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ABSTRACT

A search for a structural model for the time series of daily river flows
is undertaken by the author. First, records of daily runoff from 17 river basins
chosen on the postulated absence of trends induced by manmade improvements
are analyzed. As a result, the model envisaged is a superposition of a cyclic
deterministic process and a stochastic component., In the analysis of records,
spectral methods are used to detect cycles which are then removed by sub-
tracting from the original series a periodic function obtained by harmonic
analysis. To alleviate the effect of a changing variance during the course of
the year, the series of standard deviations is simularly fitted with a harmonic
function which is used to standardize the series. After standardization, all
the residual series are found to satisfy the second order autoregressive
representation:

Lt By a0 Ty

where a, and a, are the autoregressive coefficients and n; is an independently

distributed random variable. The adequacy of fit is judged on the agreement

between the theoretical and explained variances.



STOCHASTIC MODEL OF DAILY RIVER FLOW SEQUENCES

by Rafael G. Quimpo*

CHAPTER I

INTRODUCTION

An important facet in the planning of a water re-
source project is the prediction of characteristics of
future water supply, the most common of which are
rainfall and runoff. For prediction, use of the latter
seems to be more practical since it is less suscep-
tible to intermediate processes which could radically
change final quantitative estimates of available water
and since it, at the same time, admits to facility in
measurement. It is, thus, natural that records of
river flows should be the subject of an intensive in-
vestigation of structural characteristics most suita-
ble for mathematical modeling and prediction purposes.

With the ever-increasing demand for water, esti-
mates of water needs, expressed in lumped quantities
averaged over a year or more, are no longer suffi-
cient. Specification of river runoff in terms of mean
annual flow or flow duration is gradually giving way
to description of flow in terms of time sequence and
distribution, the knowledge of which allows for better
regulation and control of water, e.g., by storage
reservoirs,

Runoff from a basin is the combined effect of
variables which may be deterministic or stochastic
in nature. The interaction of these variables has
thus far defied a complete mathematical analysis.
Therefore, the engineer who has to make a projected
estimate of flow must rely on statistics. At this

time, prediction procedures properly belong to this
discipline.

Objective - The purpose of this study is to investi-
gate the structure of the time series of daily river
flows, to detect and isolate the deterministic com-
ponent from the stochastic of the time series, and to
reconstruct the underlying process in terms of a
mathematical model which will adequately describe
the structure of the underlying mechanisms which
generate the process.

Approach - River runoff is a continuous process.
To be able to closely examine the properties of the
continuous time process, one must work with the
shortest time interval possible. Although it has been
measured by continuous recorders in many sites,
problems in information retrieval has limited pub-
lished data to equi-spaced records of average values.
The analysis of daily river flows is offered as an
attempt to improve the accuracy of predictions.

Definition - Daily river flow as defined in this
study is the average daily runoff at a section of a
river, the averaging being done either from a continu-
ous record of an automatic recorder or from river
stage measurements taken at representative time
intervals to make interpolation and averaging consist-
ent.

* Former graduate student of Colorado State University, and at present Assistant Professor, University of

Pittsburgh.



CHAPTER II

MATHEMATICAL TECHNIQUES*

The statistical analysis of a time series is best
approached as a study of random functions. In that
case, a random function X(t) is defined as a function
whose values are random variables., If X(t) is taken
as the result of an experiment or the record of a proc-
ess then X(t) is called a realization or a sample func-
tion. If t is allowed to represent time, one gets a
probabilistic representation of an observational time
series.

A time series is called stationary if it is tempo-
rarily homogeneous, i.e., if its statistical properties
do not vary with time. Otherwise, the time series is
called non-stationary or evolutive. Actually, complete
temporal homogeneity is difficult to show except in
very special cases, Because of this, most statisti-
cal investigations have been limited to a less rigid
definition of stationarity, based on the first two mo-
ments of the distribution function:

u(t) = EX(1)

Clt, s) = E[X() -u()] [X(s) -ult)] (2.1)

where E(-) denotes the mathematical expectation.

Thus, X(t) is said to be weakly stationary or
stationary in the wide sense if its mean is equal to a
constant and its autocovariance function C(t, s) is a
function only of the difference (t-s), i.e.,

EX(t) = m

E[X(t) -m] [X(s) -m] = C(t - s). (2.2)

This study will be confined to time series which
may be assumed stationary, as defined above, or to
those that can be reduced to such stationarity.

It should be noted that the use of probability theory,
in the above definition of terms, implies an ensemble
of time series. Although in practice usually only a
single realization is available, it is still possible to
calculate the characteristics of a stationary random
function because of the ergodic theorem which gener-
ally applies when the conditions of stationarity are
met. According to the ergodic theorem, the mathe-
matical expectation of both X(t) and X(t) X(s) obtained
by averaging over an ensemble of t{ime series can be
replaced by the time average of the same quantities
over a realization.

2.1 The General Model. Consider a realization
of a random process taken at equal intervals of time
and denote it by Xt’ the discrete equivalent of X(t).

A general heuristic model used to describe such 2
sequence is given by

X =R o+ P+ gy (2. 3)

where
R isa trend component,

Pt is a periodic or cyclic component, and

e. 18 a nondeterministic or stochastic
component.

Let it be assumed that there is no trend. Such an
assumption does not necessarily limit the applicability
of later results since, when a trend does exist, there
are ways of isolating it and subtracting it from the
time series. However, the procedures for doing so
are outside the scope of the present study which must,
therefore, proceed on the above assumption. To con-
tinue, eq. 2.3 may then be written as the sum of a
periodic component and a stochastic component

+ (2.4)

X, = Pt + o6y

The main problem in applying scheme 2. 4 is the
separation of the periodic component from the non-
deterministic part.

2.2 The Periodic Component. The classical
approach to the detection of periods is by use of
Schuster's periodogram obtained through a harmonic
analysis. In this approach, if X  is assumed to have
a period p, then the funciion Xt must satisfy the
relation

Xt-xt-p =0 (2.5)
for any t. The solution of eq. 2.5 may be written as
- = 2kt
X, = KE21, cos | T+ \ﬁk}
= 27kt . 27kt
—X+Z(Akcos T + By sin = ) (2. 6)
where
k runs from 1 to TL or —I-%i

2= Jp¥ BLA

Xk k Kk A ,B and I >0

k’ 7k k
-B
¢.k = arctan(%), (-% < gﬁk < %} ;

On the basis of eq. 2.6, an approach function may be
considered, composed of superposed harmonics each
having an amplitude Ikz, a phase 61{‘ and an angular

frequency ?'LR given by

% The reader who is well familiar with the autocorrelation and spectral analysis techniques in the investigation

of time series may delete the reading of this chapter.
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Thus, one obtains a general function, a composed
harmonic of the form

X(t) = X +
k

L

| Ik cos ()th + ék]

=X + i (Ak cos )th+ Bk sin Rkt) ; (2.8)

k

W o

The basic difference between eq. 2.6 and eq. 2.8 is

that in eq. 2.6 the periods p; = 21

A
k
of p, whereas in eq. 2.8 they are not restricted.
Thus, limiting J\k between 0 and 7 in eq. 2.8 would

are true fractions

not affect its generality. The essential problem in
applying scheme 2.8 is evaluating the frequency num-
bers X which would give the best possible fit to

empirical data.
required are:

For a sample of size n, the formulas

A 2 ;Xc At W
i @ R R
2 n
Bk:ﬁt?i X, sin Wt > (2.9)
2 o 2 2
L* = Af+ By )

1 2 t
=) a.ndAk=—Z- = =) X

For )Lk=1r, B 2

£

o

A widely used description of this scheme is
the empirical periodogram in which Ik2 is plotted as

ordinate against )Lk. A variant of this plot is the
integrated periodogram wherein IkZ is replaced by
Sk defined by

e (2.10)

The periodogram is analogous to the spectrum of |
light in optics in the sense that, as the lines in the
spectrum of light correspond to the power of the
respective wave component, the periodogram ordinate
corresponds to the contribution to the variance by the
harmonic of a given frequency.

