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ABSTRACT

The effects of constant value truncation on the dependence property of
idealized hydrological time series are investigated. This analysis was carried
out for dependent stochastic components, for periodic component and for the
sum of stochastic dependent and periodic deterministic components of hydrological
time series. The random elements of the process were considered for both normal
and lognormal distributions, For all cases, the truncation is considered at a
constant level. Analytical equations were developed in approximate forms for
correlograms which express the dependence of the truncated time series. Com-
putations of correlograms from these equations were made on a digital computer.
Two series of daily river flows were used with the truncation at the mean flow

to compare their correlograms with those of the original daily flow time series.
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Chapter I

INTRODUCTION

1. Character of hydrological time series. The
hydrological time series are usually positive valued
variables which include also the zero value. In many
cases, the observed time series never show a zero value,
or the minimal observed values are much greater than
the zero. The probability of the lowest discharge of
the Mississippi River being zero is practically zero.
Also, the probability of monthly precipitation of a wet
region being zero is very small. However, many hydro-
logical time series include values which are either
zeros or very close to zero.

Hydrological time series are either continuous
(especially if rates are observed as the precipitation
intensity, flow discharge, sediment discharge, and
similar) or discrete (if the values are observed at
discrete times or are derived from continuous time
series in the form of daily, monthly or annual values
of precipitation, river flow, sediment transport, etc.).
When a continuous or discrete hydrological time series
has zero values from time to time and for some period,
the process is called intermittent. The general pat-
tern for discrete time series is that they are less
likely to have zero values when the cumulative or aver-
age amounts of a hydrological magnitude are obtained
over longer time intervals. Every series of daily pre-
cipitation has zero values. However, the series of
monthly values may or may not have zero values. It is
rare that the series of annual precipitation contains
zeros. If it does the series usually belongs to a
very arid region or to a desert.

Therefore, the continuous series of rates of
several hydrological magnitudes is expected to have
zero values very frequently and with the longer total
duration than the series of its cumulative discrete
values of a variable. The continuous series of precipi-
tation intensity has zero values more often and of a
longer total duration than the series of daily precipi-
tation. In turn, the daily precipitation series has
zero values more often and of a longer duration than
the series of monthly precipitation. The same patterns
occur for river flows in intermittent rivers. The
process of river bed load transport is intermittent,
either because of the intermittent flow of the river
or because the low flows cannot transport the bed load.

Two questions arise in the treatment of hydro-
logical time series with zero values: (1) How to
interpret these values in the sense of probability

distribution of the variable; and (2) What is the
influence of zero values on properties of hydrological
time series.

The total probability of zero values may be
interpreted as the probability of all negative values
of a distribution function. Therefore, the probability
distribution is composed of two parts: (1) Probability
mass for the discrete value of zero; and (2) Probability
densities for all positive values, zero included. Some-
times, a physical interpretation is attractive for
these values of zero. In the case of the series of
precipitation intensity, the zero values represent the
times when the opposite process to precipitation or
the evaporation occurs. In the case of a liguid-
gaseous interface at the ground surface, the flux of
moisture through it is a continuous process in the form
of both precipitation and evaporatien (intermittently)
or with positive and negative variable values of a
continuous probability density.

In an arid region where the rate of evapo-
ration in the air is very high, a considerable portion
of precipitation evaporates before it reaches the
ground. Sometimes the total amount of precipitation
evaporates, and this fact represents an increase in
the length of zero values of the precipitation time
series.

The second question is the effect of zero
values on properties of hydrological time series, and
this topic is one of the two subjects of this paper.
It is logical to expect that the series with zero
values would have some particular properties, at
least as it concerns the time dependence and its
other parameters, if not its general mathematical
models.

2, Truncated series by man-made processes. It
often occurs that man-made factors either create
hydrological time series with zero values or decrease
some values relative to others. The diversion of
water from one river basin to another is sufficient to
alter or truncate the distribution of the flow of the
first river or to alter the distribution of the flow of
the second river. In this case, the first river shows
a reduction in its flow and also increased length of
zero values if the river is dried up due to diversion,
while the other river experiences an improved sustained
flow and increased low flows, It is expected that the
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simple permanent transfer of water from one river to
another decreases time dependence for the former and
increases it for the latter. The analytical or experi-

mental studies of these man-made effects are of signifi-

cant practical importance.
treated in this paper.

This is the second subject

The various practical manipulations of lowest
river flows (withdrawal for water supply, irrigation,
recharge of groundwater, flow regulations, etc.) make
the time dependence of the resulting new regime a very
complex phenomenon. It is treated, however, in this
paper in a simplified schematic way because the vari-
eties of resulting effects are not an easy subject
for systematization.

3. The approach of studying the effect of zero
values and man-made withdrawals on the dependence of
time series. No suitable technique has yet been

devised to analyze hydrological time series which have
truncation either by the natural phenomenon or by man-
made withdrawals or additions. Such transformations
distort the structure of the continuous time series
and’ thereby change its dependence properties. The
present day analysis of time series emphasizes the
study of their structure by their decomposition into
different components, such as jump or trend, periodic
component, stochastic component, etc. But time series
which are truncated either by natural or man-made
processes should first be studied for the effect of
truncation before they are studied for their general
structure.

The approach of this investigation is to
determine the effects of truncation on various com-
ponents of time series, such as pure stochastic or
pure deterministic components, or their combination.



Chapter II

GENERAL ANALYSIS

1. Definition of the problem. A time series with
significant length of zero value for the case of a
cumulative variable may be considered as truncation by
a physical process. This truncation can be obtained by
a deduction from a continuous or discrete time series
of a constant, of a linear or non-linear deterministic
model, of a dependent or independent stochastic model,
or a combination of any or all of these truncations.

