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Abstract. A kinematically redundant manipulator is a robotic system that has more than
minimum number of degrees of freedom that are required for a specified task. Duc 1o
additional freedom, control strategies may yield solutions which are not repeatable in the sc
that the manipulator may not return to its initial joint configuration for closed end-citecto
paths. This paper compares two methods for choosing repeatable control strategics which
minimize their distance from a nonrepeatable inverse with desirable propettics. The fica
method minimizes (he integral norm of the difference of the desired inverse and a repe
inverse while the second method minimizes the distance of the null vectors associated with
the desired and the repeatable inverses. It is then shown how the (wo techniques can Iy
combined in order to obtain the advantages of both methods. As an illustrative example v
pseudoinverse is approximaled in a region of the joint space for a seven-degree-ol- fieedom
manipulator.
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1. Introduction

A’ robotic system can be described by its kinematic equation which relates the
set of joint values of the manipulator to the position and orientation of the end
effector in the workspace. If the location of the end-effector is specified as an
m-dimensional vector x then the kinematic equation can be wrilten as

x = f(0) (h

where f is a smooth vector function and where ¢ is an n-dimensional vector ol
the joint variables. One of the popular techniques for controlling a manipulator
is resolved motion rate control which calculates the joint velocities from th
joint configuration and desired end-effector velocity. The underlying equation
is the Jacobian equation which, for the positional component, can be found hy
differentiating (1) to obtain

x=.J0 (H
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where X is the desired end-elfector velocity. The chief advantage of using the
Jacobian for the motion control of a manipulator is that the Jacobian is a linear
relationship between the joint velocities and the end-effector velocities. At each
point 6, J is an m x n matrix.

Kinematically redundant manipulators are robotic systems which possess more
degrees of freedom than are required for a specified task so that m < n. This work
will only consider the case of one degree of redundancy, i.e. when n = m + .
There are an infinite number of control strategies for redundant manipulators so
that one can take advantage of this freedom by choosing a control strategy which
will optimize some particular criterion. This work will consider generalized
inverse strategies of the form

0= Gx (3)

where (7 satisfies J(G' = T for nonsingular configurations. The elements of G
are functions of the joint configuration. This strategy may be chosen to locally
minimize a given criterion function such as the least-squares minimum norm
criterion on the joint velocities as in the case of the pseudoinverse solution

0=J"x 4)

where J* is the Moore-Penrose pseudoinverse of J. This control strategy lo-
cally minimizes the joint velocities of the manipulator subject to moving the
end-effector along a specified trajectory. Also popular in the robotics literature
are weighted pseudoinverse solutions which locally minimize 87Q6 for some
positive definite weighting matrix Q. Since this work only considers manipu-

lators with a single degree of redundancy, the generalized inverses G have the
form

G=J%4+n,wl (5)

where iy is a unit length null vector of J and where w uniquely determines G.
This follows from the fact that J(G — J) = 0 [9].

Due (o the additional freedom afforded to kinematically redundant manipula-
tors, control strategies such as (3) may not be repeatable in the sense that closed
trajectories in the work space are not necessarily mapped to closed trajeclories
in the joint space so that for cyclic tasks the manipulator will not necessarily
return o its starting configuration. Klein and Huang [7] give a mathematical
proof of this for the pseudoinverse control of a planar 3R manipulator. An el-
egant method of identifying control strategies which are repeatable is presented
in a paper by Shamir and Yomdin [13]. This method determines repeatability
by checking whether the Lie bracket of any two columns of the inverse is in the
column space of G.

This work focuses on the generation of repeatable control strategies that are
as close as possible to some desirable, but not repeatable, control. 1t will only
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consider inverse kinematics and not the dynamic aspects of the complete contiol
problem [5]. The remainder of this article is arranged as follows. In Section .
two optimal repeatable strategies are presented. A comparison of these two
strategies is discussed in Section 3 using a simple manipulator as an illustrative
example. Section 4 illustrates how the two techniques can be combined by usinp
information obtained from one technique to guide the calculation of an optinial
repealable strategy by the other technique. This procedure is demonstrated (o
both a simple example as well as for a seven-degree-of-freedom manipuliato
Simulation results itlustrating the efficacy of these techniques are presented in
Section 5 followed by the conclusions of this work in the final section.

2. Two Optimal Repeatable Control Strategies

In order to choose an optimal repeatable control stralegy it is necessary to clin

acterize those strategies which are repeatable in terms of the desired generalized
inverse G4 and a null space component. This will be done by considering th
corresponding augmented Jacobian as was done in [9]. At nonsingular conlign

rations any generalized inverse G can be calculated by inverting an augmentod
Jacobian of the form

J

pN<H (i
<n

where v is a null vector of GT'. The corresponding control strategy is found .
taking the first n — | columns of the inverse of J; ! which is given by
T - njy

Joh = ot 4 it —— , (7
ny-v

where once again fiy is a unit length null vector of J and

[A.N+'v\~.<
W= —— ()

ny-v
Choosing an augmenting row that is a gradient results in a repeatable coniil
strategy [12]. Thus the augmented task-space approach is one of a number ol
commonly used techniques for resolving manipulator redundancy [1, 4, 6, 11|
For the extended Jacobian [2], the augmenting vector is given by the gradicit
of Vg -ny where g is some criterion function of ¢. By including this additional
function the manipulator acts ‘mathematically’ like a nonredundant manipulato
assuming that the rows of J and v are linearly independent. A set ol thesr
gradients can be used to define a class of control strategies which are repeatabl

“in simply-connected, singularity-free domains [3].
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One chortcoming of applying augmenting techniques is the possible introduc-
tion of artificial singularities, called algorithimic singularities {2]. These singu-
larities are distinct from the kinematic singularities of the manipulator and are
a function of the augmenting vector v. The configurations corresponding to an
algorithmic singularity are characterized by

ny-v=070. 9)
The presence of algorithmic singularities can seriously restrict the workspace
in which the manipulator can operate as desired. A further discussion of this
problem will be presented later.
This paper considers the problem of choosing an optimal control strategy from
a set of repeatable strategies which have been characterized by their augment-
ing vectors. An example of a set of augmenting vectors which yield repeat-
able control strategies is the span of N linearly independent gradient functions
{vi,va2,...,vy}. Tor this case the augmenting vectors would have the form
;= MJ\R_ a;v; where each «a; is a real constant. Several considerations should
be made in choosing such a basis. One should be careful to select the gradient
functions to be lincarly independent from the row space of the Jacobian since
lailure to do so will result in a singular augmented Jacobian. Secondly it should
be noted that all nonzero multiples of an augmenting vector result in the same
control. Thus choosing an optimal augmenting vector becomes a constrained
optimization problem in which each augmenting vector is normalized. Such a
normalization can be done for example by requiring that MUR
Now that a procedure for generating repeatable strategies has been given, it is
possible to consider optimal strategies. In this work, optimality will be in terms
of nearness to a desired nonrepeatable strategy. The nearest optimal repeatable
control strategy (NORCS) is defined as the repeatable control strategy which
is nearest to some desired nonrepeatable strategy in some region ol the joint
space. In general, this optimization will be performed over a set of prescribed
repeatable strategies. The measure of the distance between a desired inverse G4
and a repeatable inverse (7, is deflined by