2.3 The Stochastic Component. Assuming that
the periodic component Pt has been detected and

subtracted from eq. 2.4, the residual series,

(2.11)

will now be considered. According to Doob's termi-
nology [8], € belongs to a class of nondeterministic

processes which include autoregressive, moving

average, and other schemes of linear regressions.
In these schemes of linear regression, the interde-
pendence between successive terms is assumed to be
probabilistic rather than functional.

2.3.1 The Schemes of Moving Averages and
Linear Autoregressions. If it 1s assumed that each

term in the series is the combined effect of a primary
sequence of identically distributed variables Ny

then e, can be represented by
(se}

e, = Z b.n_;
t izo it-1

(2.12)

It is possible that the summation extends only over a
finite number of terms. This representation is
called, in the literature, the scheme of moving
averages.

Another type of linear regression
which uses the same set of primary variables s

is written in the form,

(0]
W F B anei o (2.13)
t fog bt

This representation is called the scheme of linear
autoregression.

While the infinite representations are
theoretically sound, the fact is that in all processes
the effects of past values on the present decrease
with time distance and a finite summation very often
suffices. Further, if the degree of required preci-
sion is fixed, only a finite number of terms will be
required and hence the alternative representations
are:

n
e T B bimg (2. 19
i=1
m
Z ae . TN (2.15)
j=o 1 t1 t

Wold [21] shows that a necessary condition for the
existence of an autoregressive scheme (2. 15) is the
inclusion of the roots of the characteristic equation,

Lm=-1

Xm+a1}> +...+2 X+a_ =0,

-1 o (2.18)

all inside the unit circle of the complex plane.

Wold shows that the coefficients (a)
of eq. 2.15 are related to the coefficients (b) of
eq. 2.14 and that each set defines the other.

2. 3.2 Estimation of Parameters. Consider
a finite-ordered autoregressive representation of
the form 2, 15;

Xt+ alxt_1+...+ ahxt-h =, (2.17)

and the moving average scheme:

Xt = ﬂt+ biﬂt—!_ + bznt—2+ ans (2 18)



Eq. 2. 18 may be rewritten for any k as

+b (2.19)

Reek ™ Mek ™ PiMp k-1 Polyk-2t o
Multiplying eq. 2.17 by eq. 2. 19 and taking expecta-
tions, one obtains

r+ Ty + a,r

PXIWIPL PR - ST (2.20)

since the n's are uncorrelated. Repeating this pro-
cedure for h consecutive values of k (k=1, 2, ..., h)
the system of linear equations is obtained:

ry+ a1+ azr1+...+ahrh_l =0

T BTyt BTyt b Ty, = 0

(2. 21)

o
+
w

o
,_3.

=
+
@

]
H

=

]
+
+
w

=

"
o

Since the system 2. 21 is linear with respect to the a's,
it may be solved for [a] = [al, 8oy vnes a.h] and thus

the coefficients of the autoregressive scheme are
obtained [21]. Further, after solving for the set [a],
the existence of a stationary scheme 2,17 may be
verified by substituting the a's in eq. 2. 16 and check-
ing whether the roots of the characteristic equation
all lie in the unit circle of the complex plane.

There are other methods of estimating
the parameters [a]. Yule [24] also used the equiva-
lent procedure of minimizing residuals, a very con-
venient method for lower-ordered schemes and one
which will be used in a later section.

The use of the system 2. 21 employing
empirical values of the autocorrelation coefficients
yields a set of a's which minimizes the variance of
n in eq. 2.17. Further, the first h autocorrelation

coefficient of the derived process will coincide with
the empirical values. However, Wold warns that the
hypothetical correlogram will not in its whole range
coincide with the empirical correlogram.

Consider the first order autoregres-
sive scheme (taking n=1 in eq. 2.14). With a slight
change in notation, it may be rewritten as:

X, =pX

) (2. 22)

t-1 T €4

Thus, the least square estimator of p may be shown
to be equal to ry.

For the second order autoregressive
scheme (taking n = 2 in eq. 2.14), consider:

X, + a + a X =€, - (2.23)

t 17t-1 27t-2

The use of system 2. 21 or the method of least squares

yields estimates for ay and a,:

. rl{l -.r 2)
1 R
1 1"1
and (2. 24)
-
T2 ™ 14
sy
I

2.4 Autocorrelation Analysis and the Correlogram.
In detecting patterns of movement, a logical question
is whether or not successive values of a time series
are interdependent. A measure of this dependence
is given by the autocorrelation coefficient--the equiva-
lent of the correlation coefficient between two varia-
bles. For a discrete time series, it is defined as:

. EX, Xk EX{EX k (2. 25)

2 _ 2
EXt (E Xt)

Px

If P I8 plotted against k and if the plotted

points are connected by straight lines, one obtains a
correlogram. It is obvious that if the terms of the
series are uncorrelated, the correlogram will have
a value of 1 at k=0 and an expected value of zero
at all other points. Kendall [16] further shows that
if the series has a single sinusoidal component, the
correlogram, given a large sample, will have the
same period as the sinusoidal component and the
correlogram will be an undamped cosine function.
If the series has a composed harmonic component,
however, while the correlogram will still show
sinusoidal characteristics due to amplification and
cancellation of amplitudes, the correlogram may be
so distorted as to prevent visual detection of cycles
present.

In the case of the scheme of moving averages,

) L(Ejej-}-k) ) (blbk+1+ ...+ by b)) vare
pk E 2 n
€j var ¢ % b.?
i=t 1
n-k
2 bibiy
= — forn>k
n
£ b.?
=4 (2. 26)
=0 forn< k
In the case where bi =b.'i L= 3= 1 25 wwaads
eq. 2.26 becomes
(n-k)b.?
i n-k k
P~ 2 T Tn 3 ® n BFE
nbi
(2. 27)
=0 n< k

so that the correlogram consists of a broken line
composed of the segment joining (0, 1) and (k, 0) and
the x~-axis from (k, 0) onwards.



For autoregressive schemes, the correlo-
grams may take a number of characteristic shapes
depending on the order of the scheme. The correlo-
gram for the first order autoregressive model, also
known as the first order Markov model, is

k
P = P (2.28)

and the correlogram for the second order autore-
gressive, or second order Markov model, is

k/2

a, sin (k6 + )
Py = Sinv (2200
- where
8
6= arccos , and
2
1 - a,
tan ¢ = T AR 2]
2

It can be seen that the correlogram is a har-
monic function with frequency 6 damped by a factor

(%! % [16].

Theoretically, the characteristic shapes of the
correlograms reviewed above furnish the discrimi-
nating tools in the determination of the scheme which
is applicable in a particular problem. Thus, an
undamped sinusoidal correlogram would signify a
cyclic series, while a correlogram which goes to
zero at the kth lag would signify a moving average
scheme. Further, a damped sinusoidal correlogram
would indicate an autoregressive representation.

The cases encountered in practice, however,
present some difficulties. Sampling fluctuations,
especially for relatively short series, often obscure
the asymptotic behavior of a first order autoregres-
sive scheme on the correlogram, which may vanish
at a lag k. The complication caused by the super-
position of two or more harmonics has been previ-
ously cited as another source of confusion. This
will be dealt with in more detail in a later section.

A more perplexing situation arises when the series
under study is generated by a linear combination of
the above mentioned schemes. This is almostalways
the case encountered in practice.

2.5 Aspects of Spectral Theory. The transition
from autocorrelation analysis to spectral methods
may be followed in Wold's work [21]. On the basis
of a theorem due te Khintchine for the continuous
case, Wold shows that, given a sequence pk(k =0, &1,

+ 2,...), a necessary and sufficient condition for the
existence of a discrete stationary process with Py

for correlation coefficients is that Pk values are the
Fourier constants of a non-decreasing function W(x)
such that W(0) = 0 and W(#) = 7, with

ha

j cos kx dW(x) .

