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SIGNALS AND SYSTEMS LABORATORY 13:  
Digital Communication 

  
INTRODUCTION 
 
Digital Communication refers to the transmission of binary, or digital, information over analog channels. In 
this laboratory you will gain an appreciation of the two main factors that limit reliable communication, 
namely bandwidth and noise. 
 
COMMUNICATION SYSTEMS 
 
The use of man-made devices to enable long distance communication has a history extending at least as far 
back as the written word, even to the use of petroglyphs on canyon walls. The use of electrical devices to 
aid communication dates back to the demonstration of a viable telegraph system by Samuel Morse in 1838, 
although others may have had similar ideas a few years earlier. The technology for communication has 
developed explosively since that time. The way we think about communication and information theory 
today dates from two historic papers by Claude Shannon published in the Bell System Technical Journal in 
July and October of 1948. These papers, and some supplementary material, were published in book form in 
1949 as The Mathematical Theory of Communication, University of Illinois Press. This book is well written 
and, unlike many of the thousands of papers which followed, very readable.  
 
Shannon introduced several ideas. One important idea was to break the communication problem down into 
two stages called source coding and channel coding. For present purposes let us decompose the 
communication process even further into the following sequence of operations. 
 
I. Source Coding. A natural source (thoughts, text, music, pictures, line drawings) is coded into binary 
form. The number of bits required (for a given accuracy) is called the information content of the message. 
Analog sources cannot be represented exactly with a finite number of bits. One must agree on a standard 
for error. For example, the hifi audio standard is 16 bits per sample. This produces a maximum quantizing 
error of 2 

–
 
15 times the maximum amplitude of the signal. Other natural sources may involve more clever 

ways of coding. Shannon studied sources that produce information continuously in time, and considered the 
problem of finding the most efficient representation based on the statistical structure of the source. This 
results in the fewest possible bits per second (on average), which is call the entropy of the source. Programs 
that do file compression are source coders. The Morse code (invented by Samuel Morse) is a source coder. 
It is a variable-length coder that uses a short code for frequently occurring letters and a long code for 
infrequently used letters. One can say that the intent of a source coder is to remove redundancy and find an 
efficient representation of the message. The output of a source coder is a sequence of binary digits, zeros 
and ones. 
 
II. Channel Coding. A channel coder takes a binary sequence and produces a signal which is appropriate 
for a given communication channel. In general it will add redundancy to defeat errors due to noise. The 
interleaved Reed-Solomon code that is used in the compact disk medium is a channel code. Provided it is 
not done too often, one can wipe out individual bits, and even whole blocks of bits, and the original 
information can still be restored because of the constraints the channel code imposes on its output. This 
cannot be done without cost; the channel code increases the total number of bits by a fixed percentage. The 
rate of a channel code is the ratio of the number of input bits to the number of output bits and will be less 
than one. The output sequence is still binary. Shannon studied the problem of characterizing the highest 
possible rate among all channel coders, which can lead to decoding with arbitrarily small probability of 
error. The solution to this problem characterizes the channel capacity in bits per second. 
 
III. Coding for an analog channel. If we must use an analog channel to convey the information to a 
destination, then the binary input must be converted to a real valued continuous time signal before it is 
transmitted. There are very many ways to do this. As an example we shall consider a pulse amplitude 
modulation (PAM) system. Here one transmits a pulse p(t) for a binary one and a pulse - p(t) for a binary 
zero. The pulse shape may be designed to match the characteristics of the channel. 
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IV. The channel. Analog baseband channels are usually modeled as a lowpass filter with additive white 
Gaussian noise. The channel is characterized by its bandwidth and noise power. 
 
The rest of the blocks simply undo what has been done, and consist of a receiver which makes a best guess 
as to what the binary input sequence to the channel might have been, followed by a decoder for the channel 
coder (which corrects errors), followed again by a decoder for the source coder. 
 
