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SIGNALS AND SYSTEMS LABORATORY 14: 
The Rudiments of Antenna Design 

 
INTRODUCTION 
 
By and large, in our study of signals and systems we have been concerned with rational functions. These 
are functions of exponential or geometric type whose transforms are rational.  However, for many 
applications in communications and array processing it is required to build or approximate non-rational 
systems.  Perhaps the best examples are the finite time integrator in communications and the finite space 
aperture in antenna theory.  When these continuous operators are approximated in discrete-time or discrete-
space, the resulting systems are called FIR filters and antenna arrays. 
 
Our purpose in this lab is to study these operators.  We shall develop the close connection between FIR 
filters and antenna arrays, between complex frequency responses for filters and complex beampatterns for 
antennas, and so on. 
 
THE FINITE-TIME INTEGRATOR AND THE FINITE-SPACE APERTURE 
 
Time.  Consider a system H(s) whose impulse response is 
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If the input to this system is the signal v(t), then the output is the convolution 
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As indicated, the output is a finite-time integration of the input, and the integration time is T. 
 
The transfer function H(s) has canceling poles and zeros at 0=s , so the pole-zero plot for this, and all 
non-rational transforms is not informative.   However, the complex frequency response is revealing: 
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There are several things to note about this complex frequency response: its value at 0=f  is T, which is 
the integral of h(t), and it is zero at K,2,1, ±== nTnf .  This is illustrated in Figure One, using the 
function ‘plotSINC.m’. 
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Figure One: Magnitude of )2( fjH π for T = 2 

 
The output of the finite-time integrator, when excited by the cosine )2cos( ftπ , whose frequency is f and 
whose period is f1 is, of course, 
 
(4) { } ( )[ ]22cos)()2(Re)( 2 TtfTfsincTefjHty tfj −== πππ π  
 
The output at time 2/Tt =  is )()2/( TfsincTTy π= , which is a real number that depends on the 
frequency f. In fact, )2()2/( fjHTy π= , which is the magnitude of the complex frequency response at 
frequency f. By now, you should be able to explain why the complex frequency response should be zero at 
frequencies that are integer multiples of T/1  (that is, Tkf /= , or periods that are integer fractions of T 
(that is, kTf //1 = ). 
 
Space. There is no reason why this simple idea cannot be extended to space, rather than time.  To this end, 
we suggest that a finite integrating filter in space should have an impulse response 
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If the input to this system is the signal v(x), then the output is the convolution 
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As indicated, the output is a finite-space integration of the input, and the integration distance is X. The 
complex frequency response is revealing: 
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This complex wavelength response is identical in form to the finite-time integrator result. However the 
temporal frequency variable f, in units of cycles per second or Hz, has been replaced by the spatial 
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frequency variable λ1 , in units of cycles per meter, where λ is wavelength. If you think about it, it is 
cycles per meter that ought to be called Hz, in honor of Heinrich Hertz, who experimentally discovered the 
propagating waves predicted by James Clerk Maxwell. In any event, there are several things to note about 
this complex frequency response: its value at ∞=λ is X, which is the integral of h(x), and it is zero at 

K,2,1, ±== kkXλ .  This is illustrated in Figure Two, using ‘plotSINC.m’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Two: Magnitude of )/2( λπjH for X = 4 
 
The output of this finite-space integrator, when excited by the cosine )2cos( λπ x , is, of course, 
 
(8) { } ( )[ ]2cos)/()/2(Re)( 2/2 XxXsincXejHxy xj −== λ

πλπ λπλπ  
 
The output at the so-called phase center of the aperture, namely 2/Xx = , is )/()2/( λπ XXsincXy = . In 
fact )/2()2/( λπjHXy = , which is the magnitude of the complex wavenumber response at wavelength 
λ. By now, you should be able to explain why the complex wavelength response should be zero at 
wavelengths that are integer fractions of X (that is kX /=λ ) and spatial frequencies that are integer 
multiples of X/1  (that is, )//1 Xk=λ . 
 
