Assignment 4 (Due in two weeks):

Problem 1:

For an image \(x = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \) and orthogonal transformation matrix \(A = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \). Find: (a) the basis images for this transform, (b) the transformed image, and (c) show the inverse mapping yields the original image.

Problem 2:

Find the basis images of a 2-D DCT and size N=2. Describe your results. You can verify your results using MATLAB if needed.

Problem 3:

Let \(x(n) \) be a zero-mean wide sense stationary (WSS) random process (rp) with covariance function \(r_s(m) = \mathbb{E}[x(n)x(n-m)] = \sigma^2 \rho^{|m|} \) with \(|\rho|<1 \), and let \(\mathbf{x} = [x(n) \ x(n-1)]^T \) be a 2x1 random vector of this rp. Determine

(a) Covariance matrix of \(\mathbf{x} \) and its eigenvalues and eigenvectors.

(b) Principal components of this vector process and comment on the results.

(c) If the signal is corrupted by noise i.e. \(y(n)=x(n)+\eta(n) \) where \(\eta \) is a zero-mean white Gaussian noise with unit variance, what are the changes to your results?

Problem 4:

The 1-D Hadamard transform (HT) of signal \{x(n)\} and its inverse are given by

\[
X(k) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} x(n)(-1)^{b(k,n)} \quad , k \in [0, N-1]
\]

\[
x(n) = \frac{1}{\sqrt{N}} \sum_{n=0}^{N-1} X(k)(-1)^{b(k,n)} \quad , n \in [0, N-1]
\]

where \(b(k,n) = \sum_{i=0}^{p-1} k_i n_i \) and \(n_i \) and \(k_i \) are \(i^{th} \) bits in binary representations of indices \(n \) and \(k \), respectively, i.e. \(k = k_0 + 2k_1 + \ldots + 2^{p-1} k_{p-1} \) with \(k_0 \) being the LSB and \(k_{p-1} \) the MSB, and similarly for \(n \).

Represent this transform pair in the unified matrix-vector form and examine the properties (like those in Problem 1) of the Hadamard matrix, \(H \). If the signal vector \(\mathbf{x} \) is expressed in terms of the linear combination of some basis vectors with coefficients or weights \(X(k) \), what are these basis vectors for HT?