x) = exp[-At e_Bx] (34)

W

It can be observed that when t=)=8=1, Eq. 34
gives the first asymptotic distribution of the largest
reduced extreme given in [29], and if this first
asymptotic distribution is written in the form

-Bx .
ueB] ¥

F(x) = exp{-exp[-B(x-u]} = exp[- eB

it then represents a particular case of Eq. 34 obtained
for At = exp(Bu).

It can be easily shown that

y At -At
[ £,()dx = 2e AL axdx s (- e =1
0 o
3 aFt(x)
The condition 3 % = 0 gives the value

of the mode X, in the continuous part of F (x), of
the largest exceedance:

iz%m(ﬂ , (35)

with 1In denoting the natural logarithm, for which

£,(0) = pe”t (36)
and = -1
Fe) =e™ . (37)
,2 [2F, 0
Using the condition — - 3 = 0, one obtains
x2 L %

the expression At exp(-Bx; ,) = % (3 ++/5), and the
abscissas of the inflection points as

X, , = & @) - G+ )], (58]

1,2

10



for which

£,(x;) = 0.19098 8 (39)
£,(x,) = 0.26070 8 (40)
The probability of X £ XX, is
P{x1 <x < x2} = 0.60957. (41)
The distance between the abscissas of inflection points,
Xz = vy I8
2 1
x, - x, = 1.92484 §! (42)
1
and is independent of the time interval [o,t] .

The mode X of the largest exceedance is located
symmetrically with respect to the abscissas X 5 of
the inflection points, because z

X, + X
L Z2-glmon =% . (43)
The median X of the largest exceedance is
v _ = -1
X = x + 0.3665 (44)
The density function ft[x) of the process x(t) is

shown in Fig. 6.

‘“ f\'{xl

-
ot _
x 3 X X

[ 2

Fig. 6. Probability density function of the largest
exceedance for a given time interval [o,t],

and for exponentially distributed exceedances.

A further analysis gives

g, (x,t) = 8it exp[-8x - Kte-sx] ; (45)
with gl(o,t) = Bit exp(-it), and
lim gl{o,t) = lim gl[o,t) =0 .
t+0 toe
Because - g (0,t) = 0 for t ="', it follows

1

that gl(o,l-l) = Be”

11

The function g, (o,t) 1is convex toward the t-axis
when t+= becaitise the function and its second deriva-
tive are of the same sign when t+=, When t30 the
function g, (o,t) and its second derivative are of
different signs, therefore the function g;(o,t) is
concave toward the t-axis for small values of t .

The function g.(o,t) has only one inflection

point, in which the abscissa is 2i~1 and g, (0,2171)
= 28e~2 . With this additional analysis, the function
ft{x] is depicted in Fig. 7 for x > 0 and for

exponentially distributed exceedances.

The moment generating function of the largest
exceedance, for the case under consideration, is

ank

k!

At

+

e-lt E

v .(u) = e
£ k=1

Iw k[l _ e-Bx]k-l ﬁa-Bx WX gy
o+

Integrated, this becomes

_ _ @ r(1- 2]
b = et a7 ok —E
k=1 r(k+l - %)

(46)

Differentiating the moment generating function
Yt (u) of the process x(t) with respect to u and
setting wu=0 , one obtains the absolute moments of

the probability distribution given by Eq. 34. The
first three absolute moments are
= k k
Exy =gt et § B8y L, @7)
i
k=1 i=1

fi(x)

Fig. 7.

Probability density function of the largest

exceedance, given for x>0, for different
values of the time interval [o,t] and for
exponentially distributed exceedances.

= (48)

@ k
B =872 e 1 Q8 gay
k=1 X!

Il e~

1

i=1 i



and

Ex3(t) = g~

lute moment
exponentially é
by definition.

Ex(t)

(n+1][( ]

Z(l}

i=

substituting k-1

E (- l) ‘k 1)

is

)‘tz —‘\—Q-(k-rl) 3

Il‘-"l?!'
I_lli-i

T

To check this last computation, the first abso-

of the largest exceedance, for
istributed exceedances, is also computed
The computation is:

= xdF_(x)
Al

fw k[1~e-8x)k‘1 Be-Bx x dx
o+

> E el . =
=ty B8 gy (-131{"Tl)j x e

& & i

k=1 i=0 o+

E(n[ )—

Considering the relations

| 1- 0" o,

II‘ME
-~

- s R -
B s LR Z( n*H Yz
o ('UBInj}l]ni_z] )

07 i)

L

Finally the first absolute moment of the largest
exceedance, for exceedances exponentially distributed

which is in agreement with Eq. 47.

The variance c%(x} of the probability distribu-
tion given by Eq. 34 was determined with the aid of a
computer. The result is given in the form 82¢2(x) =
f(*t). Summations over k were made for 1 through
100, and also for 1 through 150. Because of the
strong convergence of the terms given on the right
side of Eq. 47 and Eq. 48, the results by the two
approaches were the same for the first three decimal
places. The results are given in Fig. 8 and in Table
15 (Appendix 1).

;3zo${x]

130
120F
100

80

80

20}
Xt

I 1 1 1 1 1 | 1 1 1

O 10 20 30 40 50 60 70 80 90 100

Fig. 8. The variances o? (x) of the largest exceed-
ance, for eXponentlally distributed exceedances,
given in the form g2 of 2(x)=f(1t).

4.3 The Special Case of Gamma-Distributed
Exceedances with o=2. The common distribution func-
tion of all exceedances ¢, , v=0,1,2,..., in an inter-
val of time [o,t], for this case, is

H) =1 - e ™ (ax+ 1), x>0 . (50

Therefore, the distribution function of the largest
exceedance, in the same time interval [o,t], is

2 © k k
Fox) = et ¥ [1 . (I+Bx]e'6x] G (s
k!
k=0
Equation 51 can also be written as
-Bx
F () = exp[-n{h-ﬁx]e ] ) (52)

The distribution function given by Eq. 52 is depicted
in Fig. 5. Here again, for x = 0, the relation

F (0) = exp (-at) (53)

represents the discrete part of the function. The
term Fy(o) is the probability that no exceedance will
occur within an interval of time [o,t].

The probability density function of the largest
exceedance, for gamma-distributed exceedances, with
a =2, Iis

ltn

£,0x) = 8(x) + B%atx exp[ Sx-lt(1+6x)e-ﬁx], (54)



which is valid for x > 0.
§(x],

z The Dirac delta function,
is defined in section 4.2.

It must be verified that the non-negative func-

tion f.(x) satisfies the condition
2 At At X - 8
[ £,00dx = 2¢7 [ 5(ax + e 2T § Eifi), [ 82xe™™
o [¢] k=1 o
k-1
[1_(1+3x)e—8x dx
- k
o oAt 7 G- 1
ey GeDT UK
= e-‘\t + e-;\t { e -1) =1
The following is an examination of the function
fe(x) for x > 0. Denote
(x,t) = 82xt -Bx
g,(x, X exp |-Bx-it(l + Bx)e (55)
Then, gz[o,t) =0, and
: . _ L Bx
X gz(x,t] =0 when t = o e (56)

If t from Eq. 56 is inserted into Eq. 55, the result
is

max g,(x,t) = 8 exp [n Li%%il] (57)
Continuing, one obtains

ifﬁ [max ngx,t)] =0 s (58)

L= [max gztx,tﬂ = ge !, (59)

and the function given by Eq. 57 has no finite extreme
because g; [max ngx,tJ] # 0. However, the function

max gp(x,t) has an inflection point at

L
28
Concavity and convexity of the function is determined

X =

(60)

by the signs of the function and its second derivative.

The function

2 L Bx
tim s J (61)

13

LEE P
dx?
given by Egq. 61 has no inflection points.

The function

; U -1
is minimum at x = £ °, where

The probability density
largest exceedance, for x >
gamma distribution with o =
depicted in Fig. 9.

function, fi(x), of the
0 and for the case of
2 for exceedances is

function of the largest
is

The moment generating
exceedance, for this case,

o k
" (Ll) i e-}tt“_sze-lt Z ( )
& k=1

k-1 )
At itk-1
(k-171 i§0 n* (] ]

(62)

5 (1) L2
j=0 J (Bi*B-u)J*Z

All absolute moments, are given by

i e §oogkl kil ik
R = B A = 1

5

with m=1,2,..., being the order of the absolute
moment. Equation 63 is obtained by routine differentia-
tion of the moment generating function with respect to
u and evaluating derivatives at u = 0.

Ex"(t) =

(j+m+1)!

{i+l)j+m+2 f63)

j=0

Fig. 9.

Probability density function of the largest

exceedance; given for x > 0, for different
values of the time interval [o,t], and for
exceedances distributed according to Eq. 50.



Chapter 5

APPLICATIONS TO FLOOD EXCEEDANCES OF THE GREENBRIER RIVER

The first application of the presented method
is made on the Greenbrier River at Alderson, W. Va.,
located in the Ohio River basin. Flood data, in the
form of partial-duration series, cover the period of
1896 through 1967. The base flow for the partial-
duration series is = 17,000 cfs. From these data,
a series of 205 flood peak exceedances, in the course
of 72 years, was obtained, or on the average about three
flood peaks per year. The data are given in Table 18,
Appendix 2.

5.1 Distribution of the Number of Flood Exceed-
ances.

Seasonal occurrence of exceedances.
every watershed the major portion of the flood
exceedances occur during a few specific months of the
vear. Seasonal occurrence of exceedances for the
Greenbrier River at Alderson is shown graphically in
Fig, 10 (data given in Table 19, Appendix 2).

For

To gain insight into the probabilistic structure
of the seasonal occurrence of exceedances, the water
year was divided into nine periods, eight periods of
40 days each, and one period of 45 days. Observed
distributions of exceedances are obtained for all nine
periods. The probability distribution governing the
occurrence of exceedances is Poissonian, so it remains,
at this point, to estimate the parameter ) for each

period, using information from the available samples.
After this, theoretical frequencies are computed and a
goodness of fit test performed for each case. The
results are given in Table 1.
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Fig. 10. Seasonal occurrence of exceedances (Green-

brier River at Alderson).

