Introduction to Deep Submicron CMOS Device Technology

Alvin Loke
alvin.loke@agilent.com
Agilent Technologies

CSU EE571 VLSI System Design
Fort Collins, CO
May 3, 2005
Outline

• CMOS Technology Trends
• Lithography
• Deep Submicron FET Fabrication Sequence
• Enabling Device & Equipment Technologies
• Impact on Circuit Design
• Dealing with Manufacturing Variations
• Conclusions
Evolution of IC Technology

I can see Waldo, but where’s the transistor?

1st Fabricated IC (Texas Instruments, 1958)

0.25µm Technology (Motorola, 1996)

90nm Technology (TSMC, 2002)

Is the transistor getting less important?
CMOS Scaling is Alive & Well
Transistors Are Picking Up The Slack

• Where are we now?
 • 130nm is standard fare
 • 90nm already in volume manufacturing
 • 65nm pilot production in progress

• Key trends:
 • Gate CD* scaling is more aggressive than interconnect scaling
 • Scaling driven by exclusively by digital circuit needs

Source: Thompson et al., Intel (2002)

Source: Wu et al., TSMC (2002)

* CD = critical dimension
Why Aggressive FET Scaling?

\[t_{\text{delay}} \approx \frac{C_{\text{load}} \Delta V}{I_{\text{FET}}} \]

- The road to higher digital performance
 - \(C_{\text{load}} \downarrow \rightarrow \) reduce parasitics (largely dominated by interconnect now)
 - \(\Delta V \downarrow \rightarrow \) reduce \(V_{\text{DD}} \) or logic swing, need for core & I/O FET’s
 - \(I_{\text{FET}} \uparrow \rightarrow \) all about moving charge quickly

- Hiccups along the way
 - Interconnect scaling much more difficult than anticipated, especially Cu/low-\(\kappa \) reliability
 - FET leakage doesn’t go well with \(V_{\text{DD}} \) scaling

- How to beef up \(I_{\text{FET}} \)?
 - Tweak with \(\mu, C_{\text{ox}}, L \) & \(V_T \)
 \[I_{\text{dsat}} \approx \frac{1}{2} \mu C_{\text{ox}} (W/L) (V_{GS} - V_T)^2 \]

- Technology upgrades not necessarily compatible with analog design
Why Should Designers Care So Much About Understanding Technology?

• Technology dictates performance limitations
 • Layout-related aspects of design has become even more critical
 • Statistical design considerations have become necessary for key circuits to yield
 • Technology-related surprises keep showing up
• Implementation of accurate models is *ALWAYS* late
 • Get to live with new technology-related effects & issues before they get accounted for
 • New model implementations not necessarily accurate or reliable
 • Meanwhile, learn to either mitigate or exploit these effects
• Doesn’t solving these new challenges make life that much more exciting, at the very least provide a little bit more job security?
Lithography Trends
What 1µm Barrier???

Resolution = \(\frac{k_1 \lambda}{\text{NA}} \)

- Refractive projection (4X) optics
- More aggressive CD’s \(\rightarrow \) shorter \(\lambda \)
- Higher NA lenses \(\rightarrow \) $$$
- Larger field sizes \(\rightarrow \) $$$
- Now 25% of total wafer cost

\[k_1 = f (\text{resist quality, resolution tricks}) \]

Step-and-Scan Projection Lithography
Beyond 0.35µm Technology

• Slide both reticle & wafer across narrow slit of light
• Aberration-free high-NA optics only required along 1-D but now requires high-precision constant-velocity stages
• Still much cheaper than high-NA optics optimized in 2-D
• 6” x 6” physical reticle size (4X reduction)
• 25 x 33mm or 26 x 32mm field size → shorter edge limited by slit width
• Relatively weak intensity of deep-UV source required development of very sensitive chemically-amplified resists for throughput

Source: Nikon
Key Resolution Enhancement Tricks

- Sharp features (e.g., corners) are lost because diffraction attenuates & distorts higher spatial frequencies (low-pass optical filtering)
- Compensate for diffraction effects for features much smaller than exposure λ → manage sub-λ constructive & destructive interference
- Software complexity during mask fabrication

Optical Proximity Correction (OPC)
- Add scattering features to sharpen corners
- Used extensively for poly gate definition

Phase Shift Masking (PSM)
- Modulate optical path through mask
- Used extensively for contacts & vias
- Complicated for irregular patterns

Source: Socha, ASML (2004)
Short-Channel Effect (SCE)