0

(2.30)

o

Px

Reverting to the continuous case, Cramer [7]

has shown that any stationary process X(t) has the
spectral representation

s

X(t) = e az(g) (2.31)

-

where z(f) is an orthogonal set function with

E |dz{f)|2 = dG(f)

Assume an actual process, roughly stationary,
with EX(t) = 0 and EX(t) X(t+k) = C(k). It might also
be noted that the covariance function C(k) is related
to the autocorrelation coefficient by the expression

Py = %%%— s (2.32)

Using Cramer's representation, it can be shown that
oo} (o9]

ck) =] e?™HKgq(n o 27Uk pry g (2.33)

-~ -®

with the eq. 2.33 being valid if G(f) is differentiable.
Here, G(f) is the spectral distribution function, and
P(f), the spectral density function of the process.

It may further be shown that eq. 2.33 may be
inverted to give the spectral density function as the
Fourier transform of the covariance function:

0
e "27HK ooy i

P(f) = (2.34)

-Cco

Since X(t) is real, C(k) is symmetric about k = 0 so
that C(k) and P(f) may be represented simply as
cosine transforms:

[00]
C(k) = P(f) cos 27 fkdf = 2| P(f) cos 2 Tkdf
- o
= (2.35)
[ss] (e8]
P(f) = C(k) cos 27fkdk = 2 | C(k) cos 2y fkdk’.

e el

The equivalence of Wold's representation 2.30 and the
second half of eq. 2. 35 is at once apparent.

According to Cramer's representation, the
process X(t) may be considered an integral over the
frequency interval (-7, 7). Thus, the function,

dG(f) = GIf,) - GIf,)

may be interpreted as the part of the total variance
attributable to the frequency band (f, - fi). The

integral over the whole range gives the total variance
and hence the equally appropriate name--variance



spectrum. In a stretched context, the spectral dis-
tribution function is essentially an integrated periodo-
gram of eq. 2. 10,

In retrospect, it may be recalled that Wold's
theorem and Cramer's spectral representation are
both premised on the stationarity of X(t). When X(t)
is not stationary and if the covariance C(k) is used to
estimate the spectrum, then, as Granger and Hatanaka
[9] show, the result is not the true spectrum but an
average spectrum. Although this presents certain
theoretical difficulties, it should not cause too much
concern since, in practice, one will be dealing with
discrete values of Xt which are, to begin with,

averages over the sampling time interval. Thus, one
can only work with, at most, the precision of the
averaging procedure in the data assembly. Anaverage
spectral estimate should suffice for practical pur-
poses.

In the expression for dG(f), if the band
{f2 ® fi} is narrow enough or, to use the communica-

tion engineer's terminology, with a fine enough reso-
lution, the spectral density may be used to detect
cycles in the time series in exactly the same way
that significant ordinates in the periodogram are
used. Inthe analysis of discrete data, one is never
able to obtain a continuous density function. Instead,
he obtains the average power smudged over a fre-
guency interval. Then, the identification of powers
attributable to adjacent frequencies is attained by
resolving the power into narrow bands of frequencies.
The resolution is a measure of the concentration of a
spectral estimate expressed in units of frequency.
Following Tukey, this study accepts it as equal to
the reciprocal of the maximum number of lags taken
in computing autocovariances. Thus, increasing the
lag improves the resolving power. There is, how-

" ever, a limit to the fineness of resolution practicable
because of the effect on the variability of estimates.
Grenander and Rosenblatt [10] have shown that, given
a length of data n, the variance of Tukey's estimate
is proportional to the maximum number of lags m
taken in computing autocovariances. Although an in-
crease in variance requires a compromise between
resolution and variability.

The analysis of equi-spaced records immedi-
ately imposes an upper bound on the spectrum. Since
at least two points are necessary in order to fit one
frequency, the fastest sine wave that can be detected,

: _ — 1 s
given a sampling interval at is AT cycles per unit

time. Since 27 radians equal one cycle, all fre-

er _ 7
n  2at At
will not be detected. The wave that oscillates three
times during the sampling interval cannot be distin-
guished from the one that oscillates only once from
the one which oscillates twice. Thus, the density

which is measured at  is actually:

quencies above a '"folding frequency, " f

P(fx2kf) (k=1, 2,...n) (2.36)

Therefore, before any analysis is made, one must be
sure that P(f) is negligible for f> f - The choice of

the sampling interval is decided on the basis of how
much power remains above f_ and the largest fre-
quency that is of interest.

2,5,1 Estimation of the Spectra. For the
discrete case, an expression equivalent to the second
part of eq. 2. 35 yields the spectral density,

[e0]
_ 1 S L
P(f}-Z—7r[C0+2kE:iCkcos 2rfk] (-3<f<3) (2.37)

if the power is confined in a band (-7, 7).

Given a finite sample of observations,

Xys..., X, One can at most obtain only an estimate

of spectral density since only n - 1 autocovariances
can be calculated. Thus, one finds that:

B(f) = cos 27 fK] . (2.38)

Tﬂ'ﬂ.kk

In practice, even a lesser number of lags is some-
times used for reasons which will be discussed later.
As regards the estimate in eq. 2.38, Jenkin [12] has
shown that it is related to the ordinates of Schuster's
periodogram defined by eq. 2.6. However, it can be
shown that Schuster's periodogram ordinates do not
give a consistent estimate of P(f)[11]. This has led
to estimates of the form arrived at by means of the
following equation,

n-1

o 1
P(f) = Z_rr[CoDo(ﬂ+ 2k2=1 CkD

k(f} cos 27fk], (2.39)

This is equivalent to the application of a filter or
kernel function Dk on the covariance function C

-
Blackman and Tukey [6] have explained that the

multiplication of Ck by a suitable even function 1’)k

makes the transform of the product a respectable
estimate of the smoothed values of the spectral den-
sity. Various forms of the kernel function have been
suggested. This study used the function,

D, (1) = %(1+5913ni’-5) 'k <
-0 ’k l:» m (2.40)
whose transform takes the form,
Q= sa +7“[Q(r+;fm)+ Q(f-ﬂi—m}] . (2.41)

where m is the maximum number of lags used in
computing autocovariances and where m is alsoequal,
for unit time interval, to the maximum time lag Tm

used in estimating the spectrum.

In the actual analysis of discrete time
data, there are two ways of arriving at estimates
P(f). One is to multiply the covariances by the chosen
kernel function before performing the Fourier trans-
formation; another is to make the Fourier cosine
transformation first and then form linear combina-
tions of the results according to eq. 2.41. These two
approaches are both possible because of the equiva-
lence of multiplication and convolution under Fourier
transformation [20].



To summarize, the estimation of the
spectrum of a process involves:

(1) Choice of the maximum number of lags
m necessary in calculating autocovariances, This
decision is governed by the desired resolution (which

for unit time interval, is equal to %), but only after
consideration has been given to the adverse effect
of an increased m on variability.

(2) Computation of m + { autocovariances,

CO, Ci""’cm'

(3) Application of a finite cosine series

transform to the sequences of autocovariances. This

takes the form,

vV, = L[C +2mz,:1C cos MT . c_ cos k7] (2.42)
k m ‘o =i i m m ’

where the values of Vo and Vm are taken as half of
their computed values.

(4) Formation of linear combinations of Vk

using the coefficients in eq. 2.41 as weights.