Planewaves.  Now, a common way for wavelength to vary is for it to depend on the angle that a plane wave 
of fixed wavelength 0λ makes with a linear aperture.  This is illustrated in Figure Three, where the 
wavelength with respect to the aperture is 
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Our convention, as illustrated in Figure Three, is that 0=φ is endfire and 2πφ =  is broadside. 
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Figure Three: A wave propagating towards an aperture 

 
 
When this result is inserted into the formula for the complex frequency response, the result is 
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Typically, the aperture length X is chosen to be several times the wavelength 0λ .  Let's call the aperture 
length 0λNX = , so that the normalized complex frequency response may be written as 
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We call this function the complex beampattern and note that it is identical in form to the complex 
frequency responses derived earlier. There is a fundamental point to be made here:  this beampattern is just 
the original complex frequency response )2( fH π , evaluated at 0/)cos( λφ=f , or equivalently the 
original transfer function H(s) evaluated at 0/)cos(2 λφπjs = .  Of course in the original transfer function 
we have set the aperture length to 0λNX = . In Figure Four we have used ‘plotSINC.m’ to plot the 
beampattern )(φB vs. )(cos φ . This plot illustrates the selectivity of the array to plane waves arriving from 
different angles. All we have really done is evaluate )2( fH π at 0/)cos( λφ=f  and re-plot against 

)(cos φ . 

Wave Propagation

 λ0 φ

0 X
x

)cos(
0

φ
λ
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Figure Four: Magnitude of )(φB for N = 8 

 
It is common practice in antenna design to plot the magnitude of the beampattern )(φB vs. φ, in polar 
coordinates.  This illustrates the resolving power of the array and emphasizes the point that φ is, after all, a 
geometrical angle. How are we to do this?  Here is a device for plotting a real function like )(φB versus 
polar φ : 
 

• construct the complex number φφφ jeBz )()( = , 
 
• plot the complex number )(φz on the complex plane. 

 
The tool ‘plotBP_aper.m’ saves you all of this work by plotting, in a four-panel plot, the magnitude and 
phase of the complex beampattern )(φB  vs.φ , and the magnitude of )(φB  vs.φ  in Cartesian and polar 
coordinates. Use »type plotBP_aper to see how polar plots are made. Figure Five illustrates the use of the 
tool ‘plotBP_aper.m’. You should try it for several values of N in order to see how the length of the array in 
multiples of wavelength determines the resolving power of the array. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Page 6 of 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure Five: Beampatterns for an aperture, N = 5 
 
 
THE FIR FILTER AND THE FINITE-SPACE ARRAY 
 
Time. Let us now try to re-tell this story for the case of finite-time summers (or FIR filters) and finite-space 
arrays. These may be thought of as discrete or sampled versions of integrators and apertures. Consider a 
system H(z) whose unit pulse response is 
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If the input to this system is the signal v[n], then the output is the convolution 
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As indicated, the output is a finite-time sum of the input, and the number of terms in the sum is N. The 
transfer function H(z) has canceling poles and zeros at z = 1, but it has N − 1 other zeros which are 
revealing. In order to find them, we need to factor the polynomial Nz −−1 : 
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These zeros are called the N roots of unity. Evidently, the transfer function H(z) has N − 1 zeroes located at 
Nnjez /2π= , for 1,,2,1 −= Nn K . Thus the transfer function H(z) can now be written as  
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The complex frequency response for H(z) is revealing. We are thinking of the actual time at sample n as 

0nt , so we will evaluate the complex frequency response in the usual way: 
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There are several things to note about this complex frequency response: its value at 0=f  is N, which is 
the sum of h[n], and it is zero at K,2,1,0 ±== kNtkf . This is illustrated in Figure Six, using the 
function ‘plotDSINC.m’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Six: Magnitude of )( 02 tfjeH π for N = 15, t0 = 0.2 
 
The output of this finite-time summer, when excited by the cosine )2cos( 0fntπ , whose frequency is f, is 
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The output at time 2/)1( −= Nn  is [ ] )sin(/)sin(2/)1( 00 tftfNNy ππ=− , which is a real number that 
depends on the frequency f. In fact, )2(]2/)1[( 0ftjHNy π=− , which is the magnitude of the complex 
frequency response at frequency f. By now, you should be able to explain why the complex frequency 
response should be zero at frequencies that are integer multiples of 01 Nt (that is, 0Ntkf = ), or periods 
that are integer fractions of 0Nt  (that is, kNtf 01 = ). 
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Space. There is no reason why this simple idea cannot be extended to space, rather than time.  To this end, 
we suggest that a finite integrating filter in space should have an impulse response and transfer function 
that is identical to the discrete-time case. Only the interpretation of the sampling index changes.  In this 
case, the sampling index n corresponds to actual space point 0nx . The complex frequency response is then 
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There are several things to note about this complex wavenumber response: its value at 0/1 =λ  is N, which 
is the sum of h[n], and it is zero at K,2,1,/0 ±== kkNxλ .  This is illustrated in Figure Seven, using the 
function ‘plotDSINC.m’. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure Seven: Magnitude of )( /2 0 λπ xjeH for N = 10, x0 = 0.1 
 