The physical process of truncation or addition may be
very complex. As the simplest step in the investigation
of characteristics of a time series under various types
of truncation models, the truncation by deduction of a
constant value (c) is first considered in this study.
The truncation has several effects on a variable and its
time series, but in this paper, the effect of such a
constant truncation on autocorrelation coefficients

of time series only is analyzed.

It is logical first to study the truncation
of independent time series. However, this case is
usually best shown when the dependence parameters are
equated with their values of independent case, in the
developed expressions for the case of dependent time
series.

2. Effect of truncation on autocorrelation
coefficients for the first order Markov linear process.
Let X, be a discrete time, stationary first order

Markov linear process. It is truncated at any real

constant value c¢ such that

Yo =8 - B if X, > ¢, with == < ¢ < @ | and

) (1)
= < "

Ye 0 if X, BE

The autocorrelation function for the truncated process

is derived for the cases when x_ at any time t is

(a) normally distributed; and (b} lognormally distribu-

ted variable.

5. Normal dependent process. The first order
Markov linear model is defined here in the form

X, =H+op {xt_l - u) +\1 - p2 £t (2)

where £,

dent stochastic component) with the mean zero (uE =0),

is an independent normal variable (indepen-

and the variance o2 (Gg) iR is dependent normal

T

variable with the mean 1 and the variance ¢ (same
as Et) and the population autocorrelation coefficients
re: =

a DT P

The process of eq. (2) is truncated by the
model of eq. (1) so that

@

E(y) =/

c avim

X-C

exp [- 3 55)2] ax

- = exp{- 7ED - e - &) (3
27
2 J'm (x—c]z 1 x-p 2}

E (%) = exp {- = (/)7 dx
t c V2w P{ £ g Y

1}

[(e-uP + o2][1-¢ (EB)] - =
27

(c-u) exp{-%(i}) 2} @)

represents the cumulative value of the
c-p

- @ tg —— .

a

where ¢ [%)

standard normal density function from

Var y, = (e-w)?[1-¢ (59)] ¢ Eh

oof- )

+ 02 [1- 8 [Eéﬁaj - %;-exp {f (Eéﬁﬁ%} (5)

o c-u
- —(e-w)le =1
=0 we 91l

To find the autocorrelation function, first
the expected value of the cross-product function is
obtained as

( ) fm o [xl-cj[xz—c) 1
E (y.y = | ————— exp - ——
vt L ¢ 2102 102 2(1-p2)
X -H Xo=H X.=u  X,-u
1 2
[E? « % - 20, EEl axp ax, . (6)

Standardizing the variables and using the inversion
theorem for the characteristic function of bivariate
normal distribution and expanding the integrand in

ascending power of . the above equation becomes

= ()] =
- T
E 0¥ -jzo T {_u
a

, 1Pl
(cxl + u-c) [5? i u

1
exp (- %uz s iuxl} du] d.‘{l?(- f (axz + p-c¢)
J &

175 1 i
[EJ vl exp (- = v2 - i VX,) dv] dx, » . (N

(=0 4d
The coefficient of ?EJ—- is the product of



two integrals of which the first is

@

I(EéE-xl, u) = fc-u (o Xy * u-c)
o

[Zi [ ul oexp (-% uz-iuxl] du] dx,, (8)

and the second is 1(553 > Xy v) similar to eq. (8).
Both the integrals are essentially the same because X,

is assumed to be a stationary Markov process.

The integral in the square bracket of eq. (8)
is

(0T B ) o o))

where u(xl] =

-
= exp ( 5 xl} and Hj (xt) are
Chebyshev-Hermite polynomials [see reference (171

For j =0, eq. (8) becomes

LEE L, w =" (ox +uc)
E-uy
a
H0 {xl) o (xl) dxl = E (yt} p (9)

For j =1, eq. (8) gives

(axl + u-c)

Hp () e () dx; = (D)o [1-0(2) 1. (10)

For j > 2, eq. (8) becomes

DGR, x,w = (0 [T (ox) + u-0)
=
H._,| (xl) o (xlj dxl % (11)
Using the identity
(D) e (x) = H, ) @ (12)

with D' as the symbol for r-th derivative, and
integrating by parts, eq. (11) reduces to

=B o &) a3

DEH xpw = ) oy,

aJ

Substituting eqs. (9), (10) and (13) into eq. (7), then

o 2 =
OV (Vy¥ph) = 2,02 [1+8(5H)2 + - exp {-{%}2}
j
T 2 C-u
STH, 59 . (14)

~1 8

i=2

The autocorrelation function is then given by

= 2 .
(O = s 1 - oE5tnt o L [ b3}

i b
[ SrH., t%“}/cc-uﬁ [1-4EED] ¢ B -

- /“_ - (EH - 1] exp{- 5 t"‘—“)z} .

27 o
s 02 [1 -0 €M) DD exp - €2 (15)
o 2n P [¢] *
Putting ¢ + -= in eq. (15), p_(c) = p as for
T T
eq. (2).

For the case of an independent normal
random variable 0.=0 , and hence for independent
normal random variable eq. (15) reduces to pr(e)=0 .
This shows that, an independent process remains inde-
pendent after any constant truncation. For the case
of the first order Markov linear chain, the auto-
correlation coefficients for any constant truncation
¢ are given by eq. (15).