2.6.1 Significance Test for Spectiral Estimates.

Jenkins [12] has demonstrated that the distribution
-of P(f) may be approximated by a Chi-square distri-
bution with an equivalent number of-degrees of iree-
dom which depend on the kernel function used. In

the case of the kernel in eq. 2.42, the equivalent
number of degrees of freedom v is approximately
2n, Inplace of n, Tukey [20] suggested the substi-

m

tution of an effective length of record Tn= n - —? s0

that

2(n - _H?l) 2n

Y Ee— —

m m

This then provides the basis for establishing confi-
dence limits and for testing for significance. Tukey
[20] has also tabulated values for the confidence

limits for the ratio i{ﬂ .
P(f)

2.6.2 Test for Autoregressive Schemes. The
statistical test used for testing the adequacy of finite
ordered autoregressive schemes is derived from
Quenouille [17]. According to this test, the kth
ordered autoregressive representation may be written
thus:

Xt + aixt-i - aZXt-Z (2.43)

Quenouille defines a function ¢(x), two sets of con-
stants [A] and [P], and a test parameter Rj by the

equations:

w 2k
$x)= = Ax =3 AxX,
j=-oo j=o
o)
.5 B _—
P,] j_:-copipj-l s
w 2k
R.= Z A,p._..= Z A.p._.
e L o= U e e

where p's are the autocurrelation coefficients. He
has shown that, if X,C satisfies eq. 4. 23, then

Rk+ {2 Rk+f follow asymptotically normal distri-
bution with mean zero, and variance

El > A.P. .
j=o

This provides a test for the hypothesis that the equa-
tion,

(R% .+ R?

2
k+1 +"'+Rk+f)'

k+2

hasa Chi-square distribution with f degrees of free-
dom. The empirical autocorrelation coefficients
may be used for the p's.

For the first order Markov model,
direct substitution into the above equation yields

k+f nR.?
z
j=k+t 1 -p?

as the test parameter with f degrees of freedom
where

2

R.=r.-2r,r L M .
iT i-2

e

Similarly, for the second order Markov
model, the Chi-square distributed parameter is

Lz
nR.?

=z
j=k+1 ) (1 - a,) [t +a2)2 & alz] I J

k+f (1 + az)

where

2
+ (a %+ Zaz)rj_2+ 2a,a,r. 5+ 2,54

1 1727 5=

Bj rj+ Zalrj_
2.6.3 Test for Independence of Residual
Series. In the use of autoregressive schemes, a
measure of the adequacy of the representationadopted
is the independence of the residual series obtained
after subtracting the autoregressive scheme from the
non-deterministic component €4 Anderson [1] has




i imi ignifi e are
given a two-tailed test for PL= 0 at a given signifi- The confidence limits at 95% level of significanc

cance level ¢. His test was derived for a circular 3
5 : 2 _ -1 +1.96VN -
ime series but may also be applied to an open Sla) = N=-2
series-~if due consideration is given to its limitations.

For the present case, the value of Py is of interest.

where N is the number of observed values.



CHAPTER III

RESEARCH DATA ASSEMBLY

3.1 Source, Reliability, and Accuracy of Data.
Runoff records of daily flows for most of the rivers
and their tributaries in the United States have been
compiled by the U. 5. Geological Survey. At regular
intervals, these records have been published in the
Water Supply papers. Initially, only figures for the
more important rivers were compiled. Then, the
list was gradually expanded to include data from all of
the present network of several thousand gaging sites.

During the early stages of compilation, the
mean daily flows were computed from daily mean
gage heights as obtained from staff gages. This
immediately made the early records subject to the
frequency of observations taken during a day. The
advent of continuous water stage recorders which
gradually replaced the staff gages alleviated this situa-
tion somewhat. Conversion from the daily mean gage
heights to flows was made by the use of stage-dis-
charge rating curves,

Where the stage-discharge relation is subject
to change due to frequent or continual alterations in
the physical features of the control, the mean daily
discharge is determined by the shifting control method
which involves the application of correction factors
based on individual measurements. This method is
also used to correct for temporary changes in the
control section due to debris or aquatic growth.

The crudeness of instrumentation in the early
period was further aggravated by the lack of sufficient
personnel to make frequent observations. This neces-
sitated, in some instances, the estimation of unmeas-
ured flows using correlation procedures before actual
data were published. The perennial problem of ice
reducing the area of the control section during win-
ter was another source of error.

Because of such difficulties, the records pub-
lished by the U. S. Geological Survey are classified
as excellent, good, fair, or poor depending on whether
the errors in them are less than 5, 10, or 15 percent
or greater than 15 per cent, respectively.

3.2 Criteria for the Selection of Stations. The
limited scope of this study precluded the analysis of
non-homogeneous records. Gaging stations whose

flows have been significantly altered by man-made
diversions or flow regulation upstream through the
construction dams and reservoirs were automatically
excluded. Minor diversions, up to a maximum of one
per cent of the average annual flow, were, however,
tolerated.

Stations were selected basically onthe virginity
of their flows. Ideally, radical changes in the con-
sumptive use in a basin should have been considered,
but because of the imposing if not impossible task
that would have entailed, homogeneity in this aspect
was assumed. The absence of short term trends was
also postulated--in spite of the fact that it has been
demonstrated [14, 23]that extensive agricultural
exploitation, among other things, can cause percep-
tible trends in river runoff,

3.3 Stations Selected for Analysis. With the
above limitations in mind, a rough survey of the
records published by the U. S. Geological Survey
yielded 17 runoff gaging statians which satisfied the
above criteria and which had records of sufficient
length. An arbitrary minimum of 34 years was
assumed. The approximate geographic locations of
the stations selected are shown in fig. 1.

The mean annual hydrographs obtained by
raking the average flow for each day of the year over
the total number of years of record, for the sites in
fig. 1, is shown in fig. 2. Also plotted are the
standard deviations about the mean daily values of
each hydrograph.

It may be noted that the limitation caused by
the homogeneity requirement imposed a restriction
on the size of the drainage basin. The location, drain-
age area, mean flow, and other pertinent information
for each of the stations selected are tabulated in
Table 1.

Although some of the records were relatively
long, for reasons of possible inconsistencies due to
improved instrumentation or more frequent obser-
vations during the later years, only records taken
after 1821 were used. In addition, a cut-off year of
1960 was used. The choice of both of these dates was
again arbitrary.
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CHAPTER IV

DATA PROCESSING AND RESULTS

4.1 Aims in Representation. The analysis was
designed to obtain a mathematical representation
which would fit the time series of daily flows. The
model envisaged is of the general representation 2.4
since the choice of the gaging sites was made in such
a way that the trend component is absent or relatively
insignificant. The adequacy of the model was based
on the amount of the variance explained and the inde-
pendence of the residual series upon subtraction of
deterministic, and stochastic dependence components
found. Thus, a relatively small explained variance
would be acceptable if it could be shown that after
removing the periodic and autoregressive model, the
residual series could be approximated by an independ-
ently distributed random series,

4.2 Spectral Analysis. The detection of the har-
monic component of the time series was achieved by
estimating the variance spectrum of the process and
inspecting the spectrum for prominent peaks, The
general procedure outlined in Sec. 2.5.1 was followed.

Since it was almost a certainty that the annual
cycle would show up in the spectrum, provision was
made to obtain estimates of the corresponding fre-
quency and those of its harmonics. In order to have
estimates at the frequency 0,00273 cycles per day
(corresponding to one cycle per year), the maximum
number of lags m was narrowed down to a choice
over multiples of 365. A value of m = 365 gives
estimates at intervals of 0.00137, but since this would
smudge the estimates over too wide a band of fre-
quencies, a value of m = 365 was deemed inadequate.
Similarly, m = 730 was rejected as not giving enough
resolution. Although not entirely satisfactory, a
maximum lag of 1095, giving a resolution of 0,000457,
was selected as a compromise in consideration of
computation time. As to its variability, even that
number was found to be too high.

The sampling interval of one day yielded a
folding frequency of one cycle every two days, which
is a much higher frequency than had previously been
thought to be of interest, and the problem of aliasing
did not arise.

The sample autocovariances were computed up
the value of m = 1095 using the formula,

N-k N-k N-k

1 1
. t=1 t 7tk '(ﬁ-'_k’)zt=1 tt:l t > (4.1)

k N-k

which is equivalent to the second part of eq. 2.2.

In so doing, the Fourier cosine series trans-
form was applied by using eq. 2.42, and then linear
combinations of the raw estimates Vj‘s were formed

using the coefficients in eq. 2.41 to find the estimate
of the variance spectrum.