The output of this finite-space integrator, when excited by the cosine )2cos( 0 λπ nx , is, of course, 
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The magnitude of the output at the so-called phase center of the aperture, namely 2/)1( −= Nn , is 

( )λπ /2 0]2/)1[( xjeHNy =−  which is the magnitude of the complex wavelength response at wavelength 

λ. By now, you should be able to explain why the complex wavenumber response should be zero at 
wavelengths that are integer fractions of 0Nx and spatial frequencies that are integer multiples of 0/1 Nx . 
 
Now, a common way for wavelength to vary is for it to depend on the angle that a plane wave of fixed 
wavelength 0λ  makes with a linear aperture, as explained earlier. Thus, with λ replaced by )cos(/0 φλ , the 
complex beampattern is 
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Typically 0x , the spacing between array elements, is chosen to be a fraction of the wavelength 0λ .  Let's 
call this fraction 00 λxr =  and rewrite the beampattern as 
 

(21) ( )
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r
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This beampattern depends on two parameters, r and N, which are respectively the element spacing and 
array length, in multiples of the wavelength.  So the pattern is normalized in the sense that it holds for all 
wavelengths.  Of course, for a given pair (r,N) the actual element spacings will be 0λr and the actual array 
length will be 0λNr . The tool ‘plotBP_arra.m’ simplifies the plotting of  beampatterns by plotting, in a 
four-panel plot, the magnitude and phase of the beampattern vs. )cos(φ , and the magnitude of )(φB  vs. 

)cos(φ in Cartesian and polar coordinates. This is illustrated in Figure Eight. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure Eight: Beampatterns for an array, r = 0.2, N = 20 
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Assignment 
 
NOTE: For the following questions include explanations and printouts of results when applicable.  
 
1. Run pzd(b,a),with b and a chosen appropriately to compute and plot the poles and zeros for H(z)

given in equation (12).  From the product representation for H(z) in equation (15), argue that the
complex frequency response should have zeros at Nntf /0 = , or 0/ Ntnf = for

1,,2,1 −= Nn K . 
 
2. Rewrite the function ‘plotDSINC.m’ to display the complex frequency response outside of the

Nyquist Band. Explain what you see. Why are we only interested in the Nyquist Band? 
 
3. Over plot ‘plotBP_arra.m’ for several pairs of (N,r) to illustrate the dependence of a beampattern

on the element spacing and the length of the array, in wavelengths. In particular, fix 2/1=r and
let 16,8,4=N  to see how resolving power depends on array length. Then fix 8=N , and let

2/3,1,2/1,4/1=r  to see how the beampattern depends on element spacing. Perhaps you will
observe an effect called grating lobes, which you will want to describe and explain. 

 
4. You will note that the beampattern )(φB is just the complex frequency response of a digital filter,

namely ).( )cos(2 φπrjeH This means you may design antenna arrays by designing digital filters, and
then finding the beampattern for this array by evaluating the complex frequency response for your
digital filter at .)cos(2 φπθ rje=  Rewrite the tool ‘plotBP_arra’ to create a new tool, ‘plotBP.m’, that
will accept the parameters (r,N,h) where h is an arbitrary unit pulse response [ ].,,, 110 −= Nhhhh K

The tool should make the four panel plot made by ‘plotBP_arra.m’. 
 
(HINT: The function ‘plotBP_arra.m’ uses the pre-derived complex frequency response

).( )cos(2 φπrjeH In your new program, you will need to calculate this complex frequency response
from the unit pulse response h. Type »help freqz in the command window.)  

 
5. Reviewing your work in Lab 9, design lowpass and bandpass Chebyshev FIR filters that may be

used for array shadings h. Use your tool plotBP to display the beampatterns for your designs. 
 
6. Show how a bandpass Chebyshev filter produces a beampattern that is steered off broadside. 
 
7. How would you modify a unit-pulse response h designed for a broadside beampattern to steer your

array to 4π off broadside? Run ‘plotBP.m’ to illustrate your new beampattern.  Why is the
complex frequency response simply a shift, while the beampattern is less selective (or has less
resolving power) at 4π  than at 2π ? 

 
8. Maybe you want a beampattern that has zeros at several specified arrival angles. Choose the zeros

of an FIR filter H(z) that will produce this effect, and use your tool ‘plotBP.m’ to verify that you
have achieved the desired effect.