A SIMPLE COMMUNICATION SYSTEM MODEL 
 
Our model for an analog channel is shown in Figure One. It consists of an additive noise source followed 
by a lowpass filter. This filter might not be ideal. Its magnitude might not be constant and its phase might 
not be linear. 

Figure One A digital communication system 
 
The PAM transmitter which produces the continuous time channel input )(tx  is described by the following 
relations in time and frequency. 
 
(1) )()( ωjPtp Fourier →←  
 
This signal is the pulse used by the PAM filter to respond to one bit of input. If we let b[k] = 1 for a binary 
one, and b[k] = -1 for a binary zero then the output of the PAM filter is 
 

(2) )()()()(][)( 0
0 ωω ω jPeBjXkttpkbtx tjFourier

k

= →←−=∑  

 
This is one of the most important mixed transforms in Fourier analysis. The channel adds noise to this input 
and then passes the result through a lowpass filter H(jω). In the time domain this is convolution. 
 

(3) ( ) [ ])()()()()()()()))((()( ωωωωττττ jNjXjHjYdnxthtnxhty +=→←+−=+∗= ∫ . 

 
Figure Two depicts an example. It was produced using our homebrew MATLAB function ‘data_ch.m’, 
found on the class web page under ‘Functions for Lab 13’. This function simulates a particular data 
channel. Pieces of the input signal x(t) and the output signal y(t) are shown on the top two panels. If we put 
the output into a spectrum analyzer, we would get a display like the one on the lower left which shows that 
the channel is indeed a lowpass filter. The graph on the lower right is an eye diagram. This is easily 
obtained in the laboratory and we will describe the experiment that produced it in the next section. 
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Figure Two Graphical output of ‘data_ch.m’ 

 
 
EYE DIAGRAMS AND INTER-SYMBOL INTERFERENCE 
 
The laboratory setup for producing an eye diagram is shown in Figure Three. It requires only an 
oscilloscope, assuming that the input signals are readily available. One connects the channel output y(t) to 
the vertical input of the scope and triggers on the data clock. Each trace is then begun at the same time 
within a bit (or, more generally, symbol) period. The horizontal time base generator frequency is then 
adjusted so that we get one to two bit periods across the screen. Thus the eye diagram contains many 
periods of the channel output overlayed. Its use is this. If there is a point within the eye diagram for which 
all traces corresponding to a binary one are well above all traces corresponding to a binary zero, then we 
can decode the signal y(t) and recover the binary sequence without error. Because of the shape of the 
collection of traces, this situation is called an open eye. We shall see however, that the eye can close if we 
attempt to transmit data at too high a rate, or if the additive noise power is too great. When the eye is closed 
there will be errors. This is an example of a situation where a simple laboratory experiment can get to the 
heart of the matter more quickly than theoretical analysis. 
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Figure Three Laboratory setup for obtaining an eye pattern 
 
It is obvious from the eye diagram that the train of overlapping pulses which make up the channel output 
signal interfere due to interference from all previous pulses. If we sample the output synchronously (that is 
using a specified position within a bit period) then the resulting value will depend on all the previous 
symbols that were transmitted. This can be seen by combining equations (2) and (3). If we set the noise to 
zero (infinite signal-to-noise ratio), and sample at the symbol period t = mt0, then 
 

(4) ∑∑ =+→←−∗=
r

tj

k

jrjHPeBktmtphkbmty 1)()())(]([)( 0000
0 ωωω

. 

 
This output sample depends on all the symbols b[k] weighted by samples of the pulse (h * p)(t). This is call 
inter-symbol interference. Ideally we would like y(mt0) to depend only on one symbol, say b[m]. In this 
circumstance, it would easy to recover the symbol. From equation (4), 
 

(5) ][))((][)( 00 kktphmbmty δ=∗⇔= , for all k      ⇔      ∑ =+
r

jrjHP 1)(
2 0

0 ωω
π
ω

 

 
This situation is called zero inter-symbol interference. It is the situation that one might attempt to design by 
choosing the pulse p(t) to match the channel impulse response h(t). But zero ISI is not always possible 
because of bandwidth limitations. How does bandwidth limit things? 
 