The spectra of the original time series for the
seventeen rivers selected are showninfig, 3. It can
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be seen that generally the most conspicuous peaks
fall on the frequencies corresponding to the annual
cycle and its subharmonics,

For comparative purposes, the covariances
obtained were divided by the variance, and the cor-
relograms were also plotted in fig. 4. A cursory
inspection of the two sets of figures (i.e., the
spectra and the correlograms) provide a graphic
illustration of the features of both methods. Whereas
the harmonics are distinctly obvious in the spectra,
in the correlograms sinusoidal components are indeed
present with the fundamental cycle so confounding all
other harmonics that distinction between them becomes
quantitatively impossible. A further illustration is
presented in figs. 5 and 6. For Boise River at
Twin Springs, Idaho, the cycles were gradually re-
moved starting with the fundamental harmonic down
to its fourth harmonic. The effect on the spectrum
was just the obliteration of the peak corresponding to
the sinusoid. In the correlogram, however, the re-
moval of harmonics gave prominence to the least-
ordered harmonic remaining which was not at all per-
ceptible before removal of cycles with longer periods.

A Chi-square test was made but was not used
to test for significance of the peaks because of the
high variability in the estimates, compromised earlier
to give a good resolution. The alternative was to
determine the variances explained by the cycles cor-
responding to the peaks in the spectrum.

4.3 Harmonic Analysis and Removal of the Periodic
Component. An analysis of variance due to the annual
cycle was made. This was compared to the explained
variances corresponding to the annual cycle and its
subharmonics, these being equal to the ordinates of
Schuster's periodogram obtained by harmonic analysis.

The harmonic analysis was done using formula
2.9. A maximum of six harmonics was fitted. The
results and the variance explained by the analysis of
variance are shown in Table 2.

From the last {wo rows of Table 2, it may be
seen that, except for the Delaware River, the six
harmonics accounted for more than 80 per cent of the
explained variance due to the annual cycle and its
harmonics.

It is noted further that in some rivers the use
of more sub-harmonics did not increase the variance
explained by the cyclic component appreciably. In
the interest of representing the series by as few
parameters as possible, two methods of removing the
cyclic component were attempted--one using all six
harmonics and another using just the harmonics which
contributed significantly to the explained variance.
The number of harmonics used to represent the peri-
odic component for each river is shown in Table 4.
The removal of the cyclic component was achieved by
subtracting from the original series those cyclic
functions whose parameters were obtained from the
harmonic analysis.



4.4 Approximation of Wide-Sense Stationarity.
Subtraction of the periodic component from the series
leaves a stationary residual,

(4. 2)

where Pt is the periodic component characterized by

parameters determined through harmonic analysis.
Fig. 2, however, showsthatthe variances ofthe seven-

teen series are not constant with time, The harmonic
representation of the time series itself suggests that

the series of standard deviations may be similarly
fitted by a periodic function. A harmonic analysis of
the series of standard deviations was made yielding
harmonic function St‘ The results are tabulated in
Table 3.

As for the cyclic component, two methods were
used to represent St’ one using all six harmonics and

another using only those harmonics which contribute
significantly to the variance of S, as shown in Table 4.

With harmonic representations for the periodic
component of the time series and for the series of
standard deviations, a standardized residual was ob-
tained:

€ Xy & B
t t t
Y, = & = i (4'3]
t St St

While this transformation does not necessarily insure
a wide-sense stationary series, its merits can only be
judged by the final results after the complete mathe-
matical fitting procedure has been made and a check
on the properties of the residual series is done. It
might be noted that this standardization does not re-
sult in a series with mean zero and variance unity.
To achieve these convenient properties, another stand-
ardization was necessary, and was done by subtracting
the mean of the new series from each term and divid-
ing each result by the new standard deviation; i.e.,
Yy T ¥
Z‘t = —-yr & (4.4)

4,5 Autoregressive Representation. The choice
of the autoregressive scheme to be applied on the
residual series 4.3 was based on the fulfillment of the
requirement that the roots of the characteristic
equation 2.16 must all lie in the unit circle. A pre-
liminary check showed that various possible schemes
for each of the stations analyzed met this condition,
The logical choice is the scheme which requires the
least number of parameters and yet adequately de-
scribes the series. Thus, lower ordered schemes
were first investigated, and, if they proved unsatis-
factory, the order was progressively increased until
a satisfactory scheme was found.

In fitting the first order linear Markov model,
p was estimated by its least square estimator ry-
Using this estimate, a primary series,

= o~
T'Jt‘ Z'E PZt—i ] (4-5)

was obtained. If the representation 4.5 is adequate,
then the n's should be uncorrelated with the Z's and
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var n, = (1-p%) var Z (4.6)

.t 3
Fulfillment of this requirement was the test of the
validity of a scheme. The resulis are summarized
in Table 5.

The second order autoregressive scheme,

n = Zt+ a Z,_ + aZZt_2 i (4.7)

Values of a, and a, were estimated

1 2
using eq. 2.21. For all rivers, the roots of the
resulting characteristic equations were within the
unit circle of the complex plane.

was then tried.

The variance of the residual was then obtained
and compared with the value given by Kendall:

i (4.8)

var Z 1+ a,

var 2 2 ., 2
{{1 + az) a,
The results are tabulated in Table 6 for the residual
series after removing the harmonics in Table 4 for
the residual series after removing six harmonics are
tabulated in Table 7.

The correlograms of the primary series un

were also obtained and plotted in fig. 7. Anderson's
test for significance for vy was made, but because

of the size of the sample, the confidence band was
found to be too narrow for practical use.

Although the results of the second order auto-
regressive fitting were quite satisfactory, a third
order autoregressive scheme was tried for the series
which satisfied the conditions imposed on the roots
of the characteristic equation. Wold's general pro-
cedure was used in estimating the paramters a;, a5,

and a;. On checking the roots of the characteristic

equation, only Naches River failed to satisfy the
requirement. The variance of the series,

n = Zt+ a, Zt-i + azzt__2+ 3‘3Zt-3 (4.9)

was then obtained and compared with the explained
variance assuming a multiple regression. Results
are tabulated in Table 8,

4.6 Quenouille's Tests. The tests suggested by
Quenouille were applied to the first and second order
autoregressive schemes. Despite the validity of the
models as evidenced by Tables 5 and 6, Quenouille's
test rejected the model. Similar results were ob-
served for all the other stations which were found
to satisfy the second order autoregressive repre-
sentation.

4,7 Computer Program. It is quite apparent that
with the volume of data used and the calculations in-
voled, the task of making statistical inferences would
be impossible without the aid of a computer. All but
the simplest arithmetic calculations were done at
first on a high speed digital computer and at a later
stage on a faster high speed computer. Where it
was convenient and practicable, the plotting of figures
was also done on a data plotter, a cathode-ray tube

device hooked up to the computer used and from which
photographic prints were made.
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TABLE 2 RESULTS OF HARMONIC ANALYSIS AND ANALYSIS OF VARIANCE OF ORIGINAL TIME SERIES OF DAILY FLOW