2 __
pa; =1

_
€2

. | .
=9;S§ui\fwiiﬁw (10)
1] Ja

where |Q] is the volume of & C R"™, || - ||2 is the induced 2-norm for a matrix,
and [, d0 is an n-dimensional integral over a simply-connected, singularity-free
subset Q of the joint space. Equation (10) provides a measure of the closeness
of two inverses on some important subset  of the joint space. The nearest
repeatable control strategy to the desired inverse Gy is defined to be the repeat-
able inverse (7, which minimizes (10). The subset £ may be chosen based on
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some optimal configuration at which one would like the manipulator to ope
ate. From (5) it follows that the induced 2-norm of the difference between th
inverses G, and Gy is

G = Gall2 = __wC TSH - iu.v__w = |lw, — wyll (1

where the vectors w, and wq uniquely determine G, and Gy, respectively, Thn
the measure given in (10) for a repeatable inverse and a desired inverse becony

NG = Gally = | llwr — wall2 d0 (1

JQ
where w is given by (8).

Optimizing (12) can be rather difficult since it will, in general, be a highl
nonlinear equation. Even when a minimum is obtained, it is difficult to determin
whether it is in fact a global minimum. A more computationally efficient opii
mization can be developed by considering a slightly different problem. Rathe
than directly minimizing the difference of the inverses themselves, it is possibh
to minimize the dilference of their associated null spaces. Before proceedine
further, a discussion of the notion of the associated null space is in order.

An associated null vector! ng of G is defined to be a null vector of G 1
associated null space of G is simply the null space of G'. The pseudoinverse ha
ny as its associated null vector so that the null space of J and the associated null
space of the pseudoinverse of J are identical. For the case of a single degree ol
redundancy, the associated null space is determined by the augmenting vector
as given in (6). In this case the associated null space is a vector-function spac:
which, when evaluated at nonsingular configurations, is characterized by a singl
vector. Thus the space can be characterized by a single vector field. If this vecto
field is ny for example, then the resulting inverse is the pseudoinverse. 1 thi
vector field is a gradient, the resulting inverse will have the desirable propeiis
of being repeatable in certain regions of the joint space. Thus certain propettics
of G can be identified by examining ng.

An additional method of quantifying the distance between two control strale
gies, as opposed to (10), is to define a measure between their associated null
vectors. The null space approximation method (NUSAM) chooses a repeatable
inverse GG, to approximate G4 by selecting the augmenting vector v, once again
from a space of gradients, which is closest to the set of associated null vector

ng, which have been normalized in the sense that .F e, _W dfd = 1. Thus the
NUSAM criterion is

. 2 . 2
min lv —nl|g = min \c [lv — nlj3d@ (hh
neN neN "

t An associated null vector n¢; is also commonly referred to as a lelt null vector of ¢
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where V is the space of allowable augmenting vectors and A is the set of
continuous associated null vectors of Gy satisfying [, In||3d@ = 1. For the case
of the pseudoinverse, the elements of A/ have the form

any (14)

where «vis in A, the set of continuous real functions on € satisfying _? o?do = 1.
For the remainder of this paper, the pseudoinverse will be used as an example
of a desired nonrepeatable inverse, G4. All of the results developed apply to any
other generalized inverse Gy by replacing ny with ng,.

Calculating the NUSAM solution requires several steps. The presentation that
follows summarizes the key points. Additional details are available in [10]. First,
note that to do actual calculations, the set of allowable augmenting vectors V
will be taken (o be the linear span of an orthonormal set {vi,...,vn} of N
gradients where orthogonality will be determined by the inner product

(u,v)o = [ u-vdo. (15)
JQ
Note that it has been implicity assumed that V is contained in £;(€2), the space
of Lebesgue measurable n-vector functions satisfying [, ______w% < 00,
Next, the optimization is reduced to a search over the scalar functions «. This
is done by noting that for any fixed n = «iiy, the allowable augmenting vector
minimizing (13) is simply the orthogonal projection of n onto V

N
v(w) = MES (16)

i=

where a; = (any, v;)q. The optimal v will have this form for some « and the
minimization of (13) can therefore be performed over the set of possible as.
Using a Calculus of Variations argument, it can be shown [10] that an optimal
v has the form

N
v = MUS%: . <,\.. A_‘Nv
J=I
One then has that the Fourier coefficients of (16) are
. N
ap= [ iy -vidd ="y Myjh (18)
JQ ;
=1
where
M;; = (hy - v)(hy - A_A\,VA_Q. (19)
JQ
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Since each « is normalized, it follows that
N N
I = o’dd = M M ?b..‘.@k&.. ('h
/€ i=1 j=1
In matrix-vector notation (18) and (20) become
a=MDb (M

b ML =1 (O

where a = [ajaz---an]L, b = [biby---by]T, and the Gramian matrix A/ i
M = (M;;].
By noting that |jadij|lq = 1,

N
vl = af =a"s, (2

i=]

and that v(«) is the orthogonal projection of any onto V), one has that the «
which minimizes (13) satisfies

! 2
s llgy = IIv(eollgy

=1-—ala

|

|evih; — V(|3

r

T'hus the optimization problein becomes to minimize | —a’'a subject to b A1h
I, or equivalently, :

Maximize a’'a

(2
Subject to bTMb = 1.

It can be shown that this is maximized when a and b are appropriately scalcd
singular vectors associated with the largest singular value of A (sce the Ap
pendix). .