4. Lognormal dependent process. The lognormal
variable does not have additive but rather multiplica-
tive reproducing properties. In order to keep the
variable lognormal after the application of the first
order Markov linear process, the process should be

-1 = - - 2
in Xy Mo p (in X4 ynj + 1-p £y (16)

where €4 1is an independent normal variable with

mean zero and variance an2 , and X, is a dependent
Lo 2

; : Un* 50q

lognormal variable with mean u = e
2 2
U+ o]

= nn
variance o? = e (e M - 1), where u
is the mean of logarithms of the random variable x¢ .

Equation (16) can also be expressed as

and

. ey VigeE B
Rate Bn X g=up) : =82 &

X =€

; an

The autocorrelation coefficients of the dependence
model of eq. (17) are

2
eOTUn -1

pl = ——a . (18)
g B §

The process of eq. (17) is truncated
according to eq. (1) for 0 < ¢ <= , giving

=™ Inx-u 2
X-C 1 n
E(y.) = { (%] exp {— E( 5] J}d in x
&n c-y \ In c-yu
gl o527
n n

(19)

» (1,2
=expl 7 0, o,




231
<
~
[y
s
0~

3 in c-un
exp (ch + 2un] [1 - T ZGn] -

n

in c-u
L = —_—n
el yen) [ofeeen]
in c-un
+ c? § & ) ) (20)
n

From eqs. (20) and (19), the variance of y_ 1is
obtained as var Yt = E(ytz] - [E(yt)]2 Similarly,
as in eq. (6) but with the use of eq. (17) for

Yt = X¢- € , if x¢ >c¢c or ypr =0 for x <c
the expected value of E(yyyts+) 1is obtaineg with
the replacements &n x; = u and 4n Xg4p = V

il

o @

1
EGyy,,) =/ [ Ee)e'-e) ———
gepry inc inc ZﬂGi v1-p2
- 2

exp { - st e n) :

2(1-p3) L “n }

u-u V-u v-u_ |2

n n n ”
- ZpT = J [ = ] + ( = J du dv . (21)
n n n

Integrating eq. (21) in the same way as eq. (6), the
covariance of y, and y;,: can be expressed as

= in c-un
cov (ytyt+r3 = pa< exp(cn+2unj [1-¢{ ———;__ =,

j

= P ] in c-u in c-pu g «

+ I —LT c I H. 2 o B g+ J
- jl k=2 j-k o

j=2 n

- n c-p
exp (% o2 + ”n] {1-@ (w—g—-'-l- - cn” . (22)

The autocorrelation function is given by

1in ¢c-p
- 2 2 A4 TR R,
Dr{c} = pTUn exp (Gn + 2un) 1-9 5 an

a

in C-]-an . [ in C-Lln) gk'l.,
n

& c-
un

] -

- 2 -
exp(cn + Zun) [1 [ [

- 2 c exp [%- ai + pn)

(A1 C-y in c-p
[1-¢ - "2 } ’ ( -
a g
n

n

in c-un
+ c2 {1-& (———}] 3
g
n

For the case of an independent lognormal
process, P =0 for all T , and eq. (23) reduces to
Pc(c) = 0 . So an independent lognormal process re-
mains independent after any constant truncation.

n,

in c-un

- (23)
il

Equation (23) is valid for any positive
truncation. For negative truncation, it needs some
modification. Since the legnormal variables have
only positive values, for any negative truncation
the mathematical expectation of any function of x,
is extended over the whole range of the random
variable x Therefore setting &n c = - = for

c <0 ,as if ¢ =0, eq. (23) can be simplified to
2
eprcrn -1
LAY e ==0==% s
T a2
e 1 _1
in the same way as eq. (18). Therefore, o_(c) 1is
independent of ¢ for c < 0 ;
E(y ) = ex & g2 + y ] -c (24)
t P 3 n n ¥
=
< 2 [ )
var y, exp (on + Zun) e 1 . (25)

Therefore, from egs. (23) through (25), it follows
that for any negative truncation (c < 0) , only the
mean is changed.

The case of a value of ¢ being negative
can be easily conceived as the constant water dis-
charge diverted into a river with relatively low
flows.

As hydrologic time series often have a
deterministic component (monthly values have the
yearly cycle, hourly values have the daily cycle),
first a simple sine function is investigated in the
follewing text, and then a combination of sine func-
tion and a dependent random variable is studied.
However, it is difficult with this general analysis
to come very close to the real structure of hydro-
logical time series or to the various complex trun-
cation models which occur in practice.

5. Effect of truncation on autocorrelation
coefficients for a sinuscidal series. Let x; = A
sin wt , a continuous deterministic time series be
truncated as follows:




c <A (26)

¥y & 0 if X, <¢

Figure 1 shows: (a) the truncation at 0 s c <A
and (b) the truncation at -A Y

(b)

Fig. 1. Schematic diagram for the lagged cross
product of a sinusoidal series: (1) sine
series; (2) shifted series for 1 ;

(3) level of truncation
The level of truncation can be expressed as
A sin wt, = ¢ , where
£ B sin'l =
¢ A 27)
with
m T
Rl e P o (28)
then the expected values of y, are
cos mtc sin mtc
E{yt)= A m = 2 ¥
sin we
+ it —rm— (29)

5 p 2 sin? we + 1
E(y) = A 7 -

. 2 .
(2 sin mtc + 1) wt, 3 sin 2 wt
z - - - . (30)

The transformed variable y, 1is not a
continuous function of time. Therefore, to find the
cross product of the function with respect to any lag,
it is necessary to look into the length of the series

where x; < ¢ or y_ =0 When the series is
truncated at its negative values, i.e., te 1is nega-
tive and n/w + 2t, <t < m/w - 2t, , the cross

product with any lag t© is

E(ytyt+1J = %-[(T+t ) (A sinwt-c) (A sinw(t+t)-c) dt
c

(A sin wt-¢) (A sinw(t+1)-¢) dt] (31)

which upon integration becomes

A2 T-WwT
E(Ytyt+TJ T [ 5 - wtc +

sin 2 wt sin 2w[r+tc)

+ 4 + 4 Cos 1T -
= .

