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Lecture 43
State Variable Approach to AC
Converter Models
A. State Space Averaging

» A formal method for deriving the smali-signal ac equations of a
switching converter

» Equivalent to the modeling method of the previous sections

» Uses the state-space matrix description of linear circuits

* QOften cited in the literature

A general approach: if the state equations of the converter can be
written for each subinterval, then the small-signal averaged model
can always be derived

» Computer programs exist which utilize the state-space averaging
method
The state equations of a system are employed and placed in
matrix form:

¢ A canonical form for writing the differential equations of a system

« |f the system is linear, then the derivatives of the stafe variables are
expressed as linear combinations of the system independent inputs and
state variables themselves

 The physical state variables of a system are usually associated with the
storage of energy

« For a typical converter circuit, the physical state variables are the inductor
currents and capacitor voltages

« Other typical physical state variables: position and velocity of a motor shaft

At a given point in time, the values of the state variables depend on the
previous history of the system, rather than the present values of the
system inputs

+ To solve the differential equations of a system, the initial values of the
state variables must be specified

1. System variables are of several types: state
variables, x, independent system inputs u or v and y will
be dependent variables. Energy « state variables, use
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a. Follow the energy / momentum variables or
state variables, because both are conserved
1.  For electrical systems the energy resides in:
a.  Inductor currents
b.  Capacitor voltage
c. Resistorl-V
2. For mechanical systems energy and
momentum involve:
a.  Velocities angular speed
b.  Positions

b. System independent inputs - the “u” or “v”
variables
1.  For electrical systems
a.  Drive voltage / current
b.  Duty cycles of switches
2. For mechanical systems - the “v” variables
a. Forces/ Torques
Independent inputs to electromechanical systems

are given by “u” or “v

c. United electro-mechanical models are possible by
using (a) and (b) together using an agreed upon
standard mathematical formalism.
X(t) is a vector with all state variables (energy
storage)
V(t) or u(t) is a vector with all independent
variables (driving forces)
KX = AX+ Bu - input vector of external sources,
Matrix Matrices with
of L's constants of
and C's  proportionality
of the circuit



State Space analysis is very popular in modern control
theory where the rule is “the more variables you can sense
the better off you are.” In fact one tries to feedback ALL
STATE VARIABLES so you can tailor the system transfer
function to better achieve the dynamical response you seek.
Later, in chapter 11, we will employ two feedback loops one
for current and one for voltage as an example: We repeat
the two loop current/voltage control schematic below

(1) Std V, compared to Vs as an outer control loop

(2) Inner current feedback loop on i, compared to

i(control)

buck converter
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Another example of feedback with dual loops would be the
boost converter below with proportional / integral control. In
simple proportional control the error signal can never be zero



as we need a small error signal to drive d(t) creation. The
error can be made small with high gain but this creates other
problems. For example small V, variations could cause big
d(t) variations. This doesn’t create instability in the sense of
a growing disturbance but big variations of d(t) cause bigger
swings on the way to recovery.

One solution is to employ integration to the error signal,
e, so that the output will change until the error is exactly zero
and oe*dt is also zero. This effect occurs even at very low
loop gain as the integrator with low gain still gets e zero in
steady state. We can then use both proportional control and
integral control together, giving a control parameter K.

Kpi =K O(Vref - Vo)dt + Kp(Vref - Vout)

Generally K; is low to avoid integrator over hunting
(integrator wind-up) and K, is large for fast large signal
disturbances.

Below the dual loop boost converter employs the output
voltage error as a virtual current reference. |, is usually
triangular / sawtooth in shape and acts also as a stabilizing
ramp as we will show in Ch. 11.
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[KIIX] = [Allx] + [B][u]

In the state variable approach we begin with the state
equations of a linear system, which summarizes known
relations in a specific system or circuit topology for
independent inputs u or v and state variables x.

All other dependent variables in the circuit are given by the
vector y or matrix [Y]

[Y] = [CI[X] + [E][u]
Output Matrices with proper constants of
vector proportionality

Note the mathematical completeness assumption that all y’s
are a linear combination of only x's and u’s. There is some
ambiguity at first as to what actually constitutes independent
inputs and what constitutes dependent variables, e.g. iy input
to converter is usually chosen as a dependent variable while
Vg IS chosen as independent.