As well as providing a tool for calculating the optimal solution for a given
basis the Gramian formulation also provides a measure for comparing any othes
augmenting vector. For an augmenting vector v the Gramian matrix with respect
to the normalized vector function ¥ = v/||v||q is a scalar given by
/ £ ovn o [ . ,
mi(vy= [ (fhy- V) -V)d0 = —— [ (iy - v)(iy - v)do. (1
Q IvilZ, /o

Q

Note that maximizing (26) over V is equivalent to (13). If v is in the span of the
basis {vy,..., vy} then the Gramian matrix M can be directly used to determin:
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how close a match v is to the null space. The vector function v has the form

~N .
v = M:W,n_ ¢;iv; for some set of real constant scalars ¢y, ¢y, ..., cy. Representing
v in the vector form ¢ = [¢; - - - en}? one obtains that

,  <I'Mec
m o= — 27)
c'c

The closer m/ is to its maximum value of one, the closer v is to approximaling
a null vector of the desired inverse.

3. A Comparison of the Two Methods

This section compares the behaviour of the two methods presented above by
illustrating their comparative advantages and disadvantages on a very simple
manipulator. An understanding of the characteristics of these two methods will
then be used to develop a combined technique, which is suitable for more general
manipulators, in the following section. In all cases, the pseudoinverse will be
used as a representative desired but nonrepeatable control strategy. First, consider
the planar manipulator shown in Figure 1 which consists of two orthogonal
prismatic joints and a third revolute joint of unit length (a PPR manipulator).
This manipulator has as its Jacobian

J

10 —sin Qu_ (28)

“1o 1 cos 0

and a unit length null vector fiy = _\/\MT:_ 03 —cosfy 11T, It is desired to
find a repeatable inverse as a function of 03 which is close to the pseudoinverse

a -

_ _
Fig. 1. Geomeltry of a planar three-link manipulator whose first two joints are prismatic and
whose last joint is revolute and of unit link length.
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in the sense of equation (10). This will be done for three different regions o
interest ranging from 63 intervals of [—m, 7] to [—7 /4,7 /4].

The manipulator in this example is simple enough to analytically calculat
the nearest repeatable inverses for infinite dimensional augmenting spaces. n
particular, for the set of all repeatable inverses which are functions of 63 only. i
has been shown [9] that the nearest optimal repeatable inverse (7. is characterized
by

k cos#; -+ sin @ ,
weo PR T (0
V2(kE + 1)

where w satisfies G, = J* 4 fyw?. This solution is parameterized by the sc
k which is determined by the limits of integration. For €3 regions of intcie
that are symmetric around 3 = 0 and smaller than [—n /2,7 /2], k is ident
zero so that the optimal augmenting row is given by

vIi=[0 —cos@; |+ sin? 03]. U

Symmeltric regions of interest that are between the ranges of [—n/2,n /2] and
[—r, 7] are optimized by k = co which results in

vl =[sinf; 0 I+ cos®6;). (A

The repeatable strategies resulting from (30) and (31) match the pseudoinver
at 03 values of 0 and % /2, respectively. Also, note that the resulting inverse 1
very well behaved since the norm of the vector w is bounded by _\,\M, so that
there are no algorithmic singularities. The properties of these optimal inverne:
are discussed in greater detail in {9]. .

In general, it is not possible to analytically calculate the nearest repeatable
control strategy. However, as discussed above, one can consider control strategic -
which are obtained by augmenting the Jacobian with a gradient row (hat »
calculated from some finite basis of gradient vectors. For this example it i
sufficient to consider augmenting rows which are gradients and functions of !
only. To illustrate the elfects of using different sets of allowable augmcentin
veclors the following bases will be considered

Bs = B3 U {cos 03e3, sin0ze;}
Bg = B3 U {cos 203e3, sin 203e3}
B§ = B3 U {cos 40;3e3, sin403e3} (rn
B7 = Bs U {cos 263e3,sin203e3}
L = B U {cos403e3,sin463e3)
BY = B{ U {cos 803e3, sin 863e3}

By = {e}, ey, e3}

Il

Il

i
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where ej, e, and ey are the standard basis elements for R3. The simplest of
these bases is B3y which corresponds to constant terms for each element of the
augmenting vector, or the ‘DC’ components. The next set of bases, i.e. Bs,
By and B, correspond to the addition of the fundamental frequency for the
three different € regions under consideration, i.e. [—m, 7], [—7/2,7/2] and
|-m/4,7/4). Likewise the bases By, B} and B include an additional harmonic
to the DC terms and the fundamental frequency for the three regions under
consideration.

Before considering the performance of the two methods using the proposed
finite bases presented, it is instructive to consider how much information is being
lost by going from an infinite dimensional basis to one of such relatively small
dimension. This can be done by calculating the Fourier series representation
for the analytically optimal augmenting vector given by (29). As an example,
consider the region [—m /4,7 /4] for which (30) gives an optimal augmenting
vector. Since all scalar multiples result in the same control one can divide by
—~cos 03 to oblain the optimal augmenting vector

” | + sin® 63
vi=10 | ———— (33)
— cos 03

which is in the space spanned by BZ . The first three terms of the Fourier series
expansion for the third element of this augmenting vector are given by

| -+ sin?0
T D o 13341 4 0.3061v2 cos 463 — 0.0900v/2 cos 86 (34)

- cos fly

which would correspond to its approximate representation in the basis BY. Clearly,
the coefficients for the basis functions are rapidly decreasing for higher harmonics
indicating that the vast majority of the energy is contained in the lower frequen-
cies. This statement can be quantified by integrating over the entire region of
interest to obtain

2 ALk sin(03) 12

z — 0 A0y = 19113

™) wpa L —cos(03)
~ 1.3341% 4 0.30612 -+ 0.0900? (35)
= 1.7798 4 0.0937 +- 0.0081
= 1.8816.

[hese numbers indicate that one would expect the optimal inverses calculated
using the two methods described to be able to reasonably approximate the ana-
Iytically optimal inverse even when using a small number of basis functions.
To determine the actual nearest optimal repeatable control strategy (NORCS)
for the finite bases of (32), one must evaluate the integral given in (12), where the
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integrand in this case is simply given by (8) since JV is the desired inverse, ove
the N — | dimensional space of normalized coefficients for the basis functions
The results of performing this optimization for the various different integration
intervals and augmenting bases is summarized in Table 1. The data in Table |
validates, for the most part, the hypothesis concerning the ability of a small
number of basis functions to approximate the analytically optimal solution. Tu
fact, using only the DC terms, i.e., those represented by the basis B33, provides o
very reasonable approximation of the analytical optimal for both of the smalle
Q intervals. Even in the largest Q interval the DC terms tend to dominate the
higher harmonics. The fact that the NORCS solutions in the largest interval
do not represent a particularly good approximation to the analytically optimal
solution is due to its different form in this region which results in a singulanity
in its representation as a gradient, i.e. dividing through by sinf3 results in a
singularity at 3 = 0, the center of the Q integration interval. Unlike the case
where Q@ = [—n /4,7 /4] the infinite augmenting basis that would result fion
expanding B; would not include the analytically optimal solution.