_ c 2 s oein2u (e ] sin wt
Lsm wtc sin“w (T th —

-2 [cos wt + cos w(T+t ) sin wt +
c c C

+ (‘rr-u:'l:—zmtc] sin? mtc +
O 1 O et
2m 2 c 4

sin 2 wt
c
+ —_— COS '[ -

4
.2 .2 sin wt
- = - 51n t —_—
[s1n w(T tc) w c] 3

- - 3 +
2 [cos w(r tc] + COS mtc} sin wtc
+ (wt-2ut -7) sin? wt . (32)

For all truncation when 0 < 1t < w/w - 2t the

second integral in eq. (31) does not exist and,
therefore,

AZ Tewt sin 2 wtc
E{ytyt+r) = o { 3 R 4 *

sin 2w[r+tc}
+ _4-—-—-—-— COos WwT -



sin wt

s 02 T P
[51n wtc sin m(r+tc)] 5

- 2 [cos wt  + cos w(t+t )} sin wt  +
c c c

- - i 2
+ (7 - wt 2mtc) sin wt . (33)

Similarly, when w/w + 2t <1 < 2nfw , the first
integral of eq. (31) does fiot exist for which case

sin Zm(r-tcj

_ A2 WT~=m
EGeYeedd = 37 [ 2T Mg 7 *

sin 2m1:C
# ———| cos 1 - ‘:sin2 w(t-t) -

sin wt

- sin2 i S (T
sin wth > 2 [cos w(t th +

1 i s o
+ + T-2u =T 4
cos wt sin wt (wt-2wt ) sin< wt . (3 )

When t, 1is positive and w/w - 21:C ST s wfu 4 2tc ,
none of the integrals in eq. (31) exists for which

EG Y =0 - (35)

The evaluation of E[ytyt+z) according to
eqs. (31) through (35) depends on t and the level
By using E(y,) from eq. (29)

and E(ytz) from eq. (30), the autocorrelation

of truncation c¢

coefficients can be computed by

- [Eo]?

£, - [B0y)]

E(Y Y i)

(36)

p (e =

6. Effect of truncation on the autocorrelation
coefficients for a time series composed of a periodic
component and a stationary stochastic component. Let
the discrete process X, be composed of a determinis-
tic periodic component P; = A sin wt plus a sto-
chastic component ny , where A is the amplitude
of the periodic component, w is the angular fre-
quency and X = 2n/w becomes the period. The pro-

cess x, is analyzed for truncation when n. at

any particular time follows (a) a normal distribution
and (b} a lognormal distribution.

Let the process x; = ng + A sin wt be
truncated by any real constant ¢ such that

Yo =X =€ when X,2cor n_>c-Asinowt

t
(37)

= W, < < B i
Ye 0 hen X, <cor n <c - Asinut

A
Ey(e) =1 ]

(a) Normal distribution. Let n, be

normally distributed with mean u and variance o
It is further assumed that n, follows the first

2 -

order Markov linear model according to eq. (2).

Following the truncation of eq. (37) and
letting

ht = ¢ - A sin wt and Ht+T = ¢ - A sin w(t+1) ,

it can be written that

# = ¢( e (38)

. -v) h, -u(27
L exp [— % [—t-&-—J iy . (39)
vam L

To find the autocorrelation function,

BeYiir

(ny-h d(ny-hy ) 1 r(nl-u) .
2mo?  (1-p2) 2(1-p2)

T No-Uy (N,-H
+ ( 20 ) - ZpT( 10 ] ( ZU )J dnl dn2 i (40)

Following the integration of eq. (6), it
can be obtained that

2
Eyy =_:!. % o—exp [-i(ht-u)] =
T taT X o1 NS 2 o

- h_-u h -u 2
t a 1 t+
- (h-w) l_l-@ ( . H P [_ - ( c ] z

h,  _-u
t+T
2 [ht+T-u) [1_¢ (—g}} +




o P [ ]

rht+r'u
a

Hi

h_-u 2 h -yl
WLl eyl

The autocorrelation coefficients can be computed with
By Yier » E¥y? , Ey, given by egs. (38), (39)
and (41), respectively.

@ o h -u
g T t
g E ?Hj-Z(_U

(b) Lognormal distribution. Let n, be

and cﬁ as the

lognormally distributed with vy

mean and variance of the logarithms of the variable.

Also, 1in N, follows the first order Markov linear

process, so that the dependence model of Y is
given by eq. (17).

Let the process X, =+ A sin wt be

truncated at any level ¢ according to eq. (37),
such that 0 < c - A sin wt < = Then substituting

c -Asinwt =h_ and c - A sin w(t+t) = ¢ it
t t+T
can be obtained that
1 A ) &n h_-u
Ebgd = 1 E exP{_‘Un T ¥ 1'¢{ R - crn) -
in ht-u
- h; [1-¢ cH ) (42)

A &in h_-u
E[y = % E {exp (2|:rfl + 2unj I:l-sb(Tt-]l - 2011]] -
t=1 n

&n h_-u
1 2 T n
- th exp (E o] + unj [1-¢[—U-—-—— - Gn” +

n
&n h_-u
+ b2 [1-@ —Ut “H (43)
and

n

1 A
Bgrpue = 4

&n h_-u
o e [ )
t

1

1
in ht*T
- ht+T[l-¢ 8. o exp (02 + 2u)
“n
iin h =y inh,  _-u
e [ [w 2]
o, nl.
o Py h % in ht-un\ in h_-u \ k-1
v b5 k=23k{ s “( = 1'n %
j=2 n } n ’ "
) Ln ht-u ]
exp (502 + p) [lu¢ = - cn‘J ht+r L

(44)

The autocorrelation coefficients can be computed

from the values of Ey_ , EyZ and Ey.y as
t 1 Ye¥ter

given by eqs. (42), (43), and (44), respectively.