Summarize methodology

KX = AX + Bu
X: states associated with Energy storage
u: inputs you specify and are the driving forces
y = Cx+ EuU
y: dependent variables that the driving forces, u,
and the x states fully specify.



2. Specific Circuit Model in State Space Matrix
Formalism

Let’s get specific and see what all this talk means.
i(t) -

+ v(t)
ir1(f] ici(t ica(t
1° 17
i1(t) (} R1 C1— vi(t) C2 - va(t)
) ) R3

Vout(t)

Independent K without Independent
state variables mutual coupling Inputs
éVviu éC; 0 Ou

é u é U N

X = aVal k=60 Cx 0Oy u = [iin]
/ s /

e

Then without much thinking we can combine these four
iInto matrix form using state space matrix formalism.

kx = Ax+Bu. Below we further justify the specific choice
of A & B matrices based on the well known circuit node
and loop equations.
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In the way of a check we find the following:
i. = C avi _ int - Vi i(t) P Top row of A and K
dt R
i. = C av, = i(t) - Vo P Second rows of A and K
C 2
dt Ry, +
i :
VL =L % = V1- Vo P Third rows of A and K
In summary,
The same equations: i () =C, “2”’ =i (f)- VIIKQU i(t)
i) = C, 250 — i) - 20
v =L D _y 1) v
Express in matrix form:
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C, 00 ddét) R 0 - w0 | 1y
0G 0| |37 =] 0 -gig ! w0+ 10 [i,0)]
00 L aie | .y 0 iy | L2
—— dt J ~——
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K at = A xt) + B u@®




Likewise we can combine X and u to form the
dependent variables.

R : Vo (t
R2+tR3 R1
That is in the form: y=Cx + Eu

Vo = V2

é g évi(du
¢ voul _ g ReTRs e 0 ep
& 0= ea q &2+ & [iin (D]
6ri(8 g1 0 ogé i(t)g u
5 1 e 1DQ
ER1 9
yit) = C x(t) + E u()

Simply stated we are doing nothing new. We are
simply agreeing to write all circuit loop, node and
dependent relations in an easy to visualize matrix form,
that we all agree on. Once this is done then matrix math
will easily be done via standard methods of perturbation
theory to obtain small signal averaged models. We do
this in three major steps.

* Averaging between the switch states during Ts
* Calculate quiescent equations
* Calculate small signal equations
This is similar in spirit to circuit averaging but the
mathematical means are different.

3. State Space Methodology for <>Ts Averaging
of switch states

a. Separate State space matrices for

D]_Ts D’ZTS D3TS
interval interval If it exists in DCM,



Forget for now the DCM of operation and consider only
x1(dTs) and x»(d(Ts) and consider only a Vy4 (input).
We then get two separate state equations for the two
switch intervals.

X1 = A1X+ Bi1Vyg X2 = AX+ B2Vy
Simplify V, terms of x only
Vo = C1X Vo = Cox
during dTs during d'Ts
During subinterval 1, we have
K dz(t’) — A, x(t) + B, u(t)

y0) =C,x() + E, u(®)
So the elements of x(r) change with the slope

dfl(t’) =K' (A, x()+B, u())

Small ripple assumption: the elements of x(7) and u(t) do not change
significantly during the subinterval. Hence the slopes are essentially
constant and are equal to

dz(i(tt) K ( A, (x®), +B, <u(t)>rs)

The change during the first interval is:
X([) 4r K_I(Al <X>

DO 4, w0}, B (w0),

x(0)

Net change in state vector over first 0 dT:
subinterval:

X(dT) = x(0) + (dT)) K"(A1<x(t)>TS+B1<u(t)>TS)

S—— —

\/"’/
final  initial interval slope
value  value length

We can do a similar step for the second interval as shown on
page 11.
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That is:

Use similar arguments.

State vector now changes with the essentially constant slope

dax(t)
dt

=K' (A2 (x(0), +B, <u(t)>TS)

The value of the state vector at the end of the second subinterval is
therefore

X(T) = X(dT) + (d'T,) K“'(A2<x(t)>TS+B2<u(t)>Tx)

e

\/”/

final  initial  interval slope
value  value  length

We can now get the net change over the switching period:
We have:

x(dT,) = x(0) + (dT,) K™ (A1 (x(0), +B, <u(t)>TJ)
xX(T) =x(dT,) + (d'T,) K" (A2 (x(0)), +B, <u(t)>TJ)

Eliminate x(dT,), to express x(T) directly in terms of x(0) :

x(T) = x(0) + dTK ‘(A, (x(0), +B, <u(t)>T:) +dTK" ‘(Az (x(0), +B, <u(t)>rx)
Collect terms:

x(T) = x(0) + TK" ‘(d(t)Al + d'(t)Az) (x®), +TK '(d(t)B1 + d'(t)B,) (u),

b. Average State Variable Over Ts by Time
Weighting

We next calculate an average by weighting each state
variable matrix by the appropriate duty cycle.

