U.S.- Italy Research Workshop on the
Hydrometeor ology, | mpacts, and M anagement of Extreme Floods
Perugia (Italy), November 1995

ATMOSPHERE MODELING AND HYDROL OGIC-PREDICTION UNCERTAINTY

Fabio Castelli
Istituto di Idraulica, Universita degli Studi di Perugia
Loc. S Lucia, 06125 Perugia
Italy

Abstract. Some of the fundamental principles of Quantitative Precipitation Forecasts from
operational numerical atmospheric models are briefly addressed. The attention is then focused on
the relations among the QPF uncertainty, the sub-grid variability of the forecasted precipitation
patterns and the uncertainty of the hydrologic prediction. Recognizing the fundamental
deterministic nature of numerical models outputs, a few kinds of probabilistic parametrization
for the forecasted precipitation are analyzed with the use of a conceptual non-linear hydrologic
model. The definition of the scores that commonly define the quality of the QPF productsis also
reviewed in the same probabilistic framework. Finally, some research topics to be developed in
the field of QPF related to flood prediction are suggested.

1. INTRODUCTION: QPF IN OPERATIONAL ATMOSPHERIC MODELS

Quantitative Precipitation Forecasting (QPF) has been recognized to be a fundamental
tool for the prediction of hazardous floods and the reduction of the related risk (Lanza and
Siccardi, 1994). Accurate short-term (12-48 hours) rainfall forecasts are often the only means to
increase the flood forecast lead time up to that minimum critical value that allows the activation
of civil protection plans, especialy when small and medium size watersheds, with characteristic
response time of afew hours at most, are the concern (Siccardi and Adom, 1993).

Recent advances in numerical atmosphere modeling made it possible to introduce
precipitation amounts as a standard forecasted variable in many operational numerical models
used in weather prediction (ECMWF, 1993, Atger, 1994, Jacobs, 1994). This approach is
progressively replacing or accompanying other techniques, based on the subjective (Doswell,
1986, Van den Dool, 1989) or statistical interpretation (Model Output Statistics, Carter et al.,
1989, Analogue Sorting, Guilbaud et al., 1994) of other forecasted meteorological parameters
(pressure, wind convergence, moist and dry static stability, ...).

The solutions to many problems, which remain unsolved in atmospheric modelling, are
crucial to the improvement of the quality of forecasts and to bridge the present gap between the
operationa and theoretical limits of predictability of the weather system (Islam et al., 1993). A
common factor of these problems originates from scale issues; the limited spatial and temporal
resolution of the meteorological data collection networks on one side and the heavy
computational and data storage demands on the other, allow detail resolution of only synoptic-
scale and |arge-meso-scale weather patterns.



The representation of important smaler scale phenomena, such as the cumulus
convection and the turbulent surface fluxes, is necessarily left to parametrization schemes
(Tiedtke, 1989, Miller et a., 1989, 1992). The forecasted precipitation amounts are then given as
the combination of, ideally, two different processes: stratiform precipitation, due to large scale
ascent of frontal or cyclonic origin, explicitly resolved, and convective precipitation,
parametrized inside each grid pixel (Atger, 1994).

The continuous progress in computer sciences and technology is strongly reducing the
computational burden, so much so that one could hope to run, in the near future, Genera
Circulation Models at a grid resolution that is comparable to the characteristic size of single
cumulus clouds. As an example, the operationa model of the European Centre for Medium-
Range Weather Forecasts has improved from the nominal 1.125° horizontal resolution over 19
pressure levels of 1987 to the 60km resolution over 31 levels as of 1991 (Figure 1). Such an
improvement allowed a much better representation of the orography and of the related effects on
the predicted weather. The availability of atmospheric data, which are necessary to initialize and
update the models, and in particular, the sparse density of vertical soundings seem to remain as
the main obstacles for the increasing of the grid resolution in operational models.

A further step in this direction has been done in recent years with the implementation of
Limited Area Models (LAMs). These models are usually nested inside weather forecasting
models of the whole globe, such as the ECMWF one, which provide the initial and the predicted
boundary conditions for the LAM’s (Black, 1988, Buzzi et al., 1994, Paccagnella et al., 1994).
An example of a QPF output for a severe precipitation event is shown in Fig. 2; a recursive
nested procedure was used in the case displayed in Fig. 2, with horizontal resolutions of 40km
and 20km.

