

Seminar Presentation for

ECE 658

Instructed by:

Prof.Anura Jayasumana

Distributed File Systems

Prabhakaran Murugesan

Outline

File Transfer Protocol (FTP)

Network File System (NFS)

Andrew File System (AFS)

Performance Comparison between FTP, NFS
and AFS

Google File System (GFS)

Amazon Dynamo

Hadoop Distributed File System (HDFS)

Conclusion

What is DFS?

 A Distributed File System (DFS) enables programs to
store and access remote files exactly as they do local ones,
allowing users to access files from any computer on a
network.

 This is an area of active research interest today.

 The resources on a particular machine are local to itself.

Resources on other machines are remote.

 A file system provides a service for clients. The server
interface is the normal set of file operations: create, read,
etc. on files.

Key Features of DFS

 Data sharing of multiple users

 User mobility

 Location transparency

 Location independence

 Backups and System Monitoring

Distributed File System Requirements

Transparency

– Access transparency

– Location transparency

– Mobility transparency

– Performance transparency

– Scaling transparency

 Concurrent file updates

 File replication

 Hardware and operating system heterogeneity

Distributed File System Requirements

 Fault tolerance

 Consistency

 Security

 Efficiency

Look and feel about traditional File

Systems

Three major file systems:

File Transfer Protocol(FTP)

Connect to a remote machine and interactively send

or fetch an arbitrary file.

User connecting to an FTP server specifies an

account and password.

 Superseded by HTTP for file transfer.

Sun's Network File System.

One of the most popular and widespread distributed

file system in use today since its introduction in 1985.

Motivated by wanting to extend a Unix file system to a

distributed environment. But, further extended to other

OS as well.

Design is transparent. Any computer can be a server,

exporting some of its files, and a client , accessing

files on other machines.

High performance: try to make remote access as

comparable to local access through caching and read-

ahead.

Highlights of NFS

 NFS is stateless

 All client requests must be self-contained

 The virtual file system interface

 VFS operations

 VNODE operations

 Fast crash recovery

 Reason behind stateless design

 UNIX semantics at Client side

 Best way to achieve transparent access

NFS Architecture

Andrew File System

 Distributed network file system which uses a set of trusted

servers to present a homogeneous, location transparent file

name space to all the client workstations.

 Distributed computing environment developed at Carnegie

Mellon University (CMU) for use as a campus computing

and information system [Morris et al. 1986].

 Intention is to support information sharing on a large scale

by minimizing client-server communication

 Achieved by transferring whole files between server and

client computers and caching them at clients until the

servers receives a more up-to-date version.

Features of AFS

 Uniform namespace

 Location-independent file sharing

 Client-side caching

 Secure authentication

 Replication

 Whole-file serving

 Whole-file caching

How does AFS work?
 Implemented as 2 software components that exists as UNIX

processes called Vice and Venus

 Vice: Name given to the server software that runs as a user-

level UNIX process in each server computer.

 Venus: User level process that runs in each client computer

and corresponds to the client module in our abstract model.

 Files available to user are either local or shared

 Local files are stored on a workstation's disk and are

available only to local user processes.

 Shared files are stored on servers, copies of them are cached

on the local disk of work stations.

AFS Distribution of processes

File name space seen by clients of AFS

Implementation of File System Calls in
AFS

How Cache Consistency done in AFS?

 When Vice supplies a copy of file to a venus process, it
provides callback promise.

 Callback have 2 states: valid and canceled.

 When venus process receives callback, callback state is
set to cancelled. If not, cached copy of the file is used.

 When workstation is restarted from failure, cache
validation request is done. This contains file modification
timestamp.

 If the timestamp is current, server responds with valid
and token is reinstated. If not, server responds with
cancelled and token is set to cancelled.

 Callback must be renewed before open.

Traditional Distributed File System
Issues

Naming

 Is the name access independent? location independent?

FTP: location and access independent.

NFS: location dependent through client mount points. Largely
transparent for ordinary users, but the same remote file system
could be mounted differently on different machines. Access
independent.

AFS: location independent.

Migration and Directories

Can files be migrated between file server machines?

FTP: Sure, but end user must be aware.

NFS: Must change mount points on the client machines.

AFS: On a per volume basis.

How the directories are handled?

FTP: Directory listing handled as remote command.

NFS: Unix-like.

AFS: Unix-like.

Sharing Semantics and File locking
What type of file sharing semantics are supported if 2

process accessing the same file

FTP: User – level copies. No support.

NFS: Mostly unix semantics.

AFS: Session semantics.

Does the system support locking of files?

FTP: Not at all.

NFS: Has mechanism, but external to NFS in v3. Internal to file
system in version 4.

AFS: Does support.

Caching and File Replication

Is file caching supported?

FTP: None. User has to maintain their own copy.

NFS: File attributes and file data blocks are cached separately.
Cached attributes are validated with the server on file open.