Batten Cow= Green- Madi- Dela- cur- St, Me-
Harmonie Kill Tioga pasture brier Mad Powell Oconto Jump son ware rent  Neches Falls Merced Maries Boipe Kenzie
River River  River River River River River River River River River  River Creek River River River River
A -503.1 -1274.7 -344.0 -1482.0 -261.8 -888.3 -200.3 -338.0 -60.2 -08.6 -1014.0 -2225.4 -133.0 -563.5 -563.8 -867.9 -414,0
1 B 71.1  245.3 147.8 753.2 62.8 510.0 -112.4 -350.4 -116.1 -252,4 -126.8 477.0 -135,1 -635.9 -6.8 -1014,0 125.2
Explained
Variance 0.1843 0.1082 0.0975 0.1483 0.0769 0,1734 0.1356  0.0672  0.2350 0,0140 0.0743 0,1781 0.3274 0.3697 0.2736 0.4187 0.1689
A 193.6  613.5 8.0  140.8 -8.7 -20.3 145.4 310.8 -48.5 -46.3 112,1 -33.0 -485 -166.4 198.8 -228.3 -164.0
2 B 199.8  268.6  -46.1 -276.1 -31.8 -311.0 185.0 286.7 98,7 92,5 303.2 348,0 125,3 558.0 183.7 900.5 130,9
Explained
Variance 0.0552 0.0291 0.0058 0.0052 0,0012 0.0161 0,1423 0.0661 0.1681 0.0020 0.0072 0.0042 0.1645 0.1767 0,0663 0.2028 0.0379
A -192.8 -501.4  -31.5 =-140.4 17.8 -17.8 -85,5 =-137.1 69,3 56,8 48.5  418.9 62,4 278,2 -100.9 422,2 12.9
3 B -i28.5 -42.1 -12.2 -28.2 2,6 -1.5 -78.9 -132.8 =9.7 71.8 -87.4 -218.5 -9,8 -114.9 -158.4 -180.1 -79.9
Explained
Variance 0.0383 0.0164 0.0008 0.0011 0.0003 0.0001 0.0352 0.0135 0.0674 0.0016 0.0007 0.0077 0.0364 0.0472 0.0304 0,0495 0,0059
A 80.6  238.8 4,4 24,5 i7.1 -6.2 58,0 174.2 -30.9 65.0 -38.2 -342,1 -14.3 -124.6 28,1 -145,5 =-18.6
4 B 72.8 -184,4 =9.1 =661 11. 5 11.0 65,6 83.5 =33.3 -50.0 8.6 -96.0 -29.5 -95.3 63.2 -113.0 -43.8
Explained
Variance 0.0084 0.0046 0.0001 0.0003 0.0005 0.0000 0.0187 0.0138 0.0284 0.0015 0.0001 0.0043 0,0088 0.0128 0.0041 0.0008 0.0020
A -47.6 -210.6 -27.3 _-58.8 -43.4 13,6 -38.8 -146.4 -8.9 -49.0 -88.2 17.0 =7.1 8.7 3,1 -15.9 22.8
5 B -57.6 129.9 16,9  121.1 -7.8 5.4 -72.5 -173.0 26,9 =77.8 13.5 188.2 1.0 56,9 -53.8 36.6 18.8
Explained
Variance  0,0040 0.0042 0.0007 0.0010 0,0021 0,0000 0.0176 0,0150 0.0111 0.0016 0.0005 0.0012 0.0005 0.0017 0.0025 0.0004 0,0008
A 15,5 88,8 13.2 41.0 13.5 7.9 7.4 13.8 5.8 -22.2 8.8 67,3 1] 10.1 6.2 2.2 9.7
6 B -5,5 -136.0 11.2  -26.5 -4.6 23.9 27.8 66.9 1.6 63.2 2.6 -192.0 1.4 -2.8 47.2 34.9 24.4
Explained
Variance  0,0002 0,0017 0.0002 0,0001 0,0002 0.0001 0,0021 0.0017 0.0005 0.0008 0.0000 0.0014 0.0005 0.0001 0.0020 0.0003 0.0006
Variance Ex-
plained by 6
Harmonics 0.2904 0.1632 0,1051 0,1560 0.0812 0.1897 0,3525 0,1813 0,5115 0.0216 0.0828 0,1969 0,5387 0,6082 0.3789 0.6725 0,2161
Total Vari-
ance Explained
by Annual Cycle0.3019 0.1840 0.1210 0,1708 0.1003 00,2029 0,3584 0.1970 0.5152 0.0445 0.08994 0.2029 0.5463 0.6120 0.3894 0.6818 0.2256
TABLE 3 RESULTS OF HARMONIC ANALYSIS OF THE TIME SERIES OF STANDARD DEVIATIONS
ABOUT INDIVIDUAL VALUES OF DAILY MEANS OF ANNUAL HYDROGRAFPH
Batten Cow-  Green- Madi- Dela- Cuar- St. Mc=-
Harmonic Kill Tioga pasture brier Mad Powell Oconto Jump son ware rent  Neches Falle Merced Maries Boise Kenzie
River River River River River River River River River River River River Creek River River River River
A -268.3 -1286.6 -278,5 -1222,8 -302.5 ~-798.3 -123.3 -194.4 -18,6 -137.8 -1372.9 -1938.8 -48.5 =-228.3 -383.0 ~-462.8 -186.0
1 B 143.3  485.0  180.3 935.2 154. 4 648,.3 -85,6 -406.3 -70,4 -738.7 -63.6 398,1 -47.6 -258,7 202.7 -480.5 280.4
Explained
Variance 0,3081 0,3574 0.2799 0.4822 0.3228 0.60090,2706 0.1862 0.5578 0,2065 0.3375 0.5104 0.1759 0.2916 0.6556 0.6102 0,5157
A 78.8  565,1 7.2 -78,2 -93.6 -235,9 141.6 439.5 -30.9 -127.5 -11.5 -167.5 -61.5 -214,2 11.4 -133.6 -203.6
2 B B7.0 287.5 =-15.1 =-246.4 -51,2 -267.6 105,7 226.7 41.3 240.0 458.6 1179,0 81.1 342.3 91,7 455. 7 8.6
Explained i
Variance 0.0354 0,.0760 0.0157 0.0137 0,0318 0,0723 0.3750 0,2244 0.2233 0.0269 0,0376 0.1848 0.38B55 0.3961 0.0298 0.3082 0.2170
A -142.3 -386.3 -4.6 -133.8 91.8 11.8 -B6.4 -75.7 29,9  107.7 96,0  373.2 9.9 82,3  -50.1 142,2 13,0
3 B -10.8 168.1 6,1 -44.5 14,5 ~47.8 -46,2 -105.2 -11.8 199.7 -143.4 -371.6 4.9 -42.1 -108.89 -92,2 -25.4
Explained
Variance 0.0674 0.0336 0,0001 0.0041 0.0240 0.00140.0786 0.0154 0.0868 0.0188 0,0053 0,0361 0,0046 0,0208 0.0502 0.0394 0.0037
A 81.7 168.5 -23.4 -14.6 27.4 -47.3 75.7 236.0 -20.5 199.1 =77.0 -755.7 2.8 -40. 4 8.0 -1.5 -1.6
4 B 15.3 -267.0 =-27.2 -1.7 24.8 3l.4 31,7 -107.4 =17.7 =-121,2 8.8 -116.5 -31.4 -125.3 =-20.1 -48. 9 -48. 5
Explained
Variance 0,0286 0.0188 0.0033 00,0000 0.0038 0.0018 0,0809 0,0617 0.0616 0,0188 0.0011 0,0762 0.0370 0.,0421 0.0016 00,0033 0,0110
A -18.3 -243.6 -48.0 15,0 -124.0 2.4 -47.2 -258.6 -9,6 -109.5 -235.2 200.6 2.9 26,0 28.3  -11.6 -11.7
5 B 13.9 320.3 51.9 187.9 =4, 7 -30.7 -43.2 -206.6 14, -269. 8 87.0 110,2 -10.2 13.2 -12, 2 -15, 6 -23.5
Explained
Variance 0.0017 0.0306 0.0127 0.0073 0.0431 0,00050.0492 0.1010 0,0250 0.0309 0,0112 0,0068 0,0042 0,0021 0.0035 0.0005 0.0031
A 6.6 117.5 28.4 3.8 38.5 3.0 8.6 -41.7 -0.5 =75.1 12,0 90.8 1.8 25.0 10.8 -3,1 10.8
6 B -115.8 -207.2 -6.4 =-10.1 -30.1  -52.5 4.3  -59.0 6.8 138.5 -0.5 -288.2 5.7 24,1 30.6 §5.3 44.7
Explained
Variance 0,0446 0.0107 0.0022 0,0000 0,0067 0.0016 0.0011 0.0048 0.0039 0.0091 0.0000 0.0118 0.0013 0.0028 0.0059 0.0042 0.0087
Variance Ex-
plained by &
Harmonics 0.4858 0.5271 0.3139 0.5073 0.4322 0.6785 0.8554 0.5935 0,9584 0.3120 0.3927 0,8262 0.6085 0,7556 0.7466 0.0668 0.7602
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TABLE 4 NUMBER OF HARMONICS USED TO REPRESENT PE and S‘t

l:'t st
Total Exp. Total Exp,
Number Percent of Variance Number FPercent of Variance
River of Explained due to of Explained due to
Harmonics Variance Annual Cycle Harmonics Variance Six Harmonics

