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ABSTRACT

A method is developed for investigating time series structure
by using the mean run-length parameter. This method is distribution-
free. Applications to selected annual precipitation series and annual
runoff series demonstrate the feasibility of this method.

Analytical expressions are developed by which the probabilities
of sequences of wet and dry years of specified lengths can be calculated
when the basic hydrologic time series is either an independent or a
dependent stationary series of a variable which follows the first-
order linear autoregressive model.

Numerical values of probabilities of run-lengths are obtained by
the digital computer integration of expansion equations for run—leﬁgth
probabilities of the first-order linear autoregressive model. A set
of tables and a set of graphs are presented to make the numerical values
readily useable. Probabilities of run-lengths of dependent variables
with a common distribution are also distribution free.

The significance of this investigation, and several applications
in the text, are based on the premise that run-lengths, as statistical
properties of time series, represent attractive parameters in studying

droughts and surpluses.



APPLICATION OF RUN-LENGTHS TO HYDROLOGIC SERIES

Jaime Saldarriaga® and Vujica Yevjevich™*

Chapter I

DEFINITION OF PROBLEMS INVESTIGATED

1.1 Stationary Hydrologic Series. Annual
precipitation, annual effective precipitation (pre-
cipitation minus evaporation), and annual river flow
vary from year to year. This variation is generally
referred to as the sequence of wet and dry years.
These sequences are hydrologic time processes. For
all practical purposes in water resources development,
they can be assumed to be approximately stationary
time series [1,2]. The hydrologic stationary pro-
cesses of annual river flow and annual effective pre-
cipitation are dependent time series. This means
that successive values are linked in some persistent
manner, or sequences of annual river flow and annual
effective precipitation are stationary dependent
processes [2]. Sequences of annual precipitation are
very near to being stationary and independent sto-
chastic processes [2].

Hydrologic continuous time processes, such as
river flow discharge, intensity of precipitation and
similar variables, and hydrologic discrete time
series of time intervals, which are fractions of the
day or year, or multiples of the day or the month,
usually are non-stationary. They are periodic-
stochastic processes with various weights of periodic
and stochastic components [3,4,5]. Therefore, they
are non-stationary processes,

The theory and properties of run-lengths, either
already known or developed in this paper, are appli-
cable only to stationary processes of annual time
series of various hydrologic variables. The applica-
tion of the theory of run-lengths of periodic-
stochastic processes to hydrologic complex periodic-
stochastic time series is not feasible at the present
time for the simple reason that this theory has not
yet been developed in the form to be applicable to
discrete hydrologic time series composed of periodic
and stochastic components,

1.2 Practical Significance. Sequences of
annual values of many hydrologic variables have
several practical connotations. The behavior of
severe and prolonged droughts, with their properties,
may not be known with sufficient accuracy to allow
the probabilistic prediction of their occurrence,
duration and areal coverage with a sufficient degree
of reliability. Statistical properties of runs of
time series may represent one of the best ways for
an objective definition of drought [6]. This inves-
tigation of run-lengths and their application to
series of wet and dry years is related to some sig-
nificant problems of hydrology and water resource
development,

Apart from determining the probabilities of
droughts of various durations and severity at one

point or over a region, the probability of droughts

occurring in adjacent regions have significant
economic implications. If two or more regions

produce an important crop, or are supplying water
to the producers of the same industrial product,
then the conditional probabilities of droughts
covering simultaneously these regions may be of
importance to various plans.

The probability of an extended period of wet
years is similar to the problem of the probability
of droughts. It may be important for restoration of
biological cover in semi-arid or arid regions, or
for the fight of prolonged pollution produced during
dry years in soils and various water environments.

1.3 Two Problems Related to the Application of
the Theory of Run-Lengths to Hydrologic Processes.
A tun is defined, in probability theory, as a succes-
sion of similar events preceded and succeeded by
different events. The number of elements in a run
is usually referred to as its length. Therefore,
the successions are called run-lengths. Two ‘types
of events must be appropriately defined, either as
greater, or smaller values than a given value.

The application of the theory of run-lengths to
hydrologic stationary processes may be viewed from
two basic standpoints:

(1) Some parameters of the run-lengths, as
functions of another parameter, may be used for the
investigation of stochastic hydrologic processes,
particularly whether the series are stationary or
not, and if so, whether they are serially independent
or dependent. If found to be dependent, the interest
is, what are the best mathematical models to describe
this dependence.

(2) To determine, in the most reliable way, the
properties of run-lengths of a hydrologic series
whenever it is found to be stationary, independent,
or dependent, and the mathematical model of depen-
dence is found to describe well the empirical
dependence, if the series is dependent.

Before these two standpoints are discussed in
detail, the two classical methods and the two new
potential methods, including runs, are briefly
reviewed in order to better define the problems in-
vestigated in this paper.

1.4 Methods for Investigation of Hydrologic
Sequences. Four methods based on specific statisti-
cal parameters, as they change with other parameters,

1. Autocorrelation analysis. Parameters
involved are the autocorrelation coefficients, pyg ,
as a function of the lag k between the correlated

*Former Ph.D. Graduate of Colorado State University, Civil Engineering Department, Fort Collins, Colorado, now
temporary Research Associate, Civil Engineering Department, Colorado State University, Fort Collins, Colorado.

**Professor of Civil Engineering and Professor-in-Charge of Hydrology and Water Resources Program, Civil

Engineering Department, Colorado State University,



are or may be effectively used for the investigation
of hydrologic processes:

values, or py = f(k) , with oy defined by

cov(x.x. ,)
ivi+k?
oy = Var %, = f(k) (1.1)
for a discrete time series. The values 0y are

estimated by the sample values Ty .

The use of autocorrelation analysis as an inves-
tigative technique of hydrologic time series is based
on the concept of analogy. One should know the cor-
relograms of particular processes, and then by sta-
tistical inference determine whether a computed
correlogram of a hydrologic process is well approxi-
mated by the correlogram of a known process. To read
the type of process that results from a correlogram,
the alphabet of correlograms must be known.

2. Variance spectrum analysis. Basically this
is the Fourier series analysis where an infinite num-
ber of elementary periodic components, with a con-
tinuous distribution of frequencies, is fitted to an
observed series. The parameters involved are the
variance densities, wg , of various harmonics
fitted to this series, represented against the fre-
quencies f as the parameter. The variance of a

harmonic is equal to the half of its squared amplitude.

This type of analysis is a representation of the pro-
cess in frequency domain,

v = ¥, (1.2)

while the autocorrelation is a representation in time
domain, or any other dimension on which the process
occurs (say, the length). It might be noted that the
variance density spectral function is the Fourier
transform of the correlogram. The variance densities
vg are estimated by the sample variance densities,
V}.

The use of variance spectrum analysis as an
investigative technique of hydrologic processes is
also based on the concept of analogy. Statistical
inference should be performed to find whether a com-
puted variance spectrum of a hydrologic process is
well approximated by the variance spectrum of a
known process. A reading knowledge of the alphabet
of variance spectra should be known to advance hy-
potheses on the kind of mathematical model for the
process investigated.

3. Ranges. The ranges, R, , are defined in
terms of differences between maximum and minimum on
the cumulative sums of departures of values from the
average, or from any other value, for given subseries
sizes, n The expected ranges, E(Rp) , or similar
parameters, as random variables, are related to the
subsample size, or

E(R) = £(n) (1.3)
Let {xi; i=1,..., N} be the observed sequence, and
let X, be a specified truncation level which in
general represents the reference level. Then the
sum is

i

S. = ) (x. -x) , (1.4)

g, 2 E
for i=1,2,..., n The surplus is defined by

(1.5)

s " = max {0,5.} for 1i=1,2,..., m ,
n i

and the deficit by

§ ~ =min {0,5.} , i=1,2,...,n , (1.6)
n 1

where n Tepresents the size of a subsample taken
from {x;}

The range is defined by

R, =S " -8~ =max{0,5.} - min{0,5.} , (1.7

for asli@eee; mos

As in the case of the autocorrelation and vari-
ance spectrum analyses, the use of the expected
range (or of a similar parameter), as a function of
n , may be conceived as an investigative technique
of hydrologic series. It should be based also on
the concept of analogy. The parameters E(R,) are
estimated by the sample mean ranges, R, . The com-
parison of the function R, = f(n) with the function
of the same parameter of a known process allows the
advancement of hypotheses about mathematical models
describing dependence of a stochastic process. The
statistical inference of the goodness of fit of
these theoretical and hypothetical models decides
whether they should be accepted or rejected. The
alphabet of these range functions for various types
of processes should be known before hypotheses are
advanced.

4. Runs. Various properties of runs, clearly
defined, have parameters o , which may be used as
function of another parameter B , so that a = f(B)
is a characteristic of a process of independent or
dependent sequences. For the purposes of this paper,
the run is identical to the concept of run-length.
Basically, both are the number of consecutive posi-
tive or negative departures from a specified constant
value called here the truncation level. In this
narrower definition of runs, positive runs are asso-
ciated with positive departures and negative runs
with negative departures. The structure of a series
may be analyzed by studying the properties of runs
at different truncation levels. Parameters of rums
have practical meanings in hydrolegy, because a
positive run can be associated with the duration of
a wet period or with a water surplus interval, while
a negative run can be associated with the duration
of a drought, or with a water deficit interval.

5. Comparison of four techniques. The two
classical techniques for the investigation of time
series are autocorrelation analysis and variance
spectrum analysis. The way they are used in explor-
ing the internal structure of a process depends to
some extent on the purpose of inquiry and prior
knowledge of the generating system of the process.
The correlogram tells something about the linear
relation between the consecutive values of a series.
The spectrum exhibits the extent the series is in
step with certain fundamental rhythms, measured at
various frequencies [7]. These two techniques offer
no particular advantage over other parameters for the
task of investigating the properties of various
sequences. One fact seems clear, namely that it is
difficult to use the two functions P f(k) or




ve = ¥(f) , respectively for these two techniques,

directly in the solution of various water Tresources
¥

problems.

Ranges and runs are two techniques that can be
used advantageously in water resources problems and
at the same time, they may be used to investigate
hydrologic processes. They can be readily associated
with concepts of storage and drought, or with concepts
of surplus and deficit, which are of interest to the
solution of various water resources problems. This
is one of the main reasons for investigating proper-
ties of run-length for both objectives: the inves-
tigation of hydrologic stochastic processes, and the
direct computation of properties of runs, from the
information in samples of these processes.

6. Runs as the technique. If a truncation level
is specified, the run-length associated with a nega-
tive run represents the duration of a deficit rela-
tive to this level. The probability of length of the
deficit periods is relevant for the planning, design,
and operation of water resources systems.

The structure of a stochastic process is reflected

in the properties of runs that it generates at speci-
fied truncation levels. For example, independent
variables with a common distribution are characterized
by a mean run-length equal to two for a truncation
level equal to the median of the distribution of
variables. Identically distributed variables with a
highly positive first serial correlation coefficient
are characterized by a mean run-length greater than
two at the same level. On the other hand, identi-
cally distributed variables, with a highly negative
first serial correlation coefficient, are character-
ized by a mean run-length smaller than two at the same
level. These properties, which are investigated in
detail in the following chapters, should justify the
use of runs not only in the making of water resources
decisions, but also as a technique for the investiga-
tion of series, and more specifically for the testing
of stationarity and of mathematical dependence models
of hydrologic processes.

1.5 Two Approaches to Investigations of Sto-
chastic Sequences. Regardless of which of the four
methods of investigation of hydrologic sequences is
used, a sequence of a parameter as a function of
another parameter characterizes a stochastic process,
like the functions py = f(k) , ve = w(f) , ER, =

f(n) , or ENq = f(q) This last case is an example
of runs, where ENq is the expected value of run-

length, estimated by the sample mean run-length N, ,
as it changes with the probability q of all values
of a variable not greater than the truncation level.
These four functions, related to autocorrelation co-
efficients, spectral densities, expected ranges, and
expected run-lengths, should have well-defined math-
ematical expressions for various stochastic dependence
models, or for processes composed of the periodic and
stochastic components. Particularly, these four
functions for the population of a stochastic station-
ary and independent process are well defined.

Two approaches for investigating time series may
be used. The first approach consists of the analysis
of original data. It is here referred to as the use
of the original sample series. In this case, anyone
of the four above functions is computed from the

sample series, and compared with the family of
corresponding population functions for various mathe-
matical dependence models. Then a model is selected,
its parameters estimated, and the population function
compared with the sample function in such a way that
their differences are or are not statistically sig-
nificant. If they are significant, new models are
selected as hypotheses, their parameters estimated,
and the comparison repeated. The knowledge of shapes
of above functions, Pr = £f(kx) , ve = v(f) , ERn =

f(n) , or ENq = f(q) , for various hydrologic

mathematical dependence models is a prerequisite, so
that sight comparison with the sample function of
any of the above four functions may lead to the most
likely hypotheses for the population models.

The second approach assumes a mathematical model
for the dependence of a process that is composed of a
systematic dependence component(s), and an indepen-
dent stochastic component. A residual series is
obtained by separating the systematic dependence com-
ponent(s) from the original series. Under the hy-
pothesis that the assumed model is an adequate repre-
sentation of the process, the residual series after
this separation should be a sequence of independent
stochastic variables. The independence of the resi-
dual series is then tested. The assumed dependence
model is accepted or rejected, depending on whether
the independence of the residual series was accepted
or rejected. This procedure is here referred to as
"whitening,'" meaning that the residual series is
expected to be a '"white noise," or independent series.

It is perhaps interesting to emphasize a basic
difference between these two approaches. The first
approach does not assume a model a priori for the
process, but rather the curve of the sample function
leads to the hypothesis about the structure of the
process, so that eventually a mathematical dependence
model can be fitted to it. The second approach may
start a priori by assuming a dependence model for the
process, without computing the sample function, and
after the model parameters are estimated, the supposed
independent stochastic component (white noise) is
computed and tested. Logically, the sample function
in any of the four above methods helps advance a more
realistic hypothesis about the model. However, if
previous knowledge about these models is already
available for the similar processes in a region, the
hypothesis can be advanced a priori, and the whiten-
ing and testing performed in an appropriate way.