X = [A1d+ Aod] X+ [Bid+ Bod{ Vg4

Vo = [C1d+ Cod( X

Consider first a converter with two state variables: i,
and v.. Also only consider CCM operation with only two
time intervals D; and (1-D;). We find for external
sources, u or v,

11



X = Aj1X + Bgu for switch period D1Ts
X = AoX + Bou for switch period D,Ts
(1-D1) = D3
If we are operating where the ripple is triangular (fsw
very high) then all time derivatives are simply constants
sothatfromt=0tot=D;Ts
x(Dt) = x(0) + xDt, Dt = D1Ts
X(D1Ts) = X(0) + (A1x + B1uU)D1Ts
This x value is then the initial condition for the second
switch period (1-D). So that at T,
X(Ts) = X(D1Ts) + (A2X + Bu)D.Ts
=x(0) + (A1x + Bypu)DiTs +
(AZX + B2 U) D2Ts
Combining like terms
X(Ts) = X(O) + [D1A1 + (1-D1)A2]XTS + [DlBl + (l-
D1)BJuTs
Notice the average matrices have been formed.
A (Ts average) = D1A; + (1-D1)A; = A
B(Ts average) = D1B; + (1-D1)B, =B

A and B are the duty cycle weighted averages of the
state space average.

X(Ts) = X(0) + [AXx + BU]Ts
That is, the averaged system equations over the switch
period are dx/dt = x(Ts) - x(0)

x = A (Ts average)x + B(Ts average)u
This is the continuous approximation to the original
switching system.

To recap,
1. Circuit equations are written for each switch

state.
2. A weighted average of A and B matrices are

made via duty cycle weighting.

12



Consider the buck converter below:

L I ! poad
1lx 1 rory I T —
— Py iy
r_ 1 +

¥ in ___:' E c ::_TL' %R lmad

We write the state equations for L and C.
vi(inductor) = Ldi /dt

For DT transistor on: v, = D1V, - V¢
For D, T, diode on: v, = -V,

ic(capacitor) =i - i(load) = Cdv./dt

Dividing ic by L and v, by C we obtain

édi,u é, -1u N\ o
éqa €9 Tué n €PiVinl
édvca_él'ag\/8+§5§
A ‘| A — 1 C
gdt i & Rcl
A1=A=A B changes
for Buck with switching
il oy DVl
Blu—ng, Bou A (] B—? L U
80 H S g o f

Next consider the boost converter below:

i 42

F b
A B
¥ __L_ I— +
Fin — :'-‘ L] C ::_r;; R
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We write state equations for L and C
vi(inductor) = Ldi /dt

For DT transistor on: v, = Vi,
For D, T, diode on: v, = D1V, - V¢

ic(capacitor) = Dai, - VJ/R = Cdv./dt

é -10 é -D-o1
Al‘go —a’ A=er 0 ATep, 10
RC &~ & =
& RCl &C RCU
_ éVincI
NowB; =B;=B= & G.
80 H

c. General Quiescent Operation point and Small
Signal Excursions valid only at that point

X® X+ vo ® Vo+ ¥o,d® D+ d

Look familiar except for the matrix bookkeeping?
Then expand neglect all higher order terms, keeping
only DC and AC terms.