The additional effect of the size of the integration interval, as would be cx
pected, is that the resulling repeatable inverses more closely resemble the desited
pseudoinverse as the desired region of operation becomes smaller and smaller.
This is graphically illustrated in Figs 2-4. Note, however, that while reducing

NORCS for Q = (-n,r]
o‘w ¥ T T T T T T

0.8}

0.7+

0.6

0.5r

0.4}

Gy - J*li2

0.3f

0.2f

0.1f

%

a function of 83 for the PPR manipulator shown in Fig. 1. This quantity represents
of requiring the control strategy to be repeatable. Each optimal stiategy was calculated foa o
6y region of [—m, 7].
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NORCS for Q = [-1/2,1/2}
oo T T T T T T T

0.8} e ]
0.7}
0.6

0.5r

G - J*ll2

0.4}

0.3F

0.2

0.1F

0
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

63

Fig. 3. A plot of |Gy — J "l for the four nearest optimal repeatable control strategies as
a function of 6y for the PPR manipulator shown in Fig. 1. This time each optimal strategy
was calculated for a 6 region of [—m/2,7/2].

the © integration interval results in better performance within that interval it also
tends to correspond with markedly poorer performance just outside of the interval
as is clearly evident'in Fig. 5. Thus even though higher-dimensional augment-
ing bases do not dramatically improve the performance of the resulting inverse
within the specified region € (particularly if this region is small), it still may be
useful to retain some of the higher harmonics in order to maintain reasonable
behaviour outside of the region €. Finally, it is important to note that inverses
with similar figures of merit may provide radically different performance over
the desired region of operation.

As the Q integration interval becomes smaller and smaller, its limiting value
is a single point in the joint space at which the optimal augmenting row clearly
becomes the transpose of the null vector of the Jacobian n; evaluated at that par-
ticular value of 0. This can be clearly seen in Table I for the smallest Q integration
interval where the augmenting row is approaching mwav = [0 —0.7071 0.7071].
This is one of the fundamental observations about which the null space approx-
imation method (NUSAM) is based. This technique attempts to retain the char-
acleristics of the NORCS inverse by performing the much simpler optimization
represented by (13). The results of applying this optimization using the same
augmenting bases and € intervals as in the NORCS case are summarized in
Table 11. Note that since the goal of this optimization is the approximation of the

Fig. 5. A plot of |G, — JF||3 for the nearest optimal repeatable control strategics us
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NORCS for Q = [-w4,n/4]
0.6 Y T T T

T ¥ { At

IGr - J*lI2

1 1 i 1 A 1
.m,m -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

Fig. 4. A plot of ||G» — JF||, for the four nearest optimal repeatable control strategics
a function of 83 for the PPR manipulator shown in Fig. 1. This time each optimal strateps
was calculated for a 83 region of [~ /4, 7 /4).

NORCS using B3

m T T L} T T L) T
4.5} .
ak E Q= |-wd,ud)
e _ Q=-1/2,1u2]
asl| - — Q=[-nn
o 9
Iy
. 2.5}¢
g
= o
1.5} - -
‘— i ,/,/. . -
0.5} . o :
0 L i 1 _ 3 L Il i
-4 -3 -2 -1 0 1 2 3 4

basis of- B3 for the 63 regions of [—m, 7], [-7/2, 7, 2] and [-n/4, w/4].
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Table 1. Optimal augmentig rows using the nearest optimal repeatable control strategy
(NORCS)

Q=03 €[-mn]

Basis  (1/|Qp)c, - g4 =w~ Optimal augmenting row

By 0.5000 [0.0000  0.0000  1.000]
Bs 04690 [0.1392 ~0.0507 —0.8399 — 0.1504v/2 cos 3 — 0.5000v/2 sin 03]

B; 04111 [0.0649 —0.0222 —0.7846 — 0.2110v/Z cos 83 — 0.5709v/2 sin 65
+0.0677v/2 cos 263 — 0.0678v/2 sin 203
Boo  0.2500 [sin@3  0.0000 1.00004-cos? 03)

Q=0y€l-n/27/2)

Basis  (1/|QDIGy = JF || Optimal augmenting row

By 03170 [0.0000 —0.3238 0.9461)

BY  0.2665 10.0000 -0.3214  0.8830 — 0.3420+/2 cos 265]

By 0.2540 [0.0000 -0.2283  0.7905-0.5412v/2 cos 263 +0.1796/2 cos 405 ]
Bao  0.2500 [0.0000 —cosf3  1.0000 + sin? 6]

Q=0y€[-n/4,n/4]

Basis  (1/|QDYGr — It =m~ Optimal augmenting row
By 0.0985
B¢ 0.0936
By 00932
B 0.0908

[0.0000 —0.5971  0.8021]

10.0000 —0.6330  0.7544 — 0.1736\/2 cos 465]

[0.0000 -0.5874  0.7890-0.1734+/2 cos 40 —0.0485/2 cos 863
[0.0000 —cos@y  1.0000 + sin? 03]

Augmenting bases

qu = A?_ﬁ_;ﬂ_nw.?_ouv

Bs = B3yU{k; cos 0yeq, kp sinB3e4}
By = ByU{k; cos 263e3, k; sin 205e3}
By = B3U{k; cos 403e3, k) sin403e3}

By = BsU{k; cos 203e3, ky sin 203e3}
Nw$ = Nw.mccnw CcoSs A%umu. FN mm:A%uouv
By = B{U{k; cos 863e3, k; sin 803e3}

ki =1//1Q] and ky = \/2/[Q

desired null vector, the accuracy of this approximation is quantified by mn’, which
m this case is the maximum singular value of M, i.e., o) (M). Table III provides
a direct comparison between the two techniques by comparing both figures of
merit, i.e. the error in approximating the desired inverse, 1/|Q|||G, — k+=w~.
which is the true minimization criteria, as well as the error in approximating the
null vector of the desired inverse, min ||v — _:__mM =1 —m/(v).
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Table II. Optimal augmentig rows using the null-space approximation method (NUSARN
Q=0 €|-nn]