In order to use the methods of run-length for
investigating hydrologic sequences, run properties
should be known for various mathematical dependence
models of hydrologic sequences, regardless of the
two approaches used. Therefore, the objective of
investigation in this paper is to add knowledge about
the properties of run-lengths for some mathematical
dependence models of stationary hydrologic processes.

As an example, let the hypothesis be that {X.}
is a first-order linear autoregressive process in
the form

X, ~u= ol(Xi_l-u) + Ufl-p§ g5 (1.8)

1

with

X, Ei

the expected value and o¢? the variance of
is a standardized stationary independent



variable (0,1), while

tion coefficient.

0y is the first autocorrela-
2

The parameters, u , ¢ and Pl
are estimated by sample parameters X , 32 and T
The "whitened" series is
£ = ——— [-u-py (X ;W] (1.9)
avl-p

1

Under the given hypothesis, {ai} is a sequence

of standardized, independent random variables. Then

the whitened series is tested for independence.

1.6 Objectives for Determinating Properties of
Run-Length. The first objective of this study is to
develop a method for investigating stationary inde-
pendent and dependent hydrologic time series by using
statistical parameters of runs. Four phases must be
involved in this investigation:

(a) Mathematical formulation of the
problem;

(b) Selection of suitable parameters for
testing hypotheses of stationarity and time dependence;

(c) Statistical inference for stationarity
and time dependence models, and

(d) Tests of application of the method to
some selected time series.

The second objective of this study is to develop,
in an approximate analytical procedure, the proper-
ties of run-lengths of the stationary, first-order,
and linear autoregressive mathematical model of time
dependence, as defined by Equation (1.8). This
objective has a significant, practical aspect, as
shown by the following example.

For a river with large storage capacities, what
is the probability of a drought to occur with a dura-
tion of n or more years, if the drought is defined
as a run of all annual inflows into reservoir of
above capacity, which are not greater than a given
annual runoff. In this case, it is possible to deter-
mine the truncation level of the series of annual
runoff and from it the probability q If the
dependence in the series of runoff can be well approxi-
mated by the model of Equation (1.8), and ¢ , o ,
and py are estimated from it, then the results of

investigations in this study should answer readily

and accurately the above classical problem. The
available runoff series may not include even a drought
of the duration of n/2 or of a shorter duration, so
that the current empirical methods cannot give an
answer to this problem. There are two reasons for
concentration on the model of Equation (1.8): (1) It
is often the most appropriate model for dependence of
series of annual river flows, and (2) It is simple

for an analytical treatment.

1.7 Definition of Runs. A series of the variable
X 1is cut at many places by an arbitrary horizontal
truncation level, x_ , and the relation of this
constant x_ to all other values of x of the pro-
cess serves as a basis for the definition of runs in
this study. Basically, there must be two processes
intersecting each other in order to define runs.
Because these two processes cross each other, the
theory of runs is often called the crossing theory.
The term "theory of runs" is used in the case of
discrete series [7], and the term '"crossing theory"
in the case of continuous series [8].

One of the two processes must be the original
process. The second process may be a constant x, ,
the process of a random variable y , or any other
type of deterministic, combined deterministic -
stochastic, or pure stochastic process. When this
second process is not a constant, the development
of properties of runs becomes complex. In the case
of runs to be used in this study, the main assump-
tions are:

1. Only discrete series are investigated, so
that the expression 'runs" is used;

2. The variable x may have discrete, contin-
uous, or fixed probability distribution;

3. The second process is a constant X, , or
any constant value in the range of fluctuation of
the variable x ;

4. The probability P(x < x5) = q may replace
the constant x_ , in order to make some properties
of runs indepengent of the type of distribution of x.

The number of values of a discrete sequence
between an upcrossing of the truncation level and
the following downcrossing is defined as a positive
run-length, or briefly, for this study, the positive
run. Similarly, a negative run-length, or the nega-
tive run, is defined as the number of values of a
discrete series between a downcrossing and the next
upcrossing. They are shown in the upper graph of
Figure 1.1, and are designated by

N; for the length of the j-th positive run, and

by N; for the length of the j-th negative run.

The j-th total run is defined as

N, = N; + NJT , with j=1,2,..., where j is
counted from the origin of a time series.

These may be extended to definitions T; 5 Tj 4
and T , as the positive, the negative and the
total run of a continuous process, respectively.
This is analogous to the definitions of runs of dis-
crete time series, as shown in the lower graph of
Figure 1.1.
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Fig. 1.1 Definition of positive and negative runs
for a given truncation level. Upper graph
refers to a discrete series and lower
graph to a continuous series.

Other parameters used in literature as defini-
tions of various runs of discrete time series,

besides N; . N3 , and Nj , are:

1. Sum of deviations associated with positive
runs, as the positive run-sum, or the run-surplus,

2. Sum of deviations associated with negative
Tuns, as the negative run-sum, or the run-deficit,

3. Number of positive runs for a given series
of size N ,

4. Number of negative runs for a given series
of size N ,

5. Number of total runs for a given series of
size N

For the continuous time series, the following
parameters other than Tj . Tj , and Tj are used:

z +
1. Area above truncation level for T, , as
the positive run-sum, or the run-surplus;

2. Area below truncation level for T, , as
the negative run-sum, or the run-deficit;

3. Number of positive runs for a given series
length, T ;

4. Number of negative runs for a given series
length, T ;

5. Number of total runs for a given series
length, T ;

6. Time interval between successive peaks;
7. Time interval between successive troughs.

All of these runs are random variables, and are
functions of the process {xi} and the truncation
level X,

Properties of runs relating to these functions
can be directly used in many water resources problems.
If x, determines the level of demand, and if this
level is not reached, a drought occurs. If a flooded
area begins for x > x5 , and the flood damage is a
function of the time during which x > x, , then the
distribution of positive run-length and/or run-sum
determines the character of flooding. If a given
type of run is regionalized, or shown over an area
with its isolines, the regional phenomena of drought,
flood, and similar phenomena may be studied for their
probabilities of recurrence [6].



Chapter II

SUMMARY AND STATUS OF KNOWLEDGE ON DISCRETE RUNS

2.1 Introductory Statement. Two main aspects
are reviewed, the distribution theory of runs for
both independent and dependent random variables, and
the multivariate normal integral which serves as a

base for the mathematical developments in Chapter III.

The summary is related only to those properties of
runs, which are relevant to investigations in this
paper.

2.2 Distribution Theory of the Number of Various

Runs of Independent Random Variables. The classical
distribution theory of runs has been mainly concerned
with independent arrangements of a fixed or a random
number of several kinds of elements. This is not
particularly relevant for this study, but is summa-
rized for the sake of completeness. In the case of
two different kinds of elements, it is assumed that
the number of elements of each kind are Ny and N s
and that they are all randomly drawn without replace-
ment. This is equivalent to sampling a binomial
population, with probabilities ofoelements, p and
q=1-p , respectively. Let Ki denote the number
of runs of kind (o) of the length 1 , and let Ki
denote the number of runs of kind (1) of the length

i . Finally, let K° =z Ki designate the number
i

of all runs of elements N0 5 K1 =L Ki the number
i

of all runs of elements Nl , and K = Ko + Kl

the
total number of runs, and N = N, + Nl the total
number of elements, or the sample size, with

1% & dPisas

Wishart and Hirshfeld [9] obtained and tabulated
the joint probabilities of the number of runs

n n

o o 0-1 n1+l 0 1
P(K"=k" , N =mn, N=n) = [k _1) ( kK [P a
o s}
(2.1)
1 . n. -1 no+l n n,
P(K'= k” , N=n_, Nj=n)) = {, = K, Poa
(2.2)
n -1 n1~l n‘:l 1
= = = = 2;3
P(k=2m, No=n_, Nj=n) =2 | " )| = lp®q " ,(2.3)

and

n -1 n -1
o )
+

nl—l
m

P(K=2m+1, N =n_, Nl=n]) =[(

m-1 m

R

(2.4)

In Equations (2.1) through (2.4), the capital letters
designate the random variables, and the small letters
the values those variables can take.

As the sample size N increases to infinity,
K 1is asymptotically normally distributed, with

EK = 2npq + p? + q% = 2(n-1)pq + 1 (2.5)

and

var K = 4dnpq(l-3pq) - 2pq(3-10pq) . (2.6)

However, Cochran [10] gives expressions for the
expected values of the number of positive and nega-
tive runs as

o]

EK" = p + (n-D)pq , (2.7)
1
EK" = q + (n-Dpq , (2.8)
and
END =np , and ENl =nq , (2.9)

with N_  and N1 being also the random variables
in this case.

Stevens [11] gives the distribution of the
total number of runs, without a regard to their
length, from the arrangements of two kinds of ele-
ments. He develops a ¥2-criterion for the test of
significance. Wald and Wolfowitz [12] study the
same distribution as Stevens [11], and show that it
is asymptotically normal. The conditional distribu-
tions of K are

n -1]/n,-1
m-1 m-1
P(K = 2m|n0 . Bl 5 e (2.10)
n
o]
and
(no-l nl-l}+(no-lJ(n1-l)
P[K=(2m+1) |n,n ] = A B-L R LA mIlnL
[
(2.11)

where ng and n, are values that N0 and Nl can

1
take. These probabilities are independent of the
parameter p . For n =an; , with o >0 , and

, Wald and Wolfowitz [12] give the above

n -+ =

o
distributions of Equation (2.10) as a normal asymp-
totic distribution with
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(2.12)
(1+c) 3

For o =1 , the statistic

(2.13)

2

2

is a standard normal variable.

Mood [13] derives distributions of the number
of runs of a given length for the independent arrange-
ments of the fixed number of elements of two or more
kinds of the binomial and multinomial populations.
He shows these distributions as asymptotically normal
with an increase in the sample size. Their expected
values are:

Bk = plq [(n-i-1)q + 2] (2.14)
and
EK} = q'p [(n-i-1)p + 2] (2.15)
The statistic
x = K-EK - K-2npg (2.16)
vvarK 2vnpq (1-3pq)

is asymptotically normal with the mean of zero and
the variance of unity. Comparing Equations (2.5) and
(2.6) with the mean 2npq , and the variance 4npq(l-
3pq) of Equation (2.16), the mean and variance given
by Mood [13], and the mean and variance given by
Wishard and Hirshfeld [9], are different. Parameters
in Equation (2.16) are approximations to those of
Equations (2.5) and (2.6). Bendat and Piersol [14]
give tables for the conditional distribution of K
when N0 = Nl = N/2

2.3 Distribution Theory of Run-Lengths of

Let NI and N;
] ]

denote the positive and negative j-th run-length for
the given truncation level, x Also let {X} be
the sequence of independent random variables of the
common distribution, F(x), with F(xo) = q, and
l-F(xo] = p , and let

Independent Random Variables.

+ -
N.} = {N, + N,
{ J} { j J}

be the random sequence of the total j-th run-length.

The probability mass function of Nl is given
by Feller [15] as
k __k
P[Nl = k) = ESHE:EHR_ 5 (2.17)

for k=2,3,..., with

e , and var N, = l;gE& (2.18)

1 1
L p2q?

The distribution of the number of total runms,
k(N) , in a discrete time series of length N has
the following parameters

Ek(N) = (N-1)pq , for N>1 , (2.19)

and

vark(N) = Npq (1-3pq - %‘* %—pq) , for N > 4; (2.20)

this distribution is asymptotically normal. Downer,
Siddiqui and Yevjevich [16] studied the distribution
of positive and negative run-lengths for a sequence
of independent identically distributed random vari-
ables, and applied it to the normal variable. They

have shown that {N;] is also a sequence of indepen-

dent identically distributed random variables with
the probability mass functions

PO =10 = @t and PNy - 10 = g, a2
and their moments are
EN' = & EN, = 1 (2.22)
] q ] P
var N} = J% var N; = J% . (2.23)
For the case p=q=1/2 ,
+ - 1
P(NT = k) = P(N_ = k) = — , (2.24)
j i oK
EN, = EN| = 2 (2.25)
j j ’ ’
and
var N; = var N; =2 (2.26)

Llamas [17] studied the case of standard, one-
parameter Gamma random variables, with the probabil-
ity distribution function

a(u+t/§ja_l

e—a-t/E
T(a)

F(x) = at . (2.27)

X
/
Ve

, he obtained p = F(0) = P(e,a) , and

q=1- P(a,0), where P(o,a)
Gamma function, or

For Xy = 0

is the incomplete

(2.28)



Llamas and Siddiqui [18] studied the case of a
sequence of a two-dimensional random process {x,y} ,
where the two variables are independent and have a
common distribution function, F(x,y) Given the two
levels, Xy and such that o < F(xo,yo) < L

the four possible events are defined as

A=i{xsex,ycy}t » B=Ix SXge ¥ > X}

C={x> Xgs ¥ 5_y0} , D={x> XY > yo} .
Both sequences are associated with the sign minus if
A occurs, and with the sign plus if D occurs. The
sequence of k consecutive A events followed and
preceded by any other event is a negative run of the
length k . The sequence of k consecutive D

events followed and preceded by any other event, is

a positive run of the length k , and for the initial
run the requirement of "preceded by" is dropped. If

A% s the complement set of A , then

P(A) = F(xg,¥ ) =q , and PAS) = p

Llamas and Siddiqui have shown [18] that

k-1

P(NE =k) =pgq s (2.29)

with

EN; = , and var N; = i% . (2.30)

P

L=2

the analogous relaticns hold for N. for its corre-
sponding values of p and q . J

2.4 Distribution Theory of Run-Lengths of
Dependent Random Variables. For a Markov chain with
two states (0) and (1), Cox and Miller [19], give the
transition probability matrix of this chain, which is

P = . (2.31)

They give the distribution of the recurrence time of
state (0), designated by N° , which is equal to the
run-length of state (1) plus unity, as

PO%=k) = aB(1-8)%% , for k=2,3,..., (2.32)
and
P(N°k) = 1 - o , for k=l (2.33)
The mean recurrence time of the state 0 is then

EN® = Eéé (2.34)

Similar relations hold for the recurrence time of the
state (1), which is equal to the run-length of state (0)

plus unity, designated by Nt
a and B

» by interchanging

Heiny [20] defines the two states with their
transition probabilities of the Markov chain as

g

|
P[xj > xoixj_1 >x ) =

B(x. < x_|x%. > X
(x5 < xglx 3 > x)

1 [¢]

o
wr
-

with r + s =1 . The following relations are valid
for this Markov Gaussian process {x}:

PN = k|x, > 0) = s 1 [1+ 0e2)], k=1,2,3,...,

(2.35)

with
EN'[x; > 0) = 2 [1+002)] , (2.36)

and
var (N'[x; > 0) = 5%-[1 + 0003 , (2.37)

5

where 0(p?) indicates an expression that becomes
negligible for small values of p . He also found
an approximation for the conditional joint proba-

bility mass function of the first j positive and
the first j negative runs, given X, > 0, as

follows:

+ o o N-= g
P(Nj:nj, N =ms hj_l—nj_l,..., Nj=n,, N} mllxl>0) <

n,-1 m-1 n,-1 m_-1 n. m.
ssrl tvl sr? ww? Lsrilyy J'1[14-0(92]}:

2.38
where ( )
t= P(xj > xoixj-l i_xo} , V= P(xj :_xoij_li xo) 3
and
t+vs=1

This treatment, however, has two disadvantages:
(a) it is based on a conditional probability that
xy > 0, and (b) it is applicable only to very small

values of p , since the errors 0(p2)
nificant for larger values of p .

may be sig-

2.5 The Multivariate Normal Integral. Gupta [21]
presents an exhaustive bibliography on the multinormal
integral and related topics, and gives a review [22]
of these works. Only works that do not overlap with
references in [21] and [22], but are related to
mathematical developments in the following chapcers
are reviewed here.