For simplicity small signal variations ¢4 on yq4 are

assumed zero for now and v4 © V4. Using X equation:

1. % = Ax+BVqg + X[A] + dl(A1-A2) X + (B1-B2) Vd]
dc terms ac terms dc terms

A(average) °© A;D + A,D’ note: time average

on A, A,
B(average) © B;D + B,D’ and the dc values x, Vq

14



Steady State X = 0 = Ax+ Bvy
x = A" BVy

AC Perturbation X = XA+d [average]

2. Nextwe use V,=[Cid+ C,d’] X and
perturb/linearize

Vo+ 0o =CX  + [(G1-C)X]d
dc term ac terms coefficient [ ]
Is time averaged
Co CD+CD

Steady State V,=CX=-CA B V4

AC Perturbation ¢, = CX + [(C1-Cp) X] d

d. Transform (time equations) into transfer
Laplace transforms and transfer functions

X ® S = AX(9) + [(A1-A2) X+ (B1-B2) Vd] * d(©)
R(9) = [8-ATI(Ar- Ag)x+(By- Bp)vald(s)

unity matrix
90(9 = C[sl - AT [(A1-A2)X+(B1- B2)Vgld(® + [(C1-C2) X]

ve?(S) = Clsi- AT (A1~ A2) X+ (B1-B2) Vl+ (Ci - Co)X

In summary, the time domain forms:

K dzf) = AR() + B + {(Ar-Az)X + (By-Bo) U}A(D)

15



§(t) = CR(® - EQ(M) + {(C1-C) X + (E1-E2) U} d()
can easily be changed to Laplace form and )él(g

calculated or any other transfer function of interest.

1. Lets try the forward converter with equivalent series
resistance’s forboth CandL-rcandr.. X1 ® i and x»
® V. as shown below

+
T Vd=8V Vo=5V
Vo 2 r,=20m ohms
L=5uH
r.=10m ohms
C=2,000uF
R=200m ohms
fs=200kHz

During DTs (switch on) we obtain state loop equations
-Vag + Lxg+ rixat Rixa- Cxz) = 0 (KVL#1)

- X2- Crc)'(z + R(Xl' CXZ) =0 (KVL #2)
The simplified secondary circuit is shown below to aid
understanding.

16



Now use the standard state space form.

x = A i+ B Ve
& Rrc+RrL+rcrL R U
e u € TR +.U
axiyy @ L(R+Tc) L(R rc)uéxlcJ éli
e u=¢& at+ LUVd
e u € R 1 “@XZQ ('aou
exau e U—— S ——
8 C(R+r)) C(R+rc)g

During D'Ts (switch off series diode on)
A2 = A1 Bz =0

Ry R
= R(x1 - Cxp) = € x, +
Vo (x1 - Cx2) Rerc LT Rere X2
— ech R uéxa
Vo = & ué u

During both DTs and D'Ts

Vo = Cly( = CZX

Time Averaged Matrices over the switch period Ts are
obtained as follows.

A=A,=A; fromAD + (1-D)A=A

B =DB;

C=C1=C;

Using the simplification R>> r. + r. we know from circuit
values

17



érctr -1
e L LU
A ® g H,C@[rcl],Bisthesame-no
e 1 -1y
e C CRHO
resistors

Steady State or DC Conditions
0=Ax+BVy® x=A'BVq
V, = Cx = -CA* BV,

eDd
Vo - _cAlB. WhereC=1r1],B=¢éLU
Vd e u
e od
é 1 1y
Lc <CR LY
and A = € U Multiplying
(rctry) € u
I+—— & 1 (rctruyg
8 C L @
out we find for the DC case:
Vo = —R+ e » D
Vd R+rc+rL

AC Small Signal Model

K(9 = AR(S) + d©)[ (A1-A2) X+(B1-Bo) V]

%(9) = [s-ATY(A1-A2) X+ (B1-B2) Vd]d()

18



Vol(9 = CR(9 + [(Cr-C2) X]d(9

é(A1-A2) XU

e U-

s A]'l é +d(s)

o AL € ,
4B1-B2) V|

é(A1-A2) XU
e U~

= [d-AT" & +(@(s) +[(C1- C2)X]
dB1-B2) Vag

Vo (9
d(s

1+sr.C
1

) 1
Res (re*r)” LC
L

= V4

LC[&* +9( ]

Please note that the forward converter transfer function has

the following properties:

1. single zero @ w, = 1
I'(;C
1

2. double pole @ w, = Tic

3. Since r.C is usually very small b w, > w,
The general shape of V,/d versus frequency is then

plotted below on page 20.
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Looking ahead to feedback conditions, for avoiding
oscillation we want 76° phase margin @ unity gain in the
open loop part of the gain. That is the actual phase angle of

the % minus 180° should be > 76°. 76° >f -180°
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2. Looking even further ahead to the flyback converter
operating in CCM we will find:
\70(5) _ (D (1+sw 1) (1-5 wyo) That i
- = . That is the flyback
g - VA TS e Y
converter has a RHP zerow =f ( R, L* f(0)). This makes
for a very unstable situation, as shown in the open loop

Yo plots below. In stark contrast the flyback operating DCM

does not have right half plane zero! From % ~ (1-9 wy)

can you make the case that the output has an undesirably
high phase lag at high f?

