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ECE 451 Verilog Tutorial

James Barnes 

(jobarnes@engr.colostate.edu) 

Outline

� HDL overview, design flow

� Hierarchical design and design for verification

� Numbers, data types and operators

� Builtin primitives (NAND, NOR,…)

� Control Flow (if-else,…)

� Continuous and Procedural Assignments

� Behavioral coding vs  coding for “synthesis”

� Simulator behavior and avoiding problems

• Unintended latches
• How to avoid mismatch

� Some simple examples

� Misc – system tasks, parameters, defines

� Behavioral modelling - delays

� FSM example
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What is /is-not Covered

� We will learn verilog primarily through examples.

� Emphasis is on features used in writing 
synthesizable verilog.

� A few other topics will be covered, but only briefly.

� You will need to continue learning verilog to become 
familiar with all its features.

HDL Overview

� Two main HDLs (verilog, VHDL) 

� HDLs resemble programming languages (C/C++) but model hardware 
concurrency (which sometimes leads to unexpected program flow).  

� HDL models fall into two types

• Behavioral models. These used for:
• High-level models of complex systems.
• Testbenches (but SystemC … becoming more prevalent) 

• “Blackboxing” analogish components (PLLs, CDRs, memories) 
• Behavioral models are not synthesizable.
• Sythesizable models (“RTL” style). This is a coding style that a 
synthesis tool, for example synopsys,  can map to circuit blocks.

• If you put non-synthesizable constructs in your code, the synthesis 
tool may silently ignore them, which will lead to a behavior 
mismatch between the simulation and the synthesized circuit.
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Synthesis tool flow (ASICs) 

Rules Based Optimization

HDL

HDL Compile Parser

(translation)

Hierarchical Flattening

Boolean Flattening

Boolean Structuring

Mapping to Technology

Checks syntax, converts HDL to structure, builds

directed graphs. Results in high-level equation “netlist”

Minimize levels of logic, remove intermediate variables,

remove structure. Usually improves speed (expresso)

Creates structure, increases levels of logic, looks for

shared terms. Usually improves area (misII) 

Maps design to target ASIC “gate” library

Optimizes design for speed using actual gates and 

constraints (fanin, fanout).

Flattens design where except for custom blocks (RAMS,…)

FPGA “synthesis”

� FPGAs contain a number of pre-assembled complex 
logic blocks.

• Counters, arithmetic blocks, RAMs, muxes, look-
up tables, flops

• AND-OR gate arrays of uncommitted logic which 
can be programmed to produce a wide range of 
logic functions

� Your verilog must be written in a form such that the 
synthesis tool will recognize the functions

� Rules/restrictions are similar to ASIC synthesis.
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Verilog supports hierarchical design

� Hierarchical advantages

• Manage complexity
• Promote design reuse
• Allow parallel development

� Hierarchical features in verilog

• modules
• ports (connection to modules) 

Structure of a module

module full_adder(ci,a,b,sum,cout);

// port declarations

input a,b,ci;

output sum,cout;

// type declarations. 

wire  a, b, ci, sum,cout;

// assignments

assign sum = a ^ b ^ ci;

assign cout = (a & b) | (a & ci) | (b & ci);

endmodule

Syntax notes

• Statements end with ;

• Compound statements (see later) are delimited by begin end (like { } in C).

• Port directionality and width declared.

• Variable types must be declared, as in other programming languages.
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Instantiation of a module – 4 bit adder slice

module adder4(xsum, xcout, xa, xb, xci);
input [3:0] xa, xb;

input        xci;

output [3:0] xsum;

output       xcout;

wire [3:0]   xa, xb, xsum;

wire         xci, xcout;

wire [2:0]   cout_int; // Internal signal

full_adder a0( .sum (xsum[0]),

.cout (cout_int[0]),

.a (xa[0]),

.b (xb[0]),

.ci (xci));

full_adder a1( .sum (xsum[1]),

.cout (cout_int[1]),

.a (xa[1]),

.b (xb[1]),

.ci (cout_int[0]));

full_adder a2( .sum (xsum[2]),

.cout (cout_int[2]),

.a (xa[2]),

.b (xb[2]),

.ci (cout_int[1]));

full_adder a3( .cout (xcout),

.sum (xsum[3]),

.a (xa[3]),

.b (xb[3]),

.ci (cout_int[2]));

endmodule // adder4

adder4 testbench – first version

`timescale 1ns/1ps

module tb; // No ports needed!