The multinormal integral is involved in the
theory of runs of dependent normal variables because
it is directly related to the problem of h auto-
correlated random variables, Z;, Z,,...,Z,. If

these variables have a standard multivariate normal
distribution, the problem to solve is the probability



that all h variables are simultaneously positive.
A new sequence of random variables {X} 1is defined
as follows:

1 for Z >0

-1 for Z <0

The probability that all h variables are simulta-

+: .
neously positive is P _(h ) , where the index m
indicates that the truncation level X, of the ran-

dom process {X}
of {Z} .

for any h > 4 ,

is the median of the distribution
For r:.l.:,| = EXiij , McFadden [23] gives,

-h
pm(h*)=2 1+ J

Tt [l s R O L
j>isl ij £>k>j>i3} ij ke ik7je

3 y
+ 1'”'r’_ik + 0(r?)] (2.39)
F .. = BZ.Z 3
or olj 5
=) arc sinp,. = 2-[p +0(p3N] (2.40)
ij T ij m ij ij )

If Equation (2.40) is substituted into Equation (2.39),

+ -h 2
p.(h) =2 [1 * 2 )

arc sinpi,
jriz1

]

q.i
W21>k>j>ii}

3
PijPke * PikPye * Ole )] = aetd)

Obviously, and for the univariate case, Equation

(2.41) becomes

+ 1
Pnl) =3

(2.42)

For the bivariate case, the result is known as
Sheppard's theorem [24] of the median dichotomy; it

is

+ 1 1 i
pmcz ) = 7 * 35 arc sinp

This equation is tabulated in the Tables
matical Functions of the National Bureau
[28] for P , which varies from 0 to 1,
ments of 0.01. For the trivariate case,
ing result is given by David [26]

PG =

cof

i A :
* ey {drcs1npl2 + a.rcs:mpl3 +

(2.43)

of Mathe-
of Standards
with incre-
the follow-

arcsinozs]

(2.44)



Chapter III

PROBABILITIES OF RUN-LENGTH OF THE FIRST-ORDER LINEAR

AUTOREGRESSIVE MODEL OF NORMAL VARIABLES

3.1 General Notations and Expressions for Pro-
babilities of Run-Length. For purposes of simplicity,
the following notation is adopted:

P{XIE;O,Xzi;O,...,xkigo,xk+l>xo,xk+2>xo,..., Xk+j>xo}
- L+
=Pk ,j) ,
.+
and P{Xl>x0,xz>x0,...,xj>xo} =P(G) .,
with k=1,2,... and j=1,2,...

The probability of the first positive run-length N;

from the beginning of a series being equal to or
greater than j , is

PO 29) = PGT) + I PLi) (3.1)
k=1
The probability mass function of N; is
PON] = 3) = PN} 29) - PN 23 + 1) . (3.2)

The computation of joint probabilities ,P(k_,j+)
requires the joint probability distribution of the
variables XpsXg,een This joint distribution for

the purposes of this study is assumed multivariate
normal.

3.2 Stationary and Ergodic Multidimensional
Gaussian Processes. An arbitrary Gaussian random
process {xi} 5 OT Xy X, . ,X where 1i=1,2,...,n
at arbitrary or equally spaced positions in time, has
the multivariate normal distribution in n
This process is completely described by the param-
eters of this distribution: the expected values
E(xi) , i=1,2,...,n, and the covariance matrix,

cov{xi,xj] as a function of i and j

A multivariate Gaussian process is stationary
if, and only if, the expected value is constant and
the covariances depend only on the lag |j-i| , and
are independent of 1 For any stationary process
Exi is equal to u , and cov(xi,xi+kj is equal to

C(k). In particular, C(o) 1is equal to var x and
is a constant independent of 1 The function C(k)
is the autocovariance function, while
_ C(k
p(k) = C(o) (3.3)

is the autocorrelation function. It specifies the
correlation coefficient between values of the process,
which are k intervals apart, and it is the k-th
autocorrelation coefficient.

Let {x} be a stationary Gaussian process with
zero expected value and variance unity. Its probabil-
ity density function is

dimensions.

10

1 -x2/2
f(x) =— =+ ¢
=

27

(3.4)

The bivariate probability density function of X5

and x. , with Ex., = Ex, = 0 , and var x, =
] 1 ] 1,

var x. = 1 , is
]
Eeson = expl- = (x2-2p..x.x,+x2)| , (3.5)
i A 2 ¥ SERgTAT g
2w 1
where ﬂij is the correlation coefficient between

S5 and xj

density function of xl,x

The multivariate normal probability

X takes a more com-

PIEEE
plex form, but is analogous to Equation (3.5) and
given by Equation (3.9). In this case, the correla-
tion matrix of random vairables Xq9Xgsnnes Xy is the

n by n matrix with the elements Pi representing

the correlation coefficients between any two variables
X, and Xj‘ i=1,2,...,n and j=1,2,...,n. It is a

symmetrical matrix since p =Py s and all elements

ji j
of the main diagonal are one. For a stationary pro-
cess
Pz = Pps =] =0y (3.6)
ij = Pli-i] T Pk
with k = |j-i| ; therefore, all elements of any

diagonal are identical. The correlation matrix of a

stationary process is

b B Boes fea by
A fi-e
|8 '
‘ A
R.a A
hi B2 B R !
If the random process {x} 1is second-order stationary,

as described above, and if the expected values and
crossproduct functions defined by averages of indi-
vidual realizations (sample functions) as
N
? 1
. = = ; 3.7
Ex, = lim 3 izl X (3.7

Newos

and



Ex = lim

Neven

X.X

i*iex 2 (5.8)

1=

5 1
iTi+k N .
i=1
then the process is ergodic. A second-order station-
ary and ergodic Gaussian process is also strictly
stationary and ergodic, or higher-order stationary
and ergodic. This means that all ensemble averaged
statistical properties are equal to the corresponding
time averages. Hence, the verification of self-
stationarity for a single time series justifies the
assumption of stationarity and ergodicity.

B8
Function.
is

Multivariate Normal Probability Density
The normal distribution of n variables

n
I dx. ,
=1

ST

n n ]
Pl agxx
j=1 k=1 3% 1 %) 5

dF=—————-i——w-—exp -
(2™ 2 /TR

where the variables X have expected

values of zero and variances of unity. Alse, |R|
is the determinant of the correlation matrix of these
variables, while ajk are the elements of the in-

verse of the correlation matrix. The characteristic
function of this distribution is not expressed in
terms of the inverse of the correlation matrix, but
in terms of the elements of the correlation matrix
itself. This property helps in computing probabili-
ties of run-lengths. The characteristic function is

¢(t) = exp {;

3.4 General Expression for Joint Probability of
at Least k Subsequent Values Below Truncation Level,
Followed by at Least j Subsequent Values Above
Truncation Level. In order to find an expression for
the joint probabilities, P(k',j+), invelved in
Equation (3.1), the following assumptions are made:

xl,xz,‘..

(3.10)

1. The hydrologic time series of annual preci-

pitation and annual runoff are second-order stationary.

Some of these series may have, however, a small degree
of non-stationarity, which comes from either man-made
changes in river basins and around the precipitation
gauging stations, or from the inconsistency in data
[27]. These series should be made stationary by cor-
rections before the theory of runs, as discussed

here, is applied.

2. The process of annual values is a Gaussian
process or approximately so. This assumption is
justified from the point of view that some runs are
distribution free, or independent of the underlying
distributions of {Xi} . It is also justified from

the point of view that many non-Gaussian hydrologic
processes can be reduced to Gaussian processes
through appropriate transformations. This point will
be treated in detail in Chapter IV.

3. The stationary Gaussian processes are stan-
dardized for a simpler treatment of various problems.

With the above three assumptions, the joint
probabilities P(k7,j ) can be expressed as

11

_ ] O .0 ol L--1
Plk i) = [ I . oar (3.11)
-00 ] )(O xo
k J

Substituting dF by its equivalent into Equation
(3.9) gives

3(0 Xo - -
- L+ _'[_
P(k ,j) = n/2 172 J‘ 'Jr r .r
(2m) |[R|*'% -2 —= x X
R T 9] ; o
k J
(] e
* exprf=ige ) a. x.xl} ndxj , (3.12)
2 gu1ixmy K TR,

where mn = j + k . Equation (3.11) is the multi-
normal integral. No explicit expression exists for
the general solution of the multinormal integral.
Efforts are devoted to finding expressions for seve-
ral cases of this multinormal integral in this study,
so that specific numbers can be assigned to probabil-
ities in Equation (3.12). These probabilities will
be called joint probabilities to distinguish them
from the probabilities of runs.

3.5 Probabilities of Runs for Any Truncation
Level. Throughout this subchapter concern is with
the evaluation of probabilities of the type

o
Pq[k i) = prob[lexo,..‘,xkgyox

k1" gt 8 K7

where q = F(xo) To simplify notation, the sub-

index q 1is dropped, and it will be used only when
it is necessary to refer to it.

Probabilities P(2') and P(17,17). 1In the
univariate case, the following expression obviously
holds

P(L") = [ dF =1 - F(x) (3.13)
X

o]

where F(xo) is the standard normal distribution

function. In the bivariate case (xi,xi+l) s
= i x2-2px.x, L +x2
p(2") = - I exp f:— = i 1+1J
2n 1402 J(o xo 2(1_02)
. dxidxi+1 R (3.14)
and
XO L x2 2px.X +x2
_ i 45, o 5
PQ17,1%) = . J [ exp [~ = i 1+1J
2m/1-p2 o X, 2(1-p2)
. dxidxi+1 (3.15)



These two probabilities are related as

O o0 o
PN = [ ar= [ | aF
) )(0 - )(O
-] | dFel-F(x) - P(2") (3.16)
X X
o 0O

Bivariate tables are given by the National Bureau of
Standards [28] for +p = from 0 to .95, with inter-
vals 0.05; and from 0.95 to 1, with intervals, 0.01;
and variates in the range from 0 to 4, with intervals
0.1, to 6 or 7 decimal places. Zelen and Severo [29]
give charts for the bivariate normal integral with

an error of 1 percent or less.

Probability P(3+). For three variables,

P(3") =

The integral of this equation has been evaluated in
terms of the tetrachoric series expansion by Kendall
[20]. It is
pj Dk DQ
P(3") = ! }?k%iIZS
3.K,2 jlklal

j+k- l(x JH3+5L l(on

Hk+1-1(xo)f3(xo) >

where f(xo)

density function,

is the standard normal probability

Hr[x) is the rth Hermite poly-

nomial defined by
r
H (x) = ( ”az) £0) = (D" £,

and j, k, & can take the values 0, 1, 2, ... .
The first three Hermite polynomials are H (x)=1,

and Hz(x)=x2al ;

Probabilities of the type P(j’). The
tetrachoric series expansion for the trivariate
case [30] can be generalized to the multivariate case
by the following procedure. As discussed previously,
the multinormal probability density function can be
expressed in terms of elements of the inverse of the
correlation matrix. A direct integration of the mul-
tinormal p.d.f. would imply an inversion of this
correlation matrix, if the integral is evaluated in
terms of the correlation coefficients. This can be
avoided, if the Fourier transform of the multinormal
characteristic function is expressed in terms of the
correlation coefficients themselves, and this expres-
sion integrated. This is a parallel procedure to the
one followed by Kendall [30] for the trivariate case.
By definition

Hl(x):x

PGM = [ ... [ dF =
J';0 xO
\-.--__Y,__J'

]

12

o -] o
dx
(ZW}J £ i dxj_i I +(t)
o o
- exp(-ii“ijdtl...dtj ; (3.20)
where
=
t'X [t1 2...tj] xl = tlx +t2x2+ +tjxj . (3.21)
%
X,
]
Also, ¢(t) can be rewritten as
#(t) = 3*?{' 5 l t2 + 2 Z b J (3.22)
( K>i>1 1k i k]
In using the exponential series expansion
® T T
(-1) (
exp|- Z P, 1. puptt
( k>ir1 1k i k rEO r! K>1>1 ik"ik
(3.23)