- Prominent in older CMOS technologies
- How to minimize SCE?
 - Minimize volume of charge depleted by source/drain junctions
 - Higher substrate doping for thinner junction depletion regions ($x_{dep} \propto 1/\sqrt{N}$)
 - Higher V_T & junction capacitance \rightarrow not consistent with scaling
 - Shallower source/drain junctions
 - Higher source/drain resistance \rightarrow smaller drive currents
 - Tighter gate coupling to surface potential
 - Thinner gate oxide of surface potential \rightarrow direct tunneling leakage
 - Higher K gate dielectrics
- Other SCE problems: large electric fields \rightarrow carrier v_{sat} & μ degradation

V_T rolloff at shorter L since less charge must be depleted to achieve surface inversion

\[V_T \rightarrow \text{poly gate} \rightarrow \text{p-substrate} \rightarrow \text{poly gate} \rightarrow \text{p-substrate} \]

\[\text{depleted by gate charge} \]
• “No free lunch” principle prevails again: high $I_{ON} \rightarrow$ high I_{OFF}
• V_T’s not scaling as aggressively as V_{DD}
• Technology providers offer variety of V_T’s on same die to concurrently meet high-speed vs. low-leakage needs
Deep Submicron FET Fabrication Sequence

1. Shallow Trench Isolation
 - p-Si substrate
 - STI oxide

2. Well Implantation
 - n-well
 - p-well

3. Gate Oxidation & Poly Definition
 - gate oxide

4. Source/Drain Extension & Halo Implantation
 - halos

5. Spacer Formation & Source/Drain Implantation
 - silicide

6. Salicidation
 - pFET
 - nFET

Loke / CSU EE571
May 3, 2005
Local Oxidation of Silicon (LOCOS) Isolation
0.35µm & Earlier

1. Deposit & pattern thin Si$_3$N$_4$ oxidation mask

2. Grow thermal field oxide

3. Strip Si$_3$N$_4$ oxidation mask

- Industry played lots of tricks to reduce width of bird’s beak & make field oxide coplanar with active areas

Depth of Focus \propto Resolution / NA

- Required very careful understanding of visco-elastic properties of oxide during thermal oxidation
- LOCOS ran out of gas beyond 0.25µm
Shallow Trench Isolation (STI)
0.25 μm & Beyond

Advantages over LOCOS technologies
- Reduced active-to-active spacing (no bird’s beak)
- Planar surface for gate lithography

1. Deposit & pattern thin Si$_3$N$_4$ etch mask & polish stop
2. Etch silicon around active area – profile critical to minimize stress
3. Grow liner SiO$_2$, then deposit conformal SiO$_2$ – void-free deposition is critical
4. CMP excess SiO$_2$
5. Strip Si$_3$N$_4$ polish stop

etched away in subsequent oxide cleans
Reactive ion plasma etching (RIE)

- Etching ions vertically bombard surface of material to be removed
- Very directional
- High sputtering component causes resist to re-deposit inside trench
- Tune etch gas chemistry to keep or remove redeposited inhibitor formation (micromasking)

STI HDP-CVD Oxide Gapfill

High-Density Plasma (HDP) Chemical-Vapor Deposition (CVD)
- Fills aggressive aspect ratios by cycling between deposition & etch
- Re-sputtering nature results in very compressive oxide films

Let’s Think a Little Bit More About CMP

- Ideal world for CMP: want *perfect* periodicity of patterns throughout wafer
- Need to throw in dummy features to minimize pattern density variations → optimize planarity
- Polishing pad will flex

CMP technology pioneered by IBM
- Leveraged expertise from lens polishing

Loke / CSU EE571
May 3, 2005
Always Think Dummies in Any CMP Process

- Dummification is key to minimize topography in any CMP process
- Add dummy patterns to open spaces to minimize layout density variations
 → Added design complexity to check layout density & insert dummy patterns

- Also critical to step dummy dies along wafer circumference
Well Implants – Lots of Transistor Variants

- core vs. I/O FET’s, core low-/nom-/high-V_T variants, native vs. implanted

Slide 19

Loke / CSU EE571
May 3, 2005
Well Engineering

Retrograded well dopant profile
(implants before poly deposition)

Deeper subsurface implant
- Extra dopants to prevent subsurface punchthrough under halos
- Prevent parasitic channel formation on active sidewall beneath source/drain
- Faster diffusers OK (B, As/P)

Shallow & steep surface channel implant
- V_T control
- Slow diffusers critical (Ga, Sb)

Very deep high-dose implant
- Latchup prevention
- Noise immunity
- Faster diffusers OK (B, As/P)

Implant order matters to prevent ion channeling, especially for the shallow implant
Gate Oxidation

