

ECE 451 Verilog Exercises

Sept 14, 2007

James Barnes (James.Barnes@colostate.edu)

Organization

 These slides give a series of self-paced exercises.
Read the specification of each exercise and write your
code before proceeding to the solution slide.

 These exercises will be most useful if you have access
to a verilog simulator (modelsim, Icarus verilog) as you
read these slides. See Dr. Barnes if you need help
installing a simulator.

Coding guidelines and standard practices

 Most design groups larger than a few designers have guidelines
and standard practices for writing code. These make it easier to
share code, as the code is organized in a way that makes it
easier to find things.

 Disclaimer: each design organization has its own way of doing
things. You may encounter different guidelines, but the principle
is pretty universal.

Guidelines

 Logic blocks typically have the form of a combinational logic
cloud feeding a register, with possible state feedback.

− An example would be a counter, where the register holds the
count value and the combinational logic updates the count value.
This block would have state feedback.

− Some blocks may have only one of either a combinational logic or
a register block.

− Some blocks may have multiple instances of combinational logic
and register blocks. Most organizations do not impose rules on
how much can be in any one module – this is up to the designer.

 One common rule is that the outputs must be registered. This
gives the next block the maximum time to process and register
the signals.

Guidelines
 A typical logic block is shown below.

Guidelines for register updates
 Standard practice (a requirement in some organizations) is that

the register updates should be done in an always block with
NO logic except a synchronous reset. Non-blocking
assignments (<=) must be used. The register update section for
the previous example would look like

always @(posedge clk)
begin
d3_out <= rst ? 1'b0 : d3_nxt;
d2_out <= rst ? 1'b0 : d2_nxt;
d1_out <= rst ? 1'b0 : d1_nxt;
d0_out <= rst ? 1'b0 : d0_nxt;
end

 Reset is done with the conditional assignment. If the test
variable (rst here) is true, the value before the : is taken;
otherwise, the value after the : is taken.

Guidelines on combinational logic
 All the combinational logic should be done in one place in the

module code and indicated to anyone reading the code through
comments. This is true whether the combinational logic is done
using wire assignments or an always block.

 If combinational logic is implemented within an always block,
the blocking assignment (=) must be used. This will assure that
the combinational logic is evaluated before the register update
is done.

Verilog syntax
 Reminder on some verilog syntax rules:

− All inputs in a module are of the wire type. You cannot declare
inputs to be reg type.

 You cannot re-assign or change an input. Inputs can only appear on
the RHS of assignments or as a test variable in a conditional
assignment or control flow statement.

− Outputs can be either wire or reg.
− There will be some internal signals which are neither input nor

output. For example, the signals d3_nxt,... in the example.
− All multi-bit signals of wire type must be declared. Single bit input

signals need not be declared as they default to wire type.
− All variables assigned inside a procedural block (initial or
always) must be of reg type.

− All variables of reg type must be explicitly declared.

Exercise 1 – 2b shifter

 This is the same logic block as in Q2a of HW #2, but with bus
notation for the inputs and outputs. This is a purely
combinational logic block. The logic equations are:

− out[0] = s' ● in[0]
− out[1] = s' ● in[1] + s ● in[0]

Ex 1 Solution

module shifter(in, out, s);
 input [1:0] in;
 input s;
 output [1:0] out;
 wire s;
 wire [1:0] in;
 wire out;
 assign out[1] = (~s) & in[1] | s & in[0];
 assign out[0] = (~s) & in[0];
endmodule

Ex 2 – 3:8 row decoder with enable

 This decoder has inputs addr[2:0] and an active low enable nen. It drives
8 active high output lines row_sel[7:0], one of which is driven when nen
is asserted.

Ex 2 Solution

module row_decoder(row_sel, addr, nen);
 input [2:0] addr;
 input nen;
 output [7:0] row_sel;
 wire [2:0] addr;
 wire nen;
 reg [7:0] row_sel;
 // Use a case statement
 always @(addr or nen)
 begin

if (nen)
 row_sel = 8'h0;
else
 case (addr)
 3'h0: row_sel = 8'b0000_0001; // The _ is just for readability
 3'h1: row_sel = 8'b0000_0010;
 3'h2: row_sel = 8'b0000_0100;
 3'h3: row_sel = 8'b0000_1000;
 3'h4: row_sel = 8'b0001_0000;
 3'h5: row_sel = 8'b0010_0000;
 3'h6: row_sel = 8'b0100_0000;
 3'h7: row_sel = 8'b1000_0000;
 endcase // case(addr)

 end // always @ (addr or nen)
endmodule // row_decoder

Ex 3 – 8b register with load and synchronous reset

 This block implements an 8b wide register from DFFs. All flops are driven by
a common clock and have a common reset rst. An input mux allows new
data to be loaded into the register when ld is high; otherwise, the old data
is recirculated.

Ex 3 Solution

module ld_reg8(din, clk, rst, ld, q);
 input [7:0] din;
 input clk, rst, ld;
 output [7:0] q;

 wire [7:0] din, q_nxt;
 wire clk, rst, ld;
 reg [7:0] q;
 //Logic on register inputs
 assign q_nxt = ld ? din : q;
 // Update register
 always @(posedge clk)
 q <= rst ? 8'h0 : q_nxt;

endmodule // row_decoder