TWO FUNDAMENTAL LIMITATIONS, BANDWIDTH AND NOISE 
 
Shannon produced a famous formula which describes what is possible for a power limited channel with a 
given bandwidth and signal-to-noise ratio. It gives the theoretical upper bound for channel capacity in bits 
per second. (This is the greatest data rate for which one can decode with arbitrarily small error probability, 
if an infinite amount of time and computational resources are available, assuming that we could figure out 
how to do it.) The Shannon inequality is 
 

(6) 







+≤

n

s

BP
P

BC 1log2 , 

 
where C is the capacity in bits per second, B is the channel bandwidth in Hz, and sP  and nP  are the signal 
and noise powers. The ratio ns PP /  is called the power signal-to-noise ratio. We will experimentally 
demonstrate this limitation using a PAM transmitter and the eye diagram. 
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But first, let’s look at a related problem. For a bandlimited channel, what is the greatest rate for which zero 
inter-symbol interference is possible? The answer comes out of the Shannon sampling theorem. 
 

(7)  If ][))(( 0 kktph δ=∗ , for all k, and 0)( =ωjH  for Bπω 2|| > , then B
t

f 21

0
0 ≤= .  

In other words, the maximum symbol rate, with zero inter-symbol interference, is twice the channel 
bandwidth. This rate is not automatically met. The limiting case is 
 
(8) )/(sinc))(( 0tttph π=∗ .  
 
This is the only zero inter-symbol interference pulse with bandwidth Bf 20 = . The symbol rate Bf 20 =  is 
called the Nyquist rate of the bandlimited channel. There are many zero ISI pulses when Bf 20 < . There 
are no zero ISI pulses when Bf 20 > . Keep in mind that the rate for zero inter-symbol interference and the 
channel capacity represent the limits for two distinct (but related) problems. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Assignment: 
 
There are two MATLAB functions for use in this assignment, which are located on the webpage. The 
first, called ‘data_tx.m’, simulates a source and PAM transmitter. The other is called ‘data_ch.m’. It 
simulates the channel and produces the display shown in Figure Two. Investigate these using the 
‘help’ facility. 
 
1. The pulse shapes  

If the pulse selection variable ‘pulseID’ is negative, then only a single pulse is displayed. Type 
 
       »x=data_tx(.25,2,-1);xx=x(2:2049);% strip off clock period 
       »fs=24000;t=(1/fs)*[0:2047];subplot(2,1,1),plot(t,xx),subplot(2,1,2),spectrm(xx,fs) 
 

One pulse is displayed in the time and frequency domains. The pulse width varies with the 
parameter ‘rate’, which is 0.25 in this example. Do this for all four pulse shapes and print the 
results. For future reference, keep in mind that if the rate is increased, then the pulse width will 
decrease and the pulse bandwidth will increase. 
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Assignment: 
 
2. The Channels 
 

If the channel selection variable ‘ID’ is negative, then the ‘plotZTP.m’ function, from lab 9, is 
used to display the channel filter. (These simulations are all done in discrete time of course.) Type 

 
       »data_ch(x,1,-1); 
 

You will get a Z-transform view of the filter. The simulations use a sampling frequency of 
Hz000,24=sf , and a channel bandwidth of 500,1=cf  Hz. Therefore the normalized cutoff 

frequency is 8//2 ππα == sc ff . This should be apparent in the display. Do this for all four 
channels (ID = -1,-2,-3, and -4), and print the results. 