Basis m’ =o)(M) ~ Optimal augmenting row

By 0.5000 [0.0000 0.0000  1.0000)

Bs 0.7500 10.5774 0.0000  0.8165v2sin 03]
By 0.7500 [0.5774 0.0000  0.8165V2sin6;
- 0.3750 [0.0000  -0.7071  0.7071) = .ww.::

Q=0 €|~n/2,n/2]

Basis ' = o (M)  Optimal augmenting row

By 0.7170 [0.0000  -0.5632  0.8263)

B 0.7484 [0.0000  —0.5767  0.7389 + 0.3483v/2 cos 20)

g, 0.7496 [0.0000  —0.5772  0.7360-+0.3469v/2 cos 203 — 0.0693v2 cos 111, ]
- 0.6933 [0.0000  -0.7071  0.7071) = 2% )

Q=03 ¢€[-n/4,7/4)

Basis m' = oy(M)  Optimal augmenting row

By 0.9070 [0.0000  -0.6707 0.7418]

B 0.9090 [0.0000  —0.6708  0.7383 + 0.0696V2 cos 401}

By 0.9091 (0.0000  —0.6708  0.7381 4 0.0696V/2 cos 403 — 0.0166/Z cos . |
- 0.9048 [0.0000  -0.7071  0.7071) = A% ©)

Augmenting bases -

By = {kie;, kiey, kyes) )

Bs = ByU{k; cosfizey, ky sin ey}
Bs = B3U{k; cos 203e3, ky sin 203e3}
Nww\ = B3U{k; cos40;e3, ky sind0ye3}

NW‘N = Nw.wCTnN cos Mﬁuﬁu. \am w:-NQuGuv
mm\ = Nw.\m—/_:cw cos 46yes, ky sind0yey}
BY = B{U{k; cos 863e3, ky sin 863e3}

k= 1//[Q]and ky = /\w!\!_wmn_

When analyzing the results of the NUSAM optimization, the general effec(s
due to varying the augmenting bases and the 2 intervals are quite similar to those
observed in the NORCS results. Overall, the DC terms tend to dominate and
more accurate approximations of the null vector are obtained with smaller € in
tervals. However, it is important to point out that more accurately approximatin:
the null vector does not correspond to more accurately approximating the peifo
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Table HI. A comparison of the two techniques

Q=0y€[-nn]
a/1pIGr - J* 11

min|jv - .C__mw =1-m/(v)

Basis NORCS NUSAM NORCS NUSAM
B3 0.5000 0.5000 0.5000 0.5000
Bs 0.4690 * 0.5601 0.2500
By 0.4111 * 0.5307 0.2500

Q=0;¢€[-n/2,7/2]

azeple: - Ik min|lv - nyli4 = 1 —m'(v)
Basis NORC NUSAM - NORCS NUSAM
B 0.3170 0.4146 0.3312 0.2830
B} 0.2665 1.4786 0.3782 0.2516
& 0.2540 2.5474 0.4378 0.2504

O =0, el[-n/4,7/4]

(/1QDIG» = I3 min|lv - nyli = 1 —m'(v)
Basis NORCS NUSAM NORCS NUSAM
B, 0.0985 0.1045 0.1011 0.0930
BY 0.0936 0.1142 0.1157 0.0910
By 0.0932 0.1153 0.1221 0.0909

* Denotes an algorithmic singularity.

mance of the desired inverse. In particular, consider the data for the case where
the € region is [—m/2,m/2] in Table IIl. Note that despite the fact that a larger
basis (from Bj to 84) in the optimization decreases the error in the approximation
of the null vector A_._o_: 0.2830 to 0.2504) the error in approximating the desired
inverse actually increases dramatically (from 0.4146 to 2.5474). Similar, though
less dramatic, behaviour is apparent in the Q interval from [—m/4, 7 /4] and in
the worst case, when Q is from [—m, ], the larger basis actually results in an
augmenting vector with an algorithmic singularity within the desired operating
region. From this data it would at first appear that there is no point in applying
the NUSAM optimization for larger bases. In fact, one might argue that since
only the DC terms are significant, why not forgo the NUSAM optimization and
simply use the actual null vector evaluated at the middle of the desired inter-
val? Indeed the vectors obtained when applying the NUSAM optimization do
lie close to this value of A5(0) = [0 — 0.7071 0.7071] as expected. However,
it is important to remember that similar augmenting vectors do not :oommﬁ:_v\
represent similar inverses. In particular, the matched null vector :19 results
in an algorithmic singularity when cosf3 = —1 while none of the augmenting
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vectors obtained using the NUSAM optimization with a basis of B3 possess an:
algorithmic singularities. This singularity, even if it is not located in the desined
region €2, results in significantly poorer performance, e.g. a value of 0.6221 1
/|QIIGy — J*|[% in the region [—n/2,7/2].

It may at _,:2 appear anomalous that the NUSAM optimization will
in augmenting vectors that remove potential algorithmic singularities, as in the
case of the basis B3 for the region [—m,w], while at the same time it introduce:
algorithmic singularities when the basis is expanded to either Bs or 5. Thi:
apparent anomaly can be resolved by examining how the NUSAM optimization
treats algorithmic singularities. Clearly, vectors which produce algorithmic sin
gularities within the desired region © are discouraged due to the fact that (h
integrand in (26) becomes zero thus explaining why the augmenting vector ol
tained when using By is able to eliminate the singularity that occurs when simply
using _:on However, if the integrand is relatively large over most of the ©
region, it may be able to overcome the fact that il is zero at a single point. ‘I hi:
accaunts for the fact that the optimal solutions for the bases Bs and By contin
algorithmic singularities. Note that this treatment of algorithmic singularitis
represents a fundamental difference between the NUSAM optimization and il
NORCS method. In particular, a NORCS augmenting vector may not result in
an algorithmic singularity within € since this causes the integrand in (2) to po (-
infinity. This is also more effective in preventing algorithmic singularitics tioa:

Comparison for B's and Q = (-/2,w/2]

m.m T T T T T ¥ T .
S .
T NUSAM
P - ny(0)
25l : _ ~ — - Combined i
B —____ NORCS
& 2
+
H
S 1sf o ;o ]
\ . ’
N ' /
d -
0.5}
0
-2 1 1.5 2