Substituting Equation (3.23) into Equation (3.22),

) 5 3 = T J
. exp{- E-iglti] rZO zd {k§i>

T
lﬂiktitk] (3.24)

where
L P L.t ] = [{p Botatauaps Lol Yelpoa btk
k>i>1 ik ik 127172 Inl™n 237273
r
'+D2nt2tn+"'+pn-1,ntn-ltn)
i3 iy3iy4  lan i
r) 2 °12 le "‘pln °23 ”24 "‘°2n °n 1,n
= v
12 r ot 1 23 24 2n' n 1 n
S L S
1 .72 n
. 2
Tty t (3.25)
with Sl=112+113+...+1ln; 52=112+123+...+12n;...;
Sn=lln+12n+"'+1n—l,n

Substituting Equation (3.21) and Equation (3.24) into
Equation (3.20) gives



i 1 [ ] o oo 1 5
P(j ]=T§;TT i dxl...i dxj f...{uexp[- 5 _il t%]

—tm i

8] o
. Y12 %13 Pantas Ces e mergw
NS 12 P13 -*P1n P23 P24 ***Pon Pno1n
= ] 13 T 3 [ i T q 13 |
=0 2yglgatinatyy Montloplaasdog s gl
S, S, S e
- -. ! - .o . -
t1 t2 ...tn exp(-it X)dtl dtJ (3.26)
By adopting the notation
Y212%  *mizztas Y iy
B12 %33 v iPan Pox Poj weBoy weellysy 5 Alo,1)
£} - 1 y 13 B : 1 - S 3 £l
112!113""lln'123'124!"'12n""ln-1,nl
(3.27)
Equation (3.26) becomes
‘+ l wm r . L==} rw oo o
p = -1)TsACp,i) [ dx....f dx. [..
() = 753 réoc ) 1A (p,1) i one] XJ_i _i
o e il .
] ]
1 % 2 e L
- s ikl -1t
exp[ 7 ti] exp(-it X)tl ...tj dtl...dtj
i=1
(3.28)

This is the product of j
which is

integrals, the first of

= jm dx ?exp _ L2 exp(oitx )at (3.29)

FEE A 2 1 i it T
o

and the remaining j-1 integrals are similar expres-
sions in Xi and ti Since

@

i exp[- %-tz}tsexp[-itx)dt

T

— A fm

- exp(- %—tﬁ) exp(-itx)dt
d(-ix)T =

V25 07 exp(- 3x3) = 2n(-D)T H_(0£(x) , (3.30)
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Equation (3.29) is

(-7 [ axH (£0) = (-1)TH__ (x)E(x)
X
o]

(3.31)

and Equation (3.28) becomes

PGT = ) T Al,DHg  (x ). By (x)
=0 1 j
{i}

12 1n-l,n

P12 ***Pno1,n

o R o N M, !
n-1,n

Hsl_l{xo]...HSj_l[xO)

(3.32)

It is important to notice at this point that the
definition of the Hermite polynomials applies only to
=01 s For 1=-1 , H_l(x} is defined by

means of Equation (3.31) as

-

H (x)f(x) = [ H () £(x)dx =

*o

1 - F[xoj

For I =7i , and Hsl_l(xoj...Hsj_l(xo}=w[H] ,

Equation (3.32) becomes

PG = Fx) [ Al,i)nH) (3.33)
1=0
Probabilities of the type P(1,j°). By
definition,
X
s o = =
P(-}-:J)=Jr Jr "'I dF
- X x
(8]
J
=/ [ JaF - ] dF = PGD-PIGHDT]
- X X X X
o] o]
o o (3.34)
] j+1
The probabilities P(j°) and P[(j+1)¥] can be

evaluated by Equation (3.33).



Probabilities of the type P(k',j+). By a
similar procedure,
X X
- .+ Q @ fm rw
P50 = [ .. ]
—0o - X X
—— O (o]
k +
]
X X
l [s] [=-1 k==l oy
= —5 [ ] ] e@enp(-iTH)
(2m) - -® X X
o s}
k &
]

Using the expansion of the multinormal characteristic
function given by Equation (3.24),

X X

= (o] (o]
P57 = =L~ 1 (-1F Jace,i) | dxy wve [ ol
(2m<" r=0 e -
. I.m 1 itk i
[ éx .- dxk+j eXpl- 5 1 t% exp(it'X)
X X i=1
Q o
S s
1 j+k 3 36
b By dty ... dtj : (3.36)

This is the product of k integrals of the type

1o T
E;—f dxl_iexp[- E—tl)tl

=t

exp(-itlxl}dtl .

and j integrals of the type
o= © S
1 [ 1., k+1
7w ) P i Xp|- 3 tk+l] kel
o
T exp(-ity %

Taking into account Equation (3.30), the product of
k integrals is
.6
i g c
(-1)° f dxH ()£(x) = o (x)

—iE)

and the product of j integrals is

e

(-7 [ dxH () £(x)
X
8]

ar(xoj
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1. us Equation (3.36) becomes

Pk, =

._.
N1 8
o

Alp,i)ag (X )...al (X Jag  (x)
S] o Sk o Sk+l o

- g (x) (3.37)

k+j °

The sequences {u[xo}} and {uc[xo}} can be

expressed in functions of Hermite polynomials as
ao(xoj = 1—F{xo] and ur(xO]=Hr_l{xO}f(x0) , for

=1 3 = ¢ = c =-
=120y atd aaﬁxoj F(xOJ and ar(xo) Hr_l(xo}
f(xoj sokers =l 2, In Equation (3.37),
I=zi .
Let us define
c c c
ae (X J.ooiag (x ) = 7 ()
S1 o Sk 0
o (6400 KR, (x ) = w(a)
Sk+l 0 Sk+j 0 2
then
-+ z L c
Pk ,i) = ) Alp,i)7 (e)7m(a) (3.38)
I=0
For I =20,
Alp,1) =1

@ = [Sex1* = )

m(a) = [acﬁxo)]j = [1 - F[xoj]j , so that

POT,5%) = R OIIFGOY « T AG, D (@) (a)
I-1,2,...

(3.39)

Equation (3.40) is an infinite series. However, in
practice it is only necessary to include a finite
number of terms of this series to compute numerical

values of P(k ,j’).
after I=2 implies that terms containing pi or
For values of

A truncation of this series

higher powers of e, are neglected.
Y less than 0.30, the error introduced by this

truncation is negligible. However for values of Py

greater than or equal to 0.40, this truncation may
introduce a significant error. In this case it is
necessary to include more terms in Equation (3.40),
and truncate the series at a higher value of I .



For values of ¢ equal to or greater than 0.50, the
truncation of this series after I=3 implies that

terms containing p? or higher powers of Cl are

neglected.
negligible.

The error introduced in this case may be
In other words, the higher oy the

larger power m of should be included.

1
. . . +
Distribution of Nl .
can be obtained for any truncation level, provided
the expressions are available for the joint proba-

This distribution

bilities P(k ,j’), so that
PO 2 9) = PGTY ¢ I PG, (3.40)
k=1 .
T L+ - .+ - L+
Probabilities P(j ), P(1 ,j ), and P(k ,j ) for

k=2,3,... may be evaluated by Equations (3.32), (3.34),
and (3.39), respectively. Equation (3.40) combined
with Equation (3.2) gives the probability mass func-

tion of NI

Distribution of N,. By definition

PON; 23) = PG + I PGTLIT) (.41
=1
where
P(i7) = P[x1<x0,x2<x0,...,xj<xo} (3.42)
and
+ =
P(k ,j )—P{xl>x0,...,xk>xo,xk+1<xo,.‘.,xk+j<x0]
(3.43)
Consider
c c - L
P(xliyo,...,xkggo,xk+l>xo,...,xk+j>xo}-PP{L 1)
where xg and p are defined by P = F(xg} = l—F(xo)
= 1-q . Because of the symmetry of the normal distri-
bution,
P (k,i) =P (x,i") (3.44)
q 2] p 2] .
The distribution of N; is
- L+ = - .+
P(N; 2 3) =P (37) + ] P(k,i) , (3.45)
Lz P k=1 P
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and probabilities P (37), P,(17,3"), and P (k7,57

for k=2,3,... may be also evaluated by Equations
(3.32), (3.34), and (3.39), respectively.

The probability mass function of N; is then
P(N] = 3) = P(N] 2 3) - P(N] > j+1) (3.46)
Joint distribution of NI, N Nys Mo

By definition
R R R
P{Nl-Jl,Nl-ll,Nz-Jz,Nz-lz} = P(Jl,11,32,12,1 )

.t
l:JlJ

+ P(i i,

-
»iz17) (3.47)

The result expressed in Equations (3.37), (3.38),
and (3.39) can be extended to joint probabilities
involved in Equation (3.47). In this case

-, P o 3 c
P(j;:ila35)12‘1+)= I A(D:IJGS "'&S O'C'_ "‘D'S‘ i
I L Iy "M It
L

" PR ¢ ] Cts

Iyt A B TS R B M)
o (3.48)

Gy g gt e, A

A completely analogous result is obtained for

e e - L+
PEll,jl, iy Jgs 1) If the places of iy and

j2 are interchanged in Equation (3.48), the result
does not vary because all possible permutations of
{i} are considered. This implies that the marginal

and NI This

, are identical.

distribution of NI

also holds for Ni and NE .

Distributions of N: and N . The approach

in the previous subsection also applies to the se-
+
N,
of identically distributed random variables, with
distribution function of Equation (3.40). The same

quence ; i=1,...,k}; the result is a sequence

is true for the sequence [N; ; i=1,...,k}. It is

also a sequence of identically distributed random
variables with distribution function of Equation
(3.45). For a more detailed analysis of this chapter
and particularly for a special treatment of the case
of a truncation level of the median, the reader is
referred to Saldarriaga [6].



Chapter IV

RUNS OF STATIONARY DEPENDENT GAUSSIAN PROCESSES

4.1 First-Order Linear Autoregressive Process.
The usual linear regression prediction models, namely
the moving averages and the autoregressive models,
can be shown to be Gaussian processes when the inde-
pendent component is normally distributed. Among
these models, the first-order linear autoregressive
processes of normal variables are considered only,
because of its broad application in hydrology, and
its simplicity.

Suppose that the process {xi} is defined by
the recurrence relation

{ A + g
xl pxl—l €y o

(4.1)

for EEi=U and Dei=var ei=1 . It can be solved

formally by successive substitutions, and be rewritten
as

L--3
]

X = L., PY Ep (4.2)

i7 45 i-j
Then for Exi =0 ,

Dx, = var x, = — (4.3)

i° I g ’
1-p

where |P| < 1 1is required for the process to be
stationary. It is a well known result that

k
PR =P (4.4)

It is apparent from Equation (4.2) that the first-
order linear autoregressive model is a moving average
scheme of an infinite extent, with monotonically de-

o pz, 3, ... Therefore, if
are normal variables, {xi} as a linear com-

creasing weights,
{

(e}
bination of {Ei_j} is also a sequence of normal

variables and is a Gaussian process.

4.2 Probability Mass Function, and Moments of
and N .

Run-Lengths N The following relation

holds between the probability mass P[N+=j) of a
given run-length N+=j , and the probability distri-

bution functions P(N+3j} of run-lengths N* A

PON'= §) = P(N'> §) - PON'2 5 + 1) (4.5)
By definition, the first moment of N s
ENT = ] jP(N'=j) (4.6)
j=1

Substituting Equation (4.5) into Equation (4.6) gives

16

N = ] PN > ) (4.7)
j=1
By definition, the second moment of N s
+ g ‘ s
E(N)? = ‘Zl 32PN = ) (4.8)
J:

Substituting Equation (4.5) into Equation (4.8) gives
END)2 = ] (25-1) P(NT > )
j=1

(4.9)
In general, the r-th moment of X 1is

BN = T-G-DTIP(N'> 5). (4.10)

1

e~ g

%5 + .

PERICESIE
j=1 b
Equations (4.5) to (4.10) analogously apply to N .

4.3 Properties of Total Run-Length, N=N"+N".
Statistical properties of this parameter are rather

complex because N* and N~ are not independent in
autoregressive models, and their bivariate distribu-
tion is unknown. The only property of N that can
be calculated on the basis of a univariate distribu-

tion of N° and N is the mean,
EN = EN' + EN™ (4.11)
This equation can be written also in the form
'EN(q) = EN"(q) + EN (q) (4.12)
where q = F(xo) Because
EN"(q) = EN (p) (4.13)
due to the symmetry of normal distributions,
EN(q) = EN (q) + EN (p) (4.14)

4.4 General Procedure for Evaluating Properties
of Runs. Statistical properties of run-lengths of
stationary Gaussian processes can be evaluated for
any truncation level, X_ , by using the relations

obtained in this chapter and in Chapter III. The
general procedure of this evaluation can be made in
four steps. Equation numbers to be used for various
expressions in these four steps are given in Table
4.1. These steps are:




1. Starting at an arbitrary time, probabilities

P(;*) for at least the first j values of X ,
being above the truncation level specified by gq |,
are first computed. For these probabilities, nothing
is specified about the values of X preceding or
following the occurrence of these j wvalues. They
may be either above or below the truncation level;

+ g s
P(j ) are not probabilities of runs but are needed
for their computation.

2. Starting at an arbitrary time, probabilities

P[k',j+) for the first k values of X , being
below and the j subsequent values of X being above
the truncation level specified by gq , are next com-
puted. For these probabilities, nothing is specified
about the values of X preceding or following the
occurrence of these k+j wvalues. They are not prob-
abilities of runs but they are necessary for the com-
putation of these probabilities or runs.

3. The probability distribution and the proba-
bility mass function of the run-length are calculated
by using probabilities obtained in the two previous
steps.

4. Moments of run-lengths may then be calculated,
when needed, by using the computed probability dis-
tribution. It might be noted that the probabilities

P(37) and P(k*,j") also have practical meaning by
themselves, besides being used for the computations

of probabilities of runs. In fact, P(j+} is asso-
ciated with the probability that starting at an arbi-
trary year at least the first j years are wet.