Table 1. Observed distributions and corresponding fitted Poissonian distributions of the number of exceedances
for nine nonoverlapping periods of the water year (Greenbrier River at Alderson).
Get. 1 - Nov. & Nov. 10 - Dec. 19 Dec. 20 - Jan. 28 Jan. 28 - Mar. 9 Mar. 10 - Apr. 18
% ob. Gy k b, Een. b b, £in. k fb. £, k b, T- Fn.
0 63 62,6544 0 57 56.078 0 a1 41.940 0 38 35.840 0 36 56.430
1 8 8.7091 1 12 1,018 | |1 23 22,690 1 21 24.970 1 26 24.810
2 1 0.6044 2 1750 | | 2 8 6.110 2 10 8.680 2 7 B.450
3 0.0281 3 1 D.144 3 1.100 3 3 2.010 3 3 1.910
4 0.009 4 0.140 | 4 0.340 4 0.320
i 72 71.9960 - 5 0.010 i 5 0.050 5 0.040
3 72 | 71.999 5 + ; .
. : exceed. i T 72 71.590 72 71.290 72 71.990 |
ke 0.00547 =y i = 0.00625 - - -
K= 0.139 ; 62 = 0.149 | ¥ =0.250 ; 62 = 0.274 Lolamianl Kim D OMIEE L=l
¥ = 0,541 ; ui = 0,480 % = 0.895 ; gﬁ = 0,749 X = 0,680 ; ci = 0.672
42 = 0.547 < 2 WE = 1,356 < w2
& = 1.863 < xi_r | x% = 1.839 < :"21— b yZ = 1.297 <« -,(g‘_
- e 2
Yop T 5-99 e xZ, = 9.49 } ¥2, = 9.49 j 2= 9.49
ApT. 18 - May 28 May 29 - July 7 t July 8 - ang. 16 ug. 17 - Sepr. 30 Legend:
k foh. | fth, k tub, fr_'n. | k | fob. i f:h, k j ‘:ah, fth‘ k = the numhe? of exceed-
| ances during the
| o 52 52.340 0 o4 52,6544 o 68 88.112 o | 70 70.033 given period.
i1 17 16.690 1 5 5.7091 1 4 3.780 i ) @ 1,939 £, = observed absolute
2 3 2,660 2 2 0.6044 2 0.108 2 0.027 | frequency.
3 .783 3 0.0281 3 0.001 30 0.000 - o
4 0.022 4 0.0009 H = theoretical abzolute
5 0.001 : 7 72 71899 I i -2 -1.998 L frequency .
= I | 72 71.9989 | % = parameter of the
72 71.996 - " A = 0.00139 ! = 0.00089 Foisson distribution.
A 003 s i 1 -~
i = 0.00798 2 =0 00e47 % ¥ =008 ; g = 0,055 ¥ = 0.028 ; of = 0,027 All 3% _-values refer to
o 2 F=0.139 ; c§ = 0.177 LS £x N
k= 0.319 ; a7 = 0.305 v = 0,119 < 2 w2 = 0.028 ¢ 42 the 5% level of signifi-
| %t o= 4.124 < 32 = ~ cr = er cance. |
x° = 0.356 < 2 Eo=Ta Yor * 599 Hop * 384
Wy = 9.49 S
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The null hypothesis was tested for each of the In this section a somewhat different problem is
nine periods to determine if the distribution of the analyzed. Following the theory given in Chapter 3,
number of exceedances in the given period is Poissonian | the distributions of the number of exceedances for
with parameter A estimated by the statistic X . As different time intervals are considered. According
observed from Table 1, the computed x2Z-values are to Eq. 12, it is necessary to evaluate the function
considerably below the critical x2-values. Therefore, | A(t), which is the average number of exceedances in
the null hypothesis should be accepted at the 5 per an interval. The time intervals used in this section
cent significance level. This is valid for each case have the same origin of October 1, are overlapping, and
considered. are of different durations. Empirical and fitted
probability distributions of the number of exceedances
Since the mean equals the variance in a Poisson during these time intervals were obtained in a fashion
probability distribution it was also considered advan- similar to the one used in the preceding section. The
tageous to compare the sample mean and the correspond- results are given in Table 2. Tests of conformance
ing sample variance of the number of exceedances for of the fitted Poissonian distribution to the observed
each period These comparisons are given in Fig. 11. distribution at the 5 percent significance level show
good agreement, as can be seen from Fig. 13. Figure
os8r R, . 13 shows the change in the distribution of the number of
0.7F ~2 = flood exceedances with incremental changes of the time
% 52 interval for the Greenbrier River. The graph of the
oer -~ I 1 e oy observed and fitted function A(t) of Eq. 11 for the
0.5F Greenbrier River is given in Fig. 14. The function
A(t) 1is the mean number of flood exceedances in a
0.4r time interval [o,t].
0.3}
o2k The fitted function, Af[t), has the expression
o.1F Ag(t) = 0.2475 + 0.1583¢ + u.sosecoslg-’:{-‘si + 0.6841171
| i —=
0‘0_ » ) ® o ® [ ~ © [} 2nt
= - = " + o.ossacos[— - 0.14767)
= = G c = = z 2 g = ?
s 2 8 83 = &« = 3 a & 0.015 21t 2nt
Fig. 11. Sample means, K, and the corresponding €801 cos{ 6 0'7?801T] * 0:0Lez COS{T ¥ 0'6742“}
sample variances, of , for the number of
occurred exceedances during the nine periods (64)
ifdg:m};;ar considered. [Gresnbrior River at and is obtained by using a Fourier-series fit. In Eq.
6-':1, thg iRtervg} ii. Zg g?ysiﬁ Ths iglﬂpli;ﬁtiﬁlfl-s are
The parameter A(t) represents the average gLVen -1n ppendix. 1, 4 o an . Jeresore, 1n
uiber ofpexceedances o dafv. The Semsomal varigs El;e 2215501’11&1’1 distribution, A = A(t) is given by
tions of this parameter are shown in Fig. 12. ’ .
0.0180} 5.2 Distribution Magnitudes of Flood Exceedances.
The next step in the analysis of exceedances was to
001860 investigate the distributions of magnitudes of exceed-
ances occurring during different periods of the year.
0.0140 The periods used are the winter season, the spring
0.0120 season, the summer and fall seasons taken together,
and the total period of a year. It was not feasible
0.0100 to analyze the distribution of the magnitude of
exceedances occurring only during the summer season,
0.0080 because of the small number of exceedances that
occurred during this time (see Table 19, Appendix 2).
0.0060 The observed distributions of the magnitude of
exceedances, for the four periods, are given in Table
0.0040 3 and shown in Fig. 15.
00020 Considering the four sample frequency distribu-
o 1 1 ] ) ] | ] L ; tions shown in Fig. 15, the question arises whether
= e ey & K O™ w % they have the same population distribution. In other
= = g < i‘:i s > %‘ = § words, are the magnitudes of exceedances of the given
o = o o = 4« = - < o four periods identically distributed? This problem is
Fig. 12. Seasonal variations of the parameter (t), treated u.-f.ing Fhe Kolmogorov-Smirnov test at the 5
(Greenbrier River at Alderson). Eﬁrcz?;fsm_gnlﬂcance 1e;el. TTlle E?SEIFE :I_ww that
e differences among the sample distributions are
DS e BHLIoNS B8 tha et of sieatiness top not statistically significant. As an illustration,
different time intervals. 1he previous section com- for the most unfavorable case - the sample frequency
sidered the distributions of the number of exceedances | distribution pertaining to the winter, and the summer
during nine different periods of the year. The periods | 27d fall seasons - the result is
did not overlap and all-were of the same size (only
the last one dgffered slightly). The objective was d) p, = 0.1533 < 0.2593 = Dyn, *
to examine the seasonal effect on the number of 12 12
_:zggegzngﬁisagim;}‘;i-underlymg probebllicy distriou in which rlﬂln2 is the maximum observed deviation
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Table 2. Observed distributions and corresponding fitted Poissonian distributions of exceedances for different
time intervals (Greenbrier River at Alderson).

Oet.l-0c¢t.20 t=20 days Oct.l-Nov.28 tw6il” days Oct.1-Jan.8 t=100 days ! Oct.l-Feb.17 t=140 days iDct.1-Mar.9 t=160 days
X k
£ob. in. 0. fon. k £ Ein. L £ob. in. k fob. | Fih
i} 68 68.1100 0 59 59,260 [i] 42 36.432 1] 25 21.744 0 18 14,148
1 1 3.7800 1 12 11.510 1 16 24.811 1 21 25,992 1 7 23.018
3 0.1048 2 1 1.120 2 10 8.431 2 16 15.552 2 20 18.684
3 0.0019 3 0.070 3 3 1.915 3 7 6.228 3 i1 10.138
4 1 0.327 4 3 1.848 4 3 4.118
7 72 71.9967 i 72 71.960 5 0.044 5 0.441 5 3 1.333
= " = - — 6 0.088 6 0.362
¥ = 0.055 ; 42 = 0.053 kK = 0.194 ; 6% = 0.187 7 72 71.940 7 0.084
: 2 kz 1 72 71.893
2. 2 i s = = X —
xz 0.120 < x2_ Xz 0.105 < xe, K = 0.68 ; 82 = 0.92 L 72 71.885
= =5, T et %
By = 5.9 X2, = 5.99 ¥2 = 6.316 < xér k =1.195; ap = 1.310 = —
- (2= 2,802 < 2 = 1.63; &f = 1.81
2 = 5.49 cr 2 = 2
cT 2. = % = 5.622 < 12,6=y
11.1 cr
—
1
Qct.1l-Mar.29 t=180 days Dct.l-Apr.18 =200 days Oct.l-May B =220 days Oct.1-May 28 t=240 days Oct.1-Sept.30 t=365 days
L T | fw. | fn ol fo. | f ol o fen. ¥ fob. | Een.
1] 13 5.072 ¢} g 7.164 Q 8 6,048 a 7 5.184 o 5 4.154
1 14 18.792 1 15 16.538 1 16 14,962 1 14 13.637 1 13 11.851
2 18 19.440 2 17 19.080 2 15 18.504 2 15 17.928 2 15 16.898
3 16 13.464 3 16 14.616 3 14 15.192 3 15 15.746 3 16 15.984
4 5 6.948 4 6 8.460 4 9 9.374 4 11 10.347 4 10 11,418
5 5 2.880 5 7 3.910 5 7 4.641 5 8 5.415 5 8 5.480
6 1 0.986 8 2 1.497 6 2 1.927 8 2 2.383 6 2 3.078
7 0.292 7 0.493 7 0.673 7 2 0.896 7 2 1.297
8 0.142 & 0.209 8 0.295 8 1 0.447
i 72 71.874 9 0.036 9 0.085 9 0.140
72 1,590 10 0.040
k= 2.07 ; 02 = 2.29 I | 72 71.936 < £k I 72 71.916 .
k 7 72 71.738
oy L s s N
¥? = 5.906<12.6 = "ir =231 ; af( = 2,56 k=2.47 ;0of = 2.8 =263 ; "i - 2.00 5
2 Bl T g gk T =2.8 ; of = 3.18
x2 = 4,967 <15.5 = x2 k2= 3.044<14.1 = g2 = 5.066<15.5 = 32 __ k
J %% = 2.726 <16.9 "‘ir
1.0 =
t = 20days t=60 days t = 100 days t = 140 days t = |60 days