Fig. 6. A plot of ||Gy — J||, for the nearest optimal repeatable method, the null-spic

approximation method, the combined technique, and the matched null vector for a 6y 1egion

[=#/2,7/2] and an augmenting basis B5.
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even approaching the region €, as is clearly illustrated in Fig. 6 by comparing
the values of (1/|QD||Gy — J ||, for the NUSAM and NORCS solutions.
While the inverses obtained using the NORCS technique are inherently su-
perior in performance to those obtained through the NUSAM optimization, the
NUSAM optimization has an unquestionable advantage in terms of computa-
tional efficiency. The algorithms for computing the optimal augmenting vectors
both require repeated n-dimensional integrations. In the NORCS case (see (8)),
the integrand requires a matrix vector product of the desired inverse with the
augmenting vector, a dot product with the basis vector (a function of N) and the
null vector, and a scalar division (which prevents the selection of augmenting
vectors that result in algorithmic singularities). In the NUSAM case (see (19)),
the integrand only requires two n-dimensional dot products using the basis vector
(a function of N) and the null vector as well as a scalar multiplication. While
the simpler integrand for the NUSAM case results is some computational advan-
tage, the overwhelming savings in computation comes from the number of times
this integration must be performed. In the NUSAM case, this n-dimensional

integration must be performed exactly N(N -+ 1)/2 times, once for every unique

element of A (which is then followed by a singular value decomposition of M).
In the NORCS case, the number of n-dimensional integrations is essentially un-
known. In the simplest case one could form a grid in the (N — I)-dimensional
space ol normalized coefficient vectors which would result in an exponential
number of n-dimensional integrations. Thus the NORCS approach quickly be-
comes intractable. For example, for N = 3 the NORCS algorithm required an
order of magnitude more computation time as opposed to the NUSAM algorithm
whereas for N == 7 NORCS required four orders of magnitude more computation
time.

4. Combining NORCS and NUSAM

From the preceding section it is clear that neither NORCS or NUSAM are com-
pletely satisfactory by themselves for calculating augmenting vectors for systems
with large numbers of degrees of freedom. While the nearest optimal repeat-
able criterion represents a better measure of closeness to the desired inverse,
it rapidly becomes computationally intractable, whereas the null-space approx-
imation method results in poorer performance primarily due (o its treatment of
algorithmic singularities. It is, however, possible to combine the two methods
by using information from the null-space approximation method for determining
optimal subspaces in which to perform a lower-dimensional search for the near-
-est optimal repeatable inverse. This information is contained in the complete
SVD of M as opposed to simply the singular vector associated with the largest
singular value. In particular, the SVD of M may be written as

N
M= o] (36)

1==
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where the singular values are ordered from largest to smallest. Since theie o
a gross correlation between matching the associated null space of the desiie
inverse and matching the inverse itself, the NORCS solution should be nemn
the space spanned by the @; associated with the large singular values, and no
necessarily strictly along iy as shown from the data in the previous scction
Exactly what constitutes ‘large’ singular values is somewhat arbitrary, howeve
the singular values range from 0 (o | and are typically clustered so that they
will be one or more values of i for which a; > ;. If this is not the case ul
all of the o; are approximately equal then there is no information that can 1+
exploited to guide the NORCS optimization.

To illustrate the procedure for combining these techniques and to evah
efficacy, consider the simple example in the previous section for the case whes
the Q region is given by [—m/2,7/2]. Assume that one would like infommui
from the NUSAM optimization using the basis Bj to perform a lower-dimension i
NORCS optimization. From Table II one can see that oy = 0.7484 and th:
i = [0.000 0.5767 —0.7389 —0.3483 0.000]", however, the complefe SNV
of M is given by

S = diag(0.7484 0.7001 0.5000 0.0499 0.0016) [

and

0.0000 —0.5548 0.0000  —-0.8320 0.0000

0.5767 -0.0000 -0.0000 -0.0000 0.8169
U=1-07389 00000 -04264 --0.0000 0.5217]. (i

--0.3483 0.0000  0.9045 —0.0000 0.2459

0.0000 —0.8320  0.0000  0.5548 0.0000

I'rom these singular values it is clear that many other augmenting rows vonl !
have been nearly as good an approximation to the desired null vector sin
the first three singular values are on the same order of magnitude. Thos o
augmenting vector in the space spanned by &) Gy and iy can be reasonahl
considered as a candidate for resulting in a nearest optimal repeatable conn
strategy. One can therefore run the NORCS algorithin evaluating only cor i
ficients which are normalized linear combinations of @, fi, and @y, thus onl.
requiring a two-dimensional optimization. This optimization results in the coel
ficients 0.6428i + 0.0000i; + 0.76600;3 which corresponds to the augmentin:
row

vE =10.0000 03707 = 0.8016 - 0.4690V2 cos 20;). C

g

I'he measure of difference between (he inverse that corresponds to this ang
menting row and the desired inverse is given by 1/|Q]||G, — J |3, = 020
which is markedly better than that obtained using a two-dimensional NOR( ™
optimization with the basis By (1/|Q] |G, — J'||3, = 0.3170) which requiic!
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approximalely the same amount of computation time. This markedly improved
performance is graphically illustrated in Fig. 6. Note that the four-dimensional
NORCS optimization using the basis B resulted in 1/|Q]| |G, — J* |3 = 0.2665
which is the true optimal in the space spanned by mw but which required an
order of magnitude more computation time. One can identify the component of
this vector that lies outside of the lower-dimensional search space by multiplying
by U to obtain

:ﬁmCQH_o.q_mq 0 06859 0 —0.1140] (40)

which shows that there exists a small component strictly along is.

As a final more realistic example of applying the combination of these tech-
niques, consider the typical 7-DOF anthropomorphic manipulator described in
detail in [8]. The Jacobian for this particular manipulator is given by

$304Cy + (54 —~84Cy Sy 0 0 8 —CsSe
~5,8, e 0 -1 0 —Cs —S55
- ~ 850384 + (5Cy 538, ¢ 010 G “n
- .Au..m.uﬁﬂfa - .A~.m.,~: Iﬁwuﬁwab - Qu\_. 0 -h 0 0 0
85y = Sr(HCh = (58th S1g+S3Cih ~hSy 0 0 0 0
,ﬂw _m.u ..u;,. q Qu .m.a q 0 0 0 0 0

where S; and ' denote sinf; and cos8; and the parameters g and h are the
nonzero lengths of the upper and lower arms, respectively. The null vector for
this manipulator can also be wrillen analytically and is given by

[ C35456h )
—5,535456h
—(S29 + SHCyl A CL,C3S4h) S,
njy = 0 . (42)
S2C4Seg -+ 5354C5Ceg + S2S6h
525455569
8 —5254Cs9

The link lengths g and h will be taken to be 1 meter. It is important to point
out that while such an analytic expression for the null vector is desirable, it is
not required. One can always numerically determine the null vector for a given
configuration.