- Need two gate oxide t_{ox}'s – thin for core FET’s & thick for I/O FET’s

1. Grow 1st oxide
2. Strip oxide for core FET’s
3. Grow 2nd oxide

- Oxide is grown, not deposited
 - Need high-quality Si-SiO$_2$ interface with low Q_f & D_{it}
 - Gate oxide is really made of silicon oxynitride (SiO$_x$N$_y$)
 - N content prevents boron penetration from p+ poly to channel in pFET’s
 - Improves GOI (gate oxide integrity) reliability
 - Side benefit – increased ε_{ox}
 - TSMC now offers triple gate oxide (TGO) processes with two I/O FET varieties
Aside on Equipment Technology Evolution

- Gate oxide no longer furnace grown
- Multi-chamber *cluster tools* now ubiquitous
- Pre-oxidation clean, gate oxidation & poly/ARL deposition performed in separate chambers without breaking vacuum
- Better thickness & film compositional control (native SiO$_2$ grows instantly when exposed to air)
- Fast – minutes-seconds per wafer vs. hours per wafer batch

Source: Maex, IMEC (2002)
Poly Gate Definition

- Gate CD way smaller than lithography capability, even with mask tricks

- Process control is everything – resist & poly etch chamber conditioning is critical (lesson to remember: don’t clean those residues in tea cups or woks)
- Way to get smaller CD’s to trim more (requires tighter control)
- Dummification also necessary for poly mask
Resulting structure has:
- Smaller SCE
- Shallow junction where needed most
- Low junction capacitance

Not to be confused with LDD’s in I/O FET’s
- Same process with spacers but lightly doped drain (LDD) is used for minimizing peak E fields that cause hot carriers & breakdown
- Extensions need to be heavily doped to minimize series resistance

Different halo & extension/LDD implants for each FET variant
Rapid Thermal Processing (RTP)
Wasabi vs. Curry

- Initially developed for short anneals
 - Impossible to control short thermal cycles in furnaces
 - Want minimum diffusion for shallow & abrupt junctions
- Process steps:
 - Annealing \rightarrow repair implant damage
 - Oxidation \rightarrow gate oxide
 - Nitridation \rightarrow spacers, ARL
 - Poly deposition \rightarrow gate
- RTP in single-wafer multi-chamber cluster tools
Self-Aligned Silicidation (Salicidation)

- Need to reduce poly & diffusion R_s, otherwise get severe IFET degradation due to voltage drops from contacts to intrinsic FET (source degeneration)

- Selectivity degraded at RTA2, i.e., metal over SiO$_2$ & Si$_3$N$_4$ will form silicide

- Technology progression: TiSi$_x$ \rightarrow CoSi$_x$ \rightarrow NiSi$_x$
 - Scaling requires smaller silicide grain size to minimize R_s variations
Monolithic Resistors

- Only one extra mask can buy you unsalicided poly & diffusion resistors
- Salicide block etch

1. **SiO₂ deposition prior to salicide module**

2. **Salicide block etch**

3. **Salicide module**

Loke / CSU EE571
May 3, 2005
So What Do All These Cool Process Upgrades Mean To Designers?

• Short answer…
 few extras like speed but plenty more non-idealities to worry about, especially in analog land !!!

• Examples:
 • Poly depletion & charge centroid effects
 • Gate direct tunneling
 • Impact of halos on output resistance
 • Well proximity effect
 • Active area mechanical stress effect
 • Manufacturing variations
Poly Depletion & Charge Centroid Effects

$C_{ox} = \varepsilon_{ox} / \text{EOT}$

EOT = Equivalent Oxide Thickness

- Increasing discrepancy between electrical & physical gate oxide thicknesses since charges are not intimately in contact with oxide interface → C_{ox} not as small
- C_{ox} must account for gate & Si surface charge centroids as well as ε_{Si}
- Modeled in BSIM4 → more accurate I-V & C-V calculations
- Mitigated with high-K gate dielectrics & metal/silicided gate technology
 - Oh my, are we regressing to non-self-aligned Al gate technology?

Gate Direct Tunneling Leakage

- t_{ox} has been scaling aggressively with L_{min}
 - higher I_{FET}
 - tighter gate control \rightarrow less SCE
- Significant direct tunneling for $t_{ox} < 2$nm
- Gate leakage $= f(t_{ox}, V_G)$
 - Tunneling probability $\propto \exp(-\alpha t_{ox})$
 - V_G dependence from Fermi-Dirac statistics
 & density-of-states considerations
- Hole & electron tunneling in CB & VB
- High-K gate dielectric achieves same C_{OX} with
 much thicker t_{ox}
- Modeled in BSIM4 not BSIM3

![Historical Trends](source: Taur, IBM (2002))
Active Area Mechanical Stress Effect