Similarly, P(k-,j+) is associated with the proba-
bility that starting at an arbitrary year the first

k years are dry and are followed by at least j wet
years. This analogously applies to P(j ) and

-
P(k ,j)-

TABLE 4.1

EQUATIONS FOR THE EVALUATION OF PROPERTIES OF RUNS

Step Expression Equation
1 P(19) (3.13)
p2h) (3.14)
PG, 23 (3.33)
2 P(17,5") (3.34)
Pk ,iD) (3.39)
3 P(N' > 3) (3.40)
PIN" = j) (3.2)
4 EN 4.7
E(N)2 (4.9)
ENDT (4.10)
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4.5 Probabilities of the Non-Normal Case. Let
FI(y) be the distribution function of a non-normal

, while F,(x)

normal. In this case, probabilities of multivariate
events are

variable Y for the variable X 1is

- ¥

Prtk :J :yo)‘P(Yliyo,'-‘aYkﬁyo:Yk+1)Y°;---;Yk+j>y0)
(4.15)

and

- ‘+‘ E

Px[k ) ,xo]-P(XIE}O,...,XkE;O,Xk+I>xO,...,Xk+j>x0) 5
(4.16)

respectively, for Fl{y) and Fz(x). For strictly

increasing distribution functions, Fl(y) and

szx) , it is always possible to find such unique

values y_ and Xy that satisfy

Fily)) = Fylx) =q (4.17)

If the probabilities of multivariate events are equal,
with Equation (4.17) satisfied, then

- _+_ ” o= _+_
Ptk 3T iR = RO 355D (4.18)

Equation (4.18) implies that the joint probabili-
ties are dependent only on the probability level q
for given X, and 78 and not on the underlying

distribution.

As an example, consider the case of {yl} 1log-
normally distributed with

POV, £¥) = Ry = a (4.19)

By definition of the log-normal distribution the
following relation holds,

FY[YD) i Fx(znxo] =q (4.20)

The probability P (k™,j’) can be expressed in
terms as -

-

PY[R P )_P(Ylfyo""’Ykiyo’Yk+l>yo""’Yk+j>yo)
=P(£nY1§ﬁnx0,.‘.,ﬁnYkggnxo,inYk+1§gnx0,...,EnYk+jiﬁnxJ,
=P(Xl§ﬁnxo,...,szﬁnxo,xk+1§ﬁnxo,...,Xk+j§}nx°] :

This last expression is Pq(k',j+) , so that
- .+ -
Py(k™,3") = P (K7,57) (4.21)

It follows that all properties of run-lengths depend
only on q



4.6 Properties of Runs of the First-Order,
Autoregressive Linear Process. Positive Runs.
perties of run-lengths of the first-order linear
autoregressive model are computed on a digital com-

Pro-

puter by using the appropriate equations of Table 4.1.

Five values of the probability truncation level
q= F{xoj , and five values of p were used, as

shown by Tables 4.2 and 4.3.
bination of q and ¢

and P(k™,j") were first calculated for
10 and k=1,2,...,10 .

of runs are given by an infinite series of P[k_,j+),
as shown by Equation (3.40). Actually these terms
become very small for sufficiently large values of

k and only a finite number of terms need to be con-
sidered. Tables of computed probabilities and
parameters of runs of the first-order linear auto-
regressive process are given in Appendix A; they are:

P(k™,i"), PON* > §), and PN = j), with k=1,2,...,
10 and j=1,2,...,10. The parameters of distribu-

tions are EN' , var N Figures 4.1 and 4.2 give
these probability distributions of pesitive run-
lengths of the first-order linear autoregressive pro-
cess for values of p , varying from 0 to 0.50, with
increments of 0.10, and for values of q , from 0.30
to 0.70, with increments of 0.10. In these figures,
points are used for computed probabilities of dis-
tributions of discrete (integer) random events, while
curves are used for the visualization of these dis-
tributions. Tables 4.2 and 4.3+summarize‘the results
for the first two moments of N .

For each possible com-
, the probabilities P(j )

jEL 2y
Theoretically, probabilities

TABLE 4.2

EXPECTED VALUES OF N* OF THE FIRST-ORDER
LINEAR AUTOREGRESSIVE PROCESS

N 0 1 .2 3 4 5

3 3.33 3.45 3.65 3.87 4.29 4,69
4| 2.50 2.66 2.84  3.05 3.32  3.60
5| 2,00 2.14  2.29 2.47  2.66  2.88

6 1.67  1.78 1.90  2.05 2.20  2.33

7| 1.43  1.51 1.1 1.72 1.8  2.00

TABLE 4.3
VARIANCE OF N OF THE FIRST-ORDER
LINEAR AUTOREGRESSIVE PROCESS
o

q 0 1 2 3 .4 5
3 |7.77 7.77 8.74  9.83 12.78  15.46
4 |3.75 4.32 5.10 5.98 7.34 8.66
s | z2.00 2.42 2.94  3.53 4,24 4.98
6 1.11  1.38 1.71  2.08 2.50 2.94
7 |o0.61 0.79  0.99 1.22 1.47 1.72
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Negative Runs. Properties of negative runs are
found by means of the equation Pq[k+,j_)=Pp(k_,j+].
It then follows EN-(q)=EN+(p], var N (q)=var N+(pj,

and, in general, E[NT(q)]" = EN"(p)]¥ .

Total Runs. The process of the total run-length

has been defined as {Nj}={N; + N} . Then EN; =
EN; + EN; is its expected value. Figure 4.3 shows
three different sets of curves: EN; s EN; , and

plotted against q for »p

ENj values from 0 to

0.5 with increments of 0.1.

100 T T T T T T T T

S0 g =03 &

el o b

sof- '\ .

.50 1

PIN* = j)

A0F

.20F

Fig. 4.1 Probability distributions of positive Tun-
lengths of the first-order linear auto-

regressive process for g = 0.3

4.7 Properties of runs of the first-order linear
autoregressive Gaussian process obtained by the data
generation method. Probabilities of run-lengths are
given by an infinite series as shown by Equation (3.40).
At the same time, each term contained in this series
is given by an expansion of the tetrachoric series




P{N* 2 j}
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.20
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Fig. 4.2 Probability distributions of positive run-lengths of the first-order linear
autoregressive process for q = 0.4, 0.5, 0.6, 0.7
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Fig. 4.3 Mean positive, negative, and total run-lengths of the first-order
X, linear autoregressive process

20




0.03

h\
0.02 x

00l : P

g \\\ \‘ q-= 0.3

0 oy 2 '::_:. ________ — i
% S . RS e
A
—~— » -
S Wiy
\ b \‘__/

\\ \\/ / Fig. 4.4, Differences between the probability mass of run-lengths
\ " obtained by the data generation method and that obtained
L by the analytical approximation from the truncated series.
\
-002 - \ s
| 1 1 | | | | | ]
[ 2 3 4 5 6 T 8 9 10

21



which is also an infinite series. Both of these
series are convergent. However, the rate of conver-
gence of the series used for calculating P(j*) and

P(k,j7) , given by Equation (3.33) and Equation
(3.39) respectively, varies with q , p , k , and j
The rate of convergence of the series given by Equa-
tion (3.40) varies also with q , ¢ , and j In
other words, the problem of the rate of convergence
of each of these two series is a complex mathematical
problem in itself, and to the writer's knowledge, to
date, it has never been solved.

In order to assess the accuracy of the computed
probabilities of run-lengths, obtained in this study
by using the truncated series, the data generation
method (Monte Carlo method) is used to experimentally
compute the properties of run-lengths, and to compare
them with the probabilities obtained from the trun-
cated series. The procedure is the following.

(a) Normal random numbers were generated
following the first-order autoregressive model:
X, = eX; 4 T8s where £ are standard normal

1
random numbers and o 0, 0.1,

0.2, 0.3, 0.4, and 0.5.

is given the values

22

(b) The probability truncation level, q ,
was given the values 0.3, 0.4, 0.5, 0.6, and 0.7,
with corresponding Xg values equal to -0.524002,

-0.252933, 0, 0.252933, and 0.524002, respectively.

(¢) First a value of p
for each value of q , X;'s

was selected, then
are generated until

30,000 positive run-lengths were obtained. Absolute
frequencies are calculated for the runs having run-
lengths 1, 2, 3, ., and the probability mass of
each run-length is estimated by computing the rela-
tive frequency as the absolute frequency divided by
the sample size of 30,000.

(d) Then another value of ¢ is selected, and
step (c¢) is repeated until all values of p are used.

A comparison of the probability mass of run-
length, obtained from the truncated series, as an
analytical approximation of the data generation
method and probabilities obtained by the analytical
approximation from the truncated series are shown
in Figure 4.3.



Chapter V

APPLICATION OF RUN-LENGTHS TO INVESTIGATION OF SERIES

5.1 Introduction. The hydrologist is concerned
with two basic types of variables, namely serially inde-
pendent and serially dependent variables. He is inter-
ested in first testing whether they are stationary or
not. If they are stationary, further tests are used to
determine the goodness of fit of various mathematical
models of serial dependence. The mathematical model
is a representation of the process. It reflects sta-
tistical characteristics of the sequence in terms of
parameters related to the physical properties of the
system.

Before discussing the application of run-lengths
to the investigation of series, the application of
autocorrelation coefficients and the variance densities
to the investigation of series is briefly reviewed.
This shows an analogy, and points to the necessity of
carrying out various tests.

In the case of investigation of series by auto-
correlation, the parameters involved are the serial
correlation coefficients, ., as estimates of population

coefficients, p A comparison of the computed sample

K
correlogram T = f(k) is made with correlograms of
theoretical models, or with the expected correlograms,
provided these models are good after the model parame-
ters are estimated. This comparison allows making in-
ference about the mathematical structure of this
dependence. For an independent series _of size N,

Erk = -1/(N-k), var T = (N-k-1)/(N-k}“, and the con-

fidence limits at 95% probability level for the distri-
bution of r, are given by (ry); , = -1/N * 1.9

:
[NS- 3N%en) /N2 (NP-1) 1. o

N-k+1, or by similar expressions [2]. Figure 5.1 shows
the expected correlogram and the 95% tolerance limits
of an independent series with N = 30.

For r,, N is replaced by

In order to test the structure of an observed
series, the null hypothesis, that the observed time
series is an independent sequence, is used. If the
value of r fall within the 95% tolerance interval,
this hypothesis is accepted. Or if 5% of k values of T,
are outside the limits, but 95% are inside, the hypothe-
sis is accepted; otherwise it is rejected.

In the case of investigation of series by spectral
analysis, the parameters involved are the spectral

densities v = ¥(f), with the frequencies f. These v

values are estimates of population spectral densities,
Vg Again a comparison of the observed variance den-

sity spectrum with spectra of theoretical models permits
an inference about the matheamtical structure of de-
pendence in a series. For a discrete series with equal
intervals At, in the case of time series, the maximum
frequency is fmax = 1/2at, and for finite series of

size N the minimum frequency is f . = 1/NAt, which is

usually extended to f = o. The spectrum has the prop-
erty that the area under the variance density graph
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represents the total variance of the variable. The
expected spectrum of an independent stochastic series
is a straight horizontal line between fmin and fmax'

or between o and 1/2At. The distribution of the variance
density for independent variables is approximated by

a yZ-distribution with the number of degrees of freedom
given by v = 2N/m - % , where m is the number of
serial correlation coefficients used in computing the
variance densities. For N = 30, m = 4, and At = 1,

the number of degrees of freedom is v = 7. The maximum
frequency is 0.50, assuming fmin = 0. The mean variance
Then v, £ __/o? is a x% random

max v

- - —r s 2
density is Ve 20 £

variable. The 95% tolerance limits are
v, £
2 f "max o
%0.025 © 2 < Xg75
Erk
1.0F
0.5 lﬂ
1
\ P —
T \
\
0033 0.339 %) 5 { 0 "
i o - ' 1 L
[ / ! =-1/(N-k)
0339 / Elr)=-1/{N-
| /
T
-Q5F
-1.0k

Fig. 5.1 Expected correlogram of an independent series,
of the sample size N = 30, with tolerance
limits at the 95% level.

. 2 - 2 - o
For v = 7, X5.025 1.69, and X0.975 16.0, the 95%
< 4.5710%.

5.2 shows the expected values and the 95% tolerance
limits for Ves for independent variables.

5.2 Using Runs for Investigation of Series. In
the use of investigation of series by using runs, the
basic parameter selected here is the run-length,
selected for the following reasons:

confidence limits are 0.483c% < Ve Figure
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Fig. 5.2 The expected values and the 95% tolerance
limits, of variance densities in a spectrum
of an independent series with the sample size
N = 30.

(a) If a given series is cut at many truncation
levels, and for each level the sequences of positive
and negative run-length are obtained, theoretically it
is possible to reproduce the original time series, at
least at a finite number of points, by using these
sequences. The larger the number of levels selected,
the larger the number of points of the original time
series that can be reproduced. If all sequences of
positive and negative rums at all possible truncation
levels are known, the whole original time series can be
reproduced.

(b) Properties of run-lengths based on a proba-
bility truncation level are distribution-free, both for
independent variables and linearly dependent processes.
This is an important property, because the results ob-
tained for Gaussian processes can also be applied to
other types of stationary processes.

(¢) The physical significance of positive and
negative run-lengths is obvious in hydrology. They can
immediately be associated with periods or durations of
deficit and surplus, or with duration of droughts and
floods.

(d) A parallel technique to autocorrelation
analysis and analysis by the variance density spectrum
can be developed for run-lengths to investigate hydro-
logic series.

(e) A comparison of properties of observed run-
lengths with the corresponding properties of run-lengths
of population theoretical models is similar to other
techniques of investigation. The mean positive run-
length N*, the mean negative run-length N-, and the
mean total run-length N, are attractive parameters for
this comparison. Because N contains information of
both N~ and N*, this parameter N is used in this study
as a basic parameter for investigating hydrologic time
series by runs. The parameter N is also used as the
alternative.