For the purposes of illustration the region of interest € will consist of 8; €
[7/4,37 /4] except for Os which is in the range [— /4, w/4]. The set of augment-
ing basis functions will consist of only the DC terms, i.e. B; = {e|, e, e3, eq, €5,
eg, 7). As a point of reference, the null vector (42) evaluated at the center of
€ is given by

iy =00 -05 05 00 05 00 -05] (43)
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and results in an inverse that has an algorithmic singularity within . Perfonining
the NUSAM optimization results in a matrix M that has the following singula
values

S = diag(0.8154, 0.0653, 0.0515, 0.0417, 0.0232, 0.0029, 0.0000) (I-h
where {1y which corresponds to the optimal augmenting row is given by
vl = [0.0000 —0.4581 —0.5[96 0.0000 0.5106 0.0000 — 0.5094].(15)

The acuracy to which the resulling inverse approximates the pseudoinverse i«
given by 1/]Q|||G, — J*||4 = 0.4523 which clearly indicates that there is ne
algorithmic singularity despite the fact that this vector is quite close to th
given by (43). Analysis of the singular values given in (44) indicates that one
would not expect to identify a significantly better inverse since there is an orde
of magnitude separation between the first and second singular values. In fuct,
ranning the NORCS algorithm in these lower-dimensional subspaces docs no
significantly alter the optimal vector from that given by (45). As a final indica-
tion of the intractability of the NORCS optimization for the entire range ol I3
despite several days of computation time the algorithm eventually terminated in
a local minima that resulted in a vector with significantly poorer performance
than (45).

5. Simulations

"

I'he previous two sections have concentrated on comparing various repeatall
inverses with a desired nonrepeatable inverse, in this case the pseudoinverse.
using the somewhat nonintuitive metric |G, — Gyllq, i.e., the norm of the dil
ference between the repeatable inverse and the desired inverse over the design
region of the joint space, Q. While this metric is arguably the most appropriate.
it is instructive to consider the behavior of the repeatable inverses with respect
to the properties of the desired inverse. This section considers the performance
of the various repeatable inverses discussed previously in a simulation of the
PPR manipulator following a specific desired end-effector trajectory. It must be
emphasized, however, that no single trajectory can satisfactorily represent the
behaviour of an inverse over the entire range of end-effector trajectories and
manipulator configurations in €, which is the motivation for relying on the nornn
|G+ — Galla as the primary measure of performance.

The desired end-effector trajectory selected for the simulation studies is given
in Fig. 7. The PPR manipulator depicted in Fig. | is commanded to follow
the 4-meter square trajectory labeled ABCDE. The initial configuration of the
manipulator is set to the origin of joint space which corresponds to the point A
in the workspace. Since all of the repeatable inverses calculated in the previou
sections have used symmetric design regions centered around (3 = 0, this put-
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X2

E{-10] |[00] A[1,0] B[3.0]

D{1.4] C3-4]

Fig. 7. - The desired end-effector trajectory used in the simulation of the PPR manipulator
shown in Fig. |. The 4-meter square path starts and ends at A, which corresponds (o the
origin in joint space. The manipulator is commanded o traverse the trajectory in a clockwise
manner with a constant speed.

the initial configuration in the center of the desired region of operation. The
desired trajectory was then selected to travel away from this center region at a
constant speed. The path is intentionally discontinuous in direction at the corners
of the square to help distinguish points along the trajectory and to emphasize the
directional nature of the inverses.

Higure 8 illustrates a view of the three-dimensional joint-space trajectory,
shown in bold, that corresponds to the use of pseudoinverse control to follow
the square end-effector trajectory labeled ABCDE. The other lines in this fig-
ure represent the integral surface resulting from the optimal repeatable inverse,
i.e., that obtained with the basis Boo. Note that the repeatable surface initially
contains the pseudoinverse trajectory but that they start to diverge as the pseu-
doinverse trajectory leaves the design region at point C. It is at this point that
the global repeatability requirement forces the repeatable inverse to abandon the
desired pseudoinverse solution. The drift resulting from the pseudoinverse so-
lution is clearly identified by the distance of the final manipulator configuration
from the origin, which was the initial configuration. The spiral on which both
the initial and final pseudoinverse solutions lie represents the fiber of all points
corresponding o the point A in the workspace.

A quantitative comparison of the joint angle velocity required to achieve the
desired end-effector trajectory is given in Fig. 9. The norm of the pseudoinverse
solution and that of the optimal repeatable inverse are identical up to the point C
since they follow exactly the same joint trajectory as was shown in Fig. 8. The
initial divergence of these two lrajectories in the region from C to D results in a
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Fig. 8. A 3-D view of the joint-space trajectory resulting from using pseudoinverse contiol
shown in bold, to follow the square end-effector trajectory given in Fig. 6, as compaivd
lo the repeatable surface obtained from the optimal repeatable control using the basis 1.,

Note that the repeatable surface initially contains the pscudoinverse trajectory but that the
start to diverge as the pseudoinverse trajectory leaves the design region. It is at this poin
that the global repeatability requirement forces the repeatable inverse to abandon the desied
pseudoinverse solution.

larger joint-velocity norm for the repeatable inverse due to the pseudoinverse
local optimality. However, note that immediately preceding the point E, the op
timal repeatable inverse actually outperforms the pseudoinverse solution. "T'hi
is not entirely unexpected since the manipulators are now at different configuia
tions.