When ht 20 or h. <0 ,i.e.,

¢ < A sin Zut or A sin 2w(t+t) , the range of
expectation of y(t) extends over the entire region
of the lognormal variable, i.e., from 0 to = .

Therefore, in eqs. (42), (43) and (44), In ht or

in ht+T is to be replaced by -= where ht < 0 and
hiypy £0 . When h <0 and hi,e 20 forall t,
then the autocorrelation coefficients for the trun-
cated series can be obtained as

g2
D A
exp(c§+2un)(e Rovye B } sinwt sinw(t+r)
t=1
p.(e) = ; 52 72 . . (45)
exp (cn+2un] (e -1) + = tél sin® wt

The correlogram of the untruncated series
can also be obtained from eq. (45) since it is inde-
pendent of truncation under the conditions of its
derivation.



Chapter III

PRESENTATION AND DISCUSSION OF COMPUTATIONAL RESULTS

1. Computation of correlograms. The effects
of truncations by constant values of ¢ on the auto-
correlation coefficients of time series can be deter-
mined by two methods as follows: (a) numerical solu-
tions of equations developed in Chapter II, by
approximations and (b) generating large samples of

All equations theoretically derived in
Chapter II for the autocorrelation coefficients of
stochastic processes involve the Chebyshev-Hermite
polynomials [1]. It was found that for both truncated
normal and truncated lognormal random variables the
equations which involve sums of polynomials converge
for all values of p and for all finite levels of

time series by Monte Carlo method (data generation
method), truncating them with various constant values
and computing correlograms of the truncated time

series.

The first approach is selected here for sim-

ple cases as investigated in Chapter II. However,

the second approach is always available for complex

cases,

It is applied here only in two cases of daily

-Tiver flows and only for a given case of constant
truncation at the mean value.

truncation to the true finite values as

j increases.

The convergence is faster for lower values of p than
for higher values, or fewer polynomials are necessary
p than for large

for the same accuracy for small
In all computations 14 polynomials were
Tables 1 and 2 show the comparison of the first

o values,
used.

serial correlation coefficients computed with 9 poly-
nomials with those computed with 14 polynomials for

Table 1. Comparative study of the convergence of eq. (15) by using 9 and
14 Chebyshev-Hermite polynomials in the computation of
for different values of p and different levels of truncation
Level -2 p=0.4 p = 0.6 P 0.8
of
trun- 9 poly- 14 poly- 9 poly- 14 poly- 9 poly- 14 poly- S poly- 14 poly-
cation nomials nomials nomials nomials nomials nomials nomials nomials
- .2 P2 .4 .4 .6 .6 .8 .8
-1 .18886 .18886 . 38149 .38149 .57868 .57868 .78159 .78162
-0.5 .17606 .17606 .36172 .36172 .55797 .55797 .76671 .76674
0 . 15587 .15587 .33086 .33086 .52633 .52634 . 74538 .74548
0.5 .12498 .12498 . 28002 .28002 .46827 . 46827 .69565 .69575
1.0 . 08696 . 08696 .21215 .21215 .38355 . 38356 .61314 .61341
2.0 .02140 .02140 .07022 .07022 .16617 .16618 .33951 .34003
3.0 .00155 .00155 .00863 . 00863 .03232 .03234 .09780 . 09835
Table 2. Comparative study of the convergence of eq. (23) by using 9 and
14 Chebyshev-Hermite polynomials in the computation of o1(c)
for different values of p and different levels of truncation
Level a2 p=0.4 p=20.6 p 0.8
of
trun- 9 poly- 14 poly- 9 poly- 14 poly- 9 poly- 14 poly- 9 poly- 14 poly-
cation nomials nomials nomials nomials nomials nomials nomials nomials
0 . 12885 .12885 .28623 . 28623 .47845 .47845 .71324 . 71324
1 .10801 .10801 .25304 . 25304 .44256 .44256 .68533 .68533
2 .08114 .08114 .20653 .20653 .38901 .38901 .64335 .64337
4 .05022 .05022 .14809 .14809 .31864 .31864 .59379 .59385
6 .03253 .03253 .10908 .10908 .26335 .26335 .54336 .54355
8 .02218 .02218 .08276 .08276 .21996 .21997 .49402 .49247
10 .01569 .01569 . 06496 . 06496 .18895 .18896 . 45860 .45886
14 .00889 .00889 . 04352 .04352 .14663 .14664 .40382 .40426
18 . 00566 . 00566 .03240 .03240 .12445 .12447 .38181 . 38265




both normal and lognormal processes. The difference
is not significant, and, hence, 14 polynomials are
considered to be adequate for all computations. All
computations are carried out on a high speed digital
computer (CDC 6600) by using equations theoretically
derived in Chapter II. '

2, Normal dependent process. For a normal
dependent stochastic process of the first order Markov
linear model the autocorrelation coefficients of the
truncated series were found to be dependent on four
parameters: (1) p , the first autocorrelation
coefficient of the Markov model; (2) ¢ , truncation
constant; (3) u , mean of the non-truncated series;
and (4) o2 , variance of the non-truncated series,
as it is shown by eq. (15).

