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ABSTRACT

Three pollution-indicating bacteria groups--the coliforms, fecal coliforms (FC), and
fecal streptococci (FS)--were used to investigate bacteria fluctuations in a small, high-
elevation stream in the Colorado Rocky Mountains in 1966-67. A total of 3102 observations
were made at two sites. The upper site was located to sample water flowing from an uninhabi-
ted, forested catchment, while the lower site was 1.5 miles downstream, below a grazed meadow
irrigated by the creek. The primary objectives of the study were to describe bacteria con-
centrations and variability at the natural and cattle-contaminated stream sites and to inves-
tigate bacteria cycles. Secondary objectives of the study were to examine relationships
between bacteria counts and stream stage, water temperature, and insolation, and to describe
the relative sensitivity of the three groups to the pollution.

Statistical analyses revealed: (1) The analytical error is an important source of
variation; a coefficient of variation of about 0.5 was common for coliform replicates taken
from one bottle. (2) Two bottles collected simultaneously were very similar in bacteria
counts. (3) More variation occurred on a day-to-day basis than within a day. (4) Variabili-
ty was highest when concentrations were lowest.

A daily cycle was found for all groups and sampling weeks 95% of the time. Evening
maximums in concentrations followed afternoon minimums, while morning bacteria counts
usually fell between the two. The cycle was apparently related, among other factors, to
rising stream stages of early evening, whereby streambank "flushing" took place. Seasonally,
the coliform and FC attained maximum values in the spring "flushing" period of rising stages
at the cattle-influenced site; these groups showed highest counts at the upper site during
low-dilution flows of mid-summer. The FS indicated seasonal maximums for both sites during
mid-summer.

Very high bacteria counts occurred during summer storm stage rises, however counts
on receding limbs of these hydrographs were comparable to pre-storm values, or even lower.

Water temperature was inversely related to bacteria counts, however distinct
separation of water temperature and insolation effects was not possible. Comparison of
shaded and unshaded containers suspended in the stream (at stream temperature) indicated ex-
treme die-off of coliform bacteria in only 1-2 hours exposure to sunlight--another possible
explanation for the afterncon low counts.

The cattle-contaminated site always showed higher bacteria concentrations than the
upstream site. The FC were slightly more sensitive in detecting the pollution than the coli-
forms and far more sensitive than the FS. The FC/FS ratio was always less than 1.0 at the

upper site, but ranged from 1.70 to 5.45 at the lower site.
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Chapter I

INTRODUCTION

High elevation mountain watersheds, where snow-
melt contributes a large portion of the runoff, provide
much of the water supply for municipal, agricultural,
industrial, and recreational needs. As these high
elevation watersheds are managed for a multitude of
uses, water quality in the streams is commonly affected.

In many areas of the United States, for example,
much interest exists regarding timber management,
grazing, recreation, and other land use activities and
the impact of these activities on streams. In order to
arrive at management decisions regarding these land
uses, a '"'yardstick'" is needed, whereby the impact which
a particular land use has on the streams may be evalu-
ated. Many pollution indicators are presently in com-
mon use in heavily-polluted urban areas, and some of
the indicators are no doubt applicable to the less-
contaminated conditions of certain mountain areas.
However, any pollution measuring system needs to first
be field tested before it may be assumed that the sys-
tem produces valid results under the field conditions
at hand.

In order to provide needed information to land
managers about water quality of mountain watersheds and
the influence of land management on streams, the Depart-
ment of Recreation and Watershed Resources of Colorado
State University is conducting a 10-year water quality
research program. The research began in 1964. This
paper reports findings of the 1966-67 phase of the over-
all investigations. It is hoped that the information
provided will aid in better measurement of land use
impact on mountain streams. The observations made in
this report apply to the conditions encountered and the
information presented will, of course, not be applica-
ble to streams of every geographic location. The
results should, however, be meaningful in other lower-
pollution areas of relatively cold, well-aerated
streams, especially those of snowmelt origin.

Frequently bacterial indicators are used to
evaluate the biological water quality of streams.
These organisms--especially when isolated by the mem-
brane filter technique--provide a relatively simple,
fast, and inexpensive index of pollution. Yet, there
is a paucity of information regarding use of bacterial
indicators to assess the impact of mountain land use on
water quality. Essential knowledge is missing regard-
ing cycles and variability of bacteria in mountain
streams and the relationships of bacteria to physical
environmental factors. This basic information is
requisite to the development of sampling procedures for
use of bacterial indicators in low-pollution areas.

Geldreich et al., (1962) studied the relation-
ship between land use and fecal coli-aerogenes bacteria
concentrations by testing 251 soils, including creek
banks, pastures, forests, an alpine area, and irrigated
farm land. They found that fecal coli-aerogenes bac-
teria are usually absent in undisturbed soils (for ex-
ample in a '"virgin" forest), or are present only in
comparatively small numbers. Conversely, there was a
sharp increase in the numbers of these bacteria types
from soils known to be polluted, for instance, in

pasture areas. Geldreich (1966) asserts that the pres-
ence of fecal coliform organisms in untreated water is
an indication of recent fecal pollution, while coliform
organisms may indicate soil pollution or less frequent
fecal contamination. He reports:

Our findings support the current interpre-
tation that fecal coliforms in surface
waters are largely, if not completely, de-
rived from fecal pollution of animal origin.

Teller (1963) conducted an extensive investi-
gation of coliform concentrations on several watersheds
of the Northwest, using available data from records of
municipal watersheds. He described broad seasonal
trends for the coliforms and found evidence of rela-
tionships between coliform counts and certain physical
environmental factors, for example, streamflow and air
temperature. No increase in coliform densities was
seen to coincide with large increases in logging and
stream turbidity over a period of years. (It should
be noted that the logging was on municipal watersheds
and probably carefully controlled).

Reigner (1965) studied the impact of recrea-
tional land use on water quality; he notes that the
sampling and testing methods for detecting pollution
need to be strengthened so that land use impact may be
accurately evaluated.

“Morrison and Fair (1966), studying a Colorado
stream, observed that surface runoff washes bacteria
directly into the stream. During rising, stages of the
spring runoff, they surmised that water washes material
into the stream and picks up foreign material from
streambanks. Geldreich (1966) states that storm water
is the major intermittent source of bacterial pollution
entering our nation's waterways.

With ability to detect pollution sources, land
management activities and human activities could be
better controlled in order to minimize the detrimental
effect which land use may have on water quality.

Forerunning Investigations

In 1964-65 the Department of Recreation and
Watershed Resources at Colorado State University car-
ried out a study of water quality on a mountain water-
shed in north-central Colorado. A literature review
was completed in 1965. The results of the first two
years of study were published in June, 1967 (Kunkle and
Meiman, 1967). Among other observations the study
determined that:

1. High bacteria concentrations associated with
grazing and irrigation impact appear to depend on the
"flushing effect" of the flooding. This flushing
effect also occurs during spring snowmelt and summer
storm runoff periods.

2. Considering nine sampling sites located on
several streams, broad seasonal trends for the coliform,



FC, and FS bacteria groups were similar: (a} low winter
counts prevailed while the water was 0°C; (b) high con-
centrations appeared during the peak flows of June;

{c) a short "post-flush" lull in counts took place as
the hydrograph declined in mid-summer; (d) high concen-
trations were found again in the late summer period of
warmer temperatures and low flows; and (e) counts de-
clined with the arrival of autumn. The FS bacteria
showed higher counts in April-May than the other two
groups. The coliforms and FC were most similar in
seasonal trends.

Research Needs

Following the 1964-65 investigations, there were
still many obscurities regarding sampling procedures
for use in appraising mountain water quality by bacte-
rial indicator methods. Some of the questions raised
by the study were:

1. What variation in bacteria counts occurs (a)
hourly, (b) daily, (c) within a week, or (d) seasonally?

2. Are the bacteria variations related to bac-
teria concentrations, for example, is variation at a
cattle contaminated site greater than at an undisturbed
natural stream site?

3. What is the sampling error inherent in a
water sample taken from a stream?

4, 1s there a daily cycle in bacteria counts?
If such a cycle exists, does it occur at both cattle-
contaminated and natural locations in the stream?

5. Can the relationship between bacteria counts,
stream stage, temperature, or insolation be detected
on a daily basis?

6. How much do bacteria counts increase during
or following summer storm runoff, and how long are
these elevated concentrations maintained?

7. How do the variations, errors, and cycles
enumerated above compare for the three bacterial indi-
cators--coliforms, FC, and FS?

A limited number of duplicate samples taken
within 24-hour periods during the 1964-65 studies gave
2 hint to the tremendous variations in stream bacteria
concentrations within replicates and within a period
of a few hours. Some sources of variation or cycles
in concentrations are surmised to be:

1. Difference in location within the cross
section of the stream from which the sample is taken.

2. Diurnal fluctuations in concentrations,
either randomly or because of a daily cycle.

3. Day-to-day and seasonal variations in bac-
teria counts.

4, Changes in bacteria concentrations as the
degree of land use varies.