Three other repeatable inverses are also compared in Fig. 9. Thesc we
NORCS inverse, the NUSAM inverse, and the combined NUSAM/NORCS in
verse discussed in Section 4 for the basis By and a design region of €
[—7/2,m/2]. As expected, the performance of the pure NORCS technique i
best, the pure NUSAM technique is the poorest, and the combined NUSART
NORCS technique lies in between the two. First, consider the performance o
the NUSAM technique. The NUSAM inverse performs well over large poition
of the trajectory, however, it results in relatively large joint velocities near the
points C and D. This behavior is due to the fact that, as discussed in Section
the NUSAM technique is susceptible to the influence of algorithmic singula
ties. While this particular inverse does not result in an algorithmic singularity
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Comparison of Repeatable Controls to the Pseudoinverse

0.06 T T _ T . .
0.08} : ]
0.04
B 003
oo2 NUSAM i
Combined
_ _ _ - NORCS
..... ~ Optimal Repealable
0.01F Pseudoinverse 1
o 1 1 1 1 1 i 1
A B Cc D E A

Desired End-Effector Trajectory

Fig. 9. A plot of the joint-velocity norm as a function of the position of the end-effector
in the workspace for the trajectory shown in Fig. 7. Note that the trajectory obtained from
the NUSAM inverse results in very high joint rates near the points C and D while all of
(he other repeatable inverses are comparable to the performance obtained when using the
psendoinverse.

the augmented Jacobian is ill-conditioned, indicating proximity to an algorith-
mic singularity. It is this very behavior that makes the pure NUSAM technique
unsatisfactory despite its computational advantages. However, using NUSAM as
a precursor (o the NORCS optimization results in the combined inverse which
results in performance that compares more favorably with that of the pseudoin-
verse. In fact, a direct comparison of the combined inverse with that of the pure
NORCS optimization over the entire basis By shows that the combined technique
approaches optimal performance at a fraction of the computational expense. Fi-
nally, note that the use of a truncated basis for the optimization is justified by
directly comparing the NORCS optimization with that of the optimal repeatable
inverse over the infinite basis B,. ,

0. Conclusion

This work discusses techniques that make it practical to calculate repeatable gen-
etalized inverses which are close to some arbitrary desired generalized inverse.
Two different types of optimizations are discussed. The first minimizes the inte-
gral norm of the difference between the repeatable inverse and the desired inverse
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“over a subset Q. This directly solves the desired problem but the algorithm is

computationally intractable for all but the simplest manipulators due to the high
dimension of the search space. The second technique attempts to maintain the
characteristics of the desired inverse by approximating its null vector. While
this algorithm is relatively computationally efficient, it suffers from a poorer ap

proximation of the desired inverse, primarily due to the effects of algorithnm
singularities. While neither of these techniques is practical by itsell, it has been
shown that information gleaned from the null-space approximation technijn
can be used to guide the first technique in a lower-dimensional scarch spic

This results in a computationally efficient approach for determining nearly opti

mal repeatable inverses that can approximate the properties of any given desiicd
generalized inverse-control strategy.
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Appendix

PROPOSITION. Let M be an N x N real symmetric positive semi-definite i
trix. Suppose a = Mb. A solution of the constrained optimization problem

maximize a’ a

subject to bTMb = |
is obtained when b is an appropriately scaled multiple of the singular vecic:
associated with the largest singular value of M.
Proof. First, note that aTa = bT M2b. Suppose the rank of M is r. Since M i
a real symmelric positive semi-definite matrix, its singular value decomposition

is USUT where U is orthogonal and S = diag(oy,02,...,0,,0,...,0) with
oy 2 09 2 - 2 0p > 0. Any vector b can be written as

b = au) + ayuy 4+ -+ ayuy (A b
where u; is the ith column of U. Let
by = ayuy + aguy 4 -+ apu,. (A

It is easy to verify that _.w_zm_: = b7 M2 and _.,_.>:: = b MDb so that one
only needs to check vectors of the form (A2). Such vectors are given by [/«

~where U = [uj,uy - -u,] and w is an r-vector. The problem then becomes o



130 RODNEY G. ROBERTS AND ANTHONY A. MACIEJIEWSKI

maximize w _Qm.ENS w subject to iﬂQm.?:\_ w = 1 which is now rewritten
as

maximize w! Stw
subject to wlS\w=1

where S| = diag(oy,07,...,0,). Applying the method of Lagrange multipliers
0

— ?h,.m__wé + \/?u,.m._i - _Z =0 (A3)
ow
one finds that the optimal w satisfies .ww:. = —AS)w. Since S} is invertible,
Syw = —Aw. Thus the optimal w is an eigenvector of the diagonal matrix 5.

Suppose that the eigenvalue is c¢. Then 2fmﬁ< = cwl'S\w = ¢, which im-
plies that the maximum is given by choosing __:w largest singular value q_ This
corresponds to choosing b = uy.
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Hungary. Fax: +36-1-1531406, e-mail: h7024vig@ella.hu

September 11-13, 1995

ICAM’95: Intl. Conf. on Advanced Manufacturing. Location: Sunderland, U.K. ¢ o
ICAM’95 Secretary, The Industry Center, The University of Sunderland, [l
Riverside West, Wessington Way, Sunderland SR53XB, U.K., Tel.: +44-191-515 20u
Fax: +44-191-515-2669

September 12-14, 1995

Ethnicity & Nationalism in the New Europe Conf. Location: Univ. of Lancashire, (11
Contact: Dr. Christopher Williams or Dr. Thanasis Sfikas, University of Central |
cashire, Dept. of European Studies, Harris Building, Corporation Street, Preston
PRI2HE, UK., Tel.: (01772) 893920, Fax: (01772) 892919 .

September 18-22, 1995

ISATA’95: 28th Intl. Symp. on Automotive Technology and Automation: Manufact
and Transportation. Location: Stuttgart, Germany. Contact: The ISATA’95 Secret
42, Lloyd Park Avenue, Croydon CROS5SB, England, Tel.: +44-181-6813069. 1
+44-181-6861490, e-mail: 100270.1263@compuserve.com

September 19-20, 1995

DARS’95: IFAC Workshop on Human-Oriented Design of Advanced Robotic Svatcin
Location: Vienna, Austria. Contact: IFAC-DARS’95, Institute for Handling Devive:
Robotics (E318), University of Technology, Florgasse 7A, A-1040 Vienna. |-
+43-1-504 1835, Fax: +43-1-504 18359, e-mail: dars@ihrtl.ihrt.tuwicn.ac.al

September 25-28, 1995

IFAC Symp. on Automated Systems Based on Human Skills — ‘Joint Design of Technol
ogy and Organization’. Location: Berlin, Germany. Contact: VDUVDLE GMA, tii v
Recke Strasse 84, D-40239 Dusseldorf, Germany. Fax: +49-211-6214--161