Flyback converter Open Loop Bode Plots have some
oddities in that the low f gain is non - linear. This implies that

the precise frequency range with -40 db/decade drop
depends on the low f gain.
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Notice in the phase plot we do not have enough f margin
and the open loop system response tells we come close to
instability at unity gain f ® 180°. This is undesirable.

3. Summary of Phase Margin in Open Loop Plots

Below we show four different open-loop Bode plots. FOr
HW#3 please tell which are stable and which
are unstable.
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What occurs in (c) for small component variations,
temperature changes, component aging? Most designers
prefer a phase margin of 60° to address these problems.
We will visit this in detail in upcoming lectures.
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4. Further Examples
Lossy Switch

a. Buck - Boost Erickson’s text pages 212 - 217
D1

+> T L Cr~ R — v(t)

Trans on ® Rg, } DC losses
Diode on ® Vp } [V] =[ Vg, VD]

é
DTs X] = a D'Ts
evt
[y] = [ig]
. Ron Vd
ig(t) )
it . (1) N .
vg(t) L Cr~ R = v(t) vg(t) L Cor~ R~ v
) i(t)
R, O i V1) i t() V(')
e - ] el [ t
e .
ax( Ar  x(t) Biu(t) ax( A, Xx({) B>

dt dt
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él(t) éVgl\J
lig =10 e g+[00é&
ev(t)g evpb
éi(t) é vgu
lig =00 & g+[00& u
evit)u evpl

y(t) Ci  X() E1 u(t) y()

u(t)

C>

x(t)

=

Next, we get the <>15 average matrices A, B, C, E, by

time weighting by D and D'.

€& Ron ) é0
é u é
A= DAL+ DAz =De o ,a*+ Dl
e -=4 e
e e
/D - Dl\
B=DB;+DB,= & 0
&0 ou
C=DC1+D'Cz;= [D 0
E=DE,+DE;= [0 0
KX = AgX+ BayV } X+ Xot+ X
} Y=Yot ¥
Yy = CaX+ EaV } d= Do+ d

1. Steady State Solutions: X =0

¢ DR  DW
Oy _ e .
U - 2 BT
off & D¢ l,8d &o
é R0

24
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elu 1 eVgu
g = [Aa]"[Bl & "G
8\/ pl
élu eVgu élu
[Ig] = [D Q] 3\/"'+ [0 0] é P [ig] = [Cal 8,4
u @VDEI
eV
[|g] CavAav1B eV
DU
dc solutions:
Equation for 1,V output and Input |4
¢ 0§ L
el _ Vgl _ & 1 U D?R DR eV
g\/u [Aav] [B] - é DR u a l:lé l;|
u DQ &+ "0 & D  1;6vol
e D“RU é D' Q
é u o
[Ig] = CaA: 1|3év9“J ¢ 1 U¢ DD ugVel
= é u é ue u
€ D“RC

DC Model Circuit
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2. AC Perturbed / Linear Solutions

dA1-A2) X+ U .
KR = AX+ Ba+ ¢ ad

8 (B1-B2) UGI
&C1-Co) X +u .

gd
8 (Er-E2ug
for []in front of d terms

e—Vu éVg'lRon"'VDl\J eVg V-1 Ron + VDl\J
(A1-A2) X+(B1-B2)U = ¢ gt é =@ 1
il & 0 é

g = Cx+ E0+

(D>

N

U

O CN

in R
(C1-C2)X+(E1-E2)U:[|] |n§/

In standard state variable form the matrix math is:

e'DRon D& n
oud €U e Gy & -Da eVg(Yu évy- V-1Ron+ Vpl,
06 U=é . u¢e Ute g€ u+te (d
cidtging & -P¢ lugimg 60  OU@WME 6 16
¢ RC(

() , O oueV(t)u é0U ~

[ig®] =[DO]é g d(®)

“(t)g "% of o (00 T
Hard to get a “physical hold” on matrix equations.