Such resolutions are, however, not yet close to those of the experimental cloud models
(Johnson et al., 1993) needed for a full 3-dimensional approach to flow dynamics. The
hydrostatic approximation is still widely adopted in operational models, either global or area
limited, and convection is left to parametrization. A sensible advantage in the coupled use of
global weather prediction and LAM models is the possibility, given the reduced computational
demand, of including more sophisticated parametrization schemes for the sub-grid processes.
Also, specific interpolation techniques are incorporated in order to optimize the use of the point
meteorological data, whose sparseness may vary dramatically from one region to another (Buzzi
et al., 1991).

From the point of view of short-term QPF in severe weather conditions, particularly the
parametrization of the cumulus convection (Buzzi et al., 1994) and of the various microphysical
processes appears to be particulary important (Sundqvist et al., 1989, @degaard, 1994). When the
parametrized convective precipitation is combined with the resolved stratiform precipitation, the
resulting forecasted precipitation assumes an intrinsic sub-grid uncertainty that has a serious
impact on its usefulness for flood prediction purposes. As specifically addressed in section 2, the
characteristic scales of the hydrologica processes may be much smaller than the ones resolved
by the given QPF model. Both the QPF uncertainty at the resolved scales and the QPF sub-grid
variability will affect the final uncertainty of the flood prediction (Lanza and Siccardi, 1994).

Advanced cumulus convection parametrization, such as the one proposed in Emanuel
(1991), and adopted in severa LAM models, are based on simple statistical assumptions about
ensembles of cumulus clouds. Recognizing the relevant non-linearity of the moist convective
process, the unstable profiles are adjusted to neutrality considering "episodic-mixing clouds" and
averaging the subsequent mass and energy fluxes over the grid size rather than assuming an
adjustment based on average buoyancy as in previous schemes (Kuo, 1974). Such an approach

2



¥rm o S

LAY N o e

bfh m w ow

Fig. 1 — Modél reS(;I ution improvemnets, as seen in Day-3 forecasts of 10m wind (m/s)
from 12 UTC 15 April 1991 for T213/L31 (upper) and T106/L19 (lower). Model
orographies are indicated by shading. (Adapted from ECMWF, 1993).

has the fractional areal coverage of the updraft velocity at each level as a fundamental parameter.
The resulting vertical mass flux and subsequent precipitation reflects both the mean instability
conditions and their sub-grid variability. This kind of approach may then give hints for
addressing, on a probabilistic basis, the short-scale spatial structure of precipitation patterns
inside numerical models. The definition of automated procedures for estimating the above
parameter is, however, still under verification (Emanuel, 1994).
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Fig. 2 - Forecasted precipitation cumulated in 24 hours for the 5th of November 1994. Panels a)
and b) during the second 24 hours of integrations respectively by the lowest resolution run F4-
48 and by the highest resolution run $4-48; Panels ¢) and d) during the first 24 hours of
integrations respectively by the lowest resolution run F5-24 and by the highest resolution run
$H-24. (Adapted from Paccagnella et al., 1994).

Also, it must be stressed that such parametrization schemes are designed to represent the
effects of convective overturning on large-scale dynamics, rather than to explicitly quantify sub-
grid fluctuations. The adjustment of unstable profiles to neutrality is usually performed
"Instantaneously” within each integration time step. Even if the calculation time step of
numerical models is quite short (of the order of one or more minutes), the same time scale is
used with the large (spatial) scale dynamics. Both for this reason and for the problems related to
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the storage and dissemination of data and results, the temporal resolution of operationa QPF
products and LAM’sis still constrained to a minimum step of 6 hours.

In the reminder of this paper, attention is focused on the specific issue of the probabilistic
interpretation of QPFs produced by deterministic numerical atmosphere models and on their
impacts on the flood prediction uncertainty.