4\.\ 74“
K K oK
o 1 2 I 2 3 4 5 O 2 3 4 5 6
_Lor
Qo.s- t =180 days 1 = 200 days t =220 days
[-4)
> 0.6f
a
L o4k
2 00 = K K K
g0 1 2 3 4 5 & 7 I 2 3 4 5 6 7 0 | 2 3 4 5 & 7
.o
o8t
t = 240 days t=365 days —m— Observed
06
----- Fitted Poissonian
04+ Distribution
02 e K = Number of Exceedances
‘ K [~~~ K
00

o 1 2 3 4 5 & 7 B8 O I 2 3 4 5 & 7 8

Fig. 13. The observed and corresponding fitted Poissonian distributions of the number of exceedances for
intervals of 20, €0,100, 140, 160, 180, 200, 220, 240, and 365 days (Greenbrier River at Alderson).
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between_the two sample frequency distributions, and On the basis of the statistical tests performed,
Dn L Is the corresponding critical value obtained the hypothesis that the magnitudes of exceedances for
172 the Greenbrier River at Alderson are identically dis-
for the 5 percent level of significance. tributed throughout the year is accepted. Estimation
of the corresponding distribution function was made
! using the one-year sample. This sample had the great
Al =f A(s)ds est number of observations, 205. The observed fre-
4 quency distribution and the corresponding fitted
300F simple exponential distribution function are shown in
Fig. 16.
1ofF H{ x)
200 0.9}
0.6}
,f
o7t /
Observed 7
1.OOF 061
-------- Fitted
0.5}
0.4r Observed
1 5 10 15 st asb§ 0 Fitted ( Exponential )
000 et b S
—xeglegrefoon o0 g o2k
-l ook o e N .
3832485583388533953 ik
Fig. 14. Observed and fitted function A(t) (Green- _ B B, G s (cfs)
brier River at Alderson). - %97 3500 18006 27000 36000 45000 59000 63000
|
| Fig. 16. The fitted simple exponential function and
the observed frequency distribution of the
Hix) magnitude of exceedances during one year
(Greenbrier River at Alderson with data
LOF from Table 3).
osgl It can be easily seen from Fig. 16 that the simple
exponential distribution function gives a very good
0.6} i 0.1533 Summer and Fall fit to the observed frequency distribution. Taking
£ ' s Sptg the observed frequency distribution of the magnitude
04t ..-',/ Yoot of exceedances for the year as representative and
74 h_ Wi estimating the parameter of the corresponding simple
----- inter = 5 . . .
0.2t exponential distribution function from the data, the
expression becomes
oc 1 L 1 i L 1 1 XICfS}
’ S000 18000 27000 =
#0900 ;X0 30 5100 H(x) = 1 - exp(-8.821 - 107> x), x>0, (65)
Fig. 15. Observed distribution functions of the with x measured in cfs. Therefore, the parameter
magnitude of exceedances for three seasonal & is estimated by the statistic
and the annual periods, (Greenbrier River . -5 1
at Alderson). B =8.821 - 10 ° (cfs) (66)
Table 3. Observed distributions of the magnitude of exceedances for four seasonal periods (Greenbrier River
at Alderson).
Winter Spring Summer & Fall Year
. d i
Obs. Obs. Obs. Obs. Fatin
. ~ f
o x(cfs) £l frei. | HEo [Fob. fre1. | 1) || fob) fre1. | HI) ob.| “rel. H(x) H(x)
1 1- 9000{ 53 |0.4953 | 0.4953|| 36 |0.5902 | 0.5902| 24 |0.6486 | 0.6486) 113 |0.55122 | 0.55122 0.5475
2 9001-18000| 28 |0.2617 | 0.7570|| 14 |0.2295 | 0.8187 7 {0.1893 | 0.8379 49 10.23902 | 0.79024 | 0.7957
3 |18001-27000| 14 |0.1308 | 0.8878 7 10.1148 | 0,9345 4 10.1081 | 0.9460 25 10.12195 | 0.981219 | 0.9077
4 |27001-36000] 8 |0.0748 | 0.9626/ 3 (0.0491 |0.9836| 1 {0.0270|0.9730| 12 |0.05854|0.97073 | 0.9583
5 | 36001-45000 3 (0.0280 | 0.9906 0.0000 | 0.9836 1 |0.0270 | 1.0000 4 10.01951 | 0.99024 | 0.9811
6 | 45001-54000 0.0000 | 0.9906 1 |0.0164 | 1.0000 1|0.00488| 0.99512 | 0.9914
7 54001—630001 110.0094 | 1.0000 1|0.00488 | 1.00000 | 0.9962
I |07 [1.0000 61 | 1.0000 | 37 |1.0000 205 | 1.00000




Both the Kolmogorov-Smirnov and the chi-square tests
of goodness of fit have shown good agreement between
the two distributions shown in Fig. 16.

5.3 Distribution of the Largest Magnitude of
Flood Exceedances. The final part of the analysis of
exceedances is the analysis of the distribution func-
tion, Fy(x), of the largest magnitude of exceedances,
called in the ensuing test simply 'the largest
exceedance". On the hasis of the results obtained
in previous chapters, the distribution function of
the largest exceedance, for a time interval [o,t],
is the double exponential function

F,(x) = exp [-A(t) exp(-8.821 - 107° 01,

(67)

x>0

The function A(t) 64 and shown in

Fig. 14.

is given by Eq.

Distribution of the largest exceedance using the
one-year time interval. The time interval of one year
holds the greatest appeal. The probability distribu-
tion function of the largest exceedance with a year
as the time interval is them, for A(t) = 2.85,

F(x) = exp[-2.85 exp(-8.821 - 107> x)] ,

x>0

(68)

Values of this distribution function are.given
in Table 4, together with the values of the observed
frequency distribution of the largest exceedance, for
the same time interval. The graphs of the two distri-
bution functions from Table 4 are given in Fig, 17.

Goodness of fit tests show close conformity
between the fitted and the observed distributions of
the largest exceedance for this example. According to
the chi-square test, x2 = 4.6834 < 12.6 = Xér , and

according to the Kolmogorov-Smirnov test, d = 0.0387
< 0.1602 =D_ . The statistics x? and d are ob-
tained from Table 4; Xir and D__ are the corres-
ponding critical values for the 5 percent level of
significance.

The probability density function of the largest
exceedance using the one-year time interval is

Table 4.
(Greenbrier River at Alderson).

£(x)=2¢ 2855 (x)+25.14-10>
o -5
exp[78.821-10 x-2.85 exp(-8.821-10 x)] , (69)
for x > 0. The mode of the largest exceedance is
x = 11.8730 - 103,
1.0F F {X)
ok:] 4
(oX:] 3
Q7F
06F
05}
0.4}
0.3 Observed
------- Fitted
oz
0.1
x (cfs)
o] 1 i 1 1 1 1 I L
8000 24000 40000 56000

Fig. 17. The double exponential distribution function,
and the observed frequency distribution of
the largest exceedance, using a one-year

time interval (Greenbrier River at Alderson).

The density f£(x), and the distribution function F(x),
evaluated at the mode, are f£(X) = 3.2451 - 10°5 and
F(X) = 0.3679. The abscissas of the inflection points
are x; = 0.9626 - 103 and xp = 22.7836 - 103. The
probability densities f(xg, evaluated at x; and X5y
are f(xl) = 1.6846 - 107 and f(xz) = 2.2996 -

10_5. The median of the largest exceedance is X =

16.028 - 103, The density function f£(x)
Fig. 18, with F*(o) = 0.0694,

is given in

Fitted and observed distributions of the largest exceedance with one year as the time interval

Fitted Observed Absolute Frequency 2
. [F(x) - F*(x)| Fitted | Observed (£-£%)
F(x) F* (x) £
No. (cfs) £ ox
0 0 0.0577 0.0694 0.0117 4.15 5 0.1738
1 8000 0.2450 0.2083 0.0367 13.48 10 0.8980
2 16000 0.5000 0.4722 0.0278 18.36 19 0.0223
3 24000 0.7092 0.6805 0.0287 15.06 15 0.0002
4 32000 0.8442 0.8472 0.0030 9.73 12 0.5290
5 40000 0.9196 0.9583 +~ 0.0387 5.42 8 1.2280
6 48000 0.9595 0.9861 0.0266 2.88 2 0.2670
7 56000 0.9798 0.9861 0.0063 1.46 0 1.4610
8 64000 0.9899 1.0000 0.0101 0.73 1 0.1041
! 72 4.6834
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Fig. 18.

The probability density function of the
largest exceedance using the one-year time
interval (Greenbrier River at Alderson).

Distributions of the largest exceedance in
intervals of 140 and 180 days. The distribution func-
tion of the largest exceedance in the 140-day interval
counting from October 1, is

F(x) = exp [- 1.195 exp(-8.821 - 107)] , x > 0.(70)
Table 5 gives the values of this function as well as
the values of the corresponding observed frequency
distribution. Figure 19 graphically shows the data of
Table 5. Goodness of fit tests have also shown good
agreement between the fitted and observed distribu-
tions of the largest exceedance in a 140-day interval.
According to the chi-square test, x? = 3.9558 < 11.1

X
= Wk and according to the Kolmogorov-Smirnov test

d = 0.045 < 0.160 = DCr

}(2

and d are obtained from Table 5, and xir and D_

, in which the statistics:

are the corresponding critical values for the 5 per-
cent level of significance.

The fitted distribution function of the largest
exceedance in the 180-day interval, counting from
October 1, is

F(x) = exp[-2.07 exp(-8.821 - 10°° x)] ,

x>0

(71)

Table 5.
at Alderson).

F (x)

Observed
0.2 ——— Fitted
0.1}
i e e Bl g 4 x(cfs)
6000 18000 30000 40000
Fig. 19. Fitted and observed distributions of the

largest exceedance in the 140-day interval
(Greenbrier River at Alderson).

Both the fitted function and the corresponding observed
frequency distribution of the largest exceedance in

the 180-day interval are given in Table 6. The distri-
butions of Table 6 are shown graphically in Fig. 20.
Again, tests of goodness of fit show good agreement
between the fitted distribution function of the largest
exceedance and the observed frequency distribution in
the 180-day interval. According to the chi-square test,
¥? = 8.6327 < 12,6 = Xir , and according to the

Kolmogorov-Smirnov test d = 0.0568 < 0.1602 = D

The statistics x? and d are computed in Table 6,
and xgr and D_  are the corresponding critical

values for the 5 percent level of significance. The
distribution functions of all three intervals, one-

year, 140-days, and 180-days are in Fig. 21 to accentuate
the effect of the time interval on the fitted probabi-
lity distributions and observed frequency distributions
of the largest exceedance.

cr

Fitted and observed distributions of the largest exceedance in the 140-day interval (Greenbrier River