As it is complicated to study the dependence
of pr(c} of eq. (15) in function of all four param-
eters, the case is made simpler by investigating o, (c)
only for a standardized normal variable with p = 0

£.(C)

0.8

0.6

0.4

0.2

@ p=040

and ©? = 1, Also, the truncation constant c¢ is
expressed in terms of the standard deviation o of
the original series. Four values of p 1in the equa-

tion o, = o' are used: p = 0.2 ., 0=0.4,p=20.6
and p = 0.8.

Figure 2 gives four graphs of autocorrelation
coefficients pT[cJ , each for a given value of p

The first two graphs show three curves (for ¢ = -@ |
c=0,and c=g¢) , and the last two graphs give
four curves (for ¢ = -=» , ¢c=0, ¢=0¢, and

¢ = 20). The case corresponds to the first
order Markov linear model, B 5 pT , without
truncation.

c = -=

For p = 0, it follows that pT(c) =0
for any c The independent normal process remains,
therefore, independent after any constant truncation.
The effect of the constant truncation ¢ of the
standard normal first order Markov linear model on

o 4(C)

0.0 '

0 2 4 6 8 10

12 14 16 I8 20 22 24

Fig. 2. Correlograms of the truncated normal process of the first order Markov linear model for:
(1) p=0.20; (2) p = 0.40; (3) o = 0.60; and (4) p = 0.80. The truncation constants
¢ are either -= , 0 and ¢ ;or -= , 0 , o and 2o



the first autocorrelation coefficient pilec) is
shown in Fig. 3.

| O ,Ol{c)

s £ =080

08 050

0.4 020

0.2 0.20

&% -C R . | r +C

-5 -4 -2 0 2 4 6 8
Fig. 3. First autocorrelation coefficient as a

function of the level of truncation ¢ for
a normal process of the first order Markov
linear model, for four values of Py =P
0.20 ; 0.40 ; 0.60 and 0.80

The means and variances which correspond
to the analytically derived eqs. (3) and (5), respec-
tively, are computed for various values of truncation
constant ¢ , for u =0 and g2 =1 , and are
presented in Table 3.

Table 3. Means and variances of truncated standard
normal dependent process (p =0 |,
a2 =1 , p)
Level of
tr““gatlon Mean Variance
- o 1
-1 1.08054 .75186
-0.5 .69554 .55189
0 . 39840 .34127
0.5 . 19554 .17609
1 . 08054 .07406
2 L00731 .00861
3 .00022 .00072

From Figs. 2 and 3 it is seen that all the
autocorrelation coefficients decrease steadily with
an increase in the level of truncation. For the nor-
mal dependent process the dependence model is almost
unaffected when the relative level (c-u)/o of trun-
cation is < -2 The rate of decrease is relatively
rapid in the range -2 < c-pfo <3 The process
becomes almost independent when (c-u)/o > 4 . It
can be observed that the autocorrelation coefficients
of untruncated series are independent of yu and o?
whereas for the truncated series the opposite is
true.

The closest practical hydrological case to
this theoretical dependent time series of normal

variable may be found in the time series of annual
river flows with distributions close to normal, hav-
ing drainage basins with large water storage capaci-
ties (or relatively large changes of water carryover
in basins from year to year), so that the first order
Markov linear models are approximately applicable.
The truncations by a constant value would correspond
to the diversion of a constant annual amount of water
into other river basins, or the consumption of a
constant water quantity every year by evaporation and
evapotranspiration.

The annual river flows of the Saint Lawrence
River below the Great Lakes are approximately normally
distributed with the first serial correlation coeffi-
cient of about p = 0.71. A constant annual with-
drawal from the Great Lakes (and confined or diverted
in other river basins) would be equivalent to a con-
stant truncation ¢ Therefore, the annual flows
remaining in the river below the lakes would be less
dependent in sequence after those constant diversions
out of the basin,

3. Lognormal dependent process. As for the
normal dependent process, the lognormal dependent
stochastic process of eq. (17) of series truncated
by a constant value has autocorrelation coefficients

pr(c) which are dependent on the following four
parameters: (1) the first autocorrelation coeffi-
cient p of the correlogram of eq. (18); (2) the

truncation constant c¢ ; (3) the mean I of

logarithms; and (4) the variance ci of the loga-

rithms of the lognormal dependent random variable;
this is shown by eq. (23).

As for the normal dependent process, the
parameters pn and o% are selected as particular

values, namely u, = 0 and Ui =1 , so that only

the relationship of oT(c] = f(p , ¢, 1) 1is investi-
gated by detailed computations. Also, the truncation
constant ¢ is expressed in terms of the standard
deviation o, of the logarithms of the original time
series. Four values of p in eq. (18) are used:
0.2, 0.4, 0.6 and 0.8.

Figure 4 gives four graphs of auto-
correlation coefficients pT[c} , each for a given
value of »p The first two graphs are shown for
three values of ¢ (c =0, ¢ = G.Son, c =o0o0_), the
third graph for four values of ¢ (¢ =0, ¢c = 0.50n,
€=g0,, Cc= 20,), and the fourth also for four values
of ¢ (c=0,c=0_,c=20_ and ¢ = 3Un). The case
¢ = 0 corresponds to the first order Markov model of
eq. (18).

For p =0, it follows Pq(c) = 0 for any
¢ . Therefore, an independent lognormal process
remains independent after any constant truncation.
The effect of the constant truncation ¢ of the
lognormal dependent process of eqs. (17) and (18) on
the first autocorrelation coefficient fy(c) is
shown in Fig. 5.