5. Die-off or multiplication of organisms in the
stream.

6. The size of the aliquot used in analysis.

7. Difference between duplicate bacteria plates
(replicates) resulting from pipetting errors, counting
errors, and real differences in bacteria numbers.

8. Incubator temperature fluctuations, changes
in media composition, accidental contamination of lab-
oratory equipment, and other errors stemming from lab-
oratory technique.

Research Objectives

Based on the research needs cited above, the
research objectives for the 1966-67 study were estab-
lished as:

MAJOR OBJECTIVES

1. To measure variability in bacteria concentra-
tions arising from field laboratory techniques.

2, To evaluate the sampling error inherent in
bacteria samples taken from a mountain stream under
natural as opposed to contaminated conditions.

3. To investigate hourly, daily, weekly, and
seasonal cycles in bacteria concentrations in the un-
disturbed as opposed to impacted section of the stream.

SECONDARY OBJECTIVES

4, To examine relationships in the stream be-
tween bacteria counts and stream stage changes, water
temperature, and insolation.

5. To describe the relative sensitivity of three
bacteria groups--the coliforms, fecal coliforms and
fecal streptccocci--to cattle grazing and irrigation
impact in a mountain stream.



Chapter II

RESEARCH DESIGN AND METHODS

A stream was selected for the study whereby a
distinct land use impact could be measured and studied.
This chapter discusses the study area and reasons for
its selection; the parameters measured; sampling sites,
schedules, and intensity; the equipment used; and
analysis of the data.

The Parameters Measured

Three bacteria groups were tested: the co%iforms,
fecal coliforms (FC) and fecal streptococci (FS)*'.
Stream stage and water temperature recorders were in
operation throughout the study. Stream stage measure-
ments were used to define rising and falling segments
of the daily and seasonal hydrograph and to isolate
storm runoff periods. Because of interest in "stream

flushing" by rising stages, stage measurements are used
in the analysis without converting to discharge (volume
of flow per se being of secondary interest). For in-
formation regarding flow volume, the 1966 hydrograph

is presented in Figure 3. The year 1967 had flows per-
haps 50 percent greater than in 1966; calibration of
the gage is still in process at this time and 1967 flow
records are not given. A stream thermograph was opera-
ting at the upper site during the study.

The Study Area

Within the Little South Fork of the Cache la
Poudre watershed of the previous investigations, a sub-
watershed was selected for the research (Fig. 1). This
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catchment, Pennock Creek, has several advantages which
make it particularly suited for such a study:

1. The stream offers a superb opportunity to
compare undisturbed to contaminated conditions of a
stream, all within a distance of about one mile. The
first two miles of the creek are in '"virgin'" condition,
flowing out of the northeastern corner of Rocky
Mountain National Park. In contrast to this "clean"
stream situation, the lower portion of the creek is par-
tially diverted for the flooding of a small, grazed
meadow (Fig. 2). About 75 head of cattle graze through-
out the summer.

2. The stream is close to the Pingree Park field
laboratory, making frequent sampling possible.

3. A stream gage and thermograph are located at
the upper end of the grazed area.

4. Flow continues throughout the summer, although
the stream is small enough for the grazing-irrigation
impact to be distinct. Flow during the summers was
from 5 to 15 cfs.

Figure 2.

The irrigated grazed meadow of the study,
showing the irrigation ditch in the
foreground.

Pennock Creek originates at an elevation of
approximately 10,000 feet and flows to 8,200 feet where
it empties into the Little South Fork of the Cache la
Poudre River (Fig. 1).

Sampling Sites

Two sites were sampled. The upper site was
located above the cattle impact area in order to sample
the '"uncontaminated' water flowing from Rocky Mountain
National Park. The lower site was placed near the
lower end of Pennock Creek, to sample below the cattle
grazing and irrigation.

Sampling Schedule

The study was conducted during two runoff
seasons. There were four seven-day periods of sampling

| were taken from each bottle.

in 1966 ("Weeks I-IV') and one in 1967 ("Week V').
sampling design for these five weeks was identical.
An intensive three-day and four-day study, an intensive
storm sampling, and a two-day study of insolation
(incoming solar radiation) effects on bacteria were
also completed in 1967. Dates of the sampling periods

The

were:

1966 Week I June 3-9
Week II June 23-29
Week III July 29 - August 4
Week IV August 24-30

1967 "3-day study" June 7-9
Week V June 15-21
Storm study June 21
"d-day study" August 2-5
Insolation study  August 4-5

The location of Weeks I through IV in relation
to the 1966 hydrograph appears in Figure 3. Week V was
on the rising limb of the 1967 hydrograph, similar to
Week I of 1966, The "3-day study' and "4-day study"
were comparable to Weeks I and IIT of 1966, respectively,
in regard to hydrograph position.
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Sampling Intensity

During Weeks I-V, sampling was as shown in
Figure 4. Three times during the day, two bottles were
collected from each site, upper and lower. Two aliquots
The sampling times are

referred to as "morning", "afterncon”, and "evening".
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Figure 4. The sampling design used in the Weeks I-V

phase of the study. Two pipettes were taken
from each bottle, two bottles were taken at

each site three times a day, and seven days

were sampled for each week, for each of the

bacteria groups.



The earliest time shown on the diagram is for the upper
site, while the lower site was always sampled approxi-
mately one-half hour later, for example, the '"morning"
sample was taken at the upper site at 0500 hours and at
the lower site at 0530.

In summary, the samples and replicates taken for
Weeks I-V (for each bacterial indicator group) were:

2 pipettes from each bottle

2 bottles from each site

2 sites (upper and lower)

3 times per day (morning, afternoon, evening)
__7 days per week
168 observations for each week-long period
( x 5 weeks = 840 observations)

The '"'3-day study" and '"4-day study' were designed
to further identify bacteria variations and trends
during the afternoon and evening period. In these two
studies only coliform bacteria were isolated. One
bottle was collected every two hours at the lower site,
from noon until 2:00 a.m. (8 samples per day). Six
replicates were taken from each bottle during the
"3-day study", nine during the '"4-day study'.

In the insolation study, six containers were
exposed to the sun, six were not. One coliform sample
was taken from each container several times during the
day.

The one storm sampling period was very intensive
as shown in Figure 24.

The following observations were made for the
various special studies:

"3-day study"

6 replicates per sample
8 samples per day (every two hours--
3 days 12 noon to 2 a.m.)

144 coliform observations

"4-day study"

9 replicates per sample
8 samples per day
4 days

88 coliform observations

"storm study"

14 individual observations of each
bacteria group during a 7 hour
period = 42 observations

"insolation study"

6 replicates (individual containers)
2 treatments (sun vs shade)
9 observation times
108 coliform observations during a 2 day
period

For all phases of the research there were 1394
coliform, 854 FC, and 854 FS individual observations,
or a total of 3102 observations.

IBeckman Scientific Instruments, Fullerton, California

2Foxboro Company, Foxboro, Massachusetts

Laboratory and Field Equipment

The bacteria were analyzed by the membrane filter
technique, using a portable incubator, water bath, por-
table autoclave, and a stainless steel suction arrange-
ment similar to that described in Standard Methods
(American Public Health Association, 1965). The pH
measurements were made on a Beckman Model N pH meter”.
Temperatures were recorded by a Foxboro thermcgraphz,
accurate to about * 19F. Stages were recorded on a
Stevens A-20 recorder> attached to a Servo Manometer
"bubble" gage4. Both recording instruments were located
at the upper site. Temperatures at the lower site were
measured by a pocket thermometer, accurate to about
+# 19F, Samples for Weeks I-V and the "3-day" and "4-
day" studies were collected in gallon-size collecting
bottles, randomly selected and marked before each sam-
pling trip (morning, afternoon, and evening). Samples
for storm observations were collected in 500 ml polye-
thylene bottles. Bottles were rinsed in boiling water
after each use. Pipettes, funnels, filters, and other
supplies and equipment were sterilized before use.

To observe the effect of solar radiation, twelve
wide-top, two-quart, ice cream containers were sup-
ported in a rack in the stream. The rack allowed
stream water to pass under and around the bottom half
of the vessels, maintaining all container temperatures
at nearly the same level (Fig. 5). Six of the recep-
tacles were shaded with a black felt paper, while still
allowing air to pass over them; six were left open to
sunlight. Samples were pipetted from the containers

into 250 ml polyethylene bottles for transport to the
laboratory.

Figure 5. The arrangement used in the insolation study
The black felt paper provided shade for six
of the containers, while the others remained

exposed to sunlight.