Fitted Observed Absolute Frequency
Fitted Observed (f - £5)2
% L Wi e e
. F(x)-F*(x) | f
No. (cfs) F(x) F*(x) | f £*
0 0 0.30200 0.,34700 - 0.04500 21.750 25 0.48500
1 6000 0.49505 0.51388 0.01883 13.890 12 0.25700
2 12000 0.66050 0.69443 0.03393 11.913 13 0.09919
3 18000 0.78302 0.77777 0.00525 §8.821 6 0.90218
4 24000 0.86580 0.88888 0.02308 5.960 8 0.69826
5 30000 0.91912 0.93054 0.01142 3.839 3 0.18336
6 36000 0.95138 0.98610 0.03472 2.323 4 1.21063
7§ 42000 0.97100 1.00000 ¢.02900 1.412 1 0.12026
b 72 3.95588
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Table 6. Fitted and observed distributions of the largest exceedance in the 180-day interval (Greenbrier
River at Alderson).
Fitted Ubserved Absolute Frequency
x Fitted Observed (f - £)2
: F(x)-F*(x) |
No. cfs F P*(x | t
( ) (X} (x) £ £
0 0 0.12600 0.18056 0.05456 9.075 13 1.7200
1 8000 0.35971 0.31944 0.04027 16.815 10 2.7500
2 16000 0.60419 0.56944 0.03475 17.610 18 0.0086
3 24000 0.77899 0.72222 + 0.05677 12.590 11 0.2010
4 32000 0.88417 0.87500 0.00917 7.580 11 1.5450
5 40000 0.94091 0.95833 0.01742 4,080 6 0.9040
6 48000 0.97040 0.98611 0.01571 2.122 2 0.0071
7 56000 0.98532 0.98611 0.00079 1.075 0 1.0750
8 64000 0.99266 1.00000 0.00734 0.528 1 0.4220
) 72 8.6327
5.4 Ccmparison of the Results of the Method
1.0 Developed in this Study with the Method Used By
Gumbel. The mean and standard deviation of the
0.9t | maximum annual discharges of the Greenbrier River at
| Alderson, for the 72 vears considered, are Q_ =
sl 35412.5 cfs and o(Q ) = 13351.4 cfs. Therefare, the
' double exponential diftribution function for this
07 case, using Gumbel's estimate, is
F(x) = exp[- 16.86 exp(- 9.6 - 107> x)] ,
0.6}
x>0
0.5}
This function and the corresponding observed
041 frequency distribution of maximum annual peak dis-
| charges are given in Table 7 and shown in Fig. 22.
0.3}
Observed For the Gumbel's estimates of the two parameters
0.2 ———  Fitted the chi-square is x? = 8.34868, which is much larger,
’ f for the same number of class intervals, than the chi-
/ square obtained by the estimates of the method used
Olf in this study, with 2 = 4.0036.
x (cfs)
O'C 1 1 1 1 1. L L L
8000 24000 40000 56000 f
| .8
Fig. 20. Fitted and observed distributions of the 9
largest exceedance in the 180-day interval oo}
(Greenbrier River at Alderson).
OB
Folx)
Lo} o7k
c9 o6l
08t
05}
o7k
| 04+
0.6F |
| 03
0.5 t =180 days
o2k —— Observed
04 .
gk ot T Gumbel s
0.3 t = 365 doys : x (cfs)
S M EEREERE
e - ~ - - o w ~
0.1
0 ] Fig. 22. Doubl tial distribution functi
: : : ; : : ig. 22. Double exponential distribution function,
2 2 o0 Bea with parameters estimated by Gumbel's method,
Fig. 21. The fitted and observed distributions of the snd-thecorrpspamding, sbserved: Eraquency

largest exceedance in 140-, 180-, and 365-

day intervals (Greenbrier River at Alderson).
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distribution of the maximum annual discharge
(Greenbrier River at Alderson).



Accordingly, for this example, the method of distribution function, given in this study, achieved
estimates of parameters in the double exponential better conformance to the observed distribution
than Gumbel's method of estimates.

Table 7. Fitted double exponential distribution function using Gumbel's estimates, and the observed frequency

distribution of the maximum annual discharge (Greenbrier River at Alderson).

Absolute Frequency 5

5 Gumbel's Observed Gumbel's Observed (£-£*)

Ho. (cfs) F(x) F*(x) |F(x)-F*(x) | £ f* f

1 19500 0.0746 0.1389 + 0.0643 5.371 10 3,98950
2 27800 0.3105 0.3195 0.0090 16.985 13 0.93495
3 36100 0.5900 0.5278 0.0622 20.124 15 1.30468
4 44400 0.7887 0.7639 0.0248 14,306 17 0.50731
5 52700 0.8988 0.9167 0.0179 7.927 11 1.19128
6 61000 0.9529 0.9722 0.0193 3.895 4 0.00282
7 69300 0.9785 0.9861 0.0076 1.843 1 0.38557
8 77600 0.9901 1.0000 0.0099 0.835 1 0.03257
i 72 8.34868
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Chapter 6

APPLICATION OF FLOOD EXCEEDANCES TO THE SUSQUEHANNA RIVER

In this chapter, the developed method is applied
to the Susquehanna River at Wilkes-Barre, Pa. This
river is part of the North Atlantic Slope Basin.

Flood data, again in the form of partial-duration
series, cover the years 1891 through 1964. Two years,
1898 and 1899, are omitted because of nonhomogeneity of
data. The base for the partial-duration series is
Qb = 82,000 cfs. From these data, a series of 136
exceedances, in the course of 72 years, is obtained.
The data are given in Table 23, Appendix 2.

6.1 Distribution of the Number of Flood Exceed-
ances.

Seasonal occurrence of exceedances. The seasonal
occurrence of exceedances for the Susquehanna River
at Wilkes-Barre is shown in Fig. 23 (data given in
Table 22, Appendix 2).

0.40r

0.30f

0.10

(=] < [=]

o o o
- . @ _—
5 o = E
= = 3 a &

Fig. 23. Seasonal distribution of the number of
exceedances (Susquehanna River at Wilkes-

Barre).

The water year (Sept. 21-Sept. 20) was divided
into the same observation periods as in the previous
example using the Greenbrier River. After the esti-
mation of parameter A for each period, the Poissonian
distributions of the number of exceedances were com-
puted, and tests of goodness of fit performed. The
results obtained are given in Table 8. For each of
the nine considered periods, the null hypothesis that
the distribution of the number of exceedances in the
given period was Poissonian with parameter i, esti-
mated by the statistic £, was tested. As observed
from the table, all computed xZ%-values are consider-
ably below the critical x2-values. Therefore, the
null hypothesis should be accepted at the 5 percent

significance level.
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The seasonal variation of the parameter A is
shown in Fig. 24.
0.02f
0.01F
0.0 T e i
S g o © ©®© ~ © 3
o = o c = » > = o o
s 2 %3 8 2 & 2 3 & &
Fig. 24. Seasonal distribution of the parameter A(t),

the average number of exceedances per day,
(Susquehanna River at Wilkes-Barre).

Distribution of the number of exceedances for
varying time intervals. Observed relative frequency
distributions of the number of exceedances are
determined for time intervals of 20, 60, 100, 140,

160, 180, 200, 220, 240 and 365 days, starting with
October 1. Parameters of the corresponding fitted
distribution functions are estimated from the avail-
able samples. The conformance of the fitted Poissonian
distribution functions to the observed frequency distri-
butions is verified by applying the x2-test to each
case at the 5 percent level of significance. The
agreement is very good. The results are given in

Table 9 and depicted in Fig. 25.

The graph of the function A(t) for the
Susquehanna River at Wilkes-Barre is given in Fig. 26
The fitted function, Ag(t), is

nt
Ag(t)= 0.1015+0.1050t + 0. 3936{:05(T +O.6032n]

+0.1280cos 3%5 . 0.4074w]+ 0.0604 cos{%;-+ u.ssgzﬂ

+ 0.0130 cos(z”Tt - 0.2041n

s (72)
and is also shown in Fig. 26.
In Eq. 72, the unit of t refers to a 20-day

period. Therefore, the parameter A in the Poissonian
distribution function is given by Eq. 72.



Table 8. Observed and corresponding fitted Poissonian distributions of the number of exceedances for nine

non-overlapping periods of the water year (Susquehanna River at Wilkes-Barre).

Qct. 1 - Nov. 8§

Nov. 10 - Dec. 19

Dec. 20 - Jan. 28

Jan. 29 - Mar. 9

Mar. 10 - Apr. 18

* £0b. Ton, k £ab. fin. x b, Lih. % fob. fin. k fob. | Fen.
0 67 67.1000 0 64 63.5000 0 57 58.4700 0 a8 48.060 0 28 31.670
1 5 4.6500 1 7 7.9400 1 15 12.1700 1 19 19.380 1 32 26.000
2 0.1617 2 1 0.4950 2 1.2630 2 5 3.898 2 9 10.640
3 0.0037 3 0.0207 3 0.0877 3 0.521 3 3 2.910
4 0.0006 s 0.0046 3 0.052 4 0.597
I 72 71.9204 3 9,094
X I 72 71.9563 I 72 71.9953 I 72 71.911 ;
=5 = - 2 72 71.915
b= 0'0‘"7’5"2 i = 0.00312 i = 0.00520 i = 0.01006 =
k = 0.0694; oy = 0.0655 ¥ = 0.125; 62 = 0.150 X = 0.208; 52 = 0.168 ¥ = 0.402; 52 = 0.385 A = 0.0208
k k k K = 0.820; 3% = 0.657
x%=0.1922 < 5.99 = 2 2adi gty

T

%2 = 0.6517<7.81 = xir

2 2
X = 2.053<7.81 = y2_

2 2
¥ = 0.8941<7.81 = x2_

k
2 2
¥< = 2.7608< 9,49 = X

Apr. 19 - May 28

May 29 - July 7

July 8 - Aug. 16

Aug, 17 - Sept. 30

Table 9.

k fch‘ fth. J fob. fth. k fob. fth‘ ¥ fab. fth.

o 58 59,2500 Q 71 71.0054 0 70 70.026 a T 70,026

1 14 11.5000 1 1 0.9870 1 2 1.946 1 2 1.946

2 1.1200 2 0.0068 2 0.027 2 0.027
3 0.0720 3 0.0000 3 0.000 3 0.000

4 0.0036

T 5 15455 I 72 71,9992 I 72 71.999 I 72 71.999

i = 0.00485 i = 0.000347 3 = 0.000685 i = 0.000618

k= 0.194; 5 = 0.159 ¥ = 0.0139; of = 0.0137 k = 0.0278; a§ = 0.0270 K = 0.0278; a§ = 0.0270

2 LR
Xt = 17682 <7.81 = y2_

22 3.99 = 42
X% = 0.0070< 3,99 = o2

2 .
'y 0.0285< 5,99 Xig

2 z
X = 0.0285< 5.99 = %

| Legend:

k = the number of
exceedances during
the given period.

f , = observed absolute

ob

frequency.
£, = theoretical abso-
th

lute frequency.

A = parameter of the
Poisson distribu-
tiom.

2 .
All Kor values refer

to the 5% level of sig-
nificance.

time intervals (Susquehanna River at Wilkes-Barre).