Batten Kill 3 0,2778 0.30189 6 0. 4858 0,4858
Tioga 3 0,1547 0. 1840 8 0.5271 0.5271
Cowpasture 2 0.1033 0.1210 5 0.3117 0.3139
Greenbrier 1 0.1483 0,1709 2 0.4958 0.5073
Mad 1 0.0769 0.1003 5 0.4255 0.4322
Powell 1 0,1734 0. 2029 2 0.6732 0, 6785
QOconto 5 0.3504 0.3584 5 0,8543 0.8554
Jump 5 0.1796 0,1970 5 0, 5887 0.5835
Madison 5 0.5110 0.5152 5 0.9535 0.9584
Delaware 1 0.0140 0.0445 6 0.3120 0.3120
Current 1 0,0743 0.0884 5 0,3827 0.3927
Neches 1 0.1781 0.2029 4 0,8075 0.8262
Falls Creek 4 0,5382 0.5463 4 0, 6030 0.6085
Merced 4 0. 6064 0.6120 4 0. 7406 0.7556
St. Maries 3 0.3703 0.3894 3 0.7356 0. 7466
Boise 3 0. 6710 0.6818 3 0.8588 0. 9668
McKenzie 2 0. 2086 0.2256 2 0.7327 0,7602

TABLE 5 RESULTS OF FITTING FIRST ORDER AUTOREGRESSIVE
SCHEME TO STANDARDIZED STOCHASTIC COMPONENT
(after removing harmonics of Table 4)

Variance of
Residual Series
FIVER R a- g Theoretical Computed
Batten Kill 0.78956 0.37860 1.27026
Tioga River 0.55174 0.64884 0.87947
Cowpasture 0, 65989 0.56455 1.03938
Greenbrier 0,70010 0. 50986 1,00418
Mad River 0. 63625 0.59518 0.85853
Powell River 0., 84002 0.29437 1, 45685
Oconto River 0, 79583 0.36650 0,73138
Jump River 0. 67083 0. 54888 0.59837
Madison River 0.83718 0.12168 0.65934
Delaware River 0.58811 0. 65295 0.61152
Current River 0.71192 0.49317 0.92779
Neches River 0.96823 0.06253 0.74477
Falls Creek 0.80647 0.34961 0, 720686
Merced River 0.82632 0.32720 0,14579
St, Maries River 0. 558386 0.68824 0.84098
Boise River 0, 85457 0,08880 1.06286
McKenzie River 0. 93866 0.11882 0.72816
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TABLE 6 RESULTS IN FITTING SECOND ORDER AUTOREGRESSIVE SCHEMES TO STANDARDIZED STOCHASTIC COMPONENTS.
(After removing harmonics of Table 4)

Absolute Value of Variance of Residual Series
River a, 2, the Roots of the
Characteristic Equation Theoretical Computed
Batten Kill -0, 30850 +0. 15065 0, 69023 and 0.21827 0, 3642 0. 3681
Tioga -0, 50830 +0, 02967 0.55583 and 0.05337 0. 6433 0. 6486
Cowpasture -0.71558 +0.08441 0.56661 and 0. 11887 0.5605 0. 5606
Greenbrier -0, 77385 +0, 10534 0,58755 and 0,17629 0.5042 0. 5043
Mad -0, 60875 -0.04321 0, 67285 and 0.06421 0.5841 0. 5941
Powell =1,07380 +0, 27830 0.63671 and 0.43709 0.2716 0.2714
Oconto -0,54176 -0,31933 0.89754 and 0, 35578 0.3291 0.3292
Jurmnp -0.58300 -0.13094 0.75617 and 0.17317 0,5405 0. 5406
Madison -0,92528 =0.01270 0,95069 and 0.02559 0.1217 0,1218
Delaware -0, 65798 +0, 11680 0.34192% 0, G440 0, 6448
Current -0.73531 +0,03285 0.77756 and 0.04224 0, 4026 0.4927
Neches -1,32541 +0. 36890 0.92780 and 0.38760 0.0540 0.0543
Falls Creek -0, 84554 +0.17244 0.68876 and 0.24678 0.3382 0.3393
Merced =0.80387 -0.02704 0.53630 and 0.03234 0.3175 0,3176
5t. Maries -0, 42437 -0.023998 0.782189 and 0.235783 0, 6486 0, 6487
Boise -1.03034 +0, 07937 0.94648 and 0.08386 0.0882 0.0882
McKenzie -0, 58179 0. 04594 0.93252 and 0,04926 0,1186 0,1188

* Hoots are complex conjugates,

TABLE 7 RESULTS OF FITTING SECOND ORDER AUTOREGRESSIVE SCHEMES TO STANDARDIZED STOCHASTIC COMPONENTS
(After removing 6 harmonics)

Absolute Values of Variance of Residual Series
River al a, the Roots of the
Characteristic Equation Theoretical Computed
Batten Kill -0. 93028 +0. 16011 0,70231 and 0.22797 0.3477 0,3479
Tioga -0. 62523 +). 04086 0.25873 =and 0,21777 0.5288 0.6375
Cowpasture -0.71181 +0, 08103 0, 56956 and 0.14228 0, 5627 0.5628
Greenbrier -0. 78026 +0, 12609 0.62167 and 0.15838 0,5124 0,5125
Mad -0. 60685 -0, 05580 0.68828 and 0.08144 0. 5851 0,35852
Powell -1.08724 +0.33729 0.58075% 0.3001 0,3002
Oconto -0. 56671 -0. 30560 0.90355 and 0.33683 0.3027 0.3028
Jump -0.51370 -0.11271 0,67543 and 0.16873 0.6564 0.6566
Madison -0. 82798 -0, 01065 0.91636 and 0.01182 0, 1250 0.1252
Delaware -0, 62514 +0, 11192 0, 33450% 0.6750 0, 6758
Current -0, 69157 +0.00178 0.68898 and 0, 00260 0.5233 0,5234
Neches -1. 45339 +0, 50655 0.87315 and 0.56014 0.0520 0,0521
Falls Creek -0, 92855 +0,15132 0.71772 and 0,11084 0.3415 0,3421
Merced -0, TBETT -0,02332 0.82730 and 0,02854 0,3475 0.3477
St. Maries -0.32864 -0,21764 0,65894 and 0.33030 0.7845 0.7846
Boise -0,90132 +0.09326 0.88606 and 0,10526 0,1760 0,1761
McKenzie -0, 96222 +0, 04026 0.91B65 and 0, 04357 0, 1442 0.1443