Data Analysis

Data for Weeks I-V were entered on standard
punch cards and analyzed on IBM 1401 and CDC 6400 com-
puters. Data for the 3-day and 4-day studies were

3
Leupold and Stevens Instruments, Inc., Portland, Oregon

4Exactel Instrument Company, Mountain View, California



analyzed by desk calculator. A 2 x 3 x 7 factorial
analysis of variance was carried out (2 sites, 3 times,
and 7 days); results showed extreme upper to lower site
‘contrasts in bacteria, and, therefore, subsequent
analyses were calculated by separate sites. A 3 x 7
factorial analysis of variance (3 times and 7 days) was
then computed; the time of day and days were found to
be significantly different, Thereafter, individual
analyses of variance were carried out between morning-
afternoon, morning-evening, and afternoon-evening.

Pairs of pipettes from within the same bottle
and bottles from the same site were compared by using

a paired t-test,

Scattergrams between the coliform-FC, coliform-
FS, and FC-FS groups were drawn, but the scatter was
so extreme that further analysis was deemed purposeless.

The major components of variance were broken out
by use of a factorial analysis of variance using factor
one as day of the week, factor two as time of the day,
and factor three as bottle, with two replicates taken
from each bottle. The sources of variation are shown
in Tables A-C, Appendix.



Chapter III

BACTERIA VARIATIONS

The variation inherent in replicates of individ-
ual bacteria samples and the variability occurring
during periods of a day, week, and season are major
factors to consider in sampling design. These compon-
ents of variance are evaluated and compared in this
chapter.

A factorial analysis of variance was carried out
for each bacteria group by site and week. Initial
analysis revealed obvious and drastic differences be-
tween sampling stations, the lower site always showing
much higher concentrations. For this reason, all fur-
ther analyses of the individual bacteria groups were
carried out by separate site. A factorial analysis of
variance was calculated, using three factors:

factor 1: day of the sampling week
factor 2: time of the day
factor 3: bottle 1 or 2

(with 2 replicates taken
from each bottle)

As an aid to sampling design, a tabulation of variance
components, taken from the factorial analysis of vari-
ance, is presented in Tables A-C of the Appendix. The
components of variance considered in the breakdown of
the tables are:

1 - analytical error (as shown by the difference
in two pipettes taken from one bottle)

2 - "bottle" (as illustrated by the difference
of two bottles collected simultaneously)

3 - day x time interaction

4 - time of day

5 - day-to-day.

Each of these components will be considered in
some detail in the folowing sections; in comparing
them (Tables A-C, Appendix) it is noted in general that:

1. The analytical error is usually one of the
most important sources of variance.

2. Little variation appears to be coming from
the "bottle'" component, i.e., two bottles taken from
the stream simultaneously are extremely similar.

3. At the lower site, the day component is
generally of more importance than time (for all organ-
isms). The upper site has little difference in time
or day variation, except in the case of the coliforms,
where the time shows greater variation than day.

4. In many cases there is a strong day x time
interaction, indicating that the daily cycle is not
independent of day-to-day variation.

A sampler may use variance values from the tables
in conjunction with an appropriate variance formula for
general guideposts, so that he may best invest his
samples by sampling more intensively those factors
having the greater variance.

From a practical standpoint, an investigator may
need to compromise in the allocation of his samples.
For example, although it may lower total variation in
the data very effectively for the researcher to sample
several days during the week, transportation costs may
overrule such plans. At the same time the sampler may
be able to reduce the analytical error, another impor-
tant component of the overall variance, by increasing
the number of replicates taken from each bottle and
thereby still use the resources at his command to im-
prove the estimate of bacteria counts.

Error in Analytical Techniques

One purpose of the study is to define the error
inherent in laboratory technique. During a total of
seven days (the 3-day and 4-day studies), bottles were
collected at the lower site, with several coliform
replicates taken from each bottle. The insolation
study used six replicates in each sample. Based on
these data, the error in laboratory technique may be
estimated.

Several Replicates from a Bottle

Using data of the 3-day and 4-day studies of
1967, the variation within one sample can be described.
Eight coliform samples were taken daily during the
total seven days, each sample including either six or
nine replicates (details of the sampling scheme appear
in Chapter II). The coefficients of variation for the
samples range from 0.14 to 1.06 for the six replicate
samples and 0.21 to 1.64 for the samples made up of
nine replicates, with a mean CV of 0.51 for the six-
replicate (3-day) study and 0.59 for the nine-
replicate (4-day) investigation (Tables 1 and 2). The
high coefficients of variation indicate that replicates
from a single bottle (at one time) vary tremendously
about the mean of the bottle, i.e., that a single pi-
pette would be a poor estimate of the bottle mean. In
brief, the analytical error is very high. The lowest

‘CV, 0.14, implies that there is a 95 percent chance

that a pipette taken from a bottle will estimate the

mean coliform concentration by an error of about * 28
percent, An error of * 100 percent (CV = 0.50) would
be more common, while an error as large as = 328 per-
cent might be expected at some times (CV = 1.64).

Plotting all sample means against coefficients
of variation for the two studies produces the inverse
relationship of Figure 6. There is a general increase
in the CV of replicates within a sample as the mean of
the population sampled decreases, i.e., the error in
analytical technique appears to be absolute and thus
becomes relatively more important as low-concentration
bacteria samples are analyzed.

Insolation Study Replicates

The insolation study of August 4-5, 1967, made
use of six replicates, taken in a slightly different
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Fig. 6. Coefficients of variation (CV) vs means for

individual coliform samples during the 3-day
and 4-day studies. CV represents the varia-
tion found within one sample (containing
several replicates).

manner than those replicates described on the preceding
page for the 3-day and 4-day studies. In the six open
containers of the insolation study, the water was mixed
back and forth in all vessels at the initiation of the
testing, so as to have the "same' water in all con-
tainers. One pipette was taken from each receptacle,
each time, for a total of six replicates per sample.
The means, standard deviations, and coefficients of
variation for six replicates taken in this fashion are
presented in Table 3. The coefficients of variation
for the six replicates average 0.34 for August 4, 0.39
for August 5.

Two Bottles Taken Simultaneously

During Weeks I-V, two pipettes were taken from
each bottle and two bottles were collected from each
site, as illustrated in the sampling design of Figure
4, Chapter II. According to the components of variance
breakdown of Appendix Tables A-C, there appears to be
very little benefit in taking more than one bottle of
water at a given sampling time. The bottle source of
variation is the lowest or nearly the lowest component

Table 3. Means, standard deviations and coefficients
of variation for the six replicates of the
""shaded" samples in the insolation study.
Means are in coliform colonies per 100 ml.

Time i s Ccv
8-4-67 1045 220.0 96.3 0.44
1230 263.3 42.7 0.16
1420 210.0 67.8 0.32
1720 673.3 332.9 0.49
8-5-67 0920 166.6 62.8 0.38
1045 170.0 767 0.45
1210 353.3 151.6 0.43
1400 146.7 77.6 0.53
1545 140.0 28.3 0.20

of variance in nearly every case for the three bacteria
groups and the two sites. It would, therefore, be
better to invest the sampling effort into additional
replicates from the same bottles or more samples over
time.

Because a greater possibility exists for consis-
tent contamination of the second pipette from a bottle
or the second bottle from a site, paired t-tests were
carried out to test for significant differences between
pipettes or between bottles. For the bottle t-tests,

a value was derived from the average of the two pipet-
tes in a bottle and this value represented the single
bottle. As shown in Table 4-a through 4-c, there is

no significant difference between the two pipettes.
Similar tests for the bottles showed they also were not
significantly different.

Technique Error

The membrane filter technique would probably be
more accurate when used in a more elaborately equipped
laboratory than that of the study. However, users of
the method will likely utilize equipment comparable in
refinement to that of the study when sampling mountain
streams. It is possible to take several replicates
from each bottle to improve the estimate of bacteria
concentrations. The merit of taking several pipettes
from each bottle increases as the population sampled
decreases. The sampler may wish to improve his estimate
of bacteria concentrations within a certain time span
and, therefore, prefer to spread more observations over
time instead of replicating. In any event, inferences
made from the bacteria data should be with due consi-
deration of the extremely large error inherent in the
field laboratory technique. As shown by the components
of variance breakdown (Appendix Tables A-C) the vari-
ance due to analytical technique is consistently one
of the major sources of variation. Despite such large
variation, distinet land use impact may be detected,
as evidenced by the extremely consistent upper to lower
site comparison (Chapter 5).

Variations Within a Day

The components of variance, Tables A through C,
Appendix, show there is generally large variation in
bacteria concentrations within a day (the "time" com-
ponent of the tables). The tables illustrate that
this time variation, however, is often less than the
fluctuations on a day-to-day basis, one exception being
the coliform group of the upper site.
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The factorial analyses of variance demonstrate
a significant difference between the three times of the
‘day (0500, 1300, 2100 hours), especially at the lower
site. An exception to this is for the FC, upper site,
however concentrations are so often zero for FC at the
upper site that the time of day comparisons are dif-
ficult to make.