Observed and corresponding fitted Poissonian distributions of the number of exceedances for different

Oct.1-Cet,20 =20 days

Oct.1-Nov.29 t=60 days

Qct.1-Jan.8 t=100 days

Oct.1-Feb.17 t=140 days

Oct.1-Mar.9 t=160 days

k ob. fih. K fob. fn. k £ob. fn, k £ob. ih. X £, fin.
0 67 67.1200 0 62 62.6400 il 55 55.280 0 46 43.63 0 37 32.110
1 5 4.6620 1 10 8.7100 1 15 14,600 1 18 21.81 1 18 25.870
2 0.1617 2 0.6055 2 2 1.927 2 6 5.45 2 12 10.440
3 0.0280 3 0.170 3 2 0.91 3 4 2,800
s = 4 0.011 4 0.11 4 1 0.565
T 72 71,9437 I 72 71.9835 _ M ol P! 0.001
T N s Sopa I 72 71.988
¥ = 0.0694; ai = 0.0655 K = 0.1390; 5 = 0.1196 7 72 71.92 I =5 71,876
_ _ .2 kK =0,264; G2 = 0.253 — - — -
x2 = 0.0409< 3.84 = xir %2 = 0.8326< 5.99 = p 4 k ¥ = 0.500; °§ = 0,501 K= 0.806; o2 = 1.002

-2 - 2
¥° = 0.1943<7.81 = Xer

- B 2
¥ = 2.2T64 <9.45 = Yer

k
2 el
x? = 4.3006<9.49 = 42

Qct.1-Mar.29 t=180 days

Oct.l-Apr.18 t=200 days

Qct.l-May B t=220 days

Oct.1-May 28 =240 days

Oct.1-Sept.30 t=365 days

k £ob. fen. X Tob. in, k fob. Fih. R £b. h. k fob. fin.
b 24 20.304 0 12 14,170 0 11 12.5060 0 10 11.670 0 9 10.872
1 20 25.684 1 26 23.000 1 23 21.8880 1 23 21.200 1 22 20,527
2 19 16.243 2 19 18.700 2 20 15.1520 2 18 19300 2 20 19.425
3 6 6.847 3 1 10.150 3 14 11.2000 3 17 11.700 3 16 12.182
4 1 2.160 a 1 4.130 a 0 4.5000 4 0 5.310 1 1 5.760
5 1 0.547 s 2 1.340 5 3 0.9830 5 3 1.937 s 3 2,174
6 1 0.115 6 1 0.364 6 1 04990 6 1 0.585 6 0.681
7 0.021 7 0.084 7 0.1240 7 0.152 7 1 0.186

8 0.017 g 0.0158 8 0.035 8 0.043
I 72 71.921

I 72 71.855 i 72 71.2678 I 72 71.889 )} 72 71.850

2 P} e - o

K= 1.2655 of = 1.570 ¥ = Le2s; B2 = 1.590 ¥ = 1.750; 62 = 1.684 K = 1.819; & = 1.700 E

¥% = 10.3304<12.6= e

2 o = 2
X 4.7087 < 14.1 i

3 _ 5
%< = 10.6601<14.1 = xér

2 2
¥° = 9.2544 <14.1 = il

= 1.889; a§ = 1.817

2 = A
x? = 10.1767< 14.1 = y2_
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Fig. 25. Observed and corresponding fitted Poissonian
distributions of the number of exceedances
for 20-, 60-, 100-, 140-, 160-, 180-, 200-
and 365-day intervals (Susquehanna River at
Wilkes-Barre).
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Fig. 26. Observed curve and fitted function A(t) as

the mean number of exceedances in a time
interval [o,t] (Susquehanna River at
Wilkes-Barre).
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6.2 Distribution of magnitudes of flood Exceed-
ances. Most exceedances for the Susquehanna River
at Wilkes-Barre occur during the winter and spring
seasons (see Table 22, Appendix 2). 1In 72 years only
14 exceedances occurred during the fall season, and
four during the summer season. Therefore, it was
feasible to obtain the sample distribution function
of exceedances only for the winter season, the spring
season, and the year. The observed distributions of
the exceedances for these three periods are given in
Table 10 and shown in Fig. 27. The statistical
hypotheses were tested, applying the Kolmogorov-
Smirnov test at the 5 percent level of significance,
to see whether the sample distribution functions given
in Table 10 had the same population distribution
function. The tests performed indicated that the
differences between the sample frequency distributions
are not statistically significant. Therefore, the
null hypothesis that the magnitude of exceedances
for the Susquehanna River at Wilkes-Barre is identi-
cally distributed through the year should be accepted
at the 5 percent level of significance. Estimation
of the parameters of the corresponding distribution
function was made for the one-year interval by using
the sample data. That sample had the greatest mumber
of observations, 136. The sample and the corresponding
fitted distribution function are shown in Fig. 28.

The fitted simple exponential distribution func-
tion of magnitude of exceedances has the expression

H(x) = 1 - exp(-2.628 - lo‘sx) , x>0, (73)

in which x 1is measured in cfs. Both the Kolmogorov-
Smirnov and the chi-square tests of goodness of fit
show good agreement between the two distribution
functions shown in Fig. 28.

6.3. Distribution of the Largest Flood Exceedance.
The distribution function of the largest exceedance,
for an interval of time [o,t], for the Susquehanna
River at Wilkes-Barre is

F, (x) = exp[-A(t) exp(-2.628 * 1001, x> 0. (74)

The function A(t) 1is given by Eq. 72 and shown in
Fig. 26.

Distribution of the largest exceedance during
the one-year interval. The distribution function of
the largest exceedance for the time interval of a
year is

F(x) = exp[-1.889 exp(-2.628 + 107> x)], x > 0. (75)

Values of this distribution function are given in Table
11, together with the values of the observed frequency
distribution of the magnitude of the largest exceedance
for the same time interval. The two distributions of
Table 11 are shown in Fig, 29. Goodness of fit tests
indicate good agreement between the fitted and the
observed distribution for this river. According to

the chi-square test, x2 = 4.206 < 12.6 = xir , and

according to the Kolmogorov-Smirnov test d = 0.0448 <

0.1602 =D__ . The statistics x> and d are

obtained from Table 11, and xér and Dcr are the

corresponding critical values for the 5 percent level
of significance.



Table 10. Observed winter, spring, and yearly distributions of magnitude of exceedances (Susquehanna River at

Wilkes-Barre).

Winter Spring Year
Observed Observed Observed
Fi
No x(cfs) fob. rel. Bl fob. frel. Rix) fob. frel. Hix) ;f;;d
1 1-715000] 29 | 0.4460 | 0.4460 12 | 0.2265 | 0.2265| 45 | 0.3309 | 0.3309 | 0.3270
2 | 15001- 30000 11 | 0.1692 | 0.6152|| 13 | 0.2453 | 0.4718|f 28 | 0.2059 | 0.5368 | 0.5460
3 | 30001- 45000/ 8 | 0.1231 | 0.7383 9] 0.1698 | 0.6416| 23 | 0.1691 | 0.7059 | 0.6945
4 | 45001~ 60000 3 | 0.0462 | 0.7845 7| 0.1321 | 0.7737 11 | 0.0809 | 0.7868 | 0.7940
5 | 60001- 75000{ 4 | 0.0615 | 0.8460 2 | 0.0377 | 0.8114 7 | 0.0515 | 0.8383| 0.8611
6 | 75001- 90000f 2 | 0.0308 | 0.8768 4 | 0.0755 | 0.8869 8 | 0.0588 | 0.8971 | 0.9063
7 | 90001-105000ff 2 | 0.0308 | 0.9076 2 | 0.0377 | 0.9246 4 | 0.0294 | 0.9265 | 0.9370
8 |105001-120000 2 | 0.0308 | 0.9384 2| 0.0377 | 0.9623 4 | 0.0294 | 0.9559 | 0.9575
9 |120001-135000/, 2 | 0.0308 | 0.9692 2 | 0.0377 | 1.0000 4 | 0.0294 | 0.9853 | 0.9705
10 |135001-150000f 2 | 0.0308 | 1.0000 2 | 0.0147 | 1.0000 | 0.9807
) 65 53 136
H (x)
.o =
Hix) s
L0
0.6
08
o
B - "/-'/ e Winter S ——— Observed
FO.4 = Year gy P .
; - . i Theoretical ( Exponential )
o2, dp 0,20:2195 <0.2518 =D
7 m ny ny g S x(cfs)
1 L 1 1 i i 1 I L i 0.0l 1 1 1 1 1
o 30000 60000 80000 120000 15000 30000 60000 80000 120000 150000
Fig. 27. Observed winter, spring, and yearly distri- Fig. 28. The fitted function and the observed frequency
bution functions of magnitudes of exceed- distribution of the magnitude of exceedances
ances (Susquehanna River at Wilkes-Barre). for one year intervals (Susquehanna River

at Wilkes-Barre, data from Table 10).

Table 11. Fitted and observed distributions of the largest exceedance using the one-year time
interval (Susquehanna River at Wilkes-Barre).
Absolute Frequency (E:c f*]z
be Fitted Observed || |F(X) - F*(x)] Fitted Observed
No. (cfs) F(x) F* (x) £ £ f
0 0 0.1510 0.1250 0.0260 10.880 9 0.3250
1 20000 0.3275 0.3055 0.0220 12,700 13 0.0071
2 40000 0.5170 0.4722 + 0.0448 13.644 12 0.1981
3 60000 0.6766 0.6805 0.0039 11.491 15 1.0700
4 80000 0.7942 0.7777 0.0165 §8.467 7 0.2542
5 100000 0.8726 0.8472 0.0254 5.645 5 0.0737
6 120000 0.9227 0.9167 0.0060 3.607 5 0.5380
7 140000 0.9535 0.9722 0.0187 2.218 4 1.4317
8 160000 0.9723 1.0000 0.0277 1.354 2 0.3082
I 72 4,2060
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Fig. 29. Fitted and observed distributions of the
largest exceedance using the one-year time

interval (Susquehanna River at Wilkes-Barre).

Distribution of the largest exceedance for 160-
and 200-day intervals. The distribution function of
the largest exceedance for the 160-day interval is
given by the expression

F(x) = exp[-0.806 exp(-2.628 - 10‘?]], x>0 (76)

The 160-day interval was measured from October 1.
Table 12 gives the values of the fitted function F(x),
as well as the values of the corresponding observed
frequency distribution F*(x). The graphic presenta-
tion of the data is given in Fig. 30.

Goodness of fit tests verified good agreement
between the fitted and observed distributions for the
160-day interval. According to the chi-square test,
x2 = 5,7785 < 11,1 = xgr and according to the

Kolmogorov-Smirnov test, d = 0.087 < 0.1602 = Dcr

»

Ll

Table 12.
River at Wilkes-Barre).

in which the statistics x2 and d are obtained
from Table 12, and xér and Dcr are the correspond-

ing critical values for the 5 percent level of signi-
ficance.

F (x;
t, 5
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Fig. 30. Fitted and observed distributions of the
largest exceedance for the 160-day interval
(Susquehanna River at Wilkes-Barre).

The fitted distribution function of the largest
exceedance for the 200-day interval, also measured
from October 1, is

F(x) = exp[-1.625 exp(-2.628 * 107%)],

x>0, (77)

The fitted function, F(x), and the corresponding
observed distribution, F*(x), of the largest exceed-
ance for the 200-day interval, are given in Table 13
and shown in Fig. 31. Goodness of fit tests confirm

a good agreement between the fitted and observed distri-
butions for the 200-day interval. According to the
chi-square test, x2 = 5.3524 < 12.6 = X(Z;r and

»

Fitted and observed distributions of the largest exceedance for the 160-day interval (Susquehanna

Fitted Observed Abscolute Frequency 2

x F(x) P*x) || |Fx) - P Fitted | Observed | (f - f*)

No (cfs) f £x £
0 0 0.446 0.513 0.067 32.170 37 0.7250
1 20000 0.621 0.708 + 0.087 12.610 14 0.1532
2 40000 0.755 0.819 0.064 9.610 8 0.2703
3 60000 0.847 0.875 0.028 6.610 4 1.0305
4 80000 0.906 0.902 0.004 4,305 2 1.2330
5 160000 0.943 0.931 0.012 2.670 2 0.1685
6 120000 0.966 0.972 0.006 1.637 3 1.1360
7 140000 0.980 1.000 0.020 0.980 2 1.0620
) 72 5.7785
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Table 13,

Fitted and observed distributions of t

River at Wilkes-Barre).

he largest exceedance for the 200-day interval (Susquehanna

0.2 Observed
~————  Fitted
o
x (cfs)
0.0 1 L 1 i 1
40000 80000 120000 160000
Fig. 31, Fitted and observed distributions of the
largest exceedance for the 200-day interval
(Susquehanna River at Wilkes-Barre).
Table 14.