In fact, we cannot easily get a complete circuit model of the
whole converter for ac analysis. We can only separate out
each set of three equations and then get a partial model.
Equation:

? = D®(®) - DRoni(t) + Dg(t) + (Vg-V-IRom+Vp)d®)
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sLi(s) = D®(S) - DRoyi(S)
T D\79(S) + (Vg'V'I Ron"'VD)a(S)

The circuit representing these equations:

L DRon
+L ditydt - N
DV(t) | - .\_?(t)/ X
Equation:
dv(t) v(t)
= -D¢i(t + 1 d(t
at () - R (t)

Csi(s) = -Dd(s)- () + 1d(s)

Circuit;

C dv(t)/dt
+ V(R

D) ¢ O cT o — R

Equation:
ig® = Di() + Id)
P9 =Di(9 + 1d(s
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Circuit;
i@J(t)>

ot C) (Oido | 4 | oty

V(9

Later we will get to employ 3 in a complex feedback
S

loop so it's open loop form is good to know well at this point.
b. Erickson Problem 7.8

Buck converter with Vy possessing a source impedance Ry
R L
igt) |,
»

Q
1Yl

Vg(t)C> T /\ D C—~ R :(t)

[X] ® i energy terms } V is V. a state vector
Ve

[U] ® V4 independent inputs
[y] ® iy dependent output

DTs (Qon) :

I% QI YT Y

1Yl L

Vg C) " T /\ D C—

< +

/|

28



K X A X
Ry -1u
& oydeiy_¢  Uein
&0 cd dt &t a -1 1@8\/5
e RO
el
lig] =[10] g/.;.’f [O] [Vl
¥
y Ci E;, U
D'Ts (Q off/ D on)
Ig /\/\/\_’i Y
g L
Rg +
Vg C) Cr—~ v
O -lu
e Ouden_eée  deén,
& cHa & £ _1U&H
é 0
e Ru
k X Ao
éiq

ligh = [00] 8/u+ [0l V4l

y C.

=
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Gettime - averaged A, B, C, E

éR -1 &D -1
A=Dg ® g+ped Mg i
& 1 -1/R0 & -1 & 1 -1/R0

B =D élu D¢eou:§Dg
o el T &of

C=D[10]+D[00]=[00]

E =D[0 0] + D’[0 0] = [0]

DC Relations:
éDRg _1U
€ 1 u &
<~ L LY Al ¢
0=Ax+Bu {gﬂ g H? g, e|_u_,_[ ]
e 1 _1a®" gon
e

él
=Cx+Eu {|lI,] = |ID O]l a + [0O] + |V
Y——{[g] [ ]g/tJ[] [g]
OR: I;=DI, 0=-DRy-V+DV, & O0=I-V/R

Equivalent DC Circuit Model:

Ig DRg DRg
> | lg

L
V. ]
g() DI| ¥ N

P AC Rdations:

6V - IRy
(Ar- Ay)x+(By-ByJu=¢€ ,
& 0

U(Cy- Co)x+(Er- Ex)u=][]]
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gORs .24 AV, - IRy 0
N e | U .. eV -
déiu 2 L L= &l
Sei= g i 6.0+ eLﬂ ol * ¢ t{d]
dtgvg  § 4 1 o4&
e 1 1y éof ; of
e C RCU
d . N N
ax: A 2 + B 0 + [(Ar-A)x + (B -
Bz)U]d
~1 _ e|u
6] = [0 0] [0][Vg] ['][d]
y= C R +E 0+ [(Ci-Co)x+(E:-Eyuld
OR:
. di f R
a - 'DRgl-V'l‘(Vg'le)d
av A Y N N
C— =-1@() - — & i =Di+1d
dt () R |g

Vg C) d (o | ¢ " | DVg c— U
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Ac/dc transformer model:

Ig> L
"~ A Vg - IRg)d R
Vg <> d () e g)c7< vV - R
% R 0 1
37 (Vo ! g)gR+DRg; 2 6 L,®LCR 0
1+s¢ +CR|DRgy++5s°¢ +
eR+DRy o eR+DRyg
Lsi(S) = - DRgi(9) - %(9) + [Vg(9)-1Rgl*d(S)
V(s

Csv(s) = i(9) - ~
ig(9 = Di(9 + Id(s)
Solve for \{(S)

d(s)
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