reg xci;
reg [3:0] xa, xb;

wire [3:0] xsum;

wire       xcout;

// Instantiate 4 bit adder

adder4 my_adder(// Outputs

.xsum(xsum[3:0]), .xcout(xcout),

// Inputs

.xa(xa[3:0]), .xb(xb[3:0]), .xci(xci));

// Stimulus

initial

begin

xa = 4'h0; xb = 4'h0; xci = 1'b0;
#5 xa = 4'h0; xb = 4'h0; xci = 1'b1; // #5 -> wait 5ns, then execute stmt

#5 xa = 4'h0; xb = 4'h1; xci = 1'b0;

// yada yada yada

end // initial begin

endmodule // tb
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How to test?

� Looking at waves or logfiles is tedious and error-prone.

� Better to build independent verification components which can 
stimulate and check the results of the block under test. “Self-
checking” test.

• Must use independent means for implementing block 
functionality. In this case, can use simulator’s built-in 
arithmetic operators to check adder.

• Other approaches:
• System C verification library.
• Vendor-supplied verification IP: bus functional models, 
0-in components,…

A better test jig

Stimulus 

block

Device 

under 

test 

(adder4)

Checker 

module

Inputs Outputs

top
� Verification components 
can be written in behavioral 
verilog, systemC, Verisity 
“E language”…

� adder4 must be written in 
synthesizable verilog 
(“RTL”)
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adder4 stimulus module

`timescale 1ns/1ps

module stimulus(xa, xb, xci);

output [3:0] xa, xb;

output       xci;

reg [3:0] xa, xb;

reg xci;

integer    i, j, k;

// Stimulus – generate all input combinations

initial

begin

for (i=0; i<16; i=i+1)

for (j=0; j<16; j=j+1)

for (k=0; k<2; k=k+1)

begin
xa = i; xb = j; xci = k;

#5;

end

end // initial begin

endmodule // stimulus

adder4 checker 

`timescale 1ns/1ps

module check_adder(xci, xa, xb, xcout, xsum);

input [3:0] xa, xb;

input       xci;

input [3:0] xsum;

input       xcout;

wire [4:0]  xa, xb, xsum;

wire        xci, xcout;

reg [4:0]   in_result;

reg [4:0]   out_result;

reg error;

always @(xa or xb or xci or xcout or xsum)

begin // Predicted xsum using Verilog's addition

in_result = xa + xb + {3'b0,xci};

out_result = {xcout,xsum};

end

always @(in_result or out_result)

begin // Compare predicted with actual

error <= (in_result != out_result);

if (error)

$display($time, "  Error: xa=%h, xb=%h, xci=%b, xsum = %h, xcout = %b",

xa, xb, xci, xsum, xcout);

end

endmodule // check_adder
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adder4 top-level test jig

module top;

wire [3:0] xa, xb, xsum;

wire xci, xcout;

// Instantiate 4 bit adder

adder4 my_adder(// Outputs

.xsum(xsum[3:0]), .xcout(xcout),
// Inputs

.xa(xa[3:0]), .xb(xb[3:0]), .xci(xci));

// Instantiation checker

check_adder my_checker(// Inputs

.xa(xa[3:0]), .xb(xb[3:0]), .xci(xci),

.xsum(xsum[3:0]), .xcout(xcout));

// Instantiate stimulus block
stimulus my_stim(// Outputs

.xa (xa[3:0]),

.xb (xb[3:0]),

.xci(xci));

endmodule // top

Number representations

� Sized numbers
• 1’b1, 4’b1010, 4’b0x0z – binary

• X=unknown, z=high impedance 
• Other radixes

•3’o4 – octal
•4’hE - hex
•4d’11 - decimal

• The number in front of the ‘ represents the bit width of number 
when expressed as a binary, regardless of the radix used

• Verilog performs arithmetic on sized numbers using 2’s 
complement arithmetic.