A daily cycle probably accounts for most of the
variation within a day, therefore, the amount of fluc-
tuation for a day is perhaps best shown by description
of the daily trend. This cycle is dealt with in detail
both graphically and statistically in Chapter IV.

Variations Within a Week

Tables 4-a through 4-c give means, standard
deviations, and coefficients of variation for Weeks I-
V, by site, bacteria groups, and either pipette one or
two. The analyses do not include "storm days'" (where a
distinct rise in stage following a storm is associated
with an upward surge of bacteria counts). One out-
standing feature of the table is the large variability
found over a period of one week, as evidenced by the
coefficients of variation for the individual weeks.
For pipette one, the values are plotted in Figure 7,
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Figure 7. Coefficients of variation (CV) vs means for

individual weeks (numbered), by site and
bacteria group, during 1966-67. CV repre-
sents the variation found over the period
of a week.

for all sites, bacteria groups, and Weeks I-V. The

lowest CV for any week is 0.61, still a very high degree

1

of fluctuation. These values of CV include all possi-
ble sources of variation, pipette differences, bottle
comparisons, hour-to-hour fluctuations, and day-to-day
variation, during the week. Figure 7 compares the coef-
ficients of variation between sites and among bacteria
groups. It is clear that CV values are greatest where
the mean bacteria concentrations are lowest--the upper
site. The lower site coefficients of variation are
smaller than CV values for the upper site in 12 out of
the 15 comparisons (three bacteria groups x five weeks)
of Figure 7. Two of the three exceptions to this trend
are for the FS bacteria, and, as will be pointed out in
Chapter V, the FS show the least contrast between upper
and lower site concentrations.

Variations within a week for the individual
times of the day are shown in Tables 5-a through 5-c
in terms of morning, afternoon, and evening (M, A, and
E) variations throughout the week. Each time of the
day is represented by one value, made up of the mean of
the four replicates taken at that time (two pipettes x
two bottles). Each time is then used to calculate the
amount of variation taking place from day-to-day during
the week, for the one time of the day only. The coef-
ficients of variation given would not include the
"within-day" variation, because only one time of the
day is considered.

Taking the medians of the values of CV from
Table 5, to have some relative comparison of the day-
to-day variation for the individual times of the day,
the following values are obtained:

Median CV
For Weeks I-V

Upper Site Lower Site

M 0.46 M 0.50

Coliforms A 1.20 A 0.54
E 0.59 E 0.59

M 0.69 M 0.54

FS A 1.00 A 0.73
E 0.92 E (.48

M 1.64 M 1.02

FC A 1.94 A 0.78
E 1.94 E 0.53

Afternoons show the highest CV in 4/6 of the compari-
sons and in no case exhibit the lowest CV of the three
times. Mornings and evenings alternate in having the
lowest values of CV. This is again in agreement with
findings that variability is greatest where means are
lowest; afternoons often show daily minimum bacteria
concentrations, as will be illustrated in discussion
of the daily cycle in Chapter IV.

The components of variance tables (Tables A-C,
Appendix) illustrate that a strong day x time inter-
action exists in many of the weeks for both sites. The
FS and FC show this component to be relatively larger
than do the coliforms. The interaction indicates that
the daily cycle of bacteria counts depends also on day-
to-day changes.

Seasonal Variation

Ranges of bacteria variations during the entire
sampling season of 1966 (Weeks I-IV) may be seen in



150 68921 LT L2 9 = 620 FAde £8 Ay 9 ot
/L0 65901 00 LET 9 W A 230 92 '12 L1°FE ] v A
1970 60091 P19z 9 " 16°0 19 ‘02 L9 0k 9 W
8% "1 98 "RE 2€ ‘92 L i 05°1 1521 6@ L T
L0 12 €€ LT L v Al £L°D . 4 00 e L v AT
20°1 BI'ET £6 21 L w ¥5°0 vz B1°% L W
€2°1 ¥6 91T 5256 9 = 680 L9 5% 0018 9 a
88°0 9% 'HE €8tk 9 v m S6 0 §6°1E EEEE 9 v m
s2°1 S0 °LL €619 9 W 9% 0 L9 51 EECEE 9 w
£5°0 65 €9 05 ot L a 0 85 "£1 89 '0€ L b §
BT 0 L1'L1 €617 L W i S5°0 ¥a 01 2E 6L L v I
1570 g8 "HE 68 9L L W 59°1 18 79 68 "RE L W
250 69 96 k'S8l 9 < 4 8% 0 tF 2l £9°'52 9 o
1670 el 85 9% 9 A I 160 ESCET 76 ¥ 1 9 v 1
§2°1 9% "FET SLUBLT 9 " 191 £8 99 FA b 9 W
AD Ll X u oIy, EEERY AD LS X u ALy, EEETY
FLIS HTMOT - SWHOATTOD TYDHI ALIS AMOT - IDD0DOLIAULS TVIEI

[ PLFT 00 L ] A FEl 968 26°9 ] @
L't 62 't 261 9 v A 0ol 260 260 9 v A
¥9°1 2% 852 ] W 260 691 [ g W
Ly'2 LE'D LA ] L a €0 q0°1 [ L s

o) o000 0o "o L w Al oot L3 4 892 L v Al
Lzl ¥1°0 o L W 250 gzl 6E°2 L W
L't [ F 0 9 cs 260 BE "B 00 "0z 9 a
9E°T L ] 80 9 W m £5°0 869 k4 Y 9 Y In
sL°1 LT°T 190 9 W 690 S8 g 058 9 W
gL'1 [ 14 89°1 L o &80 118G ¥5'9 L a
91°2 60 0 L W n S¥ 0 s0°1 TE°E L v hi s
LT 6 °% TEE L w Sk 0 PGl GEE L w

g 000 00 "0 9 a3 LSt ;1 08 '€ ] et
052 0z 0 80 ‘0 ] b2 1 LTI &6F 0 2r 0 9 v 1
BT 60 050 9 w 960 a1z s52°2 9 W
AD F] x u SULLL 32 M AD x u EITERA FEET)

ALIS ¥AddN - SWHOJITOD TVI3EL

8
HLIS 93ddN - 12D

ODOLdIHLE TVIEL

59°'0 26 95k O1°v0L s 3

L) L ore 05 ‘it ] W A

BO T 9E 'SZE 05 "00E § W

2 ] 96 60E 98 "L29 L A

55°0 ¥ 86 LERLT L v Al

05°0 08 ‘E® 12891 5 i

65 0 LE "00F €8 0BG g !

6t D £5L¥1 EECBLE g v nr

801 16 "€9€ 00 "SEE ] W

910 B3 F91 12 "BEDT L a

LE 0 g6 "ELZ L0 3101 L v b

€0 kLU s 98 'LSL L w

oLo 08 "F001T S2°TE¥1 L a

BL O 05 8011 SLE0F1 9 v 1

L¥ 45 "ZHE €8 '5981 L W

AD 8 x w XS EEERYY
TLIS HAMOT - SWHOIITOD

85 °0 55 €% 05 0% 5

Le*1 1% 00 ¢ [ W A

or°t 3+ 062 g W

990 LLGL o0 stl L o

0z°1 05 "9L L5ty L v Al

9% 0 ¥5fE 0% 2L L w

650 85211 £8 061 9 cs

L1t LETLTT £8 001 9 v I

£f€°1 £E EF 08 2% 9 w

L rai sELL w1'2F L s

g0 19 11 TZ°€1 L v 14

£9°0 8L el 9t "0z L W

/60 L1 g £E°8 9 q

LET 0% 6T 9 v 1

B9 0 B9 't v’s 9 w

AD Ll ¥ u AUELY, WAL

HLIS HEddN ||m..2d [sX) g iek]

Aep yoes 1oy aung yoem

Aq sjunos wiroipod [eda) ol uoPRLIeA Aep-oj-dep Ayl ==9-g algel

‘papniauf axe sdep urio}s op
“{sa1eq 7 x saypjadid 7) suoneAtasgo § Jo uvswr ayj 81
*Aep 8y} Jo saluly [ENPIATRUT JO
sieAreue Aq umoys se ‘yoam e Furznp soerd Suryey sajs

#1 Aep yows roj awy youq

sjunos snadosopdasis jesay ur vopwiaea Aep-oj-Aep syl --q-5 9[qeL

‘papniout aaw edwp waoys
op  ‘(eapeq 7 x senadid 7) suonearasqo § Jo ueotm ayy
~Awp oy jo "suIg [ENpPIATPUL Jo
sighieue Ag umoys se ‘yeem e Furinp soejd Fupie; saare Ag

‘papniaut si1¢ sdep wriois opf

“{ganoq ¢ x sanedid 7) suoneazasqo § Jo ueawr ayy 51

Aep yoes 1oy swmy youg

*Amp 93 Jo goawIny [eRpLAtpuYl

jo s1sfivue Ag umoys se ‘yoom v Furanp oosepd Suryey
&a11F Ag 91unos wirojifes up uopwirea Aep-oj-Aep oyl --v-g a[qBL

12



Figure 7 by noting the location of the respective weeks
on the graphs.

