



# Power Electronics Technology Trend







Tiny & Efficient Power Solutions for Handheld Products

### **EXAMPLE OF A COMPLETE DIGITAL CAMERA POWER SUPPLY** (CAN ALSO BE USED IN PDAS)



## TOSHIBA BATTERY TRIPLES DISCHARGE CURRENT Cell targets robots, power tools, other apps



Figure 4: Ultra-low power activity profile maximizes time in standby modes waking the system quickly and only when required.



Figure 3:
Comparison of
alkaline and lithium
battery discharge
curves.



### Paper Switchez "C" Convertors

### C. THREE GENERAL TECHNOLOGIES

 Linear Regulators
 Employed where weight and heat flow are not crucial because design is fast and cost low. Efficiency is only 50 %

Pulsewidth modulated(PWM) converters
 Employed in portable equipment or where high power flows demands the highest efficiency power conversion of about 95 %

3.RESONANT SWITCHED CONVERTERS
Utilized to achieve small size supplies and still avoid the electronic noise generated by PWM converters.

COMPARISION OF THE BIG THREE

| power supply<br>properties     | LINEAR       | PWM         | RESONANT        |
|--------------------------------|--------------|-------------|-----------------|
| Size and weight                | Large        | Small       | Small           |
| Electrical<br>Efficiency       | 50%          | 85%         | 95%             |
| Multiple<br>Voltage<br>outputs | Not Possible | Easily done | Easily done     |
| NOISE<br>Generated             | Low Noise    | High EMI    | Medium<br>Noise |

We choose between the three approaches based upon the criterion for the system such as the four below:

- Power levels in and out and required operating efficiency to minimize heat generation
- % Efficiency = P(out) / P(in)
  - Size and weight lim'ts as well as heat flow limits

### Resistive voltage divider



## High efficiency is essential

(100Km

$$\eta = \frac{P_{out}}{P_{in}}$$

$$P_{loss} = P_{in} - P_{out} = P_{out} \left( \frac{1}{\eta} - 1 \right)$$

High efficiency leads to low power loss within converter Small size and reliable operation

Efficiency is a good measure of converter performance

is then feasible







A goal of current converter technology is to construct converters of small size and weight, which process substantial power at high efficiency

## Power loss in an ideal switch

Switch closed: v(t) = 0

$$i(t) = 0$$

In either event: 
$$p(t) = v(t) i(t) = 0$$

Ideal switch consumes zero power

ther event: 
$$p(t) = v(t) i(t) = 0$$

I switch consumes zero power

Reality includes more