AFS: File level caching with callbacks. Session semantics.
Concurrent sharing is not possible.

Is file replication supported?

FTP: No.

NFS: minimal support in version 4.

AFS: For read only volumes within a cell.

Scalability and Security

Is the system scalable?
FTP: Yes. Millions of users.

NFS: Not so much.

AFS: Better than NFS. Keep traffic away from file servers.

What security features available?

FTP: Account/password authorization.

NFS: RPC Unix authentication that can use KERBEROS.

AFS: Unix permission for files, access control lists for directories.

State/Stateless and Homogeneity

Do file system servers maintain state about clients?

FTP: No.

NFS: No.

AFS: Yes

Is hardware/software homogeneity required?

FTP: No.

NFS: No.

AFS: No.

Other older File Systems

1. CODA: AFS spin-off at CMU. Disconnection and fault recovery.

2. Sprite: research project at UCB in 1980’s. To build a distributed
Unix system.

3. Echo. Digital SRC.

4. Amoeba Bullet File Server: Tanenbaum research project.

5. xFs: serverless file system—file system distributed across multiple
machines. Research project at UCB.

The Google File System (GFS)

Sanjay Ghemawat, Howard Gobioff,
and Shun-Tak Leung

Google

Google File Systems

 Distributed File System developed solely to meet the
demands of Google's data processing needs.

 It is widely deployed within Google as the storage
platform for the generation and processing of data used by
Google's service and for research and development efforts
which requires large datasets.

 While sharing many of the same goals as previous
distributed file systems, design has been driven by
observations of Google's application workloads and
technological environment.

Assumptions

 High component failure rates

 Modest number of huge files

 File are write-once, mostly appended which may be
 done concurrently

 Large streaming reads and small random reads

 High sustainable throughput favored over low latency

 System must efficiently implement well defined
semantics for multiple clients that concurrently append to
the same file

GFS Design Decisions
 Files stored as chunks

 Fixed size (64MB)
 Reliability through replication

 Each chunk replicated across 3+ chunkservers
 Single master to coordinate access, keep metadata

 Simple centralized management
 No data caching

 Little benefit due to large data sets, streaming
reads

 Client do cache metadata
 Familiar interface, but customize the API

 Simplify the problem; focus on Google apps
 Add snapshot and record append operations

Single Master
 Minimal involvement in reads and write to avoid
bottleneck.

 Easy to use global knowledge to reason about

 Chunk placements
 Replication decisions

 Client caches information from Master so as to
avoid multiple interaction

GFS Architecture

Why 64 MB?

Much larger than typical file system block sizes

Reduces client interaction with the master

 Can cache info for Multi-TB working set

Reduces network overhead

Reduces the size of metadata stored in the master

 64 bytes of metadata per 64 MB chunk

Read Algorithm

1. Application originates read request

2. GFS client translates request and sends it to master

3. Master responds with chunk handle and replica
locations

Read Algorithm

4. Client picks a location and sends the request

5. Chunkserver sends requested data to the client

6. Client forwards the data to the application

Write Algorithm

1. Application originates the request

2. GFS client translates request and sends it to master

3. Master responds with chunk handle and replica
locations

Write Algorithm

4. Client pushes write data to all locations. Data is stored
in chunkserver's internal buffers

Write Algorithm

5. Client sends write command to primary

6. Primary determines serial order to the secondaries and
tells them to perform the write

7. Primary sends the serial order to the secondaries and
tells them to perform the write

Write Algorithm

8. Secondaries respond back to primary

9. Primary responds back to the client

Mutation

 Mutation changes metadata of chunk

 Write

 Append

 Each mutation is performed at all chunk replicas

 Lease mechanism

 Master grants lease to one of the replicas

 Lease has 60 seconds timeout

Atomic Record Appends

 GFS appends it to the file atomically at least

once

– GFS picks the offset

– Works for concurrent writers

 Record append is heavily used by distributed
applications

– eg., Google apps

Record Append Algorithm
 Client pushes write data to all locations

 Primary checks if record fits in specified chunk

 If the record does not fit:

– Pads the chunk

– Tells secondary to do the same

– Informs client and has the client retry

 If record fits, then the primary:

– Appends the record

– Tells secondaries to do the same

– Receives responses and responds to the client

Interesting thing happened at Google
beyond GFS

 That’s Bigtable

• A distributed storage system which uses GFS to
store log and data files

 More than 60 Google apps(like Google Earth,
Orkut) uses Bigtable for storing data(distributed file
though GFS)

 Designed to scale petabytes of data and thousands
of machines

 It’s not a relational database, instead gives client a
simple data model

Google SSTable file format

 Used internally to store Bigtable data

 Provides persistent ordered immutable map from
keys to values

 Each SSTable contains a sequence of block and a
block index

Index

64KB
Block
B4K
block

64KB
Block
K
block

64KB
Block
4K
block

SSTable

Dynamo: Amazon’s Highly Available
Key-Value Store

Giuseppe DeCandia, Deniz Hastorun, Madan
Jampani, Gunavardhan Kakulapati, Avinash

Lakshman, Alex Pilchin, Swaminathan
Sivasubramanian, Peter Vosshall and Werner

Vogels

Amazon.com

Amazon Dynamo Background

 Basically a data storage system.