2 QPF UNCERTAINTY AND THE HYDROL OGIC RESPONSE

The hydrologic response to precipitation events, in terms of the surface runoff produced
over awatershed, is characterized by alarge variability of the land properties and states, both in
time and space (Wood et a., 1988). The infiltration mechanism, which acts as a highly non-
linear filter in the rainfall-runoff transformation, is usually modelled as an integrated process
over Representative Elementary Areas (REA) and discrete time steps inside which the land
characteristics and states may be described in a statistical framework (Rosso, 1994). The spatia
resolution of the available precipitation inputs is, quite often, the main constraint in defining the
gpatial extent of the REA.

We may consider, as areference example, the case where the extent of the REA coincides
with the grid spacing of the produced QPF. Given the non-linearity of the runoff production
mechanism, the prediction of the hydrologic response to a forecasted rainfall may be
substantialy biased, even in the hypothesis of accurate QPF, if the mean vaues of various
guantities over the grid element are considered (Castelli, 1996). Furthermore, any prediction
needs that are to have reasonable operational use must be accompanied by an estimate of its
uncertainty (Murphy, 1993). The sub-grid variability of both the forecasted rainfall and the
hydrologic response needs then to be simultaneously addressed.

We then raise the question of which are the more appropriate statistical indicators that,
coupled with the usual mean rainfall forecasts from "deterministic" atmospheric models, may
lead to a better estimate of the hydrologic response. In other words, we are asking whether it is
possible, at least in a simplified framework, to guess a statistical description for the outputs of a
deterministic approach to QPF.

Answers to a similar question have been addressed, in the framework of subjective
precipitation forecasting based on weather prediction models, through the definition of a protocol
for Probabilistic QPF (Krzysztofowicz et al., 1993). A more rigorous probabilistic approach is
implicit in the techniques based on Model Output Statistics (Carter et al., 1989), which are still
referring to the outputs of numerical weather prediction models that rely on running data records
that are long enough to be statistically significative .

In the framework of advanced numerical atmospheric models, such as the ones addressed
in the previous section, the issue of the probabilistic interpretation of the results at the
operationa level is still wide open. Recent experiments addressed the possibility of estimating
the forecast variance through the use of Ensemble Forecast techniques (Pelosini et al., 1994). In
these experiments, a set of equally-likely perturbations were added to a reference initial
condition in order to compute an ensemble of perturbed forecasts and to estimate the mean and
variance of the various forecasted quantities (Murphy, 1988). However, computational demand
of numerical models often prevents the generation of ernsembles large enough to support an
operational basis. Also, the estimated forecast variance refers to grid-average quantities, whereas
the estimation of the sub-grid variability (both in time and space) has not yet been addressed.



21 PRECIPITATION SUB-GRID VARIABILITY AND HYDROLOGIC PREDICTION

In order to address the posed question above, we consider a simple conceptua hydrologic
model for the estimation of surface runoff inside a REA with known statistical properties. Let
R(t) be the average surface runoff, with units of depth over time, produced inside the area at
time t since the beginning of rainfal, and let P be the time-average precipitation intensity at a
point inside the area. The soil is modeled as a population of storages with initial random
capacities whose distribution is characterized by a mean value (w,) and a dispersion coefficient
(1/ m). Assuming that each storage fills linerarly till saturation, the effect of storage variability
on the runoff may be modeled through the ssimple non-linear expression (Kitadinis and Bras,
1981, Becchi and Federici, 1987):

0 if P<E

0
.p)= O —E)- 7
R(t;P)= E{P - E)E‘m'lﬁ”@fvﬁﬁ* ten"* m%g +tan™ m@ it p>e O
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where E isthe sum of evapotranspiration and percolation.
To take into account for subgrid variability of precipitation, we may consider P as a

random variable with partial differential equation ( f,(x) )x , and compute the runoff statistics
as.

elr (0] = 1R ()1, (x)ox 2

To proceed with the analysis, let us assume a simple log-normal pdf, as suggested by
Gupta and Waymire (1991), to describe precipitation. We also want to take into consideration
the evidence that, especially for areas of hundreds of square kilometres and for precipitation
events with a relevant convective component, the precipitation field shows finite probability of
null values (intermittency). Indicating with f, such a probability and with a and £ the

parameters of alog-normal distribution, we write:

1-f, Oipnx-pH0
fo (%)= f,0 = 3
)= 1u0e) e (A ®
E[P] = (- f,)exp(8 +a?/2) (@)
cv§=eXp(a2)—1 )
1-f,

As a suitable time scale for the response, we take the time of concentration t. of the
watershed where floods need to be predicted. A natural depth scale is given by the average soil
6



storage capacity w,. The ratio between the two may be taken as a reference rainfall intensity
scale for soil saturation. As an example of hydrologic response in the presence of rainfall
variability, Fig. 3 shows the expected value of the non-dimensional runoff, and its coefficient of
variation, as a function of the expected non-dimensional precipitation intensity. Three different
values of f, have been considered, corresponding to a precipitation event with either prevalent
stratiform component ( f, = 0.2),prevalent convective component ( f, = 0.8), or an intermediate
case (f,=0.5), while values of CV, =1 m=2 have been chosen as representative of an
"average" situation. From a severe flood point of view, it may be thought that cases with
prevalent convection are more hazardous for small watersheds, while large basins are more prone
to floods caused by large, long lasting but less intermittent, stratiform frontal precipitation.

From the first graph of Fig. 3, we observe that the expected runoff is quite sensitive to the
value of f till the rainfall intensity is a few times larger than the saturation scale w, /t.. Due to
the threshold characteristics of the infiltration process, precipitation with higher intermittency is
expected to produce more runoff. Also, as the rainfall intensity or the time response of the
watershed decreases, the sensitivity to the intermittency parameter f, increases. Conversly, as
the size of the watershed or rainfall intensity increases, the basin is likely to be completely
saturated and the hydrologic response becomes linear.

Analysing the coefficient of variation, we observe higher values for lower precipitation,
while for high precipitation a minimum is reached asymptotically as a function of the value of
f,. Note that, given the distribution (3), the coefficient of variation of precipitation remains
constant for varying expected values.

2.2 PROBABILISTIC PARAMETRIZATION OF QPF

In order to test the possibility of defining simple probabilistic parametrization for the
QPF outputs, we take the following simplifying assumptions as limit cases:
- the distribution f(x) represents the p.d.f. of the "true" point precipitation intensity inside the

reference REA, averaged over thetime't_;
- the QPF outputs have optimal forecast skills, in the sense that the value E[P] inside the

reference REA is exactly guessed.

With these assumptions, four different configurations may be tested based on limited
optimal forecast skill hypotheses, namely:
- A purely deterministic approach, in which the forecasted rainfall is assumed as constant over
the REA;
- A first order probabilistic approach (hereafter denoted as 1), in which only the exactly guessed
mean value is provided in the forecast. In this case, the predicted point rainfall intensity, denoted
S, isassumed as arandom variable with exponential distribution (single parameter):

fo(9=5 e ©)
A=~ f,)exp(B +a?12) (7)
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Fig. 3 - Expected non-dimensional runoff and its coefficient of variation as a function
of the non-dimensional precipitation intensity

- A first order intermittent probabilistic approach (hereafter denoted as 10), in which both the
mean and the probability of zero rainfall, both exactly guessed, are provided in the forecast:

fo ()= 1,00+ - e ®

A=exp(B+a?12) (9)

- A second order probabilistic approach (hereafter denoted as I1), in which both the mean and
variance of the rainfall intensity, both exactly guessed, are provided in the forecast:

1 O 10nx-agQ
f<(x)= =
S@)xyiﬁaﬁgzg_f_éé (10)
3
A:ﬁ+§m@—%) (12)
y*=a®-In(1- f,) (12)
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Fig. 4 - Ratios between the means and the standard deviations of the QPF-based and

the "true” surface runoff, R(S) and R(P), for various probabilistic parametrization of

the forecasted precipitation S, assuming a zero-rainfall probability f0=0.2.

The optimal case of a correct forecast of whole statistics is not considered because it
would give, in the simplified analysis presented here, trivial results.

Figures 4, 5 and 6 show the computed runoff using the above described probabilistic
approaches, for three different values of the "true" zero rainfall probability. In particular, ratios
between the values of the mean and the standard deviation of the forecast-based runoff and of the
one estimated using the "true" rainfall distribution (3) are shown. We recall that, in the present
formulation, R is defined as the average runoff over the area of interest, so that its coefficient of
variation may be interpreted as the relative confidence interval (+ or -), rather than as the
variability of the point runoff.