• If size parameter is omitted, defaults to max width (>-32b wide)

� Integers
• At least 32b wide (simulator-dependent)
• Signed, i.e. can write -10

� Real 
• 27.3, 4.02e+03

• Internal rep as 64b integer
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Operators

SymbolWidth of 
Result

Type

Conditional

Concatenate, 
replicate

Shift

Reduction

Equality

Relational

Bitwise

Logical

Arithmetic

Ops width

> Ops width

Ops width

1 bit

1 bit

1 bit

Ops width

1 bit

>Ops width

? :

{ , , }  {{ }}

>> <<

& ~& | ~| ^ ~^

== != === !== 

> < >= <=

~ & | ^ ~^

! && ||

+ - * / %

Note: use ? for 

don’t cares

Note: vacant 

positions zero-

filled.

4’b0110 – 4’b0111 

yields 5’b11111

Some data types

� wire

• Used to represent connections between blocks

• No “memory” – value assigned in “continuous assignment” statement.

• Right-hand side can be of reg (see below) or net type.
• wire is most commonly used member of net class 

• Others are wand, wor, tri, triand, trior, trireg.

• Used for combinational logic

• Limited conditional assignment language features

� reg

• Has “memory” but doesn't NECESSARILY imply a hardware register.

• Assigned in “procedural assignment” block.

• Right-hand side can be of reg or net type.
• “Blocking” vs “non-blocking” assignments (more on this later)

• Richer set of conditional assigments

� real, realtime

• For floating point numbers, but represented internally as 64b integers

• Supports scientific as well as real (XXX.XX) notation

• Used mainly for behavioral modelling.
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Scope

� Variables (wire, reg,…) have local scope (within 

module). No global variables in verilog.

Hierarchical Reference to Signals

� Signals down within a hierarchy can be referenced 
as:

a.b.c.<sig_name>

where a,b,c are module instance names and

sig_name = signal name 

� Example: at the level of module top, internal signal 
cout_int[1] within instance my_adder of module 
adder4 can be referenced by 
my_adder.cout_int[1]

� Cannot assign (change) a signal thru hierarchical 
reference, only test. Would only be used in test.
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Example wire assignments

wire a;

assign a = 1’b0; // a is assigned a constant value for the duration of sim

// Define a 4b wide bus

wire [3:0] a = 4’h0; // Declaration and assignment on one line.

wire a,b,c,f;

assign f = (~a) & b & c | a & (~b) & c; // Two level logic

wire in1, in0, sel;

wire f = sel ? in1 : in0; // Mux with conditional assignment

wire in1, in0, sel, f;

assign f = sel & in1 | (~sel) & in0; // Another mux

wire [15:0] a, b;

assign {b[7:0],b[15:8]} = {a[15:8],a[7:0]}; // Byte swap

Verilog Built-in Logic Primitives

� Can also build logic functions by instantiating logic primitives

• AND(), OR(), NAND(), NOR(), XOR(), XNOR(), BUF(), 
NOT()

� Port connections via an ordered list instead of by name.

• Allows variable number of inputs for most gates (AND,…). 
Output is always first port

• Some gates, such as BUF() can drive more than one output 
from single input. For these, input is last port.

� Tristate gates BUFIF1(), BUFIF0() tristate their outputs when a 
control port is 0 or 1 respectively.

� Primitives may be instantiated as named or un-named gates

� These primitives are not widely used in synthesized designs.
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Verilog Primitive Example

module mux2_1 (a, b, out, outbar, sel);

input a, b, sel;

output out, outbar;

wire out1, out2, selb;

and a1 (out1, a, sel);

not i1 (selb, sel);

and a2 (out2, b , selb);

or o1 (out, out1, out2);

assign outbar = ~out;

endmodule

a

b

sel

selb

out

outbar

out1

out2

Operator Examples

wire [3:0] a = 4’b0110;

wire [3:0] b = 4’b0101;

wire [3:0] s = a & b; // Yields s = 4’b0100 (bitwise AND)

wire       t = a && b;  // Yields t = 1’b1 (logical AND)

wire       u = |a; // Reduction op | yields u = 1’b1; short for (a > 0) 

wire       v = ~|a; // Reduction op ~| yields v = 1’b0; short for (a == 0) 

wire       w = &a; // Reduction op & yields w = 1’b0; This tests for all ones

wire       a_gt_b = (a > b); // Yields a_gt_b = 1’b1;  