Week II has the lowest coefficient of variation
in five out of six of the groups in Figure 7. The
relatively stable bacteria concentrations of Week II
are possibly associated with the stable stream stage
and temperature patterns for the week (see Figs. 10-11,
Chapter IV). Weeks I, III, and V all contain storms
and generally display more erratic stage readings.
Week IV is consistent in stage values, similar to
Week II, but shows higher coefficients of variation.
Because Week IV has a lower mean value than Week II in
five out of the six cases, it is reasonable that Week
IV would have higher CV values, in line with other

13

evidence that higher coefficients of variation accom-
pany lower concentrations.

Yearly Variation

Some indication of the amount of variation from
year to year is given by comparing Weeks I and V in
Figure 7. In 4/6 of the graphs Weeks I and V are simi-
lar in variability as expressed by the coefficients of
variation. In only 1/6 of the graphs are the two weeks
noticeably dissimilar. This suggests that hydrologi-
cally similar weeks in two years may exhibit about the
same amount of variability.



Chapter IV

FLUCTUATIONS IN BACTERIA CONCENTRATIONS

Bacteria concentrations fluctuate cyclically on
a daily basis according to results of the study, These
cycles are of vital importance in both sampling design
and data analysis. For example, in analyzing data,
are two sites in question really different in bacterial
content, or is the apparent difference a result of the
routine sampling schedule's relation to the daily cycle
of bacteria counts? Seasonal trends likewise must be
considered in both the planning and analysis stages of
research. This chapter describes the fluctuations
observed in the mountain stream of the study.

Daily Cycle
Graphical Plots

The daily fluctuations of all three organisms
are presented in Figures 8-17. Bacteria counts for
Weeks I-V for many days are higher at 2100 hours (the
evening sample) than at 1300 hours (the afterncon
sample). Figure 15, for example, demonstrates clearly
an evening versus afternoon contrast for the coliform
bacteria, evening values being higher than afternoon
values for all seven days of Week IV, lower site.

This cycle is common for all weeks, bacteria groups,
and sites.

Data for all bacteria groups were replotted as
shown in Figures 18 and 19; only the coliforms from
this set of graphs are presented, because the daily
cycles for the other two bacteria groups are very
similar, Figures 18 and 19 illustrate that within a
single day, evening counts are often higher than con-
centrations for morning or afternoon.

Analysis of all the individual days in Weeks
I-V, as plotted in Figures 8-17, produces the tabula-
tion of Table 6. In the table, each time is rated as

Table 6. The percentage of days during Weeks I-V when
a particular time of the day (morning, after-
noon, or evening) shows the maximum value in
bacteria counts. Breakdown is by bacteria
group and site.

Morning Afternoon Evening
% %
Coliforms
Upper 6.4 5.6 83.8
Lower 16.1 22.5 61.2
FS
Upper 24,1 3.4 72.4
Lower 28.1 18.8 53.1
FC
Upper {not tabulated because of zero counts)
Lower 24.2 21.2 54.6

to the percent of individual days when the particular
time (morning, afternocon, or evening) contains the daily
maximum. No "storm days'" are included. Bacteria
counts for all groups are highest at the evening sam-
pling time for the majority of the individual days.

The Table 6 tabulation of maximum values for individual
days does not describe the magnitude of differences
between times of the day, rather merely enumerates the
times of maximum values. Statistical and graphical
analyses based on means in the following sections eval-
uate the extent of the differences between time of the
day and point out that morning values are greater than
afternoon values, and not as similar as Table &
indicates.

Statistical Tests

To test for a daily cycle, analyses of variance
were calculated for morning-afternoon, afternoon-
evening, and morning-evening comparisons, using all
data of Weeks I-V, analyzing separately by sites and
weeks. No storm days were included in the analyses.
Tables 7, 8, and 9 give results of the tests. The
evening-afternoon contrasts are the greatest, being
significant in 23/30 of the comparisons (Table 9),
evening being largest (note that many of the differ-
ences are significant at the one percent level). The
evening-morning differences are significant in 17/30
of the tests, evening also being higher than morning,
Finally, the morning-afternoon contrasts show signifi-
cant differences in only 8/30 of the cases, morning
counts being greater. In summary, the statistical
analyses of variance for the three times of the day
show:

evening =>> afternoon
evening > morning
morning > afternoon

Summary Graphs

All of the time of day comparisons of Weeks I-V
are presented in capsule form by the bar graphs of
Figure 20. The daily cycle is especially well-defined
in all weeks of data, with an evening versus afternoon
contrast present in 27 of the 30, or 90 percent of the
bar graphs (5 weeks x 2 sites x 3 bacteria = 30 graphs).
This 90 percent value is based on 840 observations of
each bacteria group or a total of 2520 individual
observations. The FC bacteria at the upper site make
up two of the three exceptions to the trend for evening-
afternoon differences. FC upper site counts are by far
the most variable, the isolations containing many zero
counts; therefore, two-thirds of the exceptions are in
the group having results on which the least confidence
may be placed.

Also apparent in the summary graphs is the
morning-afternoon drops in counts. The summary graphs
emphasize a daily cycle in agreement with the statisti-
cal findings, namely:
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Table 7-- Analysis of variance results for morning (0500 hours) vs after-
noon {1300 hours) values for Weeks I-V, showing means, F-values,
degrees of ireedom, and significance.

MORNING vs AFTERNOON
UPPER SITE LOWER SITE
Means Means
Bacteria Week (Mern.) (Aft.) F df % [Morn, ) (AL} F df %
I 5.42 2. 92 1.42 35 nNsY 1865.83 140375 1.96 35 NS
bi 20, 36 13,21 3. 43 41 NS 757.86 1016.07 2.72 4]l NS
COLIFOEMS I 32.50 100.83 17.51 35 1 335.00 378.33 0.99 35 NS
v T72.50 63.57 0. 32 4l NS 168,21 178,57 0.17 4] NS
v 14.92 18. 33 0.05 35 NS 565. 00 417. 08 13.07 35 1
I 2.25 0.42 9.31 35 1 41.42 14.92  150.03 35 1
I 3.39 2,32 3.52 4] NS 38.89 19.32 69.20 41 1
Fs m 8. 50 9,42 0. 40 35 NS 33.83 33.33 a. 02 35 NS
v 2.39 2. 68 0. 46 41 NE 4.18 3.00 2.20 41 NS
v 1.83 0. 92 2.57 35 Ns 40, 67 34,17 2.53 35 NS
I 0.50 0. 08 2.46 35 Nt 178.75 46.58 269.51 135 1
I 3.3z 0.43 25. 81 41 1 76. 89 61.93 8.98 41 1
FC m 0.67 0.83 0.12 35 NS 61,42 43.83 2,37 35 NS
v 0.11 0. 00 3,03 41 NS 12.93 45.79 56.82 41 1
v 2.58 1.92 0.13 35 NS 261,42 137. 00 34.21 35 1
17 NS = level of significance greater than 5%
Table 8-- Analysis of variance results for moraing (0500 hours) vs evening
(2100 hours) values for Weeks [-V, showing means, F-values,
degrees of freedem, and significance.
MORNING ws EVENING
UPPER SITE LOWER SITE
Means Means
Bacteria Week (Morn.] [Ewve.) F df % [ Morn. ) {Eve,) F df W
1 5.42 B.33 1.26 35 nst/ 1ses.83 1431.25 I.18 35 NS
i 20. 36 42.14 15,61 4] 1 757.86 1038, 21 4.16 41 5
COLIFORMS 11 32.50 190. 83 40. 41 35 1 335.00 680, 83 25.73 35 1
v 72.50 115. 00 .18 41 5 168,21 627 Bb 63,72 41 1
¥ 2.90 40, 50 30. 24 29 1 445, 00 T04.10 26.17 29 1
I 2. 25 3.50 0.81 35 NS 41. 42 25.63 34.49 35 1
I 3.39 6. 54 16. 67 41 1 38. 89 30. 68 3.90 41 NS
F5 I B. 50 20,00 23,53 35 1 33.83 51.00 6.17 3s 5
v 2.39 3.39 4,11 41 5 4.18 8. 39 12.58 41 1
v 1.83 6,92 45. 53 35 1 40. 67 43,83 Q.60 35 NS
1 0.50 0. 00 3.93 35 NS 178.75 185. 42 0.32 35 N5
hus 3.32 1.68 5. 54 41 5 76.89 120,50 72,21 41 1
FC I 0. 67 0. 42 0.73 35 NS 6l.42 95. 25 4. 41 35 5
v 0. 11 0. 14 012 41 NS 12.93 26, 32 9.13 41 1
v 2.58 7.00 . 55 35 NS 261,42 247.17 0. 24 35 NS
TINS = level of significance greater than 5%
Table 9-- Analysis of variance results for aftéerncon (1300 hours) vs evening
(2100 hours) values for Weeks I-V, showing means, F-values,
degrees of freedom, and significance,
AFTERNOON vs EVENING
UPPER SITE LOWER SITE
) Means Means
Eacteria Week (Aft,) B F il @ [Aft.) [Eve. ) F a %
1 2.92 8.33 4.92 35 5 140375 1431.25 0. 01 35 wstf
i 13.21 42,14 28. 82 41 1 1016.07 1038.21 0,02 41 NS
COLIFORMS I 10083 190. 83 11. 47 35 1 378.33 &80, B3 16. 25 35 1
v 63.57 115. 00 9.23 41 1 178.57 627.86  57.%5 41 1
v 3.00 40. 50 30.63 29 1 300. 50 T04.10 91.89 29 1
1 0.42 3.50 5.78 35 5 14.92 25.63  20.99 35 1
II 2,32 6. 54 30. 67 41 1 19.32 30. 68 8.45 41 1
F5 puid 9.42 20.00 16.88 35 1 33.33 51.00 7.39 35 1
ia's 2,68 3.39 1.73 4l NS 3.00 B.339 18.63 41 1
v 0.92 6.92  B5.46 35 1 34.17 43,83 6.63 35 5
1 0,08 G Q0 1.00 35 N5 46.58 185.42 12B.96 35 1
I 0. 43 1.48 15. 38 41 1 61.93 1z20.50 125,93 41 1
FC 1 0.83 0. 42 0. 71 35 NS 43,83 95.25 13.21 35 I
v 0. 00 0.14 301 41 NS 45.78 26,32 11,65 41 1
v 1.92 7. 00 0. 66 35 NS 137.00 247.17 16,97 35 1