 Service oriented architecture (SOA)

• Decentralized

• Loosely-coupled

 Hundreds of services up and running

 Needs storage scheme that is always available

• Shopping cart service

System Assumptions and
Requirements

Query Model: simple read and write operations to a
data item that is uniquely identified by a key.

ACID Properties: Atomicity, Consistency,
Isolation, Durability.

Efficiency: latency requirements which are in
general measured at the 99.9th percentile of the
distribution.

Other Assumptions: operation environment is
assumed to be non-hostile and there are no security
related requirements such as authentication and
authorization.

Amazon Dynamo’s Architecture

Techniques used by Dynamo

 Consistent hashing along with Replication

• Used for data partitioning

 Decentralized, quorum protocol

• To maintain consistency during updates

 Gossip protocols

• Memberships

• Failure detection

Amazon Dynamo Highlights

 Dynamo is targeted mainly at applications that need an
“always writeable” data store where no updates are
rejected

 Applications do not require support for hierarchical
namespaces (a norm in many file systems)

 Dynamo is built for latency sensitive applications that
require at least 99.9% of read and write operations to be
performed within a few hundred milliseconds

 Zero-hop DHT, where each node maintains enough
routing information locally to route a request to the
appropriate node directly.

Hadoop Distributed File System

Basic features

 Highly fault-tolerant

 High throughput

 Suitable for applications with large data sets

 Streaming access to file system data

 Can be built out of commodity hardware

Fault tolerance

 Failure is the norm rather than exception

 A HDFS instance may consist of thousands of
server machines, each storing part of the file
system’s data.

 Since we have huge number of components and
that each component has non-trivial probability of
failure means that there is always some component
that is non-functional.

 Detection of faults and quick, automatic recovery
from them is a core architectural goal of HDFS.

HDFS Architecture

Data Characteristics
 Streaming data access

 Applications need streaming access to data

 Batch processing rather than interactive user access.

 Large data sets and files: gigabytes to terabytes size

 High aggregate data bandwidth

 Scale to hundreds of nodes in a cluster

 Tens of millions of files in a single instance

 Write-once-read-many: a file once created, written and

closed need not be changed – this assumption

simplifies coherency

 A map-reduce application or web-crawler application

fits perfectly with this model.

Namenode and Datanodes
 Master/slave architecture
 HDFS cluster consists of a single Namenode, a master

server that manages the file system namespace and
regulates access to files by clients.

 There are a number of DataNodes usually one per node in a
cluster.

 The DataNodes manage storage attached to the nodes that
they run on.

 HDFS exposes a file system namespace and allows user
data to be stored in files.

 A file is split into one or more blocks and set of blocks are
stored in DataNodes.

 DataNodes: serves read, write requests, performs block
creation, deletion, and replication upon instruction from
Namenode.

File System Namespace

 Hierarchical file system with directories and files

 Create, remove, move, rename etc.

 Namenode maintains the file system

 Any meta information changes to the file system
recorded by the Namenode.

 An application can specify the number of replicas
of the file needed: replication factor of the file.
This information is stored in the Namenode.

Data Replication

• HDFS is designed to store very large files across machines
in a large cluster.

• Each file is a sequence of blocks.

• All blocks in the file except the last are of the same size.

• Blocks are replicated for fault tolerance.

• Block size and replicas are configurable per file.

• The Namenode receives a Heartbeat and a BlockReport
from each DataNode in the cluster.

• BlockReport contains all the blocks on a Datanode.

Conclusion

 It is rather impossible to meet both Availability and
Consistency

Distributed File Systems are heavily employed in
organizational computing, and their performance
has been the subject of much tuning

Current state-of-the-art distributed file systems,
provide good performance across both local and
wide-area networks

Bibliography

1. Distributed Systems: Concepts and design Fifth Edition – George Coulouris,
Jean Dollimore, Tim Kindberg, Gordon Blair

2. Distributed Systems: Principles and Paradigms Second Edition – Andrew
S.Tanenbaum, Maarten Van Steen

3. An overview of the Andrew File System – John H Howard, CMU

4. The Google File System – Sanjay Ghemawat, Howard Gobioff, and Shun-
Tak Leung.

5 Dynamo: Amazon’s Highly Available Key-value Store - Giuseppe
DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter
Vosshall and Werner Vogels

6 The Hadoop Distributed File System: Architecture and Design – Dhruba
Borthakur