The technique by runs as developed in this study
compares the statistic Na as a function of q of ob-
served time series with the expected value E(Nq) of the

total run-length of theoretical models, or the statistic

N; is compared with its expected value E(Na).
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5.3 Properties of Run-Length for Sequence of
Independent Identically Distributed Random Variables.
Let Xn be a sequence of independent random variables

with a common distribution, and Nj be the associated

process of the total run, then Nj is a renewal process,
and as such, it is also a sequence of independent
identically distributed, random variables.

For a given q,

Nk ) Nl + .;. + Nk , 6.1
then by the central limit theorem for large k, ﬁk is
asymptotically normally distributed with

Eﬁ% = EN (5.2)
var N = YLK (5.3)

Substituting Equations (2.22) and (2.23) into Equations
(5.2) and (5.3) gives, for a given gq and p = l-q,

= 1
EN, = — 5.4
i ® 53 (5.4)
_ 3,03
var N = ) i (5.5)
2 2
kp~q
This result holds when k is a fixed number. In the

case the series length n = being a fixed value, the
number k of total runs in the interval (o,n) is a
random variable, k(n), and the mean Nk[n) is

Nl L Nk(nl

k(n)

ﬁk(n) =

Feller [15] shows that the ratio k(n)/n is asymptoti-
cally normal with the mean equal to the mean recur-
rence time of the completion of a total run. It con-
verges in probability to a positive-valued random
variable. In virtue of the central limit theorem

for the sum of a random number of independent random

variables [31], the result obtained for Nk also holds
for Nk(n)'

Table 5.1 gives values of the mean and variance
of N*, N-, and N, respectively, for a range of values
of q between 0.10 and 0.90. Figure 5.3 shows a
graph of EN*, EN-, and EN versus q for the independent
case. It is apparent from this graph that these
functions are symmetrical about the line gq = 0.5.

5.4 Run-Length Test for Stationary Independent
Variables. Properties of Nk derived in the previous

subchapter allows the construction of a test. The null
hypothesis is that {Kn} is a sequence of independent,

identically distributed, variables, either for the
original or "whitened! series. Then N is approximately




TABLE 5.1 5 9
4082 o Nki4+3'2 (5.10)
PROPERTIES OF RUN-LENGTHS FOR INDEPENDENT IDENTICALLY vk vk
DISTRIBUTED VARIABLES
N+ N~ N If N, falls outside the limits of Equation (5.10) the
4 Mean Variance Mean Variance Mean Variance hypothesis is rejected. The test is illustrated by
0.1 10.00  90.00 1.11 12 .48 90.12 Figure 5.4 for the case of the tolgrance levgl l-o
= 1.95 and the truncation level being the median,
0.2 5.00 20.00 1.25 .31 6.25 20.31 q = 0.50.
0.3 283 7.78 .43 . 4, 8.3
2 ki 6l 7 ? For a truncation level q # 1/2, the tolerance
0.4 2.50 3.75 1.67 1.11 4.17 4.86 limits are different than those given in Figure 5.4,
0.5 2.00 2.00 2.00 2. 4.00 4.00 as shown in Figure 5.5. For any value of g, the
0o right-sided run-length test, for the 95% tolerance
limit, is
t 3, 31
| 5.0F = 1,1 p+q .3 5.11
g’ pa Tk S
Region of Acceptance of Null_JHypothesis
|
£ 100 |
o
c
L+ 4]
|
1]
c
=]
s
& 50
@
=
1 1 L L L 1 Il L L 50/
o,
0 02 04 06 08 Lo| 25% 25% _
Probability Level g = F(x,) Nk
40
3.92/K | 3.92/4K
Fig. 5.3 Mean run-length for independent variables, - T 1
with a common distribution,versus gq.

Fig. 5.4 Two-sided run-length test for the truncation
normally distributed for large k with the mean and level of the median, q = 0.50, for independent
the variance given by Equations (5.4) and (5.5). At variables.
the l-a tolerance level, the region of acceptance of
the hypothesis is, for a two-sided test,

EN - t (varﬁ—]%<ﬁ < EN + t (varwfi (5.6)
: af2 ki o= ki af2 kK’ ?
or
1 fo2 iy g T2 S W S
PA M k -k pa Pq k
Now, for a median as the truncation level, or for
p=q=0.50,

EN = 4 (5.8)

1 L L ] 1 1 1 |
var N = 4, and var N_‘k = -E- (5.9) 0O 0! 02 03 04 OC.IS 06 07 08 09 10
The 95% tolerance limits, with o« =.05 and ta/2 = i _ o
1.96, are ) Fig. 5.5 Tolerance region for N,, of an observed
independent time series.
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The left-sided run-length test, for the 95% tolerance
limit, is

(5.12)

Figure 5.6 shows a graph with EN and the 95%
tolerance limits of N(q) for 0.2 <q < 0.8 and
k = 10, 15, 20, 25, 30, 35. The q values are given
as abscissas, and the N(q) are given as ordinates
in the upper graph. The k values are given by the
ordinates downwards versus q in the lower graph.
The upper graph shows a family of curves. The central
curve is Eﬁlq) = 1/pq . The upper and lower sets of
curves are the 95% tolerance limits of N(q). This
is a convenient plotting graph that can be used readily
for the analysis of time series by the mean total run-
length N(q) = £(q) The sample function N(q) is
calculated from the observed time series and plotted
in the upper graph. The sample function of k is
plotted in the lower graph. Finally, by using the
upper and lower families of curves of the upper graph
and the k values of the lower graph, the upper and
lower 95% tolerance limits of ﬁ(q} are drawn in the
upper graph. If the whole sample function is confined
inside the tolerance region, the analyzed series is
considered as not being significantly different from
an independent series at the 95% level.

5.5 Two-Levels Run-Length Test for Stationary
Independent Variables. An alternative statistic to

N(q) is also considered in this study, and is defined
as
k+ k™ et
s 1 + z k'N kN
N+ (a) = — [ IN(@) + ] Ni(p)] - kN (kN (p)
k +k i=1 i=1 +k
(5.13)
For
+ -
k* = E__%_E_ ; (5.14)
rewriting Equation (5.13) in the form
+ &
= 1|k = k —
N*(a) = ~2~[~; N'(a) + iz N (p)] (5.15)

and taking into account Equation (2.22) and Equation
(4.13), the expected value of Equation (5.13) becomes

EN*(q) = %[;,— EN'(q) + }1:—,, EN (pl} = (5.16)

E=a

Figure 5.3 shows EN*(q) as a function of gq for
independent variables. The random variables N;(qj

and NE(p] are independent for q > 0.5 . Further-

more, it is assumed here that they are also indepen-
dent for 0.2 < q < 0.5 . Equation (5.17) gives
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var N*(q) = %—[(%;]Zvar ﬁ¥(q] + [%;]zvar ﬁl(p{

(5.17)
However,
+
ver Wiy - 2o lilol . & (5.18)
K k+q2
and
var N-(p) = var N_LE] o i (5.19)
k k q
since {N'} and {N'} are sequences of independent

variables with variances given by Equation (2.23).
Substituting Equation (5.20) and Equation (5.21) into
Equation (5.19) gives

var ﬁ3(qj = LE—:E;lE

(5.20)
4(k*)2q2
Finally, taking into account Equation (5.16),
var N*(q) = —&— (5.21)

2k*q2

Since the central limit theorem applies under rather
broad conditions, it is evident that it also applies
in the case of Equation (5.17), so that N*{(q) is
approximately normally distributed for large values
of k* . For a two-sided test, the 1-a tolerance
region for independent variables is

(5.22)

Figure 5.7 shows a practical graph that can be used
readily for the analysis of time series by using
N*(p) , with p=1- q . This graph is constructed
and used in a manner similar to the graph of Fig. 5.6.
The difference is that the statistic N*(g) 1is used
instead of ﬁ(q)

The parameter N*(p) is used instead of N*(q)
only with the purpose of having the curve N(p)=f(p)
increasing from the left to the right, instead of
from the right to the left which would be the case
for N*(q) = f(q)
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Fig. 5.6. Graph paper for plotting the mean total run-length, N(q). The upper graph

serves for plotting N(q) versus g, the truncation level, as well as its
tolerance limits at the 95% level versus g. The lower graph serves for

plotting the number of total run-lengths
the tolerance limits of the upper graph.
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k versus q, needed for computing
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for plotting the number k*, as defined in the text, versus p, needed for

computing the tolerance limits of N*(p) of the upper graph.
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Chapter VI

EXAMPLES OF INVESTIGATION OF STATIONARY HYDROLOGIC SERIES BY RUN-LENGTHS

6.1 Introduction. There is a two-fold
application of runs to stationary hydrologic series.
First, runs are used to investigate the structure of
a series by testing whether or not a particular series
is a sequence of independent random variables with a
common distribution, If this is not the case, then
the linear autoregressive models are assumed, the in-
dependent component in the original series is computed
by using these models, and tests are performed to
determine whether this component is a sequence of
independent variables with a common distribution.

Three approaches are used for the investigation
in this test:

1. Only the median truncation with gq = 0.50
and the corresponding value N(0.50) are used. This
case is analogous to using only the first serial
correlation coefficient, T in the autocorrelation

investigation of whether a series is independent or
dependent,

N(q) , is used,

2. The total run parameter, 5
, and a curve N(q)=f(q)

for various values of g
is obtained.

3. The parameter N* (p) is used as a function
of p . N*(p) is used instead of N¥(q) in order
to have an increasing function as p increases.

Examples are given for each of these three
approaches for investigating hydrologic series by
run-lengths, using the supposed stationary time series
of annual precipitation and annual river flow.

The second application of runs to stationary
hydrologic series is for the prediction of durations
of periods of surpluses and deficits for a variable.
Once the structure of the series is known, i.e.,
whether it is stochastically independent or dependent
of the first-order, or the second-order linear auto-
regressive models, or similar models, the derived
properties of runs are used to make probability
statements about durations of periods of surpluses
and deficits. The truncation level in each case is
specified by the probability q

Chapter VI is concerned with first application,
the investigation of series. Chapter VII treats the
second application, the prediction of duration of
surpluses and deficits (run-lengths) of statiomary
hydrologic series.

6.2 Application to Investigation of Annual
Precipitation Series. Computed values of annual
precipitation have random errors, systematic errors
(inconsistency), and nonhomogeneity. Inconsistency
is caused primarily by changes in instruments, methods
of measurements, and so forth. Inconsistency comes
mainly from two sources: moving a precipitation
station a substantial distance, and changes in the
environment around a station, such as growth of trees,
building of houses, or any other major environmental
change which affects the flow pattern of air around
the station. Nonhomogeneity comes mainly from cloud
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seeding operations. Precipitation data must be
considered, therefore, as often having relatively
large random errors and inconsistency in their
annual series [2, 27].

The presence of inconsistency and/or non-
homogeneity in an observed series implies that it
does not come from a sequence of variables with a
common distribution. When applying the run-length
test to an observed precipitation series with incon-
sistency and/or nonhomogeneity in data, this null
hypothesis may be rejected, though the series without
these factors present may show the acceptance of a
null hypothesis.

The presence of inconsistency and/or non-
homogeneity in data is reflected in the run-length
test when N is greater than the expected value,
EN = 4, for q = 0.5, and may be outside the 95%
tolerance limits of the distribution of N . It is
therefore necessary to first remove inconsistency
and/or nonhomogeneity in data.

On the other hand, if no significant inconsis-
tency and/or nonhomogeneity are present in the data,
and the observed time series is stochastically
independent, the null hypothesis is accepted in
applying the run-length test. In this case N is
inside the region of acceptance of the null hypothe-
sis at a given level.

6.3 Examples of Investigation of Annual
Precipitation Series by the Mean Run-Length of the
Median. To show the method of run-lengths for the
investigation of whether annual precipitation series
are independent, identically distributed variables
(null hypothesis) or not, five series are selected
from around the United States. The application of
run-length is developed on the assumption that the
number of total runs is large. As a consequence,
the observed series should be long enough to satisfy
this assumption. For this reason, long precipitation
series were selected.

The five annual precipitation series are:

1. Chico Experimental Station, California, for

the period 1871-1965, N = 95;
2. Ord, Nebraska, 1896-1965, N = 70;
3. Natural Bridge N.M., Arizona, 1890-1960,
N = 71;
4, Antioch F. Mills, California, 1879-1965,
N = 87 years, and
5. Ravenna, Nebraska, 1878-1965, N = 88 years.
Table 6.1 gives the sequence j=1, 2, of
runs, with run-lengths of Nj and Ni for these

five series and for q = 0.50. The incomplete first
and last runs are included. They introduce a small
bias, but their effects may be neglected for series
with N > 70.



TABLE 6.1 RUNS OF FIVE ANNUAL PRECIPITATION SERIES
Chico Ord Natural Bridge | Antioch F. Mills Ravenna
Station Station Station Station Station
; N; N N N; N N; NG N; N] N,
] ] J J J J 1 3 ] J
1 1 1 2 2 1 14 1 1 1 1
2 1 1 4 1 5 1 1 3 1 3
3 3 2 2 1 1 1 6 4 1 5
4 9 1 1 4 8 1 1 1 1 2
5 2 5 1 1 2 2 1 2 3 2
6 2 1 1 4 2 2 1 1 1 1
7 2 1 5 1 2 3 1 2 1 6
8 1 4 1 2 2 3 2 1 1 1
9 1 1 2 4 2 2 1 1 4 1
10 3 4 1 6 3 2 1 1 1 1
11 3 1 1 1 1 1 3 2 2 3
12 1 1 1 1 2 1 1 1 2 1
13 3 2 6 1 2 1 2 2 2 1
14 7 4 1 3 1 1 2 3 1 1
15 1 6 1 2 1 3 1 1
16 2 1 1 1 3 4 1 1
17 1 3 1 2 3 1 2 1
18 1 2 2 1 1 1
19 1 2 ], 2 4 1
20 1 1 3 1 3 1
21 1 2 2 1 2 1
22 2 1 1 1
23 1 1 5 6
24 2 1
) 47 46 32 37 34 35 44 41 42 43

Table 6.2 gives the following parameters of these

N*, N°, N = N* + N~ ,_and the two tolerance limits on
the 95% level about N . These limits are computed by

2t
N, .= BN+ M2

12 =

(6.1)

where EN = 4 for q = 0.50 of independent, identi-
cally distributed variables, «/2 is the one-tail
confidence probability level, 1:0“,2 is the normal

standard variate for the given o/2
largest number j
k=3 .
max
two-sided test,

, and k is the
of run-lengths in Table 6.1, or
Using the 95% tolerance level and the

o/2 = 0.025 , then 1:%,2 = 1.96.