NS = level of significance greater than 5%
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X X X
Morning Afternoon Evening

Physical Factors and the Daily Cycle

The daily cycle of bacteria counts in the stream
is very likely associated with the physical factors of
the stream environment, for example, stream stage,
water temperature, and incoming solar radiation. In
the preceding section, the observed daily cycle was de-
scribed. This section discusses possible reasons for
the daily cycle in terms of the observed physical fac-
tors, in line with the secondary objectives of the
study defined in Chapter I. The relationships consid-
ered here are necessarily simplified, with no attempt
being made to account for all possible causative fac-
tors of the daily cycle. For convenience of discussion,
stream stage, for example, is discussed under a separate

subheading from incoming solar radiation, water tempera-
ture, or other factors. These physical factors are
probably interrelated in a complex fashion and in
reality the influence of a single factor on bacteria
counts cannot easily be isolated, if at all. The bio-
logical cycles of micro-organisms other than bacteria
in the stream, daily migratory activities of wildlife
about the stream, and numerous unknown factors are also
probably related to the daily cycle of bacteria in the
stream,.

Stream Stage

In Figures 8-17, many of the weeks demonstrate
an afterncon tc evening stream stage rise. In a stream
fed by melting snow from the "high country", daily
peak runoff at lower sites lags behind the peak melt
period at the higher elevations. Streambank "flushing"
by rising stages of early evening would be one possible
explanation for the observed evening bacteria count in-
crease. The phenomenon of streambank "flushing' was
also observed during the 1964-65 investigations on the
same watershed on both a seasonal basis and during
storms (Kunkle and Meiman, 1967). The concept of
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streambank ''flushing" is an oversimplified hypothesis,
since much more is probably involved than the simple
physical process of washing bacteria into the stream.
Perhaps nutrients being washed into the stream are
quite important. Cycles of micro-organisms other than
bacteria may be involved. It has yet to be shown that
a definite cause-and-effect relationship exists between
stream stage rise and bacteria count rise, however the
relationship is strong.

The 3-day and 4-day studies, discussed in
Chapter III, were designed (among other things) to
further describe the stage-bacteria relation, however
the two studies did not exemplify the relationship, pos-
sibly because of the particular days selected. The
4-day study displays extremely stable, even "atypical"
stage patterns (Fig. 21). The 3-day study shows more
typical afternoon-evening stage rises, however does
not clearly indicate an evening bacteria rise (Fig. 22).
The tremendous degree of variation evident in the graphs
of the two special studies could very possibly mask
relationships. Further evidence of the bacteria-stage
relationship is presented in the section on storm
sampling.
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Figure 21, Four-day study of August 2-5, 1967

Insolation

A two-day investigation of incoming solar radia-

tion (insolation) impact on bacteria was carried out,
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as detailed in Chapter II. Six open containers were
exposed to sunlight, six were shaded. All vessels
were standing partially immersed in the running stream
so that temperatures in the containers remained close
to the stream temperature (within 1°C). Hydrogen ion
activity (pH) showed a slight drop in all receptacles
as the study progressed, but pH change for all twelve
containers was identical.

Results of the study appear in Figure 23. The
first point plotted in both graphs is the control, i.e.,
concentrations found in the containers immediately
after filling from the stream and just prior to lower-
ing the shade over six of the vessels. Coliform counts
in the sun-exposed pails dropped drastically below
levels found in the shaded containers in both days of
testing. All bacteria apparently were killed in a
three to four hour period, while one hour of exposure
caused extreme bacteria die-off. Standard deviations
for the six values which make up the individual points
on the graph appear in Table 3. Values for the
"shaded" samples only are given since the samples ex-
posed to the sun were in most cases zero or very low.

The sterilization potential of ultravieolet
radiation is a well-known phenomenon, sometimes applied
as a water purification technique (Klein, 1962). The
bacteria evening-afternoon cycle in concentrations
could reasonably be related to sunlight, with die-off
of organisms proceeding at a higher rate in the after-
noon periods.
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Figure 23. Insolation study, comparing coliform counts

of sun-exposed containers to shaded ones

This radiation effect could very possibly work
in conjunction with the "flushing'" process discussed in
the preceding section, since stages commonly rise at
about the time insolation decreases.

Obviously the small tubs do not imitate the
stream environment with much sophistication, however,
the drastic sunlight impact on bacteria counts is
emphasized.

Water Température

Bacteria concentrations in a stream are probably
associated to some extent with water temperature.
Since peak water temperatures are usually attained at
approximately the same time as the "afternoon' minimum
bacteria concentrations (Figs. 8-17), one might specu-
late that water temperature rises increase organism
die-off. The "insolation study" (preceding section)
would imply, however, that if such a temperature influ-
ence exists, it is minor compared to the radiation
effect; water temperatures remained identical in both
exposed and shaded containers in the insolation study,
yet there was a drastic die-off in the sun-exposed con-
tainers. In regard to warm water increasing die-off,
it should be noted that the "warmest" time of the day
in the study stream is still very cold (Figs. 8-17),
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daily maximum water temperatures attaining only about
8-149C and often less than 10°C.

On the other hand, water temperature is related
to the reproduction rate of the organisms, so that in
a cold stream, "warmer'" temperatures could possibly
raise bacteria counts by increasing multiplication.
The high coliform concentration in the last sample of
the August 4 insolation study (Fig. 23), for example,
could possibly be due to bacteria reproduction, since
no new coliforms were injected during the observation
period. Potter (1963) observed bacteria populations
to multiply in stored water samples.

Burman (1961) describes temperature effect on
stream bacteria and the optimum temperatures for organ-
ism concentrations in relation to reproduction and die-
off rates. Greenberg (1964) found a strong correlation
between plankton and temperature in the upper reaches
of the Sacramento River.

In streams of mostly snowmelt origin, warming
air temperatures normally result in both rising water
temperatures and rising stream stages, making separation
of the effects of the two physical factors difficult.
Effects of insolation and water temperatures on bacteria
are also difficult to separate. Probably bacteria con-
centrations of the stream are related to water tempera-
tures on a daily basis, however, the relationship is
not easily defined.

Water temperature is considered again in the
section on seasonal trends.

Storm Sampling

Early in the morning of June 21, 1967, a rain
storm began. The first rise of stream stage occurred
at approximately 3:00 a.m. Sampling for coliform, FS,
and FC groups was underway at 0530 hours, and frequent
samples, 14 of them, were collected during the morning
to early afternoon period. Results of these samples
are presented in Figure 24. The initial burst of run-
off was not sampled, according to the stage information
(at the bottom of the graph), however the graphs imply
that peak bacteria concentrations of the storm were
sampled, since counts on either side of approximately
0545-0600 hours are lower.