- Silicon is \textit{piezoelectric} – electrical properties depends on mechanical stress state
 - Stress affects m*, μ, E_g, V_T, body effect, DIBL, ...
 - Compression → slower nFET, faster pFET
 - Tension → faster nFET, slower pFET
- STI → compression in Si channel due to 10x CTE mismatch between Si & SiO_2
 - I_{dsat}’s can change by 10-15% → affects digital device ratios
 - Channel stress is strong function of distance from poly to active edge

- Known for some time
 - Can play tricks with tensile spacer & silicide films to relieve channel stress
 - Basis of high-\(\mu_n\) strained-Si technology
- Modeled in BSIM4 not BSIM3

\textbf{Source: Xi \textit{et al.}, UC Berkeley (2003)}
Impact of Halos on Output Resistance

- Halo at source side suppresses SCE & DIBL in short-channel devices
- Halo at drain side creates Drain-Induced Threshold Shift (DITS) in long-channel devices
 - Drain bias very effective in modulating drain halo barrier $\Rightarrow V_T \downarrow \rightarrow I_{ds} \uparrow$
 - Worse DIBL compared to uniform-doped FET
 - Can degrade FET r_{out} by 10-100x!!!
 - Critical limitation for building current sources (cascoding difficult with low V_{DD})
 - Asymmetric FET’s with only source-side halo shown to improve r_{out} significantly

- Less degradation for devices with weaker halos, e.g., long-channel low-V_T FET’s
- Modeled in BSIM4 not BSIM3, but still need improvement

Source: Cao et al., UC Berkeley (1999)
Well Proximity Effect

- $|V_T| \uparrow$ if FET is too close to edge of well resist mask due to extra channel dopants from lateral scattering off resist sidewall into active area during well implants.
- $|\Delta V_T|$ depends on:
 - FET distance to well mask edge
 - FET orientation
 - Implanted ion species/energy
- Well mask matching critical especially in analog layout.
- Not modeled in BSIM4.

Characterizing Process Variations

- Statistical variations in IC manufacturing \rightarrow variations in FET characteristics
- Circuits must function across operating V_{DD} & temperature but also across statistically acceptable process tolerances
- Statistical variations summarized by spread in nFET & pFET V_T’s, or in I_{dsat}’s, i.e., use V_T or I_{dsat} to summarize cumulative effect of ALL process variances
- Consider die-to-die, wafer-to-wafer & lot-to-lot variations

\[I_{dsat} \propto (V_{DD} - V_T)^2 \]
Correlated vs. Uncorrelated Variations

- Elliptical 2-D Gaussian distribution from natural variations with no deliberate retargetting of process parameters

![Graph showing correlated and uncorrelated variations]

- Correlated variations due to common processes e.g., poly photo/etch CD & gate oxide thickness
- Uncorrelated variations due to uncommon processes e.g., channel & well ion implants

- Tougher to control poly CD than implant doses
Additional Commentary
Manufacturing Impact on Design

• Importance of poly gate orientation – align FET gate along x or y?
 • Preferred orientation will likely exist due to step-and-scan nature of gate lithography (active area lithography to a smaller extent)

• FET mismatch
 • Symmetric circuits that are built asymmetric may fail
 • DFM (design for manufacturability) is a big buzz word now
 → need for Monte Carlo simulations to statistically validate design

• Exposure λ is not scaling as aggressively as L_{min}
 • Roadmaps are just guidelines
 • Huge industry resistance to move to 157nm
 • Requires reflective optics → $$$
 • Expect more gate resist trimming & relatively worse CD/overlay control at 65nm node

• Statistical design considerations more critical than ever
Impact of Statistical Variations
130nm High-Speed CML Buffers

- Monte Carlo simulations of initial CML buffer design
- Simulate random variations in L, W & V_T
- Waveforms should be differential, let alone cross each other
The Near Future of Patterning
Immersion Lithography

• Remember oil immersion microscopy in biology class?
• Extend resolution of refractive optics by squirting water puddle on wafer surface prior to exposure
 • \(n_{\text{water}} \approx 1.45 \) vs. \(n_{\text{air}} \approx 1 \)
 • Tedious but less painful (i.e., cheaper) than resorting to reflective optics
• Very likely introduced at 45nm

\[
\text{Resolution} = \frac{k_1 \lambda}{\text{NA}}
\]

\[
\text{NA} = n \sin \alpha = \frac{d}{2f}
\]

Conclusions

- CMOS scaling continues to be driven by digital circuit needs
- Should expect incremental changes in 65nm CMOS technology
 - Hopefully no major surprises
- Increasing mechanical engineering opportunities in IC technology
- Always a time lag for SPICE models to account for new effects
 - Pressing issue since tapeout mistakes are costlier than ever
 - Need to work closely with technology providers to quickly find out about these new effects
 - Account for them or avoid them!!!
- Designers with intimate knowledge of technology constraints will be best positioned to avoid pitfalls & to turn bugs into features
References