TABLE 6.2 PROPERTIES OF RUN-LENGTHS OF

In the above case, the tolerance limits are

(6.2)

Table 6.2 shows that all five computed N-values of
the precipitation series are confined within the

tolerance limits Nl and N2 .

For a stronger test, with o = 80% level, and

ty2 = 1.28, all computed N-values of five stations

except Natural Bridge, which has a nonhomogeneous
series, are still within these new limits, as shown
in the last two columns of Table 6.2.

THE FIVE ANNUAL PRECIPITATION SERIES

a = 95% a = 80%

Station N* N- N k N"l (95%) ﬁz (95%) ‘ril (80%) ﬁz (80%)
Chico 2.190 2,238 4,428 21 4,858 3.142 4,560 3,440
Ord 1.882 2.176 4.058 16 4.980 3.020 4.640 3.360
Natural

Bridge 2.429 2,500 4.929 14 5.050 2,950 4.685 %315
Antioch

F. Mills 1.833 1.708 3.541 24 4.800 3.200 4.522 3.478
Pavenna 1.826 1.870 3.696 23 4.820 3.180 4,535 3.465
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It can be concluded that four out of the five
annual precipitation series are independent variables,
as it relates to the use of total run-length param-
eter, N , for the median truncation level with
q = 0.50, as the investigation parameter.

6.4 Application to Investigation of Annual
River Flows Series. River flow essentially integrates
the precipitation received over large areas, but it
also includes the effects of evaporation and storage
as other important physical factors. The water carry-
over from year to year, and especially the change in
this carryover from one year to another, usually
introduces time dependence into the sequence of annual
flows.

To investigate the annual flow series either the
original or the whitened series is used. By applying
the same procedure to the original annual river flow
series, as for the annual precipitation series, the
hypothesis that the series is independent is accepted
or rejected. If the hypothesis is rejected, the
dependence models are assumed and the series is
whitened. Then the same procedure used for the annual
precipitation series is applied to the whitened series
of annual river flow. If the hypothesis of the
whitened series being independent is accepted, the
postulated dependence model is also accepted. Equa-
tions (6.1) and (6.2) are used for these investiga-
tions and tests just as they are used for the annual
precipitation series.

6.5 Examples of Investigation of Annual River
Flows Series by the Mean Run-Length of the Median.
Investigations and tests are limited to long series
for the same reason they are limited in the case of
annual precipitation series of annual river flows with
long records [1] were selected as examples. They are:

1. The Mississippi River at Saint Louis, Missouri,

1862-1957, N = 96;
2. The St. Lawrence River at Ogdensburg, New
York, 1861-1957, N = 97;

3. The Mississippi River at Keokuk, Iowa, 1879-
1957, N = 79;
4. The Gota River at Sjotorp, Vanersburg, Sweden,
1808-1957, N = 150, and

5. The Rhine River at Basle, Switzerland, 1808-
1957, N = 150.

Table 6.3 shows the results of this investiga-
tion. The analysis of five original series of annual
river flows shows that only the Rhine River at Basle,
Switzerland is an independent time series, or rather
the null hypothesis is accepted for the 95% tolerance
level. The whitened series are obtained by the hypoth-
esis of the first-order, linear, autoregressive model
of dependence, or

E. = X. = I
1 1

and x,
l_

1 %5 (6.3)
1 are elements of a standardized

series of annual river flows and T, is the first

serial correlation coefficient, also given in
Table 6.3.

Table 6.3 shows the results of the analysis of
whitened series of the first four rivers by using
the mean run-length of the median, or Equations (6.1)
and (6.2). All four whitened series are shown to be
independent series, or the null hypothesis for the
whitened series is accepted for the 95% tolerance
level. This finding means also that the hypothesis

where X,
i
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of the first-order linear autoregressive model des-
cribing well the series dependence is accepted for
all four rivers.

6.6 Examples of Investigation of Annual
Precipitation Series by the Relation of Mean Run-
Length to Values of q . In the case of using any
value of q as the truncation level, the 1-o
tolerance limits for a two-sided test are given by

5
B B @400
K., s |je 2 — 7" (6.4)
1,2 pq|" = K
By using the 95% tolerance level, = 0,05,
ta/2 = t0.025 = 1.96 , the limits are
N, . e |1 wdedl 8,8k (6.5)
1,2 Pg - VR

Table 6.4 gives values of 1/pg and [p3+q3)li for
values of q ranging between 0.20 and 0.80 with the
increment of 0.05. Table 6.5 gives the tolerance
limits of N at the 95% level.

The mean and the 95% tolerance limits of N are
shown in Fig. 6.1 and 6.2 for values of k = 10, 15,
20, 25, 30, and 35,and q = 0.20 to q = 0.80 with in-
crement of 0.05. The examples of annual precipitation
series are analyzed by computing N(g) for_values of
q=20.3, 0.4, 0.5)0.6, 0.7, and plotting N(q) against
q, as shown in Figure 6.1. For each q and the corres-
ponding k, thetolerance limits, Nl . are computed
and plotted on the same graph. AR

If the analyzed series is a sequence of independent,
identically distributed variables, the sample func-
tion N(q) should be inside the tolerance region.

As can be seen from Figure 6.1, four out of the five
series of the above examples have N(q) inside the
tolerance region, but one series has only a point

of N(q) outside the tolerance region. This particu-
lar series is a nonhomogeneous precipitation series.

6.7 Examples of Investigation of Annual Runoff
Series by the Relation of Mean Run-Length to Values
of g. The same procedure used for the precipitation
series is applied to investigating the examples of
the original series of annual runoff. The results
are given in Figure 6.3 and 6.4. It is apparent from
this figure that: at least three out of the five series
are not independent, identically distributed random
variables, since their N(q) are not completely
inside the tolerance region. The Mississippi River
at St. Louis seems to be a case of weak serial depen-
dence and/or of some nonstationarity, since its
N(gq) 1is so close to the upper tolerance limit.
Finally, the annual runoff of the Rhine River is
accepted as a sequence of independent, identically
distributed variables. This result agrees with the
autocorrelation analysis made on this series in a
previous study [2].

For the four other series where the hypothesis
that the series are independent, identically dis-
tributed variables is rejected, the first-order
autoregressive model is assumed, and consequently
the series are whitened. Then, the same procedure
is used with both the whitened and the original
series. The results are shown in Figure 6.5. The
first-order autoregressive model for annual series
is accepted for these four series.
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Fig. 6.1.

Investigation of time series independence by the mean total run-length, N(q), as a functionm of
the probability, q, of the truncation level, for four annual precipitation series: (I) Chico
Experimental Station, Californiaj; (II) Ord, Nebraska; (III) Antioch F. Mills, California, and
(IV) Ravenna, Nebraska; and for each station: (1) the expected mean total run-length of inde-
pendent series EN(q) = 1/q(l-q); (2) the observed ﬁ(q) = f(q); (3) the 95% tolerance limits
for given k as function of q, and (4) the number of total run-lengths, k.
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TABLE 6.3 PROPERTIES OF RUN-LENGTHS OF THE FIVE ANNUAL RIVER FLOW SERIES

and (4) the number of total run-lengths, k.

33

Original Series, X5 Whitened Series, Xi'rlxi-l
station R F k Nj(os%) N,095%) T TR Nk N (95%) N, (95%)
1. Mississippi River | 2.389 2.500 4.889 18 4.775 3.225]10.301 1.783 2.130 3.913 23 4,816 3.184
2. 5t. Lawrence 3.583 3.917 7.500 12 4.950 3,050 .707 2.045 2.136 4.181 22 4,835 3.165
River
3. Mississippi River | 2.500 2.857 5.357 14 4,878 3,122 0.407 1.714 1.619 3.333 21 4,854 3.146
Gota River 2.704 2.778 5.482 27 4.634 3.365 | 0.445 2.202 2.212 4.054 33 4.682 3.317 |
Rhine River 2.027 2.027 4.054 37 4.580 3.450 | --x oo e meeemeee oo |
TABLE 6.5 TOLERANCE LIMITS OF N
TABLE 6.4. Values of 1/pq and (p3 + q3) 1/2 AT THE 95% LEVEL
q or
1 b8 p | 0.20 0.25 0.30 0.35 0.40 0.45 0.50
q P Pq (p°+a*) k
.20 .80 6.25 .7211 10 9.04 7.51 6.55 5.91 5.54 5.32 5.24
.25 .75 S dd L6614 3.46 3.15 2,97 2.89 2.80 2.76 2.76
gg 22 i-zg -ggig 15 | 8.53 7.11 6.21 5.66 5.29 5.08 5.02
"0 "60 417 15202 3.97 3.55 3.31 3.14 3.05 3.00 2.98
.45 .55 4.04 .5074 20 8.22 6.8B8 6.02 5.48 5.14 4,95 4.87
.50 .50 4.00 .5000 4.28 3.78 3.50 3.32 3.20 3.13 3.13
gg .ig :2: gg;; 25 | 8.05 6.71 5.88 5.38 5.04 4.85 4.78
‘65 T2 4.40 5635 4.45 3.95 3.64 3.42 3,30 3.23 3.22
.70 .30 4.76 .6083 30 7.85 6.58 5.78 5.29 4.96 4.78 4.71
.75 .25 5.33 6614 4.65 4,08 3.74 3.51 3.38 3.30 3.29
-80 s 6.25 -7211 35 | 7.75 6.50 5.72 5.22 4.91 4.72 4.66
4.75 4,16 3.80 3.58 3.43 3.36 3.34
W
Kk
g = Flx) [L+]
20 1 | | | 1 L
oz 03 04 =L} [ oy 0B 2::'
[[+]
i b Fig. 6.3. Investigation of time independence by the
Fig. 6.2. Investigation of time 1ndepe?dence y the mean total run-length, N(q), as a function of g, for
mean total run-length, N(g), as a function of g, for 1 ff series of the Rhine River at Basle
the non-homogeneous annual precipitation series at th? annual TUNoO s
= : Switzerland: (1) the expected mean total run~-length,
Natural Bridge, N.M., Arizona; (1) the expected mean EN(q) = 1/q(1-q); (2) the observed N(q) = £(a); (3)
Lotel ru- e B el d); iZ)ithefobse;ved k theq95£ toieraic; limits for given k, and (4) Ehe num-
= H imit r v ¥
§(q) = f(q); (3) the 95% tolerance limits for given Loz ot tobal soh ienathe. k.



Fig. 6.4. Investigation of time series independence by the mean total run-length, ﬁ(q), as a function of
the probability, g, of the truncation level, for four annual runoff series: (VII) Mississippi
River at St. Louis, Missouri; (VIII) St. Lawrence River at Ogdensburg, New York; (IX) Mississ-
ippi Rover at Keokuk, Iowa, and (X) GOta River at $jotérp, Vinersburg; and for each station:
(1) The expected mean total run-length of independent series, EN(g) = 1/q(1-q); (2) the
observed N(q) = f(q); (3) the 95% tolerance limits for given k as function of g, and (4) the
number of total run-lengths, k.
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Fig.

2

6.5,

Investigation of independence of whitened series, under the assumption of the first-order
autoregressive process as a time dependence model, by using the mean total run-length, N(q),
as a function of the probability, gq, of the truneation level, for four annual runoff series:
(XI) Mississippi River at St. Louis, Missouri; (X1I) St. Lawrence River at Ogdensburg, New
York; (XIIL) Mississippi River at Keokuk, Iowa, and (XIV) Gota River at Sjotorp, Vauersburg;
and for each station: (1) the expected mean total run-length of independent series, EN(q)

= 1/q(l-q); (2) the observed N(q) = £(q) of whitenad series; (3) the 95% tolerance limits
for given k as function g, and (4) the number of total run-lengths, k of whitened series.
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Fig. 6.6. Investigation of time series independence by the mean run-length, N(g), as a function of the prob-
ability, q, of the truncation level, for four annual precipitation series: (XV) Chico Experimental
Station, California; (XVI) Ord, Nebraska; (XVII) Antioch F. Mills, California and (XVIII) Ravenna,
Nebraska; and for each station: (1) the expected mean run-length, EN*(q) = 1/q; (2) the observed
N*(q) = £(q); (3) the 95% tolerance limits for given k* = (kt + K )/2.
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6.8 Examples of Investigation of Annual
Precipitation and Runoff Series by N*(p) for Values

of The 1l-o tolerance region for independent
identically distributed variables is given by Equa-

tion (5.22). Using the 95% tolerance level, a =
0.05, ta/2 = 1:0_025 = 1.96 , the tolerance limits
are

N -1 P

Wé 5= [111.95 \/Zk* J (6.6)

Table 6.6 gives the mean and the tolerance limits of
N* at the 95% level.

The sample of precipitation series was analyzed
by computing N*(p) for values of q = 0.3, 0.4,
0.5, 0.6, 0.7 and plotting N*(p) against p as
shown in Figures 6.6 and 6.7. The resultsare shown
in these figures.

In a similar manner the sample of ‘the original
runoff series was analyzed. The results are shown in

Figures 6.8 and 6.9. rinally, the whitened runoffseries

using a first-order autoregressive model were also
analyzed in a similar manner. The results are shown
in Figure 6.6.From these figures it is apparent that
all precipitation series are accepted as independent
time series,Whereas all runoff series except ine

River are accepted as first-order autoregressive pro
cesses.

70

Fig. 6.7..