The rain persisted throughout the morning, with
the stage remaining high until early afternoon. Al-
though the stage retained a high level, bacteria con-
centrations began to decline. Geldreich (1966) obser-
ved the same pattern of reducing bacteria counts after
rainfall continues for a period of time.

Coliform counts rose to six times the pre-
storm value, FC to four times, and FS to about eight
times. The individual days of storms shown in
Figures 8-17 (Day 5, Week I; Day 4, Week III; Day 7,
Week V) exhibit similar upward bursts of bacteria
counts related to storm runoff. The lower site of
Week III (Fig. 13) shows the most extreme storm impact.

One phenomenon was observed at the lower site,
Week I (Fig. 6). Bacteria counts following the storm
of Day 5 did not return to pre-storm values after the
storm period, but dropped to zero, as if "flushing"
had momentarily rid the stream of bacteria.

All observations of storms support the hypothe-
sis that "flushing" by rising stages increases bacteria
counts.
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Figure 24. Special storm sampling, showing coliform

FC, and FS bacteria counts with corres-
ponding values of stream stage, pH, and
temperature.

Seasonal Trends

In Figure 25, there is indication of a seasonal
trend for the bacteria groups:

1. The coliform and FC attain maximum values for
the season in the "flushing" period of Week I for the
lower, cattle and irrigation influenced site, while
maximum values for the season at the upper site occur
during the post-flush, warmer water period of Weeks
II-III.

2. The FS exhibit a cycle at both sites similar
to the upper site trend for the other two bacteria
groups. Maximums are reached during Week III.

The general similarity of the FS bacteria at
both sites to the upper site trend for the other two
groups may be related to the selectivity of the groups
in question. Since the FS demonstrate much less con-
trast in bacteria counts between upper and lower sites
than the other two groups (discussed in Chapter V), it
is reasonable that the FS might differ in seasonal
trend from the coliforms and FC. The difference in FS
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Figure 25. Seasonal trends of bacteria counts for the
three indicator groups in 1966, at the
upper and lower sampling sites, Each point
represents the grand mean of all samples
taken during the week.

from the other groups will be discussed further in
Chapter V.

It is notable that two of the three bacteria
groups at the upper site show maximums during Week III.
Referring to Figures 8-17, Week III is also seen to be
the week of maximum temperatures for the year. There
is possibly an increase in bacteria concentrations in
the upper site as water temperatures rise and allow
increased reproduction of the organisms. The tremen-
dous "flushing" of cattle manure, soil particles and
other surface matter in the irrigated meadow, espe-
cially in Weeks I-II, would probably overshadow any
bacteria-water temperature relations for the lower
site. The FS, the bacteria group least sensitive to
the cattle pollution, show maximums in Week II for the
lower site.



Chapter V

BACTERIAL INDICES OF POLLUTION

One reason for selection of the study area was
the extremely distinct and measurable pollution impact.
From a land management point of view, it is desirable
to evaluate the relative merits of the three groups--
the coliforms, fecal coliforms, and fecal streptococci,
in regard to their ability to measure the grazing-
irrigation impact throughout the season.

Contrast Between Upper and Lower Sites

Range of Contrasts

The pollution impact at the lower sampling sta-
tion is extremely obvious. At any time of the day, any
week of the season, for either year, or for any bac-
teria group, bacteria counts at the lower site exceeded
those of the upper site (Fig. 25 and Figs. 8-17).

Table 10 presents contrasts between sites in
terms of a "lower site to upper site ratio," L/U ratio,
which is simply the number of times greater lower site
concentrations are than those at the upper site. For
Weeks I-V, all bacteria groups show a L/U ratio range
of:

Group Range

FC 47.8 to 720.6
Coliforms 3.9 to 281.8
FS 1.8 to 13,3

The mean and median values of these ranges are:

Group Mean Median
FC 384.2 336.4
Coliforms 142.9 139.0
FS 7.6 5.7

The FS show a far lower difference between the
two sites than the other two indicator groups. The
coliforms and FC are more similar in their response to
the cattle impact. The FC was the most "sensitive"
group to cattle pollution under conditions of the study;
they retained the greatest L/U ratio on a consistent
basis, never displaying a ratio of less than 47.8.

The FC and FS

As noted in preceding sections, the FC counts
are lower than FS counts at the upper, '"matural" site,
while at the lower site the reverse is true. This is
shown clearly for the individual weeks in the compari-
son of upper and lower sites in Figures 8-17, where FS
and FC concentrations are graphed on the same scale.
The pattern implies that the FC are much more 'sensi-
tive' to the cattle impact than the FS.

Seasonal Trend and Pollution Detection

Week I of the four weeks in the 1966 season is
distinctly the period showing the greatest L/U ratio
or site contrast for all three bacterial indicator
groups. It is assumed that the initial spring
"flushing" would be closely related to the strong upper-
to-lower site difference of Week I. Week V, 1967, and

Table 10. Contrasts between sampling sites by '"lower site to upper site ratio,"
L/U ratio. The ratio is the number of times greater lower site con-
centrations are than those at the upper site. Means are derived
from all observations during a week excluding "storm days'.
BACTERIA GROUP
COLIFORM FS FC
Week Upper Lower L/u Upper Lower L/U Upper Lower L/U
I 5.56 1566. 94 281.8 2.06 27.32 13.3 0.19 136.92 720.6
I 25,24 937. 38 37.1 4.08 29. 63 7.3 1.81 86. 44 47.8
1 108. 06 464.72 4.3 12. 64 39. 39 3.1 0. 64 66.83 104. 4
v B3.69 324.88 3.9 2.82 5.19 1.8 0.08 28. 35 354. 4
v 15.47 483.20 31.23 3.53 40. 690 115 0. 87 213.10 244.9




Week I, 1966, which are similar in location on the
hydrograph are also similar in that both have relatively
high L/U ratios. The years 1966 and 1967 were not very
similar in flow as noted in Chapter II, therefore some
differences in counts would be expected.

During all weeks of both seasons (Weeks I-1v,
1966 and Week V, 1967), the L/U ratios for the FC are
clearly higher than L/U ratios for the other two bac-
teria groups. This is in agreement with findings in
the earlier studies of 1964-65, where the FC group
defined grazing impact much better than the FS and
slightly better than the coliforms (Kunkle and Meiman,
1967) .

"FC to FS Ratio"

Geldreich et al., (1964) describe development of
an FC/FS ratio method used in a bacteriological study
of a waste stabilization pond, whereby it is possible
to distinguish human from farm animal contamination.
Geldreich (1966) applied the same index in distinguish-
ing human from domestic animal and wildlife contamina-
tion in storm runoff from urban areas. The ratio in
the case of livestock and wildlife was < 0.6, while
human contamination displayed ratios of 4.4.

Applying the FC and FS values from Table 10, the
FC/FS ratios in all weeks would be less than 1.0 at
the upper "clean" site, where the very slight contamina-
tion is probably the wildlife or soil origin, in agree-
ment with Geldreich's findings.

Week FC/FS Ratios at the Upper Site
I 0.19/ 2.06 0.09
1I 1.81/ 4.08 0.44
LTl 0.64/12.64 0.0s
v 0.08/ 2.82 0.03
v 0.87/ 3.53 0.25

1Pcrsonal communication with B, A. Kenner
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At the lower site, however, where the contamina-
tion is almost without doubt a result of the grazing-
irrigation impact, the ratio becomes 4.4 or greater in
3/5 of the weeks, while in every week the ratio is
much greater than 0.6,

Week FC/FS Ratios at the Lower Site
I 136.92/27.32 5.01
II 86.44/29.63 2.92
III 66.83/39.39 1.70
IV 28.35/ 5.19 5.46
v 213.10/40,60 5.25
Communications1 with the Taft Center at Cincinnati

indicate they use a KF-Streptococcus Agar for their FS
determinations whereas this study utilizes the
m-Enterococcus Agar to isolate the FS bacteria.
According to the Taft Center, their medium is more
sensitive to Streptococcus bovis. This could account
for the apparent contradiction of results.

Although the L/U ratios of Week I, 1966 and
Week V, 1967--the two "flushing" weeks--are not Very
similar, it is very notable that the FC/FS ratios are
nearly identical. The highest FC/FS ratio is only 5.46.
In view of the large variation in counts, it is worth
noting how similar the FC/FS ratios are in Weeks L, IV,
and V, namely the two "flushing" weeks and the week of
lowest flows or least dilutions. Perhaps a modified
FC/FS ratio can be developed that would be applicable
under cold, mountain stream conditions.



Chapter VI

SAMPLING RECOMMENDATIONS

The most useful data for sampling design is the
summation of the variance components presented in
Tables A-C of the Appendix. An investigator may wish
to use the variance values of the table in conjunction
with an appropriate variance formulal to attain general
guideposts whereby he may best invest his samples and
replicates.