 
3. Zero ISI  
 

Start with the ideal case. If we select an impulse for the pulse shape, and use channel two (the 
linear phase FIR filter is a good approximation to the ideal lowpass filter), run the data at the 
Nyquist rate (rate=2) and set the signal to noise ratio to infinity (snr=1e6), then we should see a 
zero inter-symbol interference eye pattern. Type 

 
      »x=data_tx(2,2,2);y=data_ch(x,1e6,2); 

 
Make a print of the result. Hand annotate the plot, indicating why the eye pattern exhibits zero 
inter-symbol interference. Now use the Chebychev channel (ID=3), a sinusoidal pulse 
(pulseID=4), at a low rate (rate=.5). This is one-fourth the Nyquist rate. Zero ISI is for all 
intents and purposes always achievable at very low rates. Indicate on the plot where you would 
sample to get zero ISI. 

 
4. Multi-level data 
 

One way to get a higher bit rate is to transmit with more than two levels. If the signal to noise 
ratio is sufficiently high, then one can separate all the levels and decode the output. The following 
example runs at half the Nyquist rate but uses four levels, so that each symbol yields two bits of 
information. Type 

 
       »x=data_tx(1,4,1);y=data_ch(x,1e6,1); 
 

Make a print of this, and annotate the eye pattern showing how the data can be recovered. (There 
are other ways to increase the bit rate which are commonly used. With one full wave of a 
sinusoid per symbol period, one can use several amplitudes and phases.) 

 
5. Data rate and SNR  

 
For a particular choice of pulse and channel, do several simulations varying the data rate and 
signal-to-noise ratio. The goal is to determine which combinations of rate and SNR will allow for 
reliable data transmission. Use a square pulse (pulseID=1) and the Butterworth channel (ID=1). 
Transmit binary data, i.e. set levels=2. Make a graph with rate on the horizontal axis and SNR on 
the vertical axis. Both variables are positive, so the first quadrant is all that is necessary. 
Experimentally determine the boundary for reliable communication. Let us agree to consider a 
(rate,SNR) pair usable if the eye pattern has an opening of roughly 25% of full scale. You need 
not make prints of everything you try, but include one for the limiting ‘rate’ when SNR = 1e6, 
and one for the limiting SNR when rate = 2. You might want to use the line 

 
       »rate=2;snr=10;data_ch(data_tx(rate,2,1),snr,1); 
 

          which is easy to edit and reuse. 
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Assignment: 
 
6. Phase Distortion  
 

Repeat the experiment in question (5), using channel 4 (ID=4). This is the same Butterworth 
filter, except that an allpass filter is added. The magnitude of the frequency response is exactly 
the same (so the bandwidth is clearly the same). But the phase is more nonlinear. Make the same 
two dimensional sketch of usable (rate,SNR) pairs. How severe is the degradation in 
performance? In practice, one can correct phase distortion (as well as amplitude distortion) by 
appending an equalizer to the channel. This forms part of the receiver. There are ways to design 
the equalizer in real time, using so-called adaptive filter algorithms. 

 
 
7. Chebychev Channel 
 

Channel 3 (ID=3) is a Chebychev filter and has very sharp cutoff. Does this make it better or 
worse than the Butterworth channel for data transmission? Run some simulations using 
(rate,SNR) pairs on the boundary of the Butterworth reliable region. Then answer the question. 
Use the same square pulse. If the performance degrades, what is the reason? 

 
 
8. Data detector design  

 
Write a MATLAB tool called ‘data_rx.m’ which recovers the binary information from the signal 
y. Then exercise it: 

 
    »x=data_tx(2,2,1);y=data_ch(x,20,1);d=data_rx(y); 
 

Note that the first elements in the row vectors x and y are not data, but the clock period in 
samples. Explain your method of determining the phase at which you sample the channel output. 
In other words, how do you determine where the center of the eye is? This determination should 
be done from the data only. Do not use any side information about the channel filter. Include a 
display component in ‘data_rx.m’, which plots the channel output y, and overlays vertical 
markers at the center-of-the-eye positions. Include a print of this display in your report. The 
vector d should be a row vector of zeros and ones. A vertical marker at time t1 can be added to 
the plot using  

 
      hold on;plot([t1,t1],[-1,1],'w');hold off; 