Fitted Observed Absolute Frequency 2
X [F(x) - F*(x)| Fitted Observed f - )
No. {cfs) F(x) F*(x) f £* f
0 0 0.1967 0.1667 0.0300 14.160 12 0.3290
1 20000 0.3824 0.3472 0.0352 13.373 13 0.0104
2 40000 0.5667 0.5139 + 0.0528 13.271 12 0.1217
5] 60000 0.7152 0.7222 0.0070 10.686 15 1.7416
4 80000 0.8202 0.7917 0.0285 7.564 5 0.8691
5 100000 0.8895 0.8611 0.0284 4.990 5 0.0000
6 120000 0.9331 0.9305 0.0026 3.138 5 1.1048
7 140000 0.9598 0.9722 0.0124 1.921 3 0.6060
8 160000 0.9762 1.0000 0.0238 1.180 2 0.5698
) 72 5.3524
according to the Kolmogorov-Smirnov test, d = 0.0528
< 0.1602 =D __,
Fe () cr
3

To examine how the method presented in this study
compares with an already existing method, comparison
was made with Gumbel's distribution using maximum
annual discharges for both rivers. Chi-square values
were used as measures of goodness of fit of the
observed distributions, The method presented in this
study achieved better conformance with the data in
both cases.

6.4 Comparison of the Results and the Method
Developed in This Study and Gumbel's Method for the
Susquehanna River at Wilkes-Barre Pa. The mean and
standard deviation of the maximum annual discharges
of the Susquehanna River at Wilkes-Barre, for the

72 years considered, are Qy = 129887.50 cfs, and
U(Qa) = 43083.86 cfs, The two parameters in the

double exponential function are
Gumbel'

estimated by
s method from 72 annual flood peak discharges.

Values of fitted Gumbel's F(x) function and
the corresponding observed frequency distribution
F*(x) of maximum annual peak discharges for the
Susquehanna River are given in Table 14,

For the Gumbel's estimates of the two parameters
the chi-square is 2 = 6.0130, which is much greater
for the same number of class intervals, than the chi-
square obtained by the estimates of the method used in
this study, with ¥2 = 3.9813.

Fitted Gumbel distribution function and observed frequency distribution of the maximum annual peak
discharge for the Susquehanna River at Wilkes-Barre.

Absolute Frequency 2

x Gumbel's Observed Gumbel's Observed (f-f*)

No. (cfs) F(x) F*(x) [E(x) - F*(x)| £ £ f

1 85000 0.1178 0.1389 0.0211 8.481 10 0.27207
2 106000 0.3183 0.3056 0.0127 14.436 12 0.41106
3 127000 0.5418 0.5417 0.0001 16.092 17 0.05123
4 148000 0.7204 0.6945 0.0259 12,859 11 0.26875
5 169000 0.8390 0.8056 0.0334 8.539 8 0.03402
6 190000 0.9103 0.8750 +0.0353 5.134 5 0.00349
7 +.211000 0.9509 0.9444 0.0065 2.923 5 1.47585
8 232000 0.9734 1.0000 0.0266 1.620 4 3.49654
L 72 6.01301
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Chapter 7

GENERAL SUMMARY

This study presents a stochastic model for the
analysis of the largest flood peak. The treatment
takes into consideration that, for any given time in-
terval, both the number of flood peaks and their
magnitude are random variables. This stochastic
model of the flood phenomenon that determines the
largest flood peak has no constraints such as the
stringent assumption of time-invariance (stationarity)
of time series. It is general enough to embrace the
concept of seasonality in flood occurrence. Treating
flood peaks, obtained from the partial-duration
series, as independent events, the theory herein
employed adopts an approximation in the case of a
complex flood hydrograph. It considers any complex
flood hydrograph as one streamflow event, and uses
only the highest flood peak of such a hydrograph.
This assumption does not seriously affect the accuracy
of the results obtained by the method. The distribu-
tion of the relatively small number of flood peak
exceedances occurring in a time interval closely
approximates the time-dependent Poissonian distribu-
tion, which deals with small probabilities and gives
the number of rare events. Inclusion, in the model,
of the distribution of the number of flood peak
occurrences to study the largest magnitude of the
flood peaks represents a contribution to the gene-
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rality of methods used for flood analysis. This

study concentrates on the largest flood peak exceedance
among a random number of flood peak exceedances
occurring in an interval of time. The magnitudes of
exceedances are random continuous variables of a
stochastic, discrete, non-negative process. This
stochastic process of exceedances is periodic, with one
year as its period.

When using the simple exponential distribution
function of the magnitude of all exceedances, this
method yields results that show good agreement
between the resulting double-exponential distribution
function of the magnitude of the largest exceedance
and the corresponding observed frequency distribution.
The corresponding theoretical double exponential
distribution function obtained by a different approach
than in the case of asymptotic distributions of
extremes, fitted better the observed data for the two
examples used than in the case of using the annual
flood peak series. For the example used, the agreement
is somewhat better for the Greenbrier River at
Alderson, than for the Susquehanna River at Wilkes-
Barre because a greater number of exceedances were
available from the Greenbrier records.
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APPENDIX 1

Derivation of the Asymptotic Value of the m-th
Absolute Moment of the Largest Exceedance When
Integer o is Large, for Gamma-Distributed Exceed-
ances

The exact value of the m-th absolute moment of
the largest exceedance, where m =1, 2,....... , for
gamma-distributed exceedances is

At ” atm-1
EX (1) = ——— [ ¥
B (x-1)! o
where y = Bx, and o 1is a positive integer.
For large positive values of a |,

I— _ a-1 i
exp-y-it e y _Z %TJ dy ,
L i=0

1
L 1_; w)_ (asm)*™™ 2
B a- 5

Since

one can use, for large positive values of a the

At = a+m-1 asymptotic value of the m-th absolute moment of the
Ex"(t) = ——— [y exp(-y-it)dy , largest gamma-distributed exceedance,
m-a a- 5 o
e a 2 /21 _
BC() 22 oM ()™,
= _At T'(a+m) a-At
= —1 e »
g a7 VIm for any m=1, 2, ..... ,
Table 15. Computed values for the relation 5‘c§(x}=f(xt), for
exponentially distributed magnitudes of exceedances.
At B22(x) || At 8202(x) || xt 8202(x) || At 8202 (x)
t t t t
1 1.267 26 28.680 51 64,200 76 101.600
2 1.940 27 30.040 52 65.660 7 103.100
3 2.548 28 31.400 53 67.140 78 104.600
4 3.219 29 32.770 54 68.610 79 106.100
5 3.976 30 34,150 55 70.090 80 107.600
6 4.812 31 35.530 56 71.570 81 109.200
7 52717 32 36.920 57 73.050 82 110.700
8 6.681 33 38.320 58 74.530 83 112.200
9 7.694 34 39.720 59 76.020 84 113.700
10 8.749 35 41.130 60 77.510 85 115.300
11 9.841 36 42.540 61 79.000 86 116.800
12 10.9%60 37 43.950 62 80.490 87 118.300
13 12,120 38 45.370 63 81.990 88 119.800
14 13.290 39 46.800 64 83.480 29 121.400
15 14.490 40 48.230 65 84,980 90 122.900
16 15.710 41 49,660 66 86.480 91 124.400
17 16.950 42 51.100 67 87.980 92 126.000
18 18.200 43 52.540 68 89.480 93 127.500
19 19.470 44 53.590 69 90.990 94 129.000
20 20.750 45 55.440 70 92.500 95 130.600
21 22.050 46 56.890 71 94,000 96 132.100
22 23.350 47 58.340 72 95.510 97 133.700
23 24.670 43 59.800 73 97.020 98 135.200
24 26.000 49 61.260 74 98.540 99 136.700
25 27.340 50 62.730 75 100.100 100 138.300
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Table 16.

Alderson, W. Va,

Computation of the harmonics

Z:(t)

of the fourier series used
to represent the function A(t)”, for the Greenbrier River at

j=1 i=2 i=3 i=
yt B 2. ] -,
23 ﬂ(t] 0,1585\: R{tj-D.ISBS\‘. Yo cos.!%‘ ¥ sin h;—;) A cns{:"“Tt Yo sin[:";—‘l| Yo cos[g%‘-] Ye sin Z-'Tt} Ye n:os|2"Tt ytsin[‘—;-r;a
0 0.000 0.00000 0.,00000 0.00000 0.00000 0.00000 0,00000 0.00000 0.00000 0.00000 0,00000
1 0.056 0.15833 -0.10233 -0.09616 -0.03500 -0.07839 -0.06578 -0.05116 -0.08862 0,05116 -0.08862
2 (0.120) 0.31667 -0.19667 -0.15066 -D.12642 -0.03415 -0.18582 0.08834 -0.17032 0.09833 0.17032
3 0,194 0.47500 -0.28100 -0.14050 -0.24335 0.14050 -0.24335 0.28100 0.00000 -0.28100 0.00000
4 (0.340) 0.63333 -0.29333 -0.05083 -0.28887 0.27564 -0.10032 0.14666 0.25403 0.14666 -0.23403
5 0.681 0.79167 -0.11067 0.01922 -0.10899 0.10400 0.03785 -0.05533 0.09584 0.05533 0,09584
6 (0.930) 0.95000 -0.02000 0.01000 -0.01732 0.01000 0.01732 -0.02000 0.00000 -0.02000 0.00000
7 1,195 1.10833 0.08667 -0.06639 0.05571 0.01505 -0.08189 0,04333 0.07506 -D.04333 0.07505
8 1.625 1.26667 0.35833 -0.33672 | 0.12255 0.27449 -0.23033 -0.17916 0.31032 -0.17916 -0.31032
9 2,070 1.42500 0.64500 -0.64500 0.00000 0.64500 0.00000 -0.64500 0.00000 0.64500 0.00000
10 2,310 1.58333 0.72667 -0.68284 -D.24853 0,55666 0.46710 -0.36333 -0.62932 -0.36333 0.62832
11 2.473 1.74167 0.73133 -0.56023 -0.47009 0.12700 0.69097 0.36366 -0.63335 -0.36566 -0.653335
12 2.630 1.90000 0.73000 -0.36500 -0.63220 0.36500 0.63220 0.73000 0.00000 -0.73000 0.00000
13 (2.730) 2.05833 0.67167 -0.11663 -0.66147 -0.63116 0,22072 0.33584 0.58168 -0.33583 0.58169
|14 (2.790) 2.21667 0.57333 0.09956 -0.56462 -0.53875 -0.19609 -0.28666 0.48652 -0.28666 0. 49652
15 (2.810) 2.37500 0.43500 0.21730 -0.37672 -0.21750 -0.37672 -0.43500 0.00000 0.43500 0.00000
16 (2.825) 2.53333 0.29167 0.22343 -0.18748 0.05065 -0.27557 -0.14583 -0.25259 -0.14583 0.25259
17 (2.840) 2.69167 0.14833 0.13938 -0.05073 0.11383 -0.09534 0.07416 -0.12846 -0.07416 -0.12845
18 2.850 2.85000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 £.00000 0.00000
T -2.30197 -3.83353 0.44767 0.22395 -0.10648 | -0.08920 -0.06652 -0.10918
2 (1) -0.27800 0.04974 -0.01183 -0.00739
by (t) -0.42585 0.02488 -0.00921 -0.01213
g (8) 0.50864 0.05562 0.01543 0.01420
By 0.684077 -0.147657 0.77803n 0.67420=
Z;(x) 0.50864 cos(é%% +0.684077)| 0.05562 cos(:;t -0.147657)|| 0.01543 cos{igi +0.778037)| 0.01420 cos(3§1 +0.674207)
Table 17. The fitting function Ag(t) ; The Greenbrier River at Alderson, W. Va.
Af[t)=o.2475+0.1583t
t Z 18 Z,(t) Z.(t) Zg(t) LI S €
1 P 3 j=1,2,3,6 7
0 -0.27802 0.04975 -0.01182 -0.00739 0.00000
1 -0.40693 0.05410 -0.01450 -0.00681 0.02{?7
2 -0.48676 0.03314 -0.00268 0.01420 0.12105
3 -0.50788 -0.00333 0.01182 -0.007359 0.21570
4 -0.46774 -0.03824 0.01450 -0.00681 0.38252
5 -0.37121 -0.05525 0.00268 0.01420 0.62957
6 -0.22985 -0.04642 -0.01182 -0,00739 0.90200
7 -0.06081 -0.01586 -0.01450 -0.00681 1,15783
8 0.11557 0.02209 -0.00268 0.01420 1.66333
9 0.27802 0.04975 0.01182 -0.00739 2.00468
10 0.40693 0.05410 0.01450 -0.00681 2.29953
11 0.48676 0.03314 0.00268 0.01420 2.52593
12 0.50788 -0.00333 -0.01182 -0.00739 2.63282
13 0.46774 -0.03824 -0.01450 -0.00681 2.70400
14 0.37121 -0.05525 -0.00268 0.01420 2.79163
15 0.22985 -0.04642 0.01182 -0.00739 2.81034
16 0.06081 -0.01586 0.01450 -0.00681 2.83345
17 =0.11557 0.02209 0.00268 0.01420 2.86255
18 -0.27802 0.04975 -0.01182 -0.00739 2.85000
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APPENDIX 2