It is evident from such graphs how a purely deterministic approach to QPF tends to
dramatically under-estimate the produced runoff over awide range, unless the rainfall intensity is
exceptionally high or the time response of the basin very large. Also, no confidence interval can
be defined with such a deterministic approach.

The first order | approach, based only on mean estimates, gives a moderate increase in the
runoff estimate accuracy. This improvement is not significant around the reference saturation
rainfall intensity. It is also larger for low values of f,. The coefficient of variation graphs show
how the runoff estimates tend to be systematically overestimated, the more so as the zero rainfall
probability increases.
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Fig. 5- Asin Figure 4, but for f0=0.5.

When either the zero rainfall probability or the rainfall variance are correctly guessed in
the forecast (10 and Il approaches), reasonable estimates of the runoff are obtained for a much
wider range. While the use of f, predicts too low a runoff rate for very small precipitation
intensities, the use of the variance overpredicts in the same region, thereby artificialy improving
the forecast. Focusing attention in the range of rainfall intensities around the saturation value
E[ P] =w, /t,, we observe a higher sensitivity to the zero probability of the "true" precipitation.
As expected, the 10 approach works better for high values of f,. While for low values of the
same parameter, consideration of the variance becomes more important.

Finally, we observe that the zero rainfall probability of the "true" rainfall has no
significant effect on the estimated standard deviations. Correct estimates of the confidence
interval in the runoff forecast are obtained, in both the 10 and 11 schemes, as the rainfall intensity
approaches the saturation val ue.

3 PERFORMANCE MEASURES OF QPF

The anaysis presented in the previous section has been derived in the optimistic
framework of a perfectly skillful QPF model. As mentioned in the introduction, the utility of
QPF outputs from present numerical atmospheric models is promising, but still quite far from
such agoal, at least on the operational basis.
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Some analysis may be proposed, on the basis of the described probabilistic approaches,
to revisit the quantities commonly used to measure the forecasting performance of such models,
and to better define, from a hydrologic point of view, what we may assume as an accurate
forecast.

The measure of the QPF skill possessed by a numerical atmospheric model is commonly
based on the definition of a number of scores (Buzzi et a., 1994). Let S; represent the grid-
average forecasted precipitation intensity (amount), at the grid pixel j, averaged over a time
period h, and P, the precipitation subsequently measured at a point inside the same pixel. The
more commonly used scores - Bias B, (p), Threat T, (p) and False Alarm A (p) - are defined

as the following functions of the precipitation intensity (amount) p:

_G(p)
B,(p)=—= 13
(p) O(p) (13)
_ C(p)
Tu{p)= 14
RACORSORE0 9
_G(p)- C(p) 15
AR)==50 (15)
where:
G(p)Z%%(Sj > p)=P[s, = p| (16)
o(p)=3 (P 2 p)=Plp, = ] (17)
qM=%$@gqﬂazm=432pazd (18)
Note that such scores are not mutually independent. It is easy to show that:
LAk 9

" 1+AB,

If rainfall was uniform inside each grid pixel, a perfect forecast would ssmply give
P, = §; and hence the "optimal forecast scores" would be B,(p)=T,(p)=1and A (p)=0.

In real cases, the sub-grid variability has to be taken into account, and the optimal scores need to
be redefined. In order to do this, let us again assume the hypothesis of perfect forecast of the

pixel-meanrainfal, S = E[Pj ]
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Fig. 6 - Asin Figure 4, but for f0=0.8.

If one could assume spatial stationarity for the rainfall process over the whole region of
N pixels where the scores are computed, such scores could easily be interpreted ssmply through
the joint p.df. (fs,(x y)) of S and P. Such a hypothesis is, however, very difficult to sustain
when the region of interest is large enough to have statistically significant samples of the S and
P populations.

We may instead assume, given the more common grid spacing used in the atmospheric
models and the usually observed short correlation distances for the rainfall field (Islam et al.,
1988), that the observations P, are single samples from statistically independent populations

with ap.df. ( f, (x)) inside each pixel j, whose expected value is forecasted to be S .