The mean of truncated lognormal dependent
time series is given by eq. (19), and the variance
[var y, = E(y2) - Ez{yt}} are given by egs. (20) and
(19). They are computed for various values of trun-
cation constant ¢ , for u =0 and ci =1, and

3

are presented in Table 4.



Fig. 4.
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18 20 22 24

Correlograms of the truncated lognormal process of the first order Markov linear model for:
(1) p=0.20; (2) p =10.40; (3) o = 0.60 and (4) o = 0.80. The truncation constants ¢

are either 0 , an/2 TR (first two graphs), or 0 , cnf2 » Oh s EGH (third graph), or
0, o , ZGn s Scn (fourth graph)

|_o-/:; (C)
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Fig. 5. First autocorrelation coefficient as a function of
the level of truncation ¢ for lognormal process
of the first order Markov linear model of eqs. (17)
and (18), for four values of pp=e i 0.20, 0.40
0.60 and 0.80
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Table 4. Means and variances of truncated lognormal

dependent process (u_ =0, 0; =1, p)

Level of

truncation Mean Variance
c
] 1.64862 4.67077
1 .88311 4,17074
2 .52854 3.29986
4 .24515 2.02526
6 .13395 1.33399
8 .08101 .95680
10 .05260 .69867
12 .03522 .53504
14 .02487 .41307
16 .01851 .32053
18 .01427 .24993

As for the normal dependent process, the
autocorrelation coefficients of a truncated lognormal
dependent process steadily decrease with an increase
of truncation level ¢ Figure 5 shows that ¢_(c)
continuously decreases with an increase of ¢ from
zero to greater positive values. It should be noted

that P, of untruncated series are dependent on

Ui of logarithms of a lognormal variable, as shown
by eq. (18), while for the truncated series the values
pr[c) are also dependent on b, or the mean of

logarithms of a lognormal variable,

A (C)

- I(ﬁ; = cost)
-0.707
0]

0707

As annual flows of many rivers are
asymmetrically distributed (usually well fitted by
lognormal distribution), time dependent because of
changes in water storage in river basins and often
well fitted by the first order Markov linear model of
eq. (17) or similar. The above case of truncated
lognormal dependent random variables is applicable
whenever a constant annual amount of water is assigned
to a diversion or unreturnable consumptive use, The
above results can be applied to many rivers under
these approximate conditions.

4. Truncation of a sinusoidal series by a
constant value. The autocorrelation function of a
truncated sinusoidal series depends on the amplitude
of this series and the level of truncation. The
autocorrelogram of a sinusoidal series is a cosine
function. The period of the autocorrelogram is the
same as the period of the original series, and its
amplitude is unity. In egs. (32), (33), (34) and
(35), a complete cycle of the process was considered.
The correlogram of the sinusoidal series at different
levels of truncation, with both amplitude and angular
frequency taken to be equal to unity, is plotted in
Fig. 6. The total number of t-values in a full
period X = 2m/w is taken as 20 for plotting the
graph in Fig. 6.

Figure 6 shows that the average absolute
autocorrelation coefficient E[|pr(c)[} decreases

with an increase of ¢ from c = -1 to ¢ = +0.707.
or, in other words, the dependence decreases with an
increase of ¢

T
] ] | | ] ] | ]
2 4 5] 8 10 12 14 16 18 20
0.2k
-04
._06 -
-0.8
e |0 L
Fig. 6. Autocorrelation coefficients of a sinusoidal series = A sin wt , (with both the amplitude A

¢ =0;and ¢ = 0.707

X
and angular frequency w being unities) truncated at four constant values:
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c=-1; c¢c=-.707 ;



5. Truncation of composite series of a
dependent normal random component and a deterministic
sinusoidal component. For a series having a periodic
and a dependent random component, the correlogram
depends on the variance ratio of the two components.
Considering the time average over a complete cycle,
the autocorrelation coefficients of the series com-
posed of a periodic and a normal dependent random
component truncated at constant levels are computed
from the values of Ey , Eyt2 and Ey,y,, . ob-

tained by eqs. (38), (39) and (41). The mean and
variance of the random component are taken to be

zero and unity, respectively. Then for different
ratios of variances of the random component and the
periodic component in Fig., 7, Appendix 1, are plotted
for p =0, 0.2, 0.4, 0.6, and 0.8 with the trun-
cation of series at different levels. The levels of
truncation are expressed in terms of the total stand-
ard deviation of the process.

Figure 7 is presented in Appendix 1 by the
following scheme of variance ratio and p (the first
autocorrelation coefficient of untruncated dependent
normal variable) given in Table 5.

In the case of a dependent normal random
variable (first order Markov linear dependence) plus
the sinusoidal component, when truncated by a con-
stant c (expressed in ratio to o of xtJ, the

first few autocorrelation coefficients show the simi-
lar pattern in pT(c} and decrease with an increase

of ¢ as with a pure dependent normal random variable
(with no periodic component). However, for larger
values of 1 , the autocorrelation coefficients

p_(c) begin to oscillate with the same period as the

periodic component and with the amplitude which
depends on the variance ratio and the truncation
constant as shown in Figs. 7.1 through 7.15 in
Appendix 1.