The Greenbrier River DATA Base for partial duration
at Alderson, W. Va. series, Qb = 17000 cfs

Table 18. Flood peaks and magnitudes of flood peak exceedances.

Water Q g Water Q £ Water Q £
Year Date (cfs) | (cfs) Year Date (cfs) | (efs) || Year Date (cfs) | (cfs)
1896 |Mar. 30, 1896 | 28800 | 11800 || 1913| Mar. 15, 1913 | 21800 | 4800 || 1932 | Feb. 5, 1932 | 50100 | 33100

Mar. 27, 1913 | 64000 | 47000 Mar. 18, 1932 | 17600 600
1897 |Nov. 5, 1896 |27600 |10600 Apr. 13, 1913 20000 | 3000 Mar. 28, 1932 | 31500 | 14500
Feb. 23, 1897 | 54000 |37000 May 2, 1932 27500 | 10500
May 14, 1897 |40900 |23900 | 1914 0 0 July 5, 1932 | 21900 | 4900
1898 |Mar. 30, 1898 | 17100 100 || 1915| Jan. 7, 1915 | 34000 | 17000 || 1933 | Mar. 20, 1933 | 26400 | 9400
May 7, 1898 18600 | 1600 Feb. 2, 1915 | 40800 | 23800
Aug. 11, 1898 | 52500 | 35500 | 1934 | Mar. 5, 1934 | 32300 | 15300
1916 | Oct. 2, 1915 | 27200 | 10200 Mar, 8, 1934 | 20500 | 3500
1899 | Oct. 22, 1898 |25300 | 8300 Dec. 30, 1915 | 24400 | 7400 || Mar. 28, 1934 | 27900 | 10900
i Jan. 7, 1899 |20000 | 3000 [ !
| Feb. 27, 1899 | 23800 | 6800 || 1917 | Dec. 29, 1916 | 17300 300 || 1935 | Nov. 30, 1934 | 19400 | 2400
Mar, 5, 1899 | 48900 |31900 Mar. 4, 1917 | 43000 | 26000 Jan. 23, 1935 | 49600 | 32600
| Mar. 13, 1917 | 28000 | 11000 Mar. 13, 1935 | 22300 | 5300
1900 | Mar. 21, 1900 |17100 100 i Mar, 26, 1935 | 17900 900
{| 1918 | Feb. 27, 1918 [ 17900 | 900 Apr. 1, 1935 | 24800 | 7800
1901 | Nov. 26, 1900 | 56800 | 39800 | Mar. 14, 1918 | 77500 | 60500 | May 7, 1935 20100 | 3100
Jan. 12, 1901 | 21100 | 4100 | June 26, 1918 | 24000 | 7000 July 9, 1935 | 24800 | 7800
, Apr. 21, 1801 | 20400 | 3400 ! Sept. 6, 1935 | 20800 | 3800
{ May 28, 1901 |19300 | 2300 || 1919 | Oct. 31, 1918 | 28600 | 11600
i June 17, 1901 | 20000 | 3000 | Dec. 23, 1918 | 24800 | 7800 || 1936 | Nov. 13, 1935 | 19400 | 2400
| . Jan. 2, 1915 | 49000 | 32000 | Jan. 3, 1936 | 20800 | 3800
| 1902 | Dee. 15, 1901 | 36700 | 19700 Feb. 15, 1936 | 27100 | 10100
| Mar. 1, 1902 | 43800 | 26800 || 1920| Dec. 7, 1919 | 38000 |21000 Mar. 18, 1936 | 58600 | 41600
; Jan 25, 1920 | 20700 | 3700 Apr. 7, 1936 | 28300 | 11300
{1903 | Jan. 3, 1903 | 25300 | 8300 Mar. 20, 1920 | 33500 | 16500
| Feb. 5, 1903 | 29600 | 12600 1937 | Dec. 7, 1936 | 21200 | 4200
| Feb. 17, 1903 | 33500 | 16500 || 1921 0 0 | Jan. 2, 1937 | 22300 | 5300
i Feb. 28, 1903 | 34400 | 17400 | Jan, 21, 1937 | 36600 | 19600
J Mar. 23, 1905 | 48900 | 31900 || 1922 | Nov. 1, 1921 |21500 | 4500 Apr. 26, 1937 | 26400 | 9400
Dec. 25, 1921 | 20100 | 3100
1804 | Jan. 23, 1904 | 25700 | 8700 Eeb. 21, 1922 | 22200 | 5200 || 1938 | Oct. 20, 1837 | 21200 | 4200
May 19, 1904 | 25700 | 8700 Oct. 28, 1937 | 32800 | 15800
* 1923 | Feb. 2, 1923 |19500 | 2500 May 25, 1938 | 22300 | 5300

1905 | Mar. 10, 1905 | 29600 | 12600 *

May 12, 1905 | 37600 | 20600 || 1924 | Jan. 17, 1924 | 26500 | 9500 || 1939 | Jan. 31, 1939 | 40200 |23200
i Mar. 29, 1924 | 20400 | 3400 | Feb. 4, 1939 | 41600 | 24600
1906 | Jan. 4, 1906 | 18200 | 1200 May 12, 1924 | 36200 | 19200 | Feb. 11, 1939 21200 | 4200
Jan. 23, 1906 | 26000 | 9000 Sept. 30, 1924/ 17900 | 900 Apr. 17, 1939 | 17200 200
| July 30, 1939 | 19400 | 2400
1907 | June 9, 1507 17500 500 1925 0 0
June 14, 1907 | 52500 | 35500 1940 | Apr. 20, 1940 | 29900 |12900
1926 | Jan. 20, 1926 | 20700 | 3700 | May 25, 1940 | 21500 | 4500
1808 | Dec. 11, 1807 | 17800 800 Feb. 15, 1926 | 17600 600 May 31, 1940 | 19400 | 2400
Dec. 24, 1907 | 23000 | 6000 June 28, 1940 | 18700 | 1700
Jan. 12, 1908 | 31500 | 14500 || 1927 | Nov. 16, 1926 |17900 900
Feb. 6, 1908 |52500 | 35500 Dec. 22, 1926 | 24000 | 7000 || 1941 0 0
Mar. 7, 1908 | 26800 | 9800 Dec. 26, 1926 | 40200 |23200 |
Apr. 1, 1908 | 27600 | 10600 Feb. 6, 1927 |18800 | 1800 | 1942 |May 17, 1942 | 35300 | 18300
May 8, 1908 31500 | 14500 Feb. 20, 1927 | 19500 | 2500
1943 | Dec. 30, 1942 | 33600 |16600
1909 | Apr. 15, 1909 | 20000 | 3000 || 1928 | May 1, 1928 18000 | 1000 Jan. 27, 1943| 17200 | 200
Mar. 13, 1943 | 36200 | 19200
1910 | June 17, 1910 | 45900 | 28900 || 1929 | Dec. 1, 1928 |22800 | 5800 Apr. 20, 1943 | 21200 | 4200
Feb. 28, 1929 | 32700 | 15700
1911 | Jan. 30, 1911 | 43800 | 26800 Mar. 6, 1929 |23800 | 6800 | 1944 | Feb, 23, 1944 | 25200 | 8200
Apr. 5, 1911 | 20000 | 3000 May 21, 1929 | 20000 | 3000 Mar. 1, 1944 | 17200 200
1912 | Oct. 18, 1911 |23800 | 6800 || 1930 | Nov. 1929 {36600 | 19600 || 1945 | Dec. 26, 1944| 17900 900
Feb. 22, 1912 | 18900 | 1900 . ¢ Jan. 2, 1945 | 19000 | 2000
Feb. 27, 1912 | 18900 | 1900 || 1931 0 0
Mar. 16, 1912 | 35500 | 18500 1946 | Jan. 8, 1946 | 43600 | 26600
Mar. 29, 1912 | 27200 | 10200

May 17, 1912 |21100 | 4100 Mar. 14, 1947J 24400 | 7400




Table 18. Flood peaks and magnitudes of flood peak exceedances - Continued

Water Q £ Water Q £ Water Q £
Year Date (cfs)| (cfs)| Year Date (cfs) |(cfs) || Year Date (cfs) | (cfs)
1948 | Feb. 14, 1948 | 35200 (18200 || 1955 | Oct. 1, 1954 | 32000 | 150001 1962 | oct. 21, 1961 | 34700 | 17700

Mar. 24, 1948 | 23500 | 6500 Feb. 7, 1955 | 28000 | 11000 Dec. 13, 1961 | 20100 | 3100

Apr. 14, 1948 | 40300 | 23300 Mar. 6, 1955 | 44400 | 27400 Dec. 19, 1961 | 21500 | 4500

Mar. 23, 1955 | 26200 | 9200 Jan. 7, 1962 | 17800 800

1949 | Dec. 4, 1948 | 18500 | 1500 Feb. 28, 1962 | 23200 | 6200
Dec. 16, 1948 | 37100 [ 20100 | 1956 | Mar. 15, 1956 | 18200 | 1200 Mar. 22, 1962 | 35500 | 18500

Jan. 6, 1949 | 26300 | 9300
Apr. 14, 1949 | 23200 | 6200 | 1957 | Jan. 24, 1957 | 23900 | 6900 1963 | Jan. 13, 1963 | 22700 | 5700