As an illustrative example, let us assume that such independent distributions may be
represented with the same probabilistic model, where all the parameters except the mean are
constant in space:

fe; (x)= f. (¢ E[P ) (20)

In the log-normal intermittent model (3), this corresponds to the assumption of constant
probability of zero rainfall and a constant coefficient of variation.
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If wecall f.(x) thedistribution function of S inside the region, we may write:

G(p):l' FES(p) (21)

And for the optimal scores:
O(p)=1-  fes (<F, (pi x)x (22)
c(p)=G(p)? - G(p)f fes (X)F, (i X)aix (23)

p

Optimal forecast should be seen as upper limits to the forecasting performance of a model
and are themselves dependent on the distribution properties of the forecasted rainfall field,
especially with respect to sub-grid variability and intermittency. In genereal, such upper limits
may rapidly diverge from the "deterministic® constant optimal values as the precipitation
intensity increases. Figure 7 shows an example of the scores for a set of forecast experiments
with a LAM (Buzzi et al., 1994) with the optimal limits defined above. Such limits have been
added here on the basis of heuristically guessed sub-grid variability parameters and must be
considered qualitative.

4 CONCLUSIONS AND PROPOSED RESEARCH TOPICS

The use of numerical atmospheric models for operational Quantitative Precipitation
Forecasting is becoming a central issue in flood risk mitigation policies. A very wide spectra of
unsolved problems continuously challenge the scientific community, regarding the improvement
of the quality of weather forecasts in general and precipitation forecasts in particular. Most of
them are of a strict "meteorological” character, concerned mainly with the formulation and
implementation of parametrization for unresolved cloud dynamics and microphysics. Some
others may take advantage of cooperation among the meteorological and hydrological scientific
communities, such as those related to the parametrization of surface fluxes and the better
understanding of the active role of hydrology on the weather evolution (Entekhabi et al., 1996).

All of them, however, may be thought to have originated from a common "father"
problem, the sparseness of meteorological data collection stations as a constraint for the
refinement of space-time models resolutions. Strictly connected to this main problem, is
experimentation regarding the use of remote sensing as further support to the vertical soundings
used for model initialization and to the ground stations used for verification.

More specific to the use of QPF for flood prediction purposes are the issues related to the
uncertainty and to the space-time resolution of short-term precipitation predictions. It has been
here shown how, even in the hypothesis of a perfectly skillful precipitation forecast over the
atmospheric model grid spacing, the flood prediction requires quantification of the sub-
grid structure of the rainfal field. To this purpose, simple probabilistic models have been
discussed for the characterization of such sub-grid variability and the commonly used measures
of the QPF "goodness" have been revisited.
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Fig. 7 - Forecast scores for an ensemble of QPF experiments with a LAM (* + o
symbols, adapted from Buzz et al., 1994), and theoretical optimal scores (solid lines).

Starting from these considerations the following more specific research topics may be

proposed, as of interest of both the hydrological and the meteorological communities:

the inclusion of more robust estimate procedure of the forecast uncertainty into operational
QPF atmospheric models by taking full advantage of approaches based on both Ensemble
Forecast and Model Output Statistics and the redefinition of the performance scores on more
rigorous statistical basis. This last issue is strictly connected, as suggested in the present
work, to the next topic.

the formulation of simple, scale oriented, probabilistic models of sub-grid rainfall variability
to be used in the QPF production and interpretation processes. These models may be based,
as suggested in the present work, on the determination of a limited set of "accompanying"
statistical parameters, such as the variance and the probability of zero rainfall, to be related to
both the scale of the grid and to the predicted rainfall activity. While a very wide literature
exists on the issue of the scale properties of the rainfall field, operational use of such scaling
and multi-scaling theories requires a deeper analysis that is oriented to severe cases, which
detail the relations between the (multi) scaling parameters and the large-scale meteorol ogical
factors, including orography and surface conditions.

Improvement of the actual parametrization schemes for the cumulus convection and
microphysical processes to the extent that the sub-grid variability, in both the space and time
domains, are explicitly considered as output variables. This process would ideally imply the
inclusion of cloud-scaling theories into convective parametrization schemes.
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