* Roots are complex conjugates
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TABLE 8 RESULTS OF FITTING THIRD ORDER AUTOREGRESSIVE SCHEMES TO STANDARDIZED STOCHASTIC COMPONENTS
(after removing harmonics of Table 4)
Absolute Value of Roots Variance of Residuals
River | 2y a5 of Characteristic Equation Theoretical Computed
Batten Kill -0, 92708 +0, 26266 -0.12328 0.79198 and 0,30454 0. 36805 1.46139
Tioga -0.61216 +0. 08856 -0, 09666 0.68775 and 0.37490% 0. 64927 0.89314
Cowpasture -0.72772 +0.18718 -0, 14361 0.73783 and 0.44118% 0.56052 1.10120
Greenbrier -0.78668 +0, 19978 -0. 12208 0.73971 and 0.40625% 0. 50420 1.17584
Mad -0. 60199 +0, 05223 -0, 15677 0,78811 and 0.44600% 0.59408 0, 34960
Powell -1, 13961 +0, 53231 -0. 23658 0.84115 and 0.353034% 0, 27157 2. 04490
Oconto -0, 49715 -0.24365 -0. 13970 0,92428 and 0,388769% 0.32012 0, 61660
Jump -0, 58630 -0. 14566 +0, 02525 0.73740 and 0.27542% 0.54056 0.56842
Madison -0. 92460 +0, 03762 -0.05438 0.84563 and 0.23980% 0.12166 0.65124
Delaware -0, 67158 +0,19351 -0. 11645 0.64964 and 0.42338% 0. 64403 0., 64000
Current -0, 74003 +0, 13817 -0.14322 0,79340 and 0.42487% 0, 49262 0, 95634
Neches +0, 28416 -0, 13857 -1,36961 1.06161 and 1.13584% Snes -
Falls Creek -0, 97581 +0.33889 -0.17601 0.82388 and 0, 46220% 0.33821 0.85846
Merced -0, 83044 +0.24541 -0, 29145 0.91193 and 0. 54904% 0,31754 0.14579
St. Maries -0.30148 -0,18184 -0,13702 0.81831 and 0.40020% 0. 54360 0.76772
Boise -0, 95637 +0, 00686 +0,00199 0.94690, 0.05088 & 0, 04140 0.08824 1.06502
McKenzie -0, 98834 +0, 18620 -0, 14287 0.85057 and 0.38768 % 0. 11867 0,78011

# Roots are complex conjugates,
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CHAPTER V

DISCUSSION OF RESULTS

5.1 On the Reality of Short-Period Cycles., The
reality of cycles corresponding to 4-month and 3-
month periods as suggested in the spectra is not ex-
plainable in physical terms. It appears that since a
single harmonic does not fit the correlograms in
fig. 4, the fitting of a harmonic function to the
time series needs sub-harmonicsthat do not neces-
sarily occur in nature. If is quite possible that the
emergence of short period cycles with the gradual
removal of lower-ordered harmonics has beeninduced
by the choice of a harmonic function to describe its
behavior.

9.2 Number of Harmonics Used to Represen:
Periodic Component, While the higher harmonics
may not be justifiable in physical terms, their use
in representing the periodic component has to be con-
sidered in the light of the adequacy of fit.

It appears from Table 10 that it is not neces-
sary to use all six harmonics to adequately describe
the cyclic component. Thus, with the use of only
those sub-harmonics which contribute significantly
towards the explanation of variance, a reduction of
parameters is effected in the equation,

If n harmonics are usedto describe Pt' (2n+1) parame—
- An,
Bl' P— Bn). If m harmonics are used to describe

St' other (2m+1) parameters will be introduced so

that 2(n+m+1) parameters will have to be estimated
exclusive of the coefficients of the autoregressive
scheme and the parameters characterizing the dis-
tribution of ;e

ters willhavetobe estimated (i.e., X, A .

5.3 General Applicability of Results. A primary
object of this investigation is to seek for a general
model--in this case, to determine the order of the
autoregressive scheme which may be applied to the
residual series. While the results of Tables 6 and 7
strongly support the second order autoregressive
model, the cases of the Delaware and Jump Rivers
present two exceptions., Tables 5 and 8 show that a
first order scheme (with p = r,) and a third order

representation are also valid in addition to the second
order scheme which has been found to be generally
applicable.

Thorough inspection of Tables 5, 6, and 8 will
reveal the heartening similarity in the parameters
describing the three applicable schemes for the
Delaware River. The pertinent information from the
above tables is summarized in Table 2. In com-
parison with the generally applicable second order
representation, the parameter p for the first order
scheme is not much different from a, in the second

order scheme. The slight change seems to be

attributable to the reduction in the number of parame
ters (i.e., from two to one). Similarly, in the third
order autoregressive model, the addition of another
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parameter a, necessitated the adjustment of the

values of a, and a, in the second order Markov

1 2
model to allow for the effect of the third parameter.

One result shown in Table 9 is the progressive
increase in explained variance with the increased
order of the autoregressive scheme. The rate of
increase seems to give the answer as to what scheme
one may settle for. If the addition of another parame-
ter (i.e., increasing the order of the scheme by one),
is not accompanied by a significant increase in ex-
plained variance, then one may as well decide on the
next lower ordered representation.

A summary of the results is shown in Table 10
wherein two schemes representing St and Pt are
composed.

5.4 Difficulties in Statistical Inference. A recur-
ring problem throughout this investigation was the
difficulty met in the application of statistical tests
where the volume of data was brought to bear on.
the test for significance of peaks in the specirum,
failure to use a Chi-square test suggested by Tukey
may be justified since it was previously decided to
sacrifice increased variability for better resolution.

In

In the application of Anderson's test for Py = 0,
however, despite a value of Ty # 0. 05, the size of

the statistical sample was such that even this was,
according to the test, still significantly different
from zero. The same difficulty was encountered in
applying Quenouille's test to the first and second
order autoregressive schemes.

In view of this, all inferences were based on
the agreement of the computed variance of the residual
series with the theoretical variance of residuals if
the representation was valid. In all cases where the
representations were accepted, these variances
differed only in the third decimal place.

TABLE 9§ COMPARISON OF PARAMETERS CF 3
POSSIBLE SCHEMES FOR DELAWARE
AND JUMP RIVERS

Para- Order of autoregressive scheme
River meter 1 2 3
Dela-  ay -0,58911 -0,.65798 -0,67158
ware ag . == +0,11690 +0, 19351
a3 -—- - -0.11645
Explained
Variance 0,347 0,356 0.357
21 -0,67083 -0,58300 -0.58630
ag e -0,13094 -0.14566
sy == = s 30.025%5
Explained
Variance 0,450 0, 460 0. 461
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CHAPTER VI

CONCLUSIONS AND RECOMMENDATIONS

After consideration of the foregoing results and
uncertainties, the writer ventures the following con-
clusions:

1. In detecting periodicity in a hydrologic time
series, spectral method complements autocorrelation
analysis. If the periodic component is a composed
harmonic, the sub-harmonics are easily identified by
the characteristic peaks that they induce in the spec-
trum, but if the component is not a composed har-
monic, the fundamental cycle confounds all other har-
monics in the correlogram. It may, however, be
possible that the secondary peaks are duetothe intrin-
sic property of the harmonic function used.

2. In general, no other periodicities are percep-
tible in the time series of daily river runoff except
that corresponding to the annual astronomic cycle
and its sub-harmonics.

3. In removing the periodic component from a
time series, the amount of variance explained by each
harmonic may be used as a criterion in determining
how many harmonics are necessary to compose the
periodic component.

4. For atrend-free time series of daily river
flows, after the deterministic periodic function has
been sufficiently removed, the residual series may
in general be represented by a second order autore-
gressive scheme. The inverse relation, correspond-
ing to eq. 4.3 and applied to eq. 4,7, yields:

St St S¢
Xyrayg - Xpqtog— Ky = Ppta g— P, +
t-1 =1 t-1

St
+ a
28,_, T2t 5yn
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where ay and a, are the parameters of the second

B
1
tion representative of the periodic component of the

series, and St is another periodic function used to

order autoregressive scheme, is a periodic func-

describe the series of standard deviations.

5. Where the first or third order autoregressive
schemes are applicable, the variances explained by
these schemes do not differ appreciably from the ex-
plained variance obtained by the second order auto=
regressive representation.

In view of the difficulties encountered, two major
areas where more intensive study would serve to
shed light on certain aspects of this investigation are:

1. Determination of how the volume of data could
be reduced and yet still give consistent results for
statistical inference. This might be approached in
the light of obtaining an optimum sampling time inter-
val that would yield maximum information.

2. Analysis of time series likethat ofthe Delaware
River, which is amenable to several autoregressive
representations. This might involve looking into the
basin's physical characteristics and would be a sig-
nificant departure from the purely statistical approach,
serving to bridge the two seemingly divergent view-
points in looking at the same problem.
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