Investigation of time independence by the

TABLE 6.6 MEAN AND 95% TOLERANCE LIMITS OF N*
k* 10 15 20 25 30 35
p EN* --- -- -—- -- -—- --
0.20 2.500 2.696 2.660 2.639 2.624 2.613 2.605
--- 2.304 2.340 2.361 2.376 2.387 2.395
0.25 2,666 2.885 2.845 2.821 2.805 2.793 2.783
--- 2.447 2,487 2.511 2.527 2.539 2.549
0.30 2.858 3.098 3.054 3.028 3.010 2.997 2.986
--- 2.618 2.662 2.688 2.706 2.719 2.730
0.55 3.076 3.335 3.288 3.259 3.240 3.226 3.215
--- 2.817 2.864 2.893 2.912 2.926 2.937
0.40 3.334 3.611 3.560 3.513 3.509 3.494 3.482
-—- 3.057 3.108 3.155 3.159 3.174 3.186
0.45 3.636° 3.930 3.876 3.844 3.822 3.806 3.793
--- 3.342 3.396 3.428 3.450 3.466 3.479
0.50 4.000 4.310 4.253 4.219 4.196 4.179 4.166
-—- 3.690 3.747 3.781 3.804 3.821 3.834
0.55 4.444 4.769 4.614 4.674 4.650 4.632 4.618
--- 4,119 4,274 4.214 4.238 4.256 4.270
0.60 5.000 5.340 5.277 5.240 5.215 5.196 5.182
---  4.660 4,723 4.760 4.785 4.804 4.818
0.65 5.714 6.067 6.003 5.964 5.938 5.918 5.903
-— 5.361 5.425 5.464 5,490 5.510 5.525
0.70 6.667 7.034 6.966 6.926 6.899 6.879 6.863
- 6.300 6.368 6.408 6.435 6.455 6.471
0.75 8.000 8.380 8.310 8.268 8.240 8.219 8.203
---  7.620 7.690 7.722 7.760 7.781 7.797
0.80 10.000 10.392 10.320 10.277 10.248 10.226 10.210
---  9.608 9.680 9.723 9.752 9.774 9.790
Fig. 6.8. Investigation of time independence by the

mean run-length, N*(q), as a function of q, for the
non-homogeneous annual precipitation series at (XIX)
Natural Bridge, N.M., Arizona: (1) the expected mean
run-length EN*(q) = 1/q; (2) the observed N*(q) = f£(q);
(3) the 95% tolerance limits for given k* as function
of q, and (4) k* = (kt + k~)/2

37

mean run-length, N*(q), as a function of q, for the
annual run-off series of (XX) Rhine River at Basle,
Switzerland: (1) the expected mean run-length,
EN*(q) = 1/q; (2) the observed N*(q) = £(q); (3) the
95% tolerance limits for given k* as function of gq,
and (4) k* = (kt + k™) /2



Investigation of time series independence by the mean run-length, N*(q), as a
function of the probability, g, of the truncation level, for four annual runoff
series: (XXI) Mississippi River at St. Louis, Missouri; (XXII) St. Lawrence

River at Ogdensburg, New York; (XXIII) Mississippi River at Keskuk, Iowa, and

(XXIV) Gota River at Sjotorp, Vanersburg; and for each station: (1) the expected
mean run-length of independent series EN*(a) = 1/q; (2) the observed N*(q) = f(q):
(3) the 95% tolerance limits for given k as a function of q, and(4) k* = (k" + k™) /2

Fig. 6.9.
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Fig. 6.10.

Investigation of independence of whitened series, under the assumption of the
first-order autorsgressive process as a time dependence model, by using the
mean run-length N (q), as a function of the probability, g, of the truncation
level, for four annual runoff series: (XXV) Mississippi River at St. Louis,
Missouri; (XXVI) St. Lawrence River at Ogdensburg, New York; (XXVII)'Mississippi
River at Keokuk, Iowa, and (XXVIII) Gota River at Sjotorp, Vanersburg; and for
each station: (1) the expected mean run-length of independent series,

EN (q) = 1/q; (2) the observed ﬁ*(q}; (3) the 95% tolerance limits for given
k as function of q, and (4) k* = (kT + k7)/2
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Chapter VII

EXAMPLES OF COMPUTATION OF PROBABILITIES OF RUN-LENGTHS

7.1 Introduction. Present empirical techniques
for determining probabilities of drought or low-flow
durations, or probabilities of water surplus dura-
tions, for a well defined drought or water surplus
level use sample data to derive the necessary infor-
mation. The empirical procedure is as follows.
Drought or surplus level is first defined; then a
series of the hydrologic variable is plotted, with
this level as the truncation level. Next, all dura-
tions as run-lengths equal to or greater than the
truncation level are counted, and the relative fre-
quency of run-lengths that are greater than the
critical duration are computed. These frequencies
are estimates of probabilities. Alternatively, the
longest drought or water surplus duration is selected
as the design drought or the design surplus. It is
often difficult in practice to assign meaningful
probabilities to a drought or a surplus because of
large sampling fluctuations of these relative fre-
quencies. Much confusion is often unavoidable in
assigning probabilities to results empirically
obtained.

It is not surprising then that the estimates of
probabilities of historical droughts in some river
basins or regions sometimes vary from 1:100 (one in
a hundred years) to 1:3,000 (one in three thousand
years) by different empirical approaches.

The method of using the run-length properties
of the independent or of the first-order linear
autoregressive series helps solve these important
practical problems and also helps to avoid some con-
fusion. Two aspects of these probabilities currently
are of interest, probabilities of a given duration
(say, probability of a 5-year drought), and proba-
bilities of all events equal to or greater than a
given duration (say, probability of all droughts of
3-years or more). The purpose of the techniques
studied and developed in this paper are designed to
solve these types of problems. In this study, how-
ever, only two cases are analytically approached:
independent stationary time series, and dependent
stationary time series of the first-order linear
autoregressive model. For more complex models, such
as the second-order, third-order, or higher-order
linear autoregressive models, or for models with
periodicity present in some parameters of a time
series, the Monte Carlo simulation technique seems
best suited at present as the alternative to the
analytical method.

7.2 Determination of Run-Length Probabilities
of Stationary and Independent Series. The annual
series of precipitation and runoff of the following
four gauging stations, found to be independent time
series in Chapter VI, are used as examples for deter-
mining probabilities of run-lengths equal to or
greater than a given length, for a given truncation
level and its probability, q :
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A. Precipitation Stations
1. Ord, Nebraska
2. Ravenna, Nebraska
3. Antioch F. Mills, California

B. Runoff Station

1. The Rhine River at Basle, Switzerland.

The_probabilities of run-lengths being not less than
a given value j are obtained as follows from Equa-

tion (2.21),

: k-1
PON" = k) = qp

Hence,

1 j-1
PN'=k) = 1 - J
1 k=1

k-1

PN > ap

y=1- 7
k=

=l ‘.
1-q£1_1%p_J=le (7.1)

By using Equation (7.1) for probabilities of
run-lengths of independent series, which are functions
of @ ,or p=1-gq, comparison is made between
the relative frequencies of run-lengths, empirically
determined, and the probabilities of the same run-
lengths, analytically determined.

Figures 7.1 through 7.4 give these comparisons
for the three annual precipitation series and the
annual runoff series of the Rhine River, and for the
run-lengths Nj , with the following j values:

2,3,4,5,6, 7, 8,9, and 10, and in each case for
five values of g , 0.3, 0.4, 0.5, 0.6, and 0.7.

As expected, probabilities of run-lengths
P(N > j) determined analytically by Equation (7.1)
depart from the relative frequencies empirically
determined from sample data. These deviations in-
crease both with an increase of j and an increase
of absolute departure of q wvalues from q = 0.50.
The unreliability of these relative frequencies of
run-lengths N > j empirically determined for
extremes of q and for large values of j is the
primary reason for the controversy between the
various empirical methods of estimating probabilities
of droughts or water surpluses of given durations
for the prescribed levels of droughts or surpluses.
These high sampling errors, associated with empirical
methods currently used in practice, justify using
the analytical method for computing probabilities
P(N > j) 1instead of using various empirical methods.
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Estimated probabilities by sample relative
frequencies (dashed lines) of positive
run-lengths, P(N* > j ; q) , and negative
run-lengths, P(N” > j ; q) , for the
annual precipitation series at Ord,
Nebraska (1896-1965) as compared with
expected probabilities (solid lines) of
positive and negative run-lengths of
independent series for five truncation
values: q = 0.3, 0.4, 0.5, 0.6, and 0.7.
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7.2 Estimated probabilities by sample relative
frequencies (dashed lines) of positive
run-lengths, P(N* >3 ; q) , and negative
run-lengths, P(N™ > j ; q) , for the
annual precipitation series at Ravenna,
Nebraska (1878-1965) as compared with
expected probabilities (solid lines) of
positive and negative run-lengths of
independent series for five truncation
values: q = 0.3, 0.4, 0.5, 0.6, and 0.7.
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Fig. 7.4 Estimated probabilities by sample relative

frequencies (dashed lines) of positive
run-lengths, P(N" > j ; q) , and negative
run-lengths, P(N~ > j ; q) , for the
annual runoff series of the Rhine River
(1808-1957) as compared with expected
probabilities (solid lines) of positive
and negative run-lengths of independent
series for five truncation values:
q=0.3,0.4, 0.5, 0.6, and 0.7.



Because of large sampling fluctuations in
series of limited size, either a drought of more
than 3-4 years may not have been experienced in a
period of 50-60 years, or a drought of nine years
may have occurred, though no drought of 4-8 year
duration was recorded. Many similar sampling biases
are unavoidable in using current empirical methods
in estimating probabilities of run-lengths.

7.3 Determination of Run-Length Probabilities
of Stationary Dependent Series. The amnnual runoff
series of the following three rivers, which are
known to be dependent time series, are used as
examples for determining probabilities of run-lengths
equal to or greater than a given length, for a given
truncation level and its probability, q :

5. The Gota River at Sjotdrp, Vanersburg,

Sweden, with T, = 0.463 , where T is
the estimate of the first autocorrelation
coefficient Py

6. The Ashley Creek near Vernal, Utah, with
r, =0.274 , and

7. The Trinity River at Lewiston, California,
with r) = 0.180.

Probabilities of run-lengths being equal to or
greater than a given value j are obtained by using
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the values P(N' > j) of the Appendix, for values
of Py = 0.1, 0.2, 0.3, 0.4, and 0.5. A linear

interpolation is used for the T values, which

1 These

probabilities and the relative frequencies of run-
lengths empirically determined are compared.
Similarly, as in the case of independent series,
probabilities of run-lengths P(N > j) of dependent
series depart from the relative frequencies empiri-
cally determined from the sample data. The Trinity
River is analyzed in two ways: (1) by using the
first serial sample correlation coefficient T

the first-order autoregressive model for annual flows
and (2) by using ri =hEg = rl(P} , where rl[P) is

the first basin. This is done to remove the sampling
fluctuation of rI(P) included in T of runoff,

E(r;) for precipitation series should be
close to zero.

are between the p . values of the Appendix,

and

2

because
For the area of the Trinity River
Basin, rlfP) has been calculated in a previous
study [2] as rl(P) = 0.10 , so that the corrected
value ri = 0.08. Figures 7.5 through 7.8 show the

results and comparisons of relative frequencies and
expected probabilities for the corresponding cases.
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0.450.
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Chapter VIII
CONCLUSIONS

A methodology is developed in this study for using the mean run-length as the parameter
for investigating hydrologic series. The basic statistical parameters used are the mean total
run-length and the mean positive or negative run-length, as they change with the probability
of the truncation level of a series. This study leads to the following conclusions:

(1) The method is effectively used to investigate whether or not a time series of
annual precipitation ét a point is a sequence of stochastically independent variables with
a common distribution.

(2) The method is also effectively used to investigate whether or not a time series of
annual river flows is independent or first-order linear autoregressive dependence model.

(3) The method does not depend on the underlying distribution of the variables that are
being investigated.

(4) Autoregressive linear models, widely used in hydrology, usually are referred to as
stationary Gaussian processes, if their independent stochastic component is normally distributed.
Properties of runs of these models are relevant for the investigations of multiannual periods
of surplus and deficit, and for the study of hydrologic droughts.

(5) An analytical approximation is developed for probabilities of a sequence of a given
length of wet and dry years, when hydrologic time series are stationary, either independent,
or first-order linear autoregressive process, and the truncation level is specified. Numerical
values of these probabilities are obtained on a digital computer for the range of Py the
first autocorrelation coefficient between 0 and 0.50, with increments of 0.10, and the range of
the probability of truncation level, q , between 0.30 and 0.70 with increments of 0.10, all
for the first-order linear autoregressive model. These probabilities can be readily used for
probability statements about the multiannual periods of water surplus or deficit, with respect
to a specified truncation level that defines the surplus or the deficit.

(6) Probabilities of run-lengths of linearly dependent variables, with a common distri-
bution, do not depend on the underlying, univariate distribution of the variable. They depend
only on the probability gq of the truncation level and the series dependence model.

(7) Examples of the investigation of stationary series by the run-length technique and
examples of the computation of probabilities of lengths of surplus or deficit periods show the

relevance of run theory for various applications in hydrologic and water resources investigationms.
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APPENDIX

This appendix gives the properties of run-lengths of the first-
order linear autoregressive model for five values of the first auto-
correlation coefficient, I 0.1, 0.2, 0.3, 0.4, 0.5, and for five
values of the probability, q = F{xo}, of the truncation level, X
or q equal 0.3, 0.4, 0.5, 0.6, and 0.7. The first column gives
these parameters: q = F(xo], EN+(q), and var N+(q); the second
column gives the discrete value j of the run-length; the third column
are probabilities, P(j+), of at least j consecutive values being
above the truncation level, and subsequent ten columns give probab-
ilities of at least k consecutive values being below the truncation
level, X0 followed by at least j consecutive values being above the
truncation level, for k = 1,2, ..., 10, and j = 1,2, ..., 10. Finally,
the last two columns give probabilities of run-lengths being greater
than or equal to j, or being exactly equal to j, respectively. By
using the values given in the subsequent five tables, it is feasible
to make probability statements about durations of droughts of a river
basin, with annual runoff series following the first-order linear auto-
regressive process, of Py estimated by the sample Ty, and by finding

P{N+ Zj) values for a selected q in this appendix.
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