Table 5. Scheme of the arrangement of Figures in
Appendix 1
First Variance Ratio (v.r.)
auto-
correlation
coeff;C1ent 1.0 2.0 3.0
0.0 Fig. 7.1 7.6 7.11
0.2 Fig. 7.2 Foud Toli
0.4 Fig. 7.3 7.8 7:13
0.6 Fig. 7.4 7.9 7.14
0.8 Fig. 7.5 Fixdb 74N ]

This case of a normally distributed
dependent random variable superposed on a periodic
component may roughly approximate the case of monthly
and daily river flows, which have a clear IZ-month
or 365-days cycle in the form of a sine-function,
plus a normal random variable of the first order
Markov linear dependence. However, this case departs
from the reality in three ways: (1) it treats the
population autocorrelation function (no noise in the
correlogram); (2) the sine-cycle means that only the
cyclicity exists in the mean monthly or mean daily
flows, while it is known that a corresponding cycle
exists in the standard deviations of monthly or

14

daily flows; and (3) stochastic components of monthly
or daily flows are rarely normally distributed once
the periodic component (in both mean and standard
deviation of flow) is removed. Regardless of these
three limitations, Figs. 7.1 through 7.15 give in-
sight into how the truncation works on a composite
time series.

6. Truncation of composite series of a
dependent lognormal component and a deterministic
sinusoidal component. Similarly, for the series with
a periodic deterministic and a lognormal random com-
ponent, the autocorrelation coefficients are computed
by the eqs. (42), (43) and (44) or (45). Figures 8.1
through 8.15, Appendix 2, give correlograms of trun-
cated series composed of a sinusoidal series super-
posed on a dependent lognormal process according to
the model of eq. (17) for p =10, 0.2, 0.4 , 0.6
and 0.8. The levels of truncation are expressed in
terms of the total standard deviation of the series,
and the variance ratios are 1.0, 2.0 and 3.0.

Figure 8 is sorted in Appendix 2 as Figs.
8.1 through 8.15 following the same scheme as shown
for Figs. 7.1 through 7.15 in Table 5.

Similar results are shown in Fig. 8 as in
Fig. 7, namely, the first few values of pr(cJ de-
crease both with a decrease of p and an 1increase
of ¢ For higher values of DTfC} , the correlo-

gram fluctuates with the same period as the periodic
component and with the amplitude which depends on
both the variance ratio and the truncation constant ¢

Because of lognormal distribution of the
stochastic component, this analysis approximates
better the case of monthly or daily river flows than
the previous case of normal distribution. However,
this lognormal case still departs significantly from
the real time series of monthly or daily hydrological
time series. Though it is only a rough approximation,
it gives a clear picture of what occurs to correlo-
grams of time series when 4 given constant water
quantity is either diverted out of a river basin or
is consumed in it without a return flow.

7. Two examples with hydrological time series
of daily river flows. In order to show what happens
to series of daily river flows when a large trunca-
tion is made, the truncation constant is taken to be
the mean discharge. Water withdrawal from a river is
a physical analogy of truncation and to illustrate
its effect on the dependence properties the daily
flows of the Batten Kill River at Battenville, New
York, and the Madison River at West Yellowstone,
Montana, have been taken as examples. The time
series of both rivers are truncated at the mean flow.
Both correlograms, with and without truncation, are
shown in Fig. 9 for the Batten Kill River and in
Fig. 10 for the Madison River.

The correlograms of the truncated series
of daily flows of the Batten Kill River and the
Madison River when truncated shows a reduction of
the average absolute autocorrelation coefficient.
Since both series of river flows are periodic and
the stochastic component follows the first order
Markov linear model [2], the correlograms of trun-
cated series show the same patterns as the correlo-
grams obtained by theoretical analysis and shown in
Figs. 7 and 8.
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Fig. 9.

Correlogram of truncated and untruncated
series of daily flows of the Batten Kill
River at Battenville, N. Y.: (1) correlo-
gram of untruncated series; and (2) cor-
relogram of truncated series; with ¢ = X
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Fig. 10.

Correlogram of truncated and untruncated
series of daily flows of the Madison River
at W. Yellowstone, Montana: (1) correlo-
gram of untruncated series; and (2) cor-
relogram of truncated series; with ¢ = X



Chapter IV

CONCLUSIONS

The following conclusions may be drawn from
the previous analytical study of the effect of trum-
cation on a dependent random process with or without
a periodic component:

1. Truncation at any constant level of a
dependent random process reduces the dependence in
sequence of a time series. The magnitude of the re-
duction depends on the constant of truncation. The
general pattern of correlograms for truncated series
in the case of the first order Markov linear process
remains similar as for the untruncated case.
Therefore, when analyzing a physical process with
zero values, a reasonable assumption is to consider
it as a truncated process.

2. First autocorrelation coefficients of
precipitation series in an arid region should be, in
general and neglecting other factors which affect

16

the dependence, less on the average than in a wet
region, if the annual evaporation is assumed to be

a constant. The mathematical dependence model of
precipitation series for the two regions should how-
ever be the same. Because the evaporation in a dry
region is a more complex process than in a humid re-
gion, the above effect may not prevail in the final
result of all factors affecting the dependence.

3. The truncation of a periodic process at a
constant level reduces the amplitude of the correlo-
gram while the period remains the same. It can also
be said that the periodic truncation of a purely sto-
chastic process makes the correlogram periodic.

4., Water withdrawal from a river will decrease
the dependence when this process dries up the river
for some time, thus creating zero values in the
hydrological time series.
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APPENDIX 1

Figs. 7.1 through 7.15 Correlogram of X, = A sin wt + ng,
truncated at constant level for & = 12 and different
values of p and variance ratios, with n, normally
distributed.
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Figure 7- continued:
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APPENDIX 2

Figs. 8.1 through 8.15 Correlogram of *{ = A sin wt + n_ ,
truncated at constant level for A = 12 and different vaEues

of p and variance ratios, with n. lognormally distributed
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