Jan. 30, 1957 | 28900 |11900 Mar. 6, 1963 | 34800 | 17800

1950 | Jan. 31, 1950 | 31500 | 14500 Apr. 6, 1957 | 22000 | 5000 Mar. 12, 1963 | 47200 | 30200

Mar. 17, 1963 | 26100 9100

1951 | Dec. 4, 1950 | 25600 | 8600 | 1958 | Dec. 8, 1957 | 21800 | 4800 Mar. 20, 1963 | 30400 | 13400
Dec. 8, 1950 | 27800 | 10800 Dec. 27, 1957 | 23900 | 6900

Feb. 2, 1951 | 26700 | 9700 Mar. 31, 1958 | 22200 | 5200 1964 | Jan. 26, 1964 | 19100 | 2100

Feb. 22, 1951 | 18500 | 1500 Apr. 7, 1958 | 17500 | 500 Mar. 6, 1964 | 39600 | 22600

Mar. 31, 1951 | 19800 | 2800 May 6, 1958 | 26700 | 9700 Mar. 9, 1964 | 22800 | 5800

June 14, 1951 | 29300 | 12300
1959 | Jan. 22, 1959 | 17200 | 200

1952 | Jan. 18, 1952 | 17800 800 June 3, 1959 | 23900 | 6900 | 1965 | Jan. 25, 1965 | 22000 | 5000
Jan. 28, 1952 | 19100 | 2100 Feb. 8, 1965 | 28400 | 11400
Mar. 12, 1952 | 27600 | 10600 | 1960 | Dec. 13, 1959 | 17800 800 Mar. 26, 1965 | 19800 | 2800
Mar. 31, 1960 | 35500 | 18500 Apr. 12, 1965 | 18600 | 1600
1953 | Feb. 22, 1953 | 47100 | 30100 Apr. 4, 1960 | 32500 | 15500
Mar. 24, 1953 | 20100 | 3100 1966 | Feb. 14, 1966 | 26400 | 9400
1961 | Feb. 19, 1961 | 25000 | 8000
1954 | Mar. 1, 1954 | 29700 | 12700 Feb. 24, 1961 | 21800 | 4800 | 1967 | Mar. 7, 1967 | 54500 | 37500
July 16, 1954 | 18800 | 1800 Feb. 26, 1961 | 31400 | 14400 Mar. 15, 1967 | 39900 | 22900
May 7, 1961 17200 200 May 7, 1967 20900 | 3900
Q = total flood peak
£ = flood peak exceedance.

Table 19. Seasonal occurrence of number of exceedances Table 20. Seasonal occurrence of number of exceedances

for the Greenbrier River at Alderson, W. Va. for the Susquehanna River at Wilkes-Barre, Pa.
Absolute Absolute Relative | Absolute Absolute Relative

Season Period Frequency Frequency | Frequency Season Period { Frequency Frequency | Frequency

Sept. 21 - Nov. 4 10 0.049 ;| Sept. 21 - Nov. 4 5 0.0368
Fal o | 19 29 0.003 i Nov."5 - Dec. 20 9 14 0.0661

- z Dec. 21 - Feb, 3 15 0.1100
winter i —pepe gl oplebe 2 & 107 0258 Her [Feb s - Tar 20 30 & 0.7
" Mar, 21 - May 4 46 0.3577
Spring 33'523 Sm_'M:} 23 g: 61 g:{?g PR ey S - e 20 7 53 ©0.0524
June 21 - .5 2 0,0147

June 21 - Aug. 5 6 0.029 Sumaer s St Oh 3 4 5 0147

Summer hug. 6 - Sept. 20 7 8 —5.010 | i i b5
Total I

Total 7 Year 136 136 1.0000
Year 205 205 1.000 Note: Period of 72 years considered.

Note: Period of 72 years considered.
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The Susquehanna River

at Wilkes-Barre, Pa.

Base for partial duration

series, Q = 82000 cfs

Table 21. Total flood peaks and flood magnitudes of
peak exceedances
Water Q £ Water Q £ || water Q E
Year Date (cfs) | (cfs) Year Date (efs) (cfs) || Year Date (cfs) | (cfs)
1891 |Jan. 24, 1891 |164000 | 82000 1913 | Jan. 9, 1913 97200 | 15200 | 1941 | Apr. 7, 1941 | 138000 | 56000
Feb. 19, 1891 |130000 | 48000 Mar. 28, 1913 | 184000 |102000
Feb. 27, 1891 1125000 43000 1942 | Mar. 11, 1942 | 111000 29000
1914 | Mar. 29, 1914 | 182000 |100000 Mar. 19, 1942 | 94600 12600
1892 | Jan. 14, 1892 | 97100 15100 Apr. 9, 1914 107000 | 25000 May 24, 1942 82600 600
Feb. 26, 1892 | 57100 | 15100 May 14, 1914 | 105000 | 23000 |,
Apr. 4, 1892 112000 30000 | 1943 | Jan. 1, 1943 191000 | 109000
1915 | Jan. 9, 1915 84900 2900 ||’ Mar. 18, 1943 | 101000 19000
1893 |May 5, 1893 115000 | 33000 Feb. 17, 1915 84900 25900
Feb. 26, 1915 | 127000 | 45000:| 1944 | May 9, 1944 30000 8000
1894 | Mar. 8, 1894 88600 | 6600 July 10, 1915 | 120000 | 38000
May 21, 1894 97100 15100 ‘| 1945 | Mar. 5, 1945 119000 37000
1916 | Apr. 2, 1916 160000 78000 Mar, 18, 1945 | 95800 13800
1895 | Apr. 10, 1895 |113000 31000 Mar. 23, 1945 | 97600 15600
1917 0 0
1896 | Jan. 1, 1896 88600 6600 1946 | Mar. 10, 1946 | 94800 12800
Feb. 7, 1896 88600 6600 1918 | Mar. 2, 1918 85700 3700 May 29, 1946 210000 | 128000
Apr. 1, 1896 135000 53000 Mar. 15, 1918 | 124000 42000
1947 | Apr. 7, 1947 151000 69000
1887 | Oct. 15, 1896 88600 6600 1919 0 o
1948 | Mar. 18, 1948 | 118000 | 36000
1900 | Jan. 21, 1900 86800 4800 1920 | Mar. 13, 1520 | 155000 73000 Mar. 23, 1948 | 193000 | 111000
Mar. 2, 1900 94500 | 12500 Apr. 15, 1948 | 98700 16700
1921 | Mar. 10, 1921 86600 4600 :
1901 | Nov. 28, 1900 |115000 | 33000 1949 | Dec. 31, 1948 | 82700 700
Mar. 12, 1901 89000 7000 1922 | Nov. 29, 1921 | 117000 35000
Mar. 28, 1901 [112000 | 30000 Mar, 9, 1922 83200 1200 || 1950 | Mar. 30, 1950 | 172000 | 90000
Apr. 8, 1901 82100 100 Apr. 6, 1950 | 119000 | 37000
Apr. 23, 1901 | 90300 8300 1923 | Mar. 5, 1923 91800 9800
1951 | Nov., 27, 1950 | 119000 37000
1502 | Dec. 16, 1901 | 166000 84000 1924 | Apr. 8§, 1924 129000 47000 Dec., 5, 1950 114000 32000
Mar. 2, 1902 213000 (131000 Apr. 1, 1951 128000 46000
Mar. 18, 1502 |101000 | 19000 1925 | Oct. 1, 1924 | 111000 | 29000
Feb. 13, 1925 | 145000 63000 1952 | Mar. 13, 1952 | 124000 | 42000
1903 | Dec. 23, 1902 82100 100
Feb. 5, 1903 92800 10800 1926 | Mar. 26, 1926 | 90100 8100 1953 | Dec. 12, 1952 98000 16000
Mar. 2, 1903 |110000 | 28000 Apr. 10, 1926 | 83200 1200
Mar. 10, 1903 | 93700 | 11700 1954 0 0
Mar. 12, 1903 | 91100 9100 1927 | Nov. 17, 1926 | 121000 | 38000
Mar. 25, 1903 |119000 37000 Mar. 15, 1927 92700 10700')] 1955 | Mar. 3, 1955 85900 3900
Aug. 30, 1503 [101000 | 19000 May 26, 1927 | 108000 | 26000
1956 | Oct. 16, 1955 | 166000 | 84000
1504 | Oet. 11, 1903 112000 30000 1928 | Oct. 20, 1927 | 141000 | 59000 Mar. 9, 1956 186000 | 104000
Jan. 23, 1904 | 101000 19000 May 1, 1928 102000 20000 Apr. 6, 1956 126000 44000
Feb. 10, 1504 | 152000 70000
Mar. 9, 1904 |204000 |122000 1929 | Mar. 17, 1929 | 127000 | 45000 1957 | Apr. 7, 1957 | 107000 | 25000
Mar. 27, 1904 |124000 | 42000 Apr, 22, 1929 | 155000 77000
1958 | Apr. 8, 1958 170000 89000
1905 | Mar. 26, 1905 | 129000 | 47000 1930 0 0 Apr. 23, 1958 | 83800 1800
1906 0 0 193] 0 1] 1959 | Jan. 23, 1959 | 113000 31000
Apr. 4, 1959 86600 4600
1907 0 0 1932 | Apr. 2, 1932 | 107000 | 25000
1960 | Nov. 29, 1959 88000 6000
1908 | Dec. 12, 1907 95400 13400 1933 | Aug. 25, 1933 99800 17800 Feb. 12, 1960 90100 8100
Dec. 25, 1807 86100 4100 Apr. 2, 1960 201000 | 119000
Feb. 17, 1508 | 130000 48000 1934 | Mar, 6, 1934 85500 3500
Mar. 16, 1908 | 106000 24000
Mar. 30, 1908 | 98800 | 16800 || 1935 | Jan. 11, 1935 | 107000 | 25000 1961 | Feb- ig’ e 13;333 32323
July 10, 1935 | 151000 | 69000 Prr o2
’ Apr. 26, 1961 | 148000 | 66000
1909 | Feb. 21, 1909 | 85300 3300
Feb. 26, 1909 85300 3300 1936 |Mar. 13, 1936 | 184000 |102000 1962 | Apr. 2, 1962 128000 46000
May 2, 1909 125000 | 43000 Mar. 20, 1936 | 232000 |150000
1937 0 0 1963 |Mar. 19, 1963 | 90500- 8500
1910 | Jan. 23, 1910 | 93700 | 11700 Mar. 28, 1963 | 131000 | 49000
Mar. 3, 1910 |157000 | 75000 || 1g3g 0 0
Apr. 25, 1910 |112000 | 30000 1964 | Jan, 27, 1964| 93900 11900
5 7000 000 Mar. 7, 1964 |157000 | 115000
lo11 | Mar. 29, 1911 | 94500 [ 13a00f| 0| Fb: 22 10% | Taaon | o0 Mar. 10, 1964(228000 | 126000
1912 | Mar. 31, 1912 | 115000 33000 1940 | Apr. 1, 1940 212000 | 130000
Apr. 3, 1912 127000 | 45000 Apr. 22, 1940| 93000 11000
Q = total flood peak
& = flood peak exceedance. 35
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