• Operators can also be used with reg data type
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RTL control flow constructs

� Conditional assignment (? : ), used with continuous assignment

� Used in procedural assignments:
• if-else

• Compound statements in branches delimited by begin end

• if-else can result in a priority encoder (slow).
• case, casex, casez

• casex allows use of don’t cares (ex: 4’b0?0? will be matched by 
4’b0001, 4’b0101, 4’b0100, 4’b000X, 4’b000Z, …)

• casez is similar except that don’t care positions (?) matched only by 
0,1,Z (X will not match).

• Any type of case may result in a priority encoder, since the first match 
will cause the match to terminate. Mutually-exclusive match conditions 
will prevent priority encoding.  

• for loop. Synthesis tool will unroll.
• Others (while, repeat) which I hardly ever used.

� forever is a simulator control construct and not synthesizable.

Procedural Assignments

� Used to assign reg, integer, real data types

� Two types of procedural blocks

•initial block
• Triggers (starts execution) once at Time = 0. 
• Synthesis tools ignore initial blocks. Should NOT 
be found in synthesizable verilog.

•always @() block
• Triggers any time a variable in sensitivity list has a 
value change.

• Can be used to create combinational or sequential
logic. 
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INITIAL block example (NOT synthesizable)

`timescale 1ns/1ps

module clk_gen(clk);

// One way to create a clock with default frequency 100 MHz.

// Not synthesizable – Only for a test component

parameter clk_half_period = 5; // Parameterize the period so we can change it.

output clk;

reg clk;

initial

begin

clk = 0;

forever

clk <= #clk_half_period ~clk; // This loop continues until something
// terminates the simulation

end

initial

begin

$monitor ($time, " clk=%b",clk);

#1000 $finish; // OK, enough already. Stop the simulation

end

endmodule // clk_gen

ALWAYS block for combinational logic

� ALWAYS blocks often used for combinational logic because of richer 
set of control statements which compared with continuous 
assignments (wire).

module mux(ina, inb, inc, ind, sel, out);

input [3:0] ina, inb, inc, ind;

input [1:0] sel;

output [3:0] out;

wire [3:0] ina, inb, inc, ind;

wire [1:0] sel;

reg [3:0]    out;

// Sensitivity list of the always block must include all “inputs” to always block

always @(ina or inb or inc or ind or sel) // (…) contains the sensitivity list

case (sel)

2'b00: out = ina;

2'b01: out = inb;

2'b10: out = inc;

2'b11: out = ind;
endcase // case(sel)

endmodule // mux

• Statements within “always block” are executed sequentially. In this case, because the
case conditions are mutually exclusive, order doesn’t matter
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ALWAYS block for combinational logic –

accidental “inferred latch”

� Omitting a clause in a control construct (case, if-else) 
can lead to an unintended “inferred latch”. This is 
almost always an error.

module mux(ina, inb, inc, ind, sel, out);

input [3:0] ina, inb, inc, ind;

input [1:0] sel;

output [3:0] out;

wire [3:0] ina, inb, inc, ind;

wire [1:0] sel;

reg [3:0]    out;

always @(ina or inb or inc or ind or sel)
case (sel)

2'b00: out = ina;

2'b01: out = inb;

2'b10: out = inc;

2'b10: out = ind; // TYPO. This line not executed and 2’b11 case missing.

endcase // case(sel)

endmodule // mux

� No new value for sel=2’b11. Simulation will use previous value and synthesis 
tool will interpret that as an inferred latch. Some lint tools will catch this

module mux(ina, inb, inc, ind, sel, out);

input [3:0] ina, inb, inc, ind;

input [1:0] sel;

output [3:0] out;

wire [3:0] ina, inb, inc, ind;

wire [1:0] sel;

reg [3:0]    out;

always @(ina or inb or inc or ind or sel)

case (sel)

2'b00: out = ina;

2'b01: out = inb;

2'b10: out = inc;

2'b11: out = ind; // This line will NOT execute when ind changes
endcase // case(sel)

endmodule // mux

Another way to accidentally infer a latch

� Forgetting an item in the sensitivity list. The always block only 
executes when an item in the sensitivity list changes

• Since out is a reg type, it will hold its previous value when ind changes. 

•Because this is such a common error, later versions of verilog allow a shorthand 
notation always @(*) which will be filled in with the appropriate variables
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A way to avoid an accidental inferred latch

� Precede all assignments with a default value (and 
include all items in the sensitivity list)

module mux(ina, inb, inc, ind, sel, out);

input [3:0] ina, inb, inc, ind;

input [1:0] sel;

output [3:0] out;

wire [3:0] ina, inb, inc, ind;

wire [1:0] sel;

reg [3:0]    out;

always @(ina or inb or inc or ind or sel)

begin

out = 4’h0;             // Default value

case (sel)

2'b00: out = ina;  // This is a three input mux

2'b01: out = inb;
2'b10: out = inc;

endcase // case(sel)

end

endmodule // mux

• Simulator knows what value to assign to out even if no case 

condition is satisfied.

Another way to avoid an accidental inferred 

latch

� Fully specify all conditional branches and assign all

signals from branches (and include all items in sensitivity list)

module mux(ina, inb, inc, ind, sel, out);

input [3:0] ina, inb, inc, ind;

input [1:0] sel;

output [3:0] out;

wire [3:0] ina, inb, inc, ind;

wire [1:0] sel;

reg [3:0]    out;

always @(ina or inb or inc or ind or sel)

begin

case (sel)

2'b00: out = ina;  // This is a three input mux

2'b01: out = inb;

2'b10: out = inc;

default: out = 4’h0; // Alternately 2’b11: out = 4’h0;
endcase // case(sel)

end

endmodule // mux

• out will always be assigned a value.
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Unintended priority encoder (or maybe this 

is what you wanted)

reg  out;

wire ina, inb, a, b;

always @(ina or inb or a or b)

begin

// if statements are not mutually exclusive
if (a) out = ina;

else if (b) out = inb;

else out = 1'b0;

end

b

1

0

1

0

out

a

ina

inb

1’b0

Avoid priority by mutually-exclusive if-else 

conditions or case construct

reg  out;

wire ina, inb, inc, a, b;

wire [1:0] sel = {a,b};

always @(ina or inb or inc or sel)

begin // The if statements are mutually exclusive
if (sel == 2’b11) out = 1’b0;

else if (sel == 2’b10) out = ina;

else if ((sel == 2’b01) out = inb;

else if ((sel == 2’b00) out = inc;

end

1

0

out
ina

inb

2

3
1’b0

sel

2

inc

• All inputs have
equal priority
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Another combinational block – what do you 

get?

� Synopsis will produce whatever is required to meet timing

• If you are in a fast process and specify relaxed timing, 
synopsis will produce the smallest solution, probably a 
ripple-carry adder.

• If timing is tight, you will get a full 64b carry-lookahead 
adder! Synopsis has a library of “prepackaged” logic 
functions – The Designware© Library – which can 
implement many common functions

� You can create huge amounts of logic with a few simple 
statements, e.g. multiply and divide. Be careful ☺.

reg [63:0] sum;

reg cout;

wire [63:0] ina, inb;

always @(ina or inb)

{cout,sum} = ina + inb; // + is the addition operator

Yet another combinational block – what do 

you get?

� This will produce a synchronous counter

reg [63:0] count_ns, count_r;

wire enable_count;

wire rst, clk;

wire counter_rollover = &count_r;

always @(enable_count or count_r)
count_ns = enable_count ? count_r + 64’h1 : 64`h0;

always @ (posedge clk)

count_r <= rst ? 64’h0 : count_ns;
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ALWAYS block must be used for sequential 

logic (Latches and Flip-Flops)

module transparent_latch(in, clk, rst, out);

input in, clk, rst;

output out;

wire in, clk, rst 
reg out;

// Normally, you would never write this as a synthesized block

//  (except by accident) because most timing tools

//  don't work well with transparent latches. 

always @(in or clk or rst)

// Async reset. Normally avoided like the plague on ASIC designs.

if (rst)  

out = 1'b0;
else

if (clk)

out = in;

// No else clause for this if => the latch

// must hold its value when clk is low and rst is not asserted

endmodule // transparent_latch

Inferred D-flop 

// Infer an 8b wide D-flop bank w/ synchronous rst

always @(posedge clk)

out <= rst ? 8'h00 : din;

Synchronous reset

Asynchronous reset

// Infer an 8b wide D-flop bank w/ asynchronous rst

always @(posedge clk or posedge rst)

if (rst)

out <= 8’h00;

else

out <= din;

• These examples use non-blocking assignment <= , discussed on next

slide.
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Blocking vs Non-blocking assignments

� = within procedural block is a blocking assignment

• Blocking assignments within an always block are 
completed in order, execute only after the 
previous statement is completed. If there is a 
delay in the previous statement (see later), the 
next statement will wait for the delay. 

� <= within a procedural block is a non-blocking 

assignment. Non-blocking assignments do not wait 
for the previous statement to complete. They can be 
used to model concurrent operations.

� RTL does not use delays. A more important 
distinction is the order the simulator evaluates these 
two assignments …

Verilog Evaluation Queues

� Each Verilog simulation time step is divided into a number of queues, which are 
evaluated in order. The important ones are:

Time 0:

� Q1 — (in any order) :
• Evaluate RHS of all non-blocking assignments
• Evaluate RHS and change LHS of all blocking assignments
• Evaluate RHS and change LHS of all continuous assignments
• Evaluate inputs and change outputs of all primitives
• Evaluate and print output from $display and $write

� Q2 — (in any order) :
• Change LHS of all non-blocking assignments

� (Remaining queues)
• Evaluate and print output from $monitor and $strobe

Time 1:

...

Ref: Sutherland, 1996 International Cadence Users Conference. 
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Avoiding races in simulation (the right way)

� Rule: 

• code combinational logic with 
continuous assignments 
(wire) or blocking procedural 
assignments (=)

• code sequential logic using 
non-blocking procedural 
assignment (<=)

� If the assignment rules are 
followed, on the rising clk edge the 
old values from the upper flops will 
be propagated through the combo 
logic cloud to the input to the lower 
flop. Only then will the flops be 
evaluated. NO delays need (or 

should) be put into the modules.

D Q

clk

Combinational

Logic cloud

D Q

clk

D Q

clk

Simple example – D flop with load and 
synchronous reset

module dff1 (d, ld, rst, clk, q);

input d, ld, rst, clk;

output q;

wire d, ld, rst, clk, q_ns;

reg q;

/* continuous assignment */

assign q_ns = 1'b0; // WHAT GOES HERE??

/* procedural assignment. “always” block “fires” on positive edge of clock */

always @(posedge clk)?

// <= is non-blocking assignment. Synchronous reset.

q <= rst ? 1'b0 : q_ns;

endmodule // dff1
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Another example –T flop

module tff (t, rst, clk, q);

input t, rst, clk;

output q;

wire t, rst, clk, q_ns;

reg q;

/* continuous assignment */

assign q_ns = (t ^ q); // ^ = XOR

/* procedural assignment. “always” block “fires” on positive edge of clock */

always @(posedge clk) 

// <= is non-blocking assignment. Synchronous reset.

q <= rst ? 1'b0 : q_ns;

endmodule;

Mismatch between pre-synthesis model and 

synthesis output (gate model and silicon)

� Synthesis tools ignore some behavioral constructs, 
such as

• INITIAL blocks – not realizable in hardware
• Delays inserted into model to fix race conditions. 
Synthesis tools have a difficult time creating fixed 
delays. In general, delays are ignored.

� If your module depends on these constructs to 
simulate properly, there will be a mismatch between 
pre-synthesis and post-synthesis models (and 
silicon). This is a VERY BAD thing.

� How to avoid this…
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Guidelines for avoiding model mismatch

� INITIAL blocks – replace with synthesizable hardware such as 
reset circuits, busses to set registers,…

� Don’t insert delays to fix races – understand the simulator order 
of evaluation. At each timestep, the simulator has an evaluation
queue. 

• Continuous assignments (wire) and blocking procedural 
assignments (=) are evaluated first. Both the RHS and LHS 

are evaluated.

• The RHS of non-blocking procedural assignments (<=) are 
also evaluated early.

• The LHS of non-blocking procedural assignments are 
updated last.

� Note that in non-synthesized modules such as verification 
components, you can and should use any legal construct.

More rules to avoid problems

� Do not mix blocking and non-blocking assignments within one 
always block (some synthesis tools will flag this as an error).

� Do not assign the same variable in two separate always

blocks.

� Some suggested practices:

• Only define one module per file and make the file name be 
the same as the module name with the .v extension (or 
whatever the convention used in the design lab).

• An exception to this would be if you have a large collection 
of small blocks which will be shared among a group of 
designers. In that case, you can create one library file 
containing all the blocks. 
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Some system tasks

� $display, $monitor
• $display prints one line per call. $monitor prints any time a variable 
in its list changes.

� $stop, $finish
• $stop stops sim, but it can be restarted from that point.
• $finish ends sim. In many cases, the sim will stop on its own 
without a $finish, but if it contains an infinite loop (such as a clock 
generator), $finish is needed.

� Generic IO tasks $fopen, $fwrite, … Used for saving simulation 
data.The development environment usually handles this behind the
scenes.

� $random – generates a random number.
� $readmemb, $readmemh
• For initializing memory arrays from a file

parameters and `define statements

� `define used for readability and compilation control

• Ex `define WORD_SIZE 32
� `defines are dangerous because they are just a macro 

substitution by preprocessor. Can be re-defined by other 
modules. If using, safest to re-define in each module where 
used (but then you may get compiler warnings).

� parameter is safer because

• can be sized (Ex parameter [3:0] maxval = 4’hF;)
• Scoped only within module. Can be overridden only 
when module instantiated.

� parameter recommended for FSM state mnemonics
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parameter example

module par_reg(q, d, clk, rst);

parameter width = 8; // Default width

input [(width-1):0] d;

input clk, rst;

output [(width-1):0] q;

reg [(width-1):0] d;

always @(posedge clk)

q <= rst ? {width{1'b0}} : d;

endmodule // par_reg

parameters can be overridden at 

instantiation

module test_par_reg;

reg [15:0] d;

wire [15:0] q;

wire        clk, rst;

// Instantiate a 16b reg

par_reg #(.width(16)) 

my_par_reg(.q(q[(width-1):0]), .d(d[(width-1):0]), .clk(clk), .rst(rst));

clk_gen cgen(.clk (clk));

initial

begin

d=16'h0000; 

rst=1;
#6 rst=0;

d=16'h5555;

#10 

d=16'hAAAA;

#10

d=16'hFF00;

#10

d=16'h00FF;

end // initial begin

initial

$display($time, " d=%h, q=%h",d,q);

endmodule // test_par_reg
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Behavioral Modeling -- Delays

� Delays are never required (or recommended) in 
synthesizable verilog but can be useful in behavioral 
modules such as stimulus blocks,…

� Any block which uses delay should have a timescale 
statement.

� Delays can be attached to net types (wire) or 
incorporated in procedural block assignments.

Some delay usage examples 

wire a, b;

wire #5 gate_out; // This is a net delay

assign gate_out = ~(a & b); // gate_out will change 5 units after a or b

wire a, b;

reg gate_out;

always @(a or b)

gate_out <= #5 ~(a & b); // gate_out will change 5 units after a or b

wire a, b;

wire gate_out;

assign #5 gate_out = ~(a & b); // gate_out will change 5 units after a or b

wire in, clk, rst;

reg out;

always @(posedge clk)

out <= #5 rst ? 1’b0 : in; // models clock to output delay

• Consult a verilog reference before using delays – there are subtle differences in how delays
are evaluated depending on how they are put into the code, which we can’t cover here..
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State machine example