Recommendations are developed from much of the
information in Chapters II and III regarding bacteria
variations for organisms, sites, weeks, and times.

The following paragraphs attempt to highlight
some of the findings of the study pertinent to sampling
design for streams similar to that of the study.

1. An analytical error represented by a coeffic-
ient of variation of from 0.4 to 0.6 would be an
average ''working" approximation for field laboratory
measurements of coliform bacteria, assuming of course,
reasonable care and experience on the part of the tech-
nician; occasionally the CV may reach as low as 0.15
and as high as 1.65. There is a general decrease in
the CV of replicates within a sample as the mean of
the population sampled increases, i.e., the error in
analytical technique becomes a more important portion
of the total variance as low-concentration bacteria
samples are analyzed. When concentrations of organ-
isms are low, a sampler may wish to invest relatively
more effort in replicating technique as opposed to
taking more samples from day-to-day and within days.

el

2. There appears to be very little benefit from
taking more than one bottle of water at a given sam-
pling time; it is better to invest the sampling effort

over time and in technique.

3. Afternoon lows in bacteria concentrations
followed by relatively high evening concentrations
represent the cycle common to all bacteria groups and
both sites. Highest coefficients of variation are
associated with the afternoon lows; evenings show
lowest CV values at the grazing-irrigation polluted
sites, while mornings are lowest at natural sites.

4, When sampling a network of stations, it is
normally impossible to sample all sites at the same
time, therefore enough sampling days should be in-
cluded to enable varying the time of sampling during
the day for each site. The sampler should be aware
that the daily bacteria cycle will likely introduce
bias into the data if a routine sampling route is con-
sistently used for a network of sites.

5. Land use impact on stream water quality
appears to be most drastic during periods of stream
rises ('"flushing') associated with snowmelt runoff and
storm rises in the hydrograph. Sampling at these times
gives the best chance of detecting land use impacts.

6. Although bacteria counts are exceptionally
high during the rising limb of a storm hydrograph and
during spring rises in flow, bacteria concentrations
during the receding limbs of the same hydrographs may
be exceptionally low, even lower than the pre-storm
values.

7. The fecal coliform bacteria group appears to
be the best indicator for detecting the combined
grazing-irrigation impact. The coliform group is some-
what less sensitive to such pollution, while the fecal
streptococcl are far less capable of indicating the
impact.

8. The coliforms generally show the lowest coef-
ficients of variation of the three bacteria groups at
both natural and impacted sites, primarily because
coliform concentrations from a sample are nearly always
higher than counts of the other two groups. The coli-
forms especially exhibit lower coefficients of varia-
tion than either the FS or FC at the upper site where
many zero counts of FS and FC occur.

9. Any sampling scheme will, of course, depend
on objectives and resources available, however seasonal
and daily trends along with the magnitude of the ana-
lytical error should be carefully considered.

lFor example optimum allocation of samples is discussed in Cochran, W. G., 1963, Sampling Techniques. Wiley §&

Sons, pp. 270-290.
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APPENDIX

Table A-- Partitioning of variance into components of day, time, day-time

interaction, bottle, and analytical technique (pipette) for the coli-
form bacteria, Number of days used in the analysis for individ-

ual weeks is shown under ''n™.

COLIFORM BACTERIA
COMPONENTS OF VARIANCE

Day x Time Analytieal
Site Week n Day Time Interaction Eottle Technique
I [ 0. 00 4. 34 24.38 2.78 66, 6T
I T 60. 48 217.82 3l.30 0. 00 390,48
UPPER Biig & 2,813, 15 &0, 62268 7,805.28 0. 00 6,627. 78
w 7 2, 509. 66 745, 34 1.373.76 0. 00 3,863, 10
v 5 0,00 426,26 0,00 262,13 350, 67
Average 1,076, 66 12,403.29 L, 846.94 52.98 2,259, 64
I & 518,207.13 0. 00 0.o0 29, 994. 45 1,676, 894, 44
I 7 72,921.76 13,267.05 40, 000,79 10, 344, 05 ZBE, 071.43
LOWER o1 L} B1,123.8%9 33,270.83 27,435. 00 3,552.78 46,333.33
v 7 14, B9B.58 67, 583, 50 20,506, 75 1,054.76 33,989. 29
v 5 BO, 497.35 40,032, 94 51,933, 05 12, 888,14 9,918, 26
Average 173,529. 74 30, B30, BE 27,975 12 11, 566, B4 411, 041, 35
Table B-- Partitioning of variance into components of day, time, day-time
interaction, bottle, and analytical technique (pipette) for the F5
bacteria. Number of days used in the analysis for individual
weeks is ghows under "n'l.
FS BACTERIA
COMPONENTS OF VARIANCE
Day x Time Analytical
Site Week o Day Time Interaction Bottle Technigue
I & 0.50 0.73 1.64 18.29 3.58
o ki 5. 06 4, 68 10.78 0.00 a.77
UFPER Il & 63. 14 38. 38 84,77 0. 52 5B, 28
v 7 0,44 0.45 2,63 0. o0 3,96
v 5 11.99 13.21 24,32 1.34 4. B0
Average 16.23 11.49 24.83 4.03 15.88
I & 550. 07 174,55 1,548. 84 4. B1 b6, 29
1 7 472,63 91. 82 1,456, 69 o, oo 199,94
LOWER fiid [ 735.35 B0. B4 458, 40 59,95 368 22
v kS 28. 66 .51 35.30 0. 00 17.81
v 5 223.19 19.23 T4.75 23. 87 160, 40
Average 401,98 4. 79 Ti4, T4 17.73 162.53
Table C-- Partitiening of variance inte components of day, nume, day-tirme
interaction, bottle, and analytical technique (pipette} for the FC
bacteria, Number of days used in the analysis for individual
weeks is shown under "n".
FC BACTERIA
COMPONENTS OF VARIANCE
Day x Tims Analytical
Site Week n Day Time Interaction Buttle Trchnigue
1 ] 0.03 0.05 0.14 0. 00 0. 64
I i 8. 82 1.90 T.186 1.42 2. 96
UPPER Ir L] Q.13 o.on 0. 5% 9. 00 2.50
v 7 .00 0. o0 0.00 0.10 0. 04
v L] 0. 62 0. 00 I.2% 0. 00 2.00
Average 1,92 0. 39 I.B2 0. 30 1.63
1 & B, 805. 33 &, 0B5. 99 17,118, 0. 0% 1, BE4.
I T 809. 04 94,71 1,592. 89 .00 391,
LOWER i & 4,678, 05 558. 39 Z,407.33 471.89 2, 045.
I K 696. 98 255,04 159, 72 127. 39 247,
v 5 11, 150,63 70,103, 2% 13, 458,49 0. 00 lo, 033,
Average E,228.17 15,583, 48 6, 947.37 119, 84 2,920.20
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Colorado State University Hydrology Papers

"Water Quality of Mountain Watersheds," by Samuel H. Kunkle and
James R. Meiman, June 1967.

"Prediction of Water Yield in High Mountain Watersheds Based on
Physiography,'" by Robert W. Julian, Vujica Yevjevich, and Hubert J.
Morel-Seytoux, August 1967.

"An Objective Approach to Definitions and Investigations of
Continental Hydrologic Droughts," by Vujica Yevjevich. August 1967.

"Application of Cross-Spectral Analysis to Hydrologic Time Series,"
by Ignacio Rodriguez-Iturbe, September 1967.

"an Experimental Rainfall-Runoff Facility," by W. T. Dickinson,
M. E. Holland and G. L. Smith, September 1967.

"The Investigation of Relationship between Hydrologic Time Series
and Sun Spot Numbers," by Ignacio Rodriguez-Iturbe, and Vujica
Yevjevich, March 1968.

"Diffusion of Entrappéd Gas from Porous Media," by Kenneth M. Adam,
and Arthur T. Corey, March 1968.

Colorado State University Fluid Mechanics Papers

"Experiment on Wind Generated Waves on the Water Surface of a
Laboratory Channel," by E. J. Plate and C. S. Yang, February 1966.

"Investigations of the Thermally Stratified Boundary Layer," by
E. J. Plate and C. W. Lin, February 1966.

"Atmospheric Diffusion in the Earth's Boundary Layer--Diffusion in

the Vertical Direction and Effects of the Thermal Stratification,"
by Shozo Ito, February 1966.

Colorado State University Hydraulics Papers

"Design of Conveyance Channels in Alluvial Materials," by D. B.
Simons, March 1966.

"Diffusion of Slot Jets with Finite Orifice Length-Width Ratios,"
by V. M. Yevdjevich, March 1966.

"Dispersion of Mass in Open-Channel Flow,'" by William W. Sayre